第9章分子发光分析

合集下载

分子发光分析法五种去活化过程

分子发光分析法五种去活化过程

分子发光分析法五种去活化过程
一、表面活性剂洗涤
表面活性剂洗涤是一种常见的去活化过程,洗涤分子表面上的污染物,降低并去除和阻止分子表面上的污染物对发光特性的影响。

分子活性剂洗
涤试剂可以根据需要分类,包括非离子表面活性剂、离子表面活性剂和混
合表面活性剂。

通常情况下,洗涤剂应与活性剂结合,以提高洗涤效率,
同时具有良好的低温过程安全。

表面活性剂洗涤可以减少分子表面的污染物,从而改善样品的发光特性,如改善发射光谱,提高发射效率,并可能
改善分子检测的灵敏度。

二、抗化学处理
抗化学处理是指在特定条件下,通过在分子表面涂覆一层屏蔽膜,阻
止日常活动(如体积缩小,局部温度升高等)对分子表面造成的影响,从
而保持稳定性和发光性质。

抗化学处理可以在低温下进行,不改变分子组成,而且耐受性更好。

三、光致化学聚合
光致化学聚合是将分子用光进行处理,使用不同的光谱来影响分子的
特性,使其可以在恒定的环境中提供更稳定的发光性能。

四、气氛处理
气氛处理是指在恒定温度和压力的环境下,利用气体作用去活化分子
表面。

该过程可以去除表面污染物,改善发光特性,如改善发射光谱或提
高发射效率。

第9章-发光材料ppt课件

第9章-发光材料ppt课件

• 二、发光材料的发光特征 • 1、颜色特征
• 不同发光材料有不同的发光颜色。
材料的发光光谱(又称 发射光谱)可分为下列 三种类型:宽带、窄 带、线谱。
宽带:半宽度~ 100nm 窄带:半宽度~ 50nm 线谱:半宽度~ 0.1nm
可编辑课件PPT
12
稀土发光材料
可编辑课件PPT
13
• 2、发光强度特征
• 热辐射与冷光。
可编辑课件PPT
5
发光材料品种很多,按激发方式发光材料可以分为:
(1)光致发光材料:发光材料在光(通常是紫外光、 红外光和可见光)照射下激发发光。
(2)电致发光材料:发光材料在电场或电流作用下 的激发发光。
(3)阴极射线致发光材料:发光材料在加速电子的 轰击下的激发发光。
(4)热致发光材料:发光材料在热的作用下的激发 发光。
电子逐渐逸出,跳回价带并发射光子。
• 具有缺陷的某些复杂的无机晶体物质,在光激发 时和光激发停止后一定时间内 (>10-8 s) 能够发光, 这些晶体成为磷光材料。
• 磷光材料的主要组成部分是基质和激活剂两部分。
用作基质的有第Ⅱ族金属的硫化物、氧化物、硒
化物、氟化物、磷酸盐、硅酸盐和钨酸盐等,如
ZnS、BaS、CaS、CaWO3、Ca3(PO4)2用来作激活
• (3)两个敏化中心被激发,把激发能按先后顺序或同 时传递给发光中心,使其中处于基态的电子跃迁到比 激发光光子的能量更高的能级,然后驰豫下来发出波 长短得多的光。
可编辑课件PPT
27
• 四、光致发光材料的应用
• 主要用于显示、显像、照明和日常生活中。 如荧光化妆品、荧光染料等。
可编辑课件PPT
28

