人教版七年级数学上册同步练习题及答案全套(课课练)
【新人教版七年级数学上册同步训练及答案全套40份】【第1套-共4套】第4章第1节-几何图形(1)(吐血推荐)
七年级数学(人教版上)同步练习第四章第一节几何图形(一)【典型例题】例1:填空:(1)长方体、正方体都有个面,长方体的6个面可能都是形,也有可能都有2个面是形,它的面完成相同。
答:6个面,长方形,正方形,对(2)正方体的6个面都是形,6个面的面积是。
答:正方形,相等(3)圆柱的上、下底面是;(4)圆锥的底面是答:圆,圆例2:填空:(1)三棱柱的上、下底面是;侧面是。
答:三角形,四边形(2)四棱柱的上、下底面是;侧面是。
答:四边形四边形例3:一个三棱柱的底面边长为acm,侧棱长为bcm。
(1)这个三棱柱共有几个面?它们分别是什么形状?哪些面的形状、面积完全相同? (2)这个三棱柱共有多少条棱,它们的长度分别是多少?答:(1)5个面,其中3个侧面是长方形,两个底面是三角形,两个底面形状完全相同,三个侧面形状完全相同。
(2)共有9条棱,其中侧棱长均为bcm,底面棱长均为acm.例4:图中的两个图形经过折叠能否围成棱柱?先想一想,再试一试。
答:都可以,第一个可以围成六棱柱;第二个可以围成三棱柱例5:将一个正方体的表面沿某些棱剪开,展成一个平面图形,把你展开后的不同平面图形都画出来,看看有几种。
答:1)2)3)例6:两位同学用图形画出的小动物中,哪个图形是用立体图形组成的?用了哪些立体图形?哪个图形是用平面图形组成的?用了哪些平面图形?答:第一个图形是由圆柱体、长方体、球体、正方体组成;第二个图形是由三角形、长方形、五边形、六边形、圆组成。
【模拟试题】(答题时间:40分钟)1. 判断正误(1)圆柱的上下两个面一样大()(2)圆柱、圆锥的底面都是圆()(3)棱柱的底面是四边形()(4)棱锥的侧面都是三角形()(5)棱柱的侧面可能是三角形()(6)圆柱的侧面是长方形()(7)球体不是多面体()(8)圆锥是多面体()(9)棱柱、棱锥都是多面体()(10)柱体都是多面体()2. 一个四棱柱被一刀切去一部分,试举例说明剩下的部分是否可能还是四棱柱。
【新人教版七年级数学上册同步训练及答案全套】【第3套,共4套】(4.3.2 角的比较和运算)
4.4 角的比较和运算5分钟训练 (预习类训练,可用于课前)1.若∠1与∠2互补,则∠1+∠2=_______,若∠1与∠2互余,则∠1+∠2=______.30°角的余角为______,补角为_____,70°39′角的余角为_____,补角为______.若一个角的度数为x(x <90°),则它的余角是______,若一个角的度数为x(x <180°),则它的补角是______.思路解析:利用两角互余即两角相加等于90°,两角互补即两角相加等于180°求解. 答案:180° 90° 60° 150° 19°21′ 109° 21′ 90°-x 180°-x2.如图4-4-1:O 是直线AB 上的一点,OC 是∠AOB 的平分线,①∠AOD 的补角是______;②∠AOD 的余角是______;③∠DOB 的补角是______.思路解析:由图可知∠AOB=180°,∠AOC=∠COB =90°,根据补角、余角的概念可求解. 答案:①∠DOB ②∠DOC ③∠AOD3.如图4-4-2:(1)∠AOC=∠( )+∠( );(2)∠AOB=∠( )-( )=∠( )-∠( );(3)若∠AOB=∠COD ,则∠AOC=( ).图4-4-1 图4-4-2思路解析:仔细观察图中各个角的关系是解决本题的关键.答案:(1)AOB BOC (2)AOC BOC AOD BOD (3)BOD10分钟训练(强化类训练,可用于课中)1.如图4-4-3:如果OC ,OD 把∠AOB 三等份,那么∠COD=( )∠AOB ,∠AOD=( )∠AOB ,∠AOB=( )∠AOD.图4-4-3思路解析:由条件知∠AOC=∠COD=∠BOD.答案: 13 23 322.填空:(1)77°42′+34°45′=______;(2)108°18′—56°23′=_______;(3)180°—(34°54′+21°33′)=______.思路解析:度、分、秒之间的进率为60,按照小学竖式计算(单位对齐).答案:(1)112°27′ (2)51°55′ (3)123°33′3.在∠AOB 内部任取一点C ,作射线OC ,那么一定有( )A.∠AOB>∠AOCB.∠AOC>∠BOCC.∠BOC=∠AOBD.∠AOC=∠BOC思路解析:作出图形,通过观察即可得出答案.答案:A4.判断:(1)一个角的余角一定是锐角;( )(2)一个角的补角一定是钝角;( )(3)一个角的补角不能是直角;( )(4)∠1+∠2+∠3=90°,那么∠1、∠2、∠3互为余角.( )思路解析:因为两角相加等于90°,那么这两个角互余,所以互余的两个角必都是锐角,所以(1)对,(4)错;而两个角互补是指两角相加等于180°,所以锐角、直角、钝角都有补角,所以(2),(3)都错.答案:(1)√(2)×(3)×(4)×5.如图4-4-4,射线OC为∠AOB的平分线,∠AOC=35°,则∠AOB是多少?图4-4-4解:因为OC为∠AOB的平分线,所以∠AOC=∠BOC=35°.∴∠AOB=70°.6.如图4-4-5,如果∠1=65°15′,∠2=78°30′,∠3是多少度?图4-4-5思路解析:充分利用三角和为一个平角来解决问题.解:因为∠1,∠2,∠3组成一个平角,所以∠3=180°-∠1-∠2=36°15′.快乐时光水果摊一位挑剔的顾客来到一个小食品店,看到新送来的一批新鲜水果,他对售货员说:“给我两公斤橙子,并用纸把每个橙子分别包起来。
人教版七年级上册数学教材同步练习全套(含答案)
人教版七年级上册数学教材同步练习全套第一章有理数《1.1正数和负数》同步练习能力提升1.团团和圆圆共同写了下列四组数:①-3,2.3,14;②34,0,212;③113,0.3,7;④1 2,15,2.其中,3个数都不是负数的是( )A.①②B.②④C.③④D.②③④2.如果+20%表示增加20%,那么-6%表示( )A.增加14%B.增加6%C.减少6%D.减少26%3.下列判断正确的是( )①+a一定不为0;②-a一定不为0;③a>0;④a<0A.①②B.③④C.①②③④D.都不正确4.观察下列一组数:-1,2,-3,4,-5,6,…,则第100个数是( )A.100B.-100C.101D.-101★5.小嘉全班在操场上围坐成一圈.若以班长为第1人,依顺时针方向算人数,小嘉是第17人;若以班长为第1人,依逆时针方向算人数,小嘉是第21人,则小嘉班的人数共有( )A.36B.37C.38D.396.已知一个乒乓球的标准质量为 2.70 g,把质量为 2.72 g的乒乓球记为+0.02 g,则质量为2.69 g的乒乓球应记为.7.墨西哥素有“仙人掌王国”之称.每食100 g仙人掌可以产生 27-2+3千焦的热量,27-2+3千焦的含义是产生的热量在千焦至千焦之间.8.前进 5 m记为+5 m,再前进-5 m,则总共走了m,这时距离出发地m.9.张老师以班级平均分为基准成绩,超过基准成绩记为正,不足记为负.他把甲、乙、丙、丁四位同学的成绩简记为+8,-6,+12,-3(单位:分).又知道甲同学的成绩为85分,问其他三名同学的成绩是多少?10.某条河某星期周一至周日的水位变化量(单位:m)分别为+0.1,+0.4,-0.25,-0.1,+0.05,+0.25,-0.1,其中正数表示当天水位比前一天上升了,且上周日的水位是50 m.