第九章分子荧光光谱法Molecular-fluorescence-spectroscopy

第九章分子荧光光谱法Molecular-fluorescence-spectroscopy
测量荧光的仪器主要由四个部分组成:激发光源、样品 池、双单色器系统、检测器。
特殊点:有两个单色器,光源与检测器通常成直角。 基本流程如图: 单色器:选择激发光波长 的第一单色器和选择发射 光(测量)波长的第二单色 器; 光源:灯和高压汞灯,染 料激光器(可见与紫外区) 检测器:光电倍增管。
仪器框图
该型仪器可进 行荧光、磷光 的发光分析;
同步扫描技术
根据激发和发射单色器在扫描过程中彼此间所保持的 关系,同步扫描可分为固定波长差(Δλ)和固定能量差及可 变波长三种;
辐射复合发光过程:
1. 自由激子复合(X); 2. 导带电子—中性受主复合
(e,A0); 3. 施主—受主对复合
(D0,A0); 4. 束缚于中性施主上的——
激子复合 (D0,X); 5. 中性施主——价带空穴的复合(D0,h);
中性受主、电离施主或受主上的和等电子杂质上的束缚激子复合而发 光。
3.激发光谱与发射光谱的关系
(4)取代基效应:芳环 上有供电基,使荧光增 强。
3.内滤光作用和自吸现象
内滤光作用:溶液中含有能吸收激发光或荧光物质发射 的荧光,如色胺酸中的重铬酸钾;
自吸现象:化合物的荧光发射光谱的短波长端与其吸收 光谱的长波长端重叠,产生自吸收;如蒽化合物。
4、溶液荧光的猝灭
碰撞猝灭: 氧的熄灭作用等。
四、仪器结构流程
2. 激发态分子的失活: 激发态分子不稳定,它要以辐射
或无辐射跃迁的方式回到基态。
λ1
λ2
λ2/
λ3
λ4
无辐射跃迁:
(1) 振动弛豫:激发态分子由同一电子能级中的较高振动能 级转至较低振动能级的过程,其效率较高。 (2) 内转换:相同多重态的两个电子能级间,电子由高能级 回到低能级的分子内过程。 (3) 系间窜越: 激发态分子的电子自旋发生倒转而使分子的 多重态发生变化的过程。 (3) 外转换:激发态分子与溶剂或其它溶质相互作用、能量 转换而使荧光 (或磷光)减弱甚至消失的过程。荧光强度的

分子发光分析法

分子发光分析法

3.检测器 3.检测器
荧光计采用光电管作检测器 荧光分光光度计采用光电倍增管作检测器 电感耦合器件(charge couple device, CCD)
四、荧光分析方法与应用
1. 特点: 特点: (1)灵敏度高 比紫外-可见分光光度法高2~4个数量级

光度法 A = lg I0/I = KC 荧光法 I= KC
(c) 刚性平面结构:可减少分子振动,减少与溶剂的相互作用 刚性平面结构:
(d) 取代基效应 取代基效应:给电子取代基使荧光增强;吸电子取代基使荧光减弱 如苯胺和苯酚荧光较强,而硝基苯为非荧光物质 (e)重原子效应 )重原子效应:卤素取代基随原子序数的增加,荧光减弱,而磷光增强
(3)荧光螯合物 荧光螯合物
I p = 2 . 3ϕ p I o c
式中:Ip 为磷光效率,Io 为激发光的强度人为磷光物质的摩尔吸收系数,b为 试样池的光程。在一定的条件下,ϕ 、I p、 、b均为常数,因此上式可写成: κ
I p = Kc
根据上式可以用磷光强度对磷光物质浓度制作定量分析的标准曲线
2. 温度对磷光强度的影响:随着温度的降低,磷光逐渐增强 温度对磷光强度的影响: 3.重原子效应: 3.重原子效应:重原子的高核电荷使磷光分子的电子能级交错,容易引 重原子效应 起或增强磷光分子的自旋轨道偶合作用,从而使S 起或增强磷光分子的自旋轨道偶合作用,从而使S1→ T1的体系间窜跃 概率增大,有利于增大磷光效率。 4.室温磷光 4.室温磷光 (1)固体基质:在室温下以固体基质吸附磷光体,增加分子刚性、减少三重 态猝灭等非辐射跃迁,从而提高磷光量子效率。 (2)胶束增稳:利用表面活性剂在临界浓度形成具多相性的胶束,改变磷光 体的微环境、增加定向约束力,从而减小内转换和碰撞等去活化的几率,提 高三重态的稳定性。 (3)敏化磷光: 激发三重态将能量转移于另一易发磷光的受体,让其法磷光

分析化学-第九章_分光光度法

分析化学-第九章_分光光度法
石英池——对紫外线和可见光 均可透过; 玻璃池——吸收紫外光,透过 可见光。
(4) 检测系统
作用:将光强度转换成电流信号来进行测量。光电转换装置。 包括:光电管,光电二极管阵列等
§9.3 显色反应与条件的选择
为什么要进行显色反应?
• 光度分析中,对于本身无吸收的待测组分,先要通过显色反 应将待测组分转变成有色化合物,然后测定吸光度或吸收曲 线。与待测组分形成有色化合物的试剂称为显色剂。

Fe2+ + 3


显色反应条件的选择
1.显色剂用量
吸光度A与显色剂用量cR
的关系会出现如图所示的几种 情况。选择曲线变化平坦处。
2.反应体系的酸度
在相同实验条件下,分别测定不同pH值条件 下显色溶液的吸光度。选择曲线中吸光度较大且恒 定的平坦区所对应的pH范围。
3.显色时间与温度
实验确定
4.溶剂
即朗伯-比尔定律 A lg I0 lg 1 bc
IT
朗伯-比尔定律的数学表达式
注意量纲
A lg I0 bc abc
I
式中 A:吸光度;描述溶液对光的吸收程度;
b:液层厚度(光程长度),通常以cm为单位;
c:溶液的摩尔浓度,单位 mol·L-1;
ε :摩尔吸收系数,单位 L·mol-1·cm-1;
λ
A
420 0.199
430 0.211
440 0.237
450 0.283
460 0.313
470 0.333
480 0.371
490 0.395
500 0.445
510 0.476
520 0.451
530 0.401
540 0.321

分子发光分析法

分子发光分析法

只有在极稀的溶液中,当 b c <0.02时才成立,对于浓度较 高的溶液,由于自猝灭和自吸收等原因,使荧光强度和荧光 物质浓度不呈线性关系。
3 .荧光的产生与分子结构的关系
• 分子产生荧光必须具备两个条件: • 物质分子必须具有能吸收一定频率紫外可见辐射
的特征结构,分子必须具有吸光的结构 • 吸光后被激发的分子还必须具有高的荧光量子产
荧光发射光谱 荧光激发光谱
磷光光谱
200 260 320
380 440醇溶液荧(磷)光光谱
7-1 概述
• 分子发光分析法包括荧光分析法、磷光分析法和化学发光 分析法。这三种都是通过测量被激发的分子回到基态时所 发射的光辐射来进行分析的,不同之处在于光谱产生的机 制。
荧光强度 If正比于吸收的光量Ia和荧光量子效率 :

If = Ia

由朗-比耳定律: Ia = I0(1-10- b c )

If = I0(1-10- b c ) = I0(1-e-2.3 b c )
• 浓度很低时,将括号项近似处理后:

If = 2.3 I0 b c = Kc
② 荧光 (或磷光)发射光谱
• 固定激发光波长(选最大激发波长), 化合物发射的荧光(或 磷光强度)与发射光波长关系曲线。
荧光发射光谱 荧光激发光谱
磷光光谱
200
260 320
380 440 500 560 620
室温下菲的乙醇溶液荧(磷)光光谱
③ 激发光谱与发射光谱的关系
(1) Stokes(斯托克斯)位移 激发光谱与发射光谱之间的波长差值。发射光谱的波长比
激发光谱的长,振动弛豫消耗了能量。 (2) 荧光光谱的形状与激发波长无关 电子跃迁到不同激发态能级,吸收不同波长的能量(如l2

《分子发光》课件

《分子发光》课件
详细描述
荧光光谱法利用某些物质吸收光后, 能以荧光的形式重新发射出特定波长 的光,通过测量荧光光谱,可以分析 物质的组成和结构。
磷光光谱法
总结词
一种测量物质在激发态的磷光发射光谱的方法。
详细描述
磷光光谱法利用物质吸收光后,处于激发态的分子以磷光的形式缓慢地释放出 特定波长的光,通过测量磷光光谱,可以分析物质的组成和结构。
详细介绍了分子发光的原理、发光机制以及在各个领域的 应用,是学习分子发光的基础教材。
《荧光染料与荧光分析法》
系统介绍了荧光染料的基本性质、合成方法以及荧光分析 法的应用,对于深入了解荧光染料在分子发光领域的作用 很有帮助。
"分子发光机制研究进展"
综述了近年来分子发光机制的研究成果,包括新的发光材 料、发光过程的理论模型等。
激发态的稳定性
激发态是相对不稳定的, 分子会通过各种方式释放 能量并回到基态。
分子发光的辐射过程
辐射跃迁
激发态的分子通过释放光子的形式回到基态,这 个过程称为辐射跃迁。
光子的产生
当分子从激发态回到基态时,会释放出能量并以 光子的形式辐射出去。
光子性质
光子具有特定的波长(或频率),与其所属的分 子和激发态有关。
THANKS
感谢观看
《分子发光》PPT课件
contents
目录
• 分子发光的概述 • 分子发光的原理 • 分子发光的技术与方法 • 分子发光在科学研究中的应用 • 分子发光的发展趋势与展望 • 参考文献
01
分子发光的概述
分子发光的基本概念
分子发光是指分子在吸收能量 后以光子的形式释放能量的过 程。
分子发光现象广泛存在于自然 界和人类生产生活中,如萤火 虫、发光菌、荧光棒等。

(完整word版)分子发光分析(习题及答案)

(完整word版)分子发光分析(习题及答案)