(1)水位哪天最高,哪天最低,分别为多少?(2)与上周日相比,本周日的水位是上升了还是下降了?上升(下降)了多少?创新应用★11.观察下面一列数,探究其规律: -1,12,-13,14,-15,16,…. 请问:(1)第7个数、第8个数、第9个数分别是什么? (2)第100个数是多少?它是正数还是负数?(3)分数12016,12017是不是这列数中的数?如果是,是第几个数? (4)如果把这一列数无限地排列下去,将与哪个数越来越接近?参考答案能力提升 1.D 2.C3.D a 可正、可负、可为0.4.A5.A6.-0.01 g7.25 308.10 0 前进-5m 相当于后退5m,所以总共走了10m,又回到出发地,即距离出发地0m.9.分析:本题可根据甲的成绩为85分,计算班级的平均分,再结合乙、丙、丁的记分,分别求出他们的成绩.解:因为甲的成绩为85分,且甲的记分为+8, 所以班级平均分是85-8=77(分). 所以乙的成绩是77-6=71(分); 丙的成绩是77+12=89(分); 丁的成绩是77-3=74(分).10.解:(1)周二水位最高,周一水位最低,分别为50.5m 和50.1m. (2)0.1+0.4-0.25-0.1+0.05+0.25-0.1=0.35(m), 因此,与上周日相比,本周日的水位上升了,上升了0.35m. 创新应用11.解:(1)第7个数是-17,第8个数是18,第9个数是-19. (2)第100个数是1100,1100是正数.(3)分数12016是这列数中的数,且是第2016个数;12017不是这列数中的数,当分母为奇数时,这个数应是负数.(4)如果把这列数无限地排列下去,将与0越来越接近.1.2 有理数《1.2.1 有理数》同步练习能力提升1.在-225,π,0,14,-5,0.333…六个数中,整数的个数为( ) A.1B.2C.3D.42.- 12不属于( ) A.负数B.分数C.整数D.有理数3.在下列集合中,分类正确的是( ) A.正数集合{5,32,0.5,…}B.非负数集合{0,-2,-3.6,…},…}C.分数集合{-4.5,7,13,-9,8,…}D.整数集合{5124.在有理数中,不存在这样的数( )A.既是整数,又是负数B.既不是整数,也不是负数C.既是正数,又是负数D.既是分数,又是负数,0,-2,10,+21,其中非负数有,5.已知下列各数:-4,3.5,13非正数有.6.有理数中,是整数而不是正数的是,是分数而不是负分数的是,最小的正整数是.7.用“√”表示表中各数属于哪类数.8.将下面一组数填入相应集合的圈内:-0.5,-7,+2.8,-900,-31,99.9,0,4.2(1) (2)9.写出五个数(不能重复),同时满足下列三个条件:①其中三个数是非正数;②其中三个数是非负数;③五个数都是有理数.10.在七(1)班举行的“数学晚会”上,A,B,C,D,E五名同学的手上各拿着一张卡片,卡片上分别写着下列各数:2,-12,0,-3,16,主持人要求同学们按照卡片上的这些数的特征,将这五名同学分成两组或者三组来表演节目(每组人数不限).如果让你来分,那么你会如何分组呢?创新应用★11.黑板上有10个有理数,小明说“其中有6个正数”,小红说“其中有6个整数”,小华说“其中正分数的个数与负分数的个数相等”,小林说“负数的个数不超过3个”.请你根据四名同学的叙述判断这10个有理数中共有几个负整数.参考答案能力提升1.C-225是分数;π=3.1415926…是无限不循环小数;0,14,-5是整数;0.333…是循环小数.2.C -12既是负数,又是分数,还是有理数.3.A4.C5.3.5,13,0,10,+21 -4,0,-26.0和负整数正分数 17.8.解:(1)(2)9.分析:非正数指的是负数和0,非负数指的是正数和0. 解:(答案不唯一)如-2,-1,0,1,2或-3,-1,0,3,4.10.解:(答案不唯一)如按整数、分数分成两组分别是2,0,-3和-12,1 6 .创新应用11.解:由小红说可知有4个分数,由小华说可知有2个正分数和2个负分数,由小明可知有4个非正数,由小林说可知有3个负数,另一个非正数为0,所以负整数有1个.《1.2.2 数轴》同步练习能力提升1.在数轴上,原点及原点右边的点表示的数是( )A.正数B.整数C.非负数D.非正数2.数轴上的点A与原点距离6个单位长度,则点A表示的数为( )A.6或-6B.6C.-6D.3或-33.在数轴上,表示-17的点与表示-10的点之间的距离是( )A.27个单位长度B.-27个单位长度C.7个单位长度D.-7个单位长度★4.如图所示,数轴上的点P,O,Q,R,S表示某城市一条大街上的5个公交车站点,现在有一辆公交车距P站点3 km,距Q站点0.7 km,则这辆公交车的位置在( )A.R站点与S站点之间B.P站点与O站点之间C.O站点与Q站点之间D.Q站点与R站点之间5.在数轴上,表示数-6,2.1,-12,0,-412,3,-3的点中,在原点左边的点有个, 表示的点与原点的距离最远.6.点M表示的有理数是-1,点M在数轴上向右移动3个单位长度后到达点N,则点N表示的有理数是.7.数轴上与原点距离小于4的整数点有个.8.在数轴上,与-2所对应的点距离3个单位长度的点所表示的数是.9.有几滴墨水滴在数轴上,根据图中标出的数值,写出墨迹盖住的整数.10.喜羊羊的家、懒羊羊的家、学校与美羊羊的家依次位于一条东西走向的大街上,喜羊羊家位于学校西边30 m处,美羊羊家位于学校东边100 m处,喜羊羊从学校沿这条大街向东走了40 m,接着向西走了100 m到达懒羊羊家,试用数轴表示出喜羊羊家、学校、美羊羊家、懒羊羊家的位置.★11.如图所示,在数轴上有A,B,C三点,请根据数轴回答下列问题:(1)将点B向左移动3个单位长度后,这时三个点所表示的数中哪一个最小?是多少?(2)将点A向右移动4个单位长度后,这时三个点所表示的数中哪一个最大?是多少?(3)将点C向左移动6个单位长度后,这时点B表示的数比点C表示的数大多少?创新应用★12.如图所示,一只蚂蚁从原点出发,先向右爬行2个单位长度到达点A,再向右爬行3个单位长度到达点B,然后再向左爬行9个单位长度到达点C.(1)写出A,B,C表示的数;(2)实际上,蚂蚁最终是从原点出发向什么方向爬行了几个单位长度?★13.利用数轴解答,有一座三层楼房不幸起火,一位消防员搭梯子爬往三楼去抢救物品.当他爬到梯子正中1级时,二楼窗口喷出火来,他就往下退了3级,等到火势过去了,他又向上爬了7级,这时屋顶有两块砖掉下来,他又后退了2级,幸好没打着他,他又向上爬了8级,这时他距离梯子最高层还有一级,问这个梯子共有几级?参考答案能力提升1.C 在数轴上,原点及原点右边的点表示的数是0和正数.2.A3.C4.D5.4 -66.27.7 符合条件的点有-3,3,-2,2,-1,1,0,共7个.8.-5或1 画出数轴,找出-2表示的点,与该点距离3个单位长度的点有两个,分别表示-5,1.9.分析:从图中可见墨迹盖住两段,一段是在-8~-3之间,另一段在4~9之间.解:-8~-3之间的整数有-4,-5,-6,-7;4~9之间的整数有5,6,7,8.10.解:11.解:(1)点B最小,是-5.(2)点C最大,是3.(3)点B表示的数比点C表示的数大1.创新应用12.解:(1)A表示2,B表示5,C表示-4.