(完整word版)分子发光分析(习题及答案)
分子发光分析
一、选择题
1. Stokes位移是指分子的荧光发射波长总是比其相应的吸收(或激发)光谱的波长( 1 )
(1) 长(2) 短(3) 相等(4) 无法比较
2. 发射光谱的形状与激发波长(4 )
(1) 有关(2) 无关(3) 不确定(4) 前三者都有可能
3.电子由第一激发单重态的最低振动能级返回到基态的过程是发射( 1 )
(1) 荧光(2) 磷光(3) 化学发光(4) 拉曼光
4. 电子由第一激发三重态的最低振动能级返回到基态的过程是发射( 2 )
(1) 荧光(2) 磷光(3) 化学发光(4) 拉曼光
5. 荧光是一种( 3 )现象
(1) 热致发光(2) 场致发光(3) 光致发光(4) 生物发光
6. 下列哪种分子结构不利于产生荧光?( 3 )
(1) 具有ππ*跃迁(2) 具有刚性平面结构
(3) 具有吸电子基团(4) 具有长的共轭结构
二、填空题
1. 荧光物质分子都有两个特征光谱,即____激发光谱_________和______发射光谱_______。

2. 荧光发射光谱与它的激发光谱成____镜像_________关系。

三、简答题
1. 激发态分子常见的非辐射的去活化过程有哪几种?试分别加以说明。

2. 如何区别荧光和磷光?。

分子发光分析法与分子吸收分光光度

分子发光分析法与分子吸收分光光度

分子发光分析法与分子吸收分光光度
分子发光分析法和分子吸收分光光度法(MMS)是物理化学中测定物质含量和生物物质含
量的两种常用方法。

它们之间有共同点和不同之处,本文主要就这二者的原理和方法进行
介绍。

分子发光分析法(MALS)是用物质中的激发态分子把紫外线能量转换为可见光,用以表征
物质的测定方法。

该方法工作原理为紫外线照射激发态分子,激发态分子把紫外线能量转
变为可见光,然后通过光电器件检测发出的可见光,最终得出物质的测定结果。

MALS技术的优点在于检测结果准确,具有快速性,还可以检测生物样本中物质含量。

而分子吸收分光光度(MMS)是通过测量物质吸收入射光的程度,来表征物质的检测方法。

这种技术工作原理是将光源照射在样本上,样本中的物质会吸收一部分入射的紫外线,而
剩下的光经过反射和透射而到达检测器,最终通过计算获得物质的测定数值。

比较MMS和MALS,MMS技术具有更高的灵敏度,可以进行更细小物质的检测,而且不受多种物质的干扰,也可以检测生物样本中的物质含量。

总之,MALS和MMS都是通过激发态分子转换紫外线能量为可见光,然后通过光电器件检测可见光,来判断物质的含量的两种常用技术,它们的优点和特点主要是MALS检测结果准确,具有快速性,而MMS则具有更高的灵敏度,可以进行更细小物质的检测,也可以检测
生物样本中的物质含量。

分子发光分析法与分子吸收分光光度法

分子发光分析法与分子吸收分光光度法

分子发光分析法与分子吸收分光光度法
分子发光分析法与分子吸收分光光度法
分子发光分析法和分子吸收分光光度法是两种常用的分子光学技术。

它们都是利用自由基反应的原理测定物质的技术。

分子发光分析法是基于激发分子发射光,从而测定物质浓度的技术。

它使用一种特殊的分子发射剂与被测物质反应,当被测物质与分子发
射剂反应后,分子发射剂会被激发发射出特定波长的光,而这些发射
出的光则可以用来测定被测物质的浓度。

分子吸收分光光度法是基于激发分子吸收光来测定物质浓度的技术。

它使用一种特殊的分子发射剂,它能把一种特定的波长的光吸收,而
这种光则能够激发被测物质。

当被测物质激发后,它会吸收一定波长
的光,而这些被吸收的光则可以用来测定被测物质的浓度。

通过对比可以看出,分子发光分析法和分子吸收分光光度法各有优劣,它们都可以用来测定物质的浓度,但都存在一些使用上的限制,比如
分子发光分析法在测定低浓度物质时会有一定的误差,而分子吸收分
光光度法则受到测量物质种类的限制。