(2)实际上,蚂蚁最终是从原点出发向左爬行了4个单位长度.13.解:设梯子正中1级为原点,向上爬的级数为正,后退的级数为负,答案为23级.《1.2.3 相反数》同步练习能力提升1.下列说法:①若a,b互为相反数,则a+b=0;②若a+b=0,则a,b互为相反数;③若a,b互为相反数,则ab =-1;④若ab=-1,则a,b互为相反数.其中正确的结论有( )A.1个B.2个C.3个D.4个2.相反数不大于它本身的数是( )A.正数B.负数C.非正数D.非负数3.一个数在数轴上所对应的点向右移动5个单位长度后得到它的相反数的对应点,则这个数是( )A.-2B.2C.212D.-2124.如图,表示互为相反数的两个数是( )A.点A和点DB.点B和点CC.点A和点CD.点B和点D5.如果a=-a,那么表示数a的点在数轴上的位置是 ( )A.原点左侧B.原点右侧C.原点或原点右侧D.原点6.若a=-2 016,则-a= .7.-(-8)是的相反数,-(+6)是的相反数.8.在①+(+3)与-(-3);②-(+3)与+(-3);③+(+3)与-(+3);④+(-3)与-(-3)中,互为相反数的是.(填序号)9.已知a-4与-1互为相反数,求a的值.★10.在一条东西走向的马路上,有青少年宫、学校、商场、医院四家公共场所.已知青少年宫在学校西边300 m处,商场在学校西边600 m处,医院在学校西边500 m处,若将该马路近似地看作一条直线,向东为正方向,1个单位长度表示100 m.找一个公共场所作为原点,在数轴上表示出这四家公共场所的位置,并使得其中两个公共场所所在位置表示的数互为相反数.创新应用★11.如图所示的是两个正方体纸盒的表面展开图,请分别在标有字母的正方形内填入适当的数,使得它们折成正方体后相对面上的两个数互为相反数.参考答案能力提升 1.C 2.D3.D 这对相反数在数轴上表示的点之间的距离为5,则这两个数分别为212与-212,由题意知这个数为-212.4.C5.D a=-a,表示一个数的相反数等于它本身,相反数等于它本身的数只有0,故表示数a 的点在数轴上的位置是原点.6.2 0167.-8 6 -(-8)=8,8是-8的相反数;-(+6)=-6,-6是6的相反数. 8.③④9.解:因为1与-1互为相反数,所以a-4=1,所以a=5,即a 的值为5. 10.解:若将青少年宫作为原点,则商场在原点左侧3个单位长度处,医院在原点左侧2个单位长度处,学校在原点右侧3个单位长度处(如图所示).此时商场和学校所在位置表示的数互为相反数.创新应用11.解:A:1,B:-2,C:0,D:-0.5,E:-1,F:3.《1.2.4绝对值》同步练习一.选择题1.−2的绝对值是( )A .−2B .− 12C .12D .22.|−2|的绝对值的相反数是()A.−2 B.2 C.−3 D.33.|−2|=x,则x的值为()A.2 B.−2 C.±2 D.1 24.绝对值等于本身的数有()A.0个 B.1个 C.2个 D.无数个5.数轴上有A,B,C,D四个点,其中绝对值相等的点是()A.点A与点D B.点A与点C C.点B与点C D.点B与点D 6.若a为有理数,且|a|=−a,那么a是()A.正数 B.负数 C.非负数 D.非正数二.填空题7.−|−5|= .三.解答题11.化简下列各数:(4)−[−(−a)];(5)|−(+7)|;(6)−|−8|;12.计算:(1)|−7|−|+4|;(2)|−7|+|−2009|.答案:1.D 2.A 3.A4.D解析:因为正数的绝对值是本身,0的绝对值为0,所以绝对值等于本身的数有无数个.5.C解析:数轴上点A,B,C,D在数轴上表示的数是;A=−2,B=−1,C=1,D=3.5,∴|B|=1,|C|=1,∴绝对值相等的两个点是点B和点C.6.D解:∵|a|=−a,∴a是负数或0,即非正数.7.