因此,在选择物质浓度检测的
技术时,应根据具体情况选择适合的技术,以得到更准确的测定结果。

分子发光

分子发光

( 3)基态单重态到激发单重态的激发为允许跃迁,基 态单重态到激发三重态的激发为禁阻跃迁。
(4)激发三重态的能量较激发单重态的能量低。
2、分子能级结构与分子发射光谱
处于激发态的电子,通常以辐射跃迁方式或无辐射
跃迁方式再回到基态。
辐射跃迁:荧光、磷光的发射。 无辐射跃迁:振动弛豫(VR)、内转化(ic)、体系间 窜跃(isc)等。
A
(2.3 A) 2 (2.3 A)3 I f I o [2.3 A ] 2 3
如果吸光度A<0.05, 方括号中其他各项与第一项相比 均可忽略:
I f 2.3 I o A
由于A=bc,故在实验条件固定时,荧光强度与浓
度成正比,即:
I f 2.3I 0 A
抗体、抗原
酶联免疫吸附分析示意 Enzyme-linked immunosorbent assay (ELISA)
2. 荧光与有机化合物结构的关系
(1)跃迁类型 对于大多数荧光物质,首先经历激发,然后经过
振动弛豫或其他无辐射跃迁,再发生 跃迁而得到荧光。
(2)共轭效应 容易实现激发 的芳香族化合物容易发生荧光。 增加体系的共轭度荧光效率将增大,主要是由于增大荧 光物质的摩尔吸光系数,有利于产生更多的激发态分子。
类型 转入三重态猝灭: 溶解氧与荧光物质。 发生电子转移反应猝灭: 猝灭剂与荧光物质。 浓度较高单重激发态的分子在 荧光物质的自猝灭: 发生荧光之前和未激发的荧光 物质分子碰撞而引起的自猝灭。 29
二、荧光分析仪
Cary Eclipse 荧光分光光度计 荧光、磷光化学/生物发光 美国瓦里安技术中国有限公司
抗磁性。
当分子吸收能量后,在跃迁过程中不发生电子自旋方

分子发光分析法

分子发光分析法

第7章分子发光分析法【7-1】解释下列名词。

(1)单重态;(2)三重态;(3)荧光;(4)磷光;(5)化学发光;(6)量子产率;(7)荧光猝灭;(8)振动弛豫;(9)系间跨越;(10)内转换;(11)重原子效应。

答:(1)单重态:在给定轨道中的两个电子,必定以相反方向自旋,自旋量子数分别为1/2和-1/2,其总自旋量子数s=0。

电子能级的多重性用M=2s+1=1,即自旋方向相反的电子能级多重性为1。

此时分子所处的电子能态称为单重态或单线态,用S表示。

(2)三重态:当两个电子自旋方向相同时,自旋量子数都为1/2,其总自旋量子数s=1。

电子能级的多重性用M=2s+1=3,即自旋方向相同的电子能级多重性为3,此时分子所处的电子能态称为三重态或三线态,用T表示。

(3)荧光:分子受到激发后,无论处于哪一个激发单重态,都可通过振动弛豫及内转换,回到第一激发单重态的最低振动能级,然后以辐射形式回到基态的各个振动能级发射的光。

(4)磷光:分子受到激发后,无论处于哪一个激发单重态,都可通过内转换、振动弛豫和体系间跨越,回到第一激发三重态的最低振动能级,然后以辐射形式回到基态的各个振动能级发射的光(5)化学发光:化学反应物或反应产物受反应释放的化学能激发而产生的光辐射。

表示。

(6)量子产率:激发态分子发射荧光的光子数与基态分子吸收激发光的光子数之比,常用f(7)荧光猝灭:指荧光物质分子与溶剂分子之间发生猝灭,荧光猝灭分为静态猝灭和动态猝灭。