−58.±3解析:∵|−3|=3,∴|x|=3,∵|±3|=3,∴x=±3.9.±3解析:因为|3|=3,|−3|=3,所以绝对值是3的数是±3.10.相等或互为相反数解析:∵|a|=|b|,∴a和b的关系为:相等或互为相反数.11.解:(1)−(−5)=5;(2)−(+7)=−7;(4)−[−(−a)]=−a;(5)|−(+7)|=7;(6)−|−8|=−8;(8)−|−a|(a<0)=−(−a)=a.12.解:(1)原式=7−4=3;(2)原式=7+2009=2016.《1.2.5有理数比较大小》同步练习一.选择题1.在−4,0,−1,3这四个数中,最大的数是( ) A .−4 B .0 C .−1 D .32.在−4,2,−1,3这四个数中,比−2小的数是( ) A .−4 B .2 C .−1 D .33.以下四个选项表示某天四个城市的平均气温,其中平均气温最低的是( )A .−3℃B .15℃C .−10℃D .−1℃4.比0大的数是( ) A .−2 B .−32C .−0.5D .15.a 、b 在数轴上位置如图所示,则a 、b 、−a 、−b 的大小顺序是( )A .−a <b <a <−bB .b <−a <a <−bC .−a <−b <b <aD .b <−a <−b <aA .−25B .0C .25 D .2.5 二.填空题9.比较大小:|−134| −(−1.8)(填“>”、“<”或“=”).10.已知a,b两数在数轴上的表示如图所示,则−a b.(填“>”、“=”或“<”)三.解答题11.利用绝对值比较大小.12.比较下列各组有理数的大小:(1)−(−8)和−8;(2)−(+8)和|−8|;(3)+(−5)和−|−8|;(4)−2.25和−|−2.25|.答案:1.D 2.A 3.C 4.D5.B解析:从数轴上可以看出b<0<a,|b|>|a|,∴−a<0,−a>b,−b >0,−b>a,即b<−a<a<−b.6.A 7.>8.一4<一227<0<0.14<2.7 9.<10.>解析:根据数轴的特征,可得a>0>b,而且|a|<|b|,∴−a>b.(3)−(−725)与>−125.12.解:(1)∵−(−8)=8,∴−(−8)>−8.(2)∵−(+8)=−8,|−8|=8,−8<8,∴−(+8)<|−8|.(3)∵+(−5)=−5,−|−8|=−8,又∵|−5|=5,|−8|=8,∴+(−5)>−|−8|.(4)∵−|−2.25|=−2.25,∴−2.25=−|−2.25|.《1.3.1有理数的加法》同步练习一.选择题1.数轴上的点A表示的数是-1,将点A向左移动5个单位,终点表示的数是()A.4 B.-4 C.6 D.-62.一个点从数轴上的-3表示的点开始,先向右移动2个单位长度,再向左移动4个单位长度,这时该点所对应的数是()A.3 B.-5 C.-1 D.-93.计算3+(-3)的结果是()A.6 B.-6 C.1 D.04.计算-2+6等于()A.4 B.8 C.-4 D.-85.计算(-3)+(-2)的结果是()A.-6 B.-5 C.6 D.56.如果|a|+|b|=0则a与b的大小关系一定是()A.a=b=0 B.a与b不相等C.a与b互为相反数 D.a与b异号二.填空题8.某地,一天早晨的温度是-6℃,中午较早晨温度上升了9℃,则该中午(2)+(-3)=8;(4)(-3)+ =0.三.解答题11.计算:(3)(−0.25)+(+14);(4)(−312)+(+413).12.已知:|a|=2,|b|=3且a>b,求a+b的值.答案:1.D 2.B 3.D 4.A 5.B6.A解析:∵|a|+|b|=0,∴|a|=0,|b|=0,∴a=0,b=0.7.