(8)振动弛豫:处于激发态最高振动能级的外层电子回到同一电子激发态的最低振动能级以非辐射的形式将能量释放的过程。

(9)系间跨越:处于激发态分子的电子发生自旋反转而使分子的多重性发生变化的过程。

即分子由激发单重态以无辐射形式跨越到激发三重态的过程。

(10)内转换:相同多重态的两个电子态之间的非辐射跃迁。

(11)重原子效应:使用含有重原子的溶剂(如碘乙烷、溴乙烷)或在磷光物质中引入重原子取代基,都可以提高磷光物质的磷光强度,这种效应称为重原子效应。

分子发光

分子发光

(三)荧光的产生与分子结构的关系
1.分子产生荧光必须具备的条件 (1)合适的结构(芳环/多个共轭双键) (2)一定的荧光量子产率 发射的光量子数
吸收的光量子数
一般在0.1-1之间;凡是使荧光增加,使 其它去活化常数降低的因素均可增加荧光量子产 率;荧光强度由分子结构(内因)和所处化学环 境(外因)共同决定
(二)激发光谱与荧光光谱
1 激发光谱 改变激发波长,测量在最强荧(磷)光发射 波长处的强度变化,以激发波长对荧光强度作 图可得到激发光谱 激发光谱形状与吸收光谱形状完全相似,经 校正后二者完全相同!这是因为分子吸收光能 的过程就是分子的激发过程。激发光谱可用于 鉴别荧光物质;在定量时,用于选择最适宜的 激发波长
(二) 磷光的特点 • 磷光波长比荧光的长(T1<S1)������ • 磷光寿命比荧光的长(磷光为禁阻跃迁产生, 速率常数小) • 磷光寿命和强度对重原子和氧敏感
(三)荧光分析法的应用 1 无机化合物的分析 铍、铝、硼、镓、硒、 镁、稀土常采用荧光分 析法
荧光试 剂/探 针
2
生物与有机化合物的分析
3. 室温磷光 低温荧光需低温实验装臵且受到溶剂选择的限制 1)固体基质:在室温下以固体基质(如纤维素等) 吸附磷光体,增加分子刚性、减少三重态猝灭等 非辐射跃迁,从而提高磷光量子效率 2)胶束增稳:利用表面活性剂在临界浓度形成具 多相性的胶束,改变磷光体的微环境、增加定向 约束力,从而减小内转换和碰撞等去活化的几率, 提高三重态的稳定性。利用胶束增稳、重原子效 应和溶液除氧是该法的三要素
2.化合物的结构与荧光
(1)跃迁类型: *→n和*→,后者的荧光效率高 ,系间跨越过程的速率常数小,利于产生荧光 (2)共轭效应:共轭利于增加荧光效率产生红移 (3)刚性平面结构:可降低分子振动,减少与溶剂的 相互碰撞作用,共轭分子共平面性增强,故具有很强 的荧光

分子发光分析法

分子发光分析法

分子发光分析法基态分子吸收了一定能量后,跃迁至激发态,当激发态分子以辐射跃迁形式将其能量释放返回基态时,便产生分子发光(Molecular Luminescence)。

依据激发的模式不同,分子发光分为光致发光、热致发光、场致发光和化学发光等。

光致发光按激发态的类型又可分为荧光和磷光两种。

本章讨论分子荧光(Molecular Fluorescence)、分子磷光(Molecular Phosphorescence)和化学发光(Chemiluminescence)分析法。