-2 8.3℃9.4或-8.解析:∵a的相反数是2,∴a=-2,∵|b|=6,∴b=±6,①当a=-2,b=6时,a+b=-2+6=4;②当a=-2,b=-6时,a+b=-2+(-6)=-8.10.(1)-5,(2)11,(3)2,(4)3.(2)原式=3.25-2.5=0.75;(3)原式=-0.25+0.25=0;(4)原式=-72+133=−21+266=56.12.解:∵|a|=2,|b|=3,∴a=±2,b=±3.∵a>b,∴当a=2时,b=-3,则a+b=-1.当a=-2时,b=-3,则a+b=-5.1.3有理数的加减法《1.3.1 有理数的加法》同步练习能力提升1.如果两个有理数的和是负数,那么这两个数()A.一定都是负数B.一定是0与一个负数C.一定是一个正数与一个负数D .可能是一个正数与一个负数,可能都是负数,也可能是0和一个负数2.有理数a ,b 在数轴上的位置如图,则a+b 的值( ) A.大于0B.小于0C.小于aD.大于b3.若a 与1互为相反数,则|a+1|等于( ) A.2B.-2C.0D.-14.若三个有理数a+b+c=0,则( ) A.三个数一定同号 B.三个数一定都是0 C.一定有两个数互为相反数D.一定有一个数等于其余两个数的和的相反数5.若x 的相反数是-2,|y|=4,则x+y 的值为 .6.绝对值小于2 016的整数有 个,它们的和是 .7.计算:(-1)+(+2)+(-3)+(+4)+…+(-99)+(+100)+…+(+2 014)+(-2 015)+(+2 016)+(-2 017)= .8.计算:(1)(-5)+(-4); (2)|(-7)+(-2)|+(-3); (3)(-0.6)+0.2+(-11.4)+0.8; (4)(-423)+(-313)+(+614)+(-214).9.在抗洪抢险中,人民解放军驾驶冲锋舟沿东西方向的河流抢救灾民,早晨从A 地出发,晚上到达B 地,规定向东为正,当天航行记录如下(单位:km):16,-8,13,-9,12,-6,10.(1)B 地在A 地的哪侧?相距多远?(2)若冲锋舟每千米耗油0.45 L,则这一天共消耗了多少升油?★10.阅读(1)小题中的方法,计算第(2)小题.(1)-556+(-923)+(-312)+1734.解:原式=[(-5)+(-56)]+[(-9)+(-23)]+[(-3)+(-12)]+(17+34)=[(-5)+(-9)+(-3)+17]+[(-56)+(-23)+(-12)+34] =0+(-54)=-54.(2)上述这种方法叫做拆项法,依照上述方法计算:(-201756)+(-201623)+4 034+(-112).创新应用★11.用[x ]表示不超过x 的整数中最大的整数,如[2.23]=2,[-3.24]=-4. 请计算:(1)[3.5]+[-3]; (2)[-7.25]+[-13].★12.在如图所示的圆圈内填上不同的整数,使得每条线上的3个数之和为0,写出三种不同的答案.参考答案能力提升 1.D2.A 从数轴上可知:-1<a<0,b>1,即a ,b 异号,且|b|>|a|,故a+b>0.3.C4.D5.-2或6 因为|4|=4,|-4|=4,所以y=±4.又因为x 的相反数为-2, 所以x=2.再将x ,y 的值代入x+y 求值. 6.4 031 07.-1 009 原式=[(-1)+(+2)]+[(-3)+(+4)]+…+[(-99)+(+100)]+…+[(-2013)+(+2014)]+[(-2015)+(+2016)]+(-2017)=-1009.8.解:(1)(-5)+(-4)=-(5+4)=-9. (2)|(-7)+(-2)|+(-3)=|-9|+(-3)=9+(-3)=6.