第一节荧光分析法一、概述分子荧光分析法是根据物质的分子荧光光谱进行定性,以荧光强度进行定量的一种分析方法。

早在16世纪,人们观察到当紫外和可见光照射到某些物质时。

这些物质就会发出各种颜色和不同强度的光,而当照射停止时,物质的发光也随之很快消失。

到1852年才由斯托克斯(Stokes)给予了解释,即它是物质在吸收了光能后发射出的分子荧光。

斯托克斯在对荧光强度与浓度之间的关系进行研究的基础上,于1864年提出可将荧光作为一种分析手段。

1867年Goppelsroder应用铝—桑色素络合物的荧光对铝进行了测定。

进入20世纪,随着荧光分析仪器的问世,荧光分析的方法和技术得到了极大发展,如今已成为一种重要且有效的光谱分析手段。

荧光分析法的最大优点是灵敏度高,它的检出限通常比分光光度法低2~4个数量级,选择性也较分光光度法好。

虽然能产生强荧光的化合物相对较少,荧光分析法的应用不如分光光度法广泛,但由于它的高灵敏度以及许多重要的生物物质都具有荧光性质。

使得该方法在药物、临床、环境、食品的微量、痕量分析以及生命科学研究各个领域具有重要意义。

二、基本原理(一)分子荧光的产生大多数分子含有偶数电子。

根据保里不相容原理,基态分子的每一个轨道中两个电子的自旋方向总是相反的,因而大多数基态分子处于单重态(2S+1=1),基态单重态以S0表示。

当物质受光照射时,基态分子吸收光能就会产生电子能级跃迁而处于第一、第二电子激发单重态,以S1、S2表示。

9 化学成分分析方法

9 化学成分分析方法
电导、电位、电解、库仑极谱、伏安
滴定分析
分 析 化 学
发射、吸收,荧光、光度 气相、液相、离子、超临 界、薄层、毛细管电泳 红外、核磁、质谱
元素分析
• 化学分析:
测试样品为 液体
– 化学滴定、电化学…… – 紫外-可见分光光度计(UV-S)、原子吸收 (AAS)、等离子体发射光谱(ICP) • ESCA:Electron Spectroscopy for Chemical Analysis 化学分析用电子能谱 测试样品为 – EDS: Energy Dispersive Spectra 固体 – XPS: X光电子能谱
紫外-可见分光光度法
• 紫外-可见分光光度法
– 研究200-800nm光谱区域内物质对光辐射吸收的 一种方法; 可见 微波
X射线
紫外 中红外 近红外 远红外 无线电波
10 9
10 7
10 5
10 3
10 1
10 -1
-3 10
-5 10
Wavenumbers
核转变
-5 10
电子跃迁 10-3
-1 10
吸收曲线的讨论:
同一种物质对不同波长光的吸光度不 同。吸光度最大处对应的波长称为最大 吸收波长λmax 不同浓度的同一种物质,其吸收曲线 形状相似λmax不变。而对于不同物质, 其吸收曲线形状和λmax则不同。
吸收曲线可以提供物质的结构信息,并作为物质定性分析的依据。
不同浓度的同一种物质,在某一定波长下吸光度 A 有差异,在λma 处吸光度A 的差异最大。此特性可作为物质定量分析的依据。 在λmax处吸光度随浓度变化的幅度最大,所以测定最灵敏。吸收曲 线是定量分析中选择入射光波长的重要依据。
发射光谱法吸收光谱法分子荧光光谱法拉曼光谱法原子发射光谱法分子磷光分析法化学发光分析法紫外可见分光光度法原子吸收光谱法顺磁共振光谱法核磁共振光谱法折射法光散射法偏振法红外光谱法发射光谱法吸收光谱法分子荧光光谱法拉曼光谱法原子发射光谱法分子磷光分析法化学发光分析法紫外可见分光光度法原子吸收光谱法顺磁共振光谱法核磁共振光谱法折射法光散射法偏振法红外光谱法研究200800nm光谱区域内物质对光辐射吸收的一种方法

分子发光分析

分子发光分析
3
第一节
荧光分析法
处于激发态的电子,通常以辐射跃迁方式或无辐
射跃迁方式再回到基态。
辐射跃迁:荧光、磷光的发射。
无辐射跃迁:振动弛豫(VR)、内转化(ic)、
体系间窜跃(isc)等。
4
三重态能级低于单重态 (Hund规则)
激发单重态:分子吸收能 量,电子自旋仍然配对, 为单重态,称为激发单 重态,以S1,S2…表示
一、概述 定义:某些物质在进行化学反应时,由于吸收了 反应时产生的化学能,而使反应产物分子激发至 激发态,受激分子由激发态回到基态时,便发出 一定波长的光。这种吸收化学能使分子发光的过 程称为化学发光。利用化学发光反应而建立起来 的分析方法称为化学发光分析法。 特点:p62
27
第三节
化学发光分析
二、基本原理 (一)化学发光反应的条件: 能快速释放出足够的能量。化学反应必须提 供足够的激发能,激发能主要来源于反应焓。 要有有利的化学反应历程,使化学反应的能 量至少能被一种物质所接受并生成激发态。 激发态能释放光子或能够转移它的能量给另 一个分子,而使该分子激发,然后以辐射光子的 形式回到基态。
23
第二节
磷光分析法
四、室温磷光 由于低温磷光需要低温实验装置,溶剂选择的限制 等因素,从而发展了多种室温磷光法(RTP)。 (1)固体基质室温磷光法(SS-RTP) 此法基于测量室温下吸附于固体基质上的有机化合 物所发射的磷光。所用的载体种类较多,有纤维素载体 (如滤纸、玻璃纤维)、无机载体(如硅胶、氧化铝) 以及有机载体(如乙酸钠、聚合物、纤维素膜)等。理 想的载体是既能将分析物质牢固地束缚在表面或基质中 以增加其刚性,并能减小三重态的碰撞猝灭等非辐射去 活化过程,而本身又不产生磷光背景。

分子发光分析法概况课件

分子发光分析法概况课件

分子发光分析法的优缺点
优点
高灵敏度
分子发光分析法通常具 有很高的灵敏度,能够 检测出低浓度的目标物

选择性
某些发光分子可以与目 标物发生特异性反应, 从而提高分析的选择性

操作简便
分子发光分析法通常操 作简单,所需仪器设备 相对简单,便于现场快
速检测。
缺点
背景干扰
发光分析法容易受到环 境背景光的影响,如日 光、荧光等,导致检测
01
02
研发能够延长发光分子寿命 的技术,以减少检测过程中
的误差和不确定性。
03
04
克服背景干扰
研究和发展能够有效排除背 景光干扰的技术和方法,以 提高检测的稳定性和准确性

拓展应用领域
进一步探索发光分析法在环 境监测、生物医药、食品安 全等领域的应用,以满足更
广泛的需求。
06 结论
总结分子发光分析法的概况与重要性
结果不稳定。
发光衰减
某些发光分子的发光强 度会随时间衰减,影响 检测的准确性和稳定性

成本较高
某些高灵敏度的发光分 子和仪器设备成本较高 ,限制了其在某些领域
的应用。
未来发展方向与挑战
提高灵敏度和选择性
延长发光寿命
进一步研发具有更高灵敏度 和选择性的发光分子,以满 足更低检测限和更高准确性
的需求。
新型的分子发光分析方法和技术不断 涌现,如荧光免疫分析、荧光偏振免 疫分析、时间分辨荧光免疫分析等。
02
分子发光分析法的基本原理
分子发光的过程与机制
01
分子发光是指分子吸收能量后,由基态跃迁至激发态,再由激 发态回到基态时释放光子的过程。
02
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第九章分子发光分析
一、选择题
1、下列说法哪一个是正确的?( )
A、化学发光是通过化学反应产生光致发光物质所发射的光
B、化学发光是吸收化学反应的化学能使分子激发所发射的光
C、化学发光是吸收光能引起化学反应产生发光物质所发射的光
D、化学发光是吸收外界能引起化学反应产生发光物质所发射的光
2、下列哪种去激发过程是分子荧光发射过程?()
A、分子从第一激发单重态的各振动能级跃迁回基态
B、分子从第一激发单重态的最低振动能级跃迁回基态
C、分子从第一激发三重态的各振动能级跃迁回基态
D、分子从第一激发三重态的最低振动能级跃迁回基态
3、所谓荧光,即指某些物质经入射光照射后,吸收了入射光的能量,从而辐射出比入射光()
A、波长长的光线
B、波长短的光线
C、能量大的光线
D、频率高的光线
4、共掁线是具有的谱线()
A、激发电位
B、最低激发电位
C、最高激发电位
D、最高激发能量
5、荧光分析法的灵敏度通常比吸收光度法的灵敏度()
A、高
B、低
C、相当
D、不能确定
6、下列说法中,正确的是哪一个?( )
A、能发荧光的物质一般具有杂环化合物的刚性结构;
B、能发荧光的物质一般具有大环化合物的刚性结构;
C、能发荧光的物质一般具有对称性质的环状结构;
D、能发荧光的物质一般具有共轭体系π-π的刚性结构;
7、在下列的四种说法中,哪一种是不正确的?()
A、分子荧光发射光谱通常与吸收光谱互为镜像关系
B、分子荧光发射光谱与激发波长没有关系
C、分子荧光发射光谱岁激发波长不同而变化
D、分子荧光发射的强度与激发光的强度成正比的关系
8、分子荧光的发射波长大或者小?为什么?()
A、小;应为去激发过程中存在各种形式的无辐射跃迁,损失一部分能量;
B、大;因为激发过程中,分子吸收一部分外界能量;
C、相同;因为激发和发射在同样的能级上跃迁,只是过程相反;
D、不一定;因为其波长的大小受到测量条件的影响。

9、同一荧光(磷光)物质的最大激发波长,最大荧光发射波长,最大磷光发射波长的大小顺序为:( )
A 、磷光发射波长>荧光发射波长>激发波长
B 、荧光发射波长>磷光发射波长>激发波长
C 、磷光发射波长>激发波长>荧光发射波长
D 、激发波长>荧光发射波长>磷光发射波长
10、下列四种物质,具有较强荧光的是哪一种? ( ) A. B. C. D.
11、下列化合物荧光最强的是 ( ) Cl Br
A B C D I
12、下列化合物荧光量子产率最大的是 ( )
A
C D
COO H
-COO O -
O OH COO H O OH
O O COO -O -O -
13、荧光光度计与紫外分光光度计的有关表述,不正确的是 ( )
A 、荧光分光光度计有两个单色器,而紫外只有一个单色器
B 、荧光分光光度计的光源和检测器是成直角分布的,而紫外是成一条直线的
C 、荧光分光光度计采用的光源与紫外的相同
D 、荧光分光光度计的比色皿是四壁均为光学面,而紫外仅为两面为光学面
14、下列各种分析方法中检测灵敏度最高的是 ( )
A 、原子吸收光谱
B 、原子荧光光谱
C 、离子选择性电极
D 、循环伏安法
第九章分子发光自测题参考答案
一、选择题
1、B
2、A
3、A
4、B
5、A
6、D
7、B
8、B
9、D 10、D 11、D 12、D 13、C 14、B。

相关文档
最新文档