(3)(-0.6)+0.2+(-11.4)+0.8=(0.2+0.8)+[(-0.6)+(-11.4)]=1+(-12)=-11. (4)(-423)+(-313)+(+614)+(-214)=[(-423)+(-313)]+[(+614)+(-214)]=(-8)+(+4)=-4.9.解:(1)16+(-8)+13+(-9)+12+(-6)+10=28(km),B 地在A 地的东侧,且两地相距28km .(2)|16|+|-8|+|13|+|-9|+|12|+|-6|+|10|=74(km),74×0.45=33.3(L),这一天共消耗油33.3L .10.解:(2)原式=[(-2017)+(-56)]+[(-2016)+(-23)]+4034+[(-1)+(-12)]=[(-2017)+(-2016)+(-1)+4034]+[(-56)+(-23)+(-12)] =0+[(-56)+(-46)+(-36)] =-2. 创新应用11.解:(1)原式=3+(-3)=0. (2)原式=-8+(-1)=-9. 12.解:本题答案不唯一,如:1.3.2有理数的减法《第1课时有理数的减法》同步练习能力提升1.某地2019年1月1日至4日每天的最高气温与最低气温如下表:其中温差最大的一天是()A.1月1日B.1月2日C.1月3日D.1月4日2.下列计算正确的是()A.(-4)-|-4|=0B.14−12=12C.0-5=5D.(-5)-(-4)=-1★3.下列说法中正确的是() A.两数之差一定小于被减数B.某个数减去一个负数,一定大于这个数减去一个正数C.0减去任何一个数,都得负数D.互为相反数的两个数相减一定等于04.在数轴上,表示a 的点总在表示b 的点的右边,且|a|=6,|b|=3,则a-b 的值为( )A .-3B .-9C .-3或-9D .3或95.小明家冰箱冷冻室的温度为-5 ℃,调低4 ℃后的温度为 .6.-13的绝对值与-212的相反数的差是 . 7.计算:(-14)-(-6)= ; (-8)-( )=-8; 0-(-2.86)= ;-(-5)=-3; (-135)-( )=0.8.已知|x|=5,y=3,则x-y= .9.在某地有记载的最高温度是56.7 ℃(约合134 ℉,℉是华氏度的单位符号),发生在1913年7月10日.有记载的最低温度是-62.2 ℃(约合-80 ℉),是在1971年1月23日.(1)以摄氏度为单位,有记录的最高温度和最低温度相差多少? (2)以华氏度为单位,有记录的最高温度和最低温度相差多少?10.某中学九(1)班学生的平均身高是166 cm .(1)下表给出了该班6名同学的身高(单位:cm).试完成下表:(2)谁最高?谁最矮?(3)最高与最矮的同学身高相差多少?11.设a是-4的相反数与-12的绝对值的差,b是比-6大5的数.(1)求a-b与b-a的值;(2)从(1)的结果中,你知道a-b与b-a之间的关系吗?创新应用★12.若|a|=7,|b|=9,且|a+b|=-(a+b),求b-a的值.参考答案能力提升1.D2.D3.B4.D5.-9 ℃(-5)-4=(-5)+(-4)=-9(℃).6.-136|-13|=13,-212的相反数等于212,13-212=13−52=26−156=-136.7.-802.86-8-1358.2或-8由|x|=5,知x=±5,故x-y=5-3=2或x-y=-5-3=-8.9.解:(1)依题意得56.7-(-62.2)=118.9(℃).故以摄氏度为单位,有记录的最高温度和最低温度相差118.9℃;(2)依题意得134-(-80)=214(℉).故以华氏度为单位,有记录的最高温度和最低温度相差214℉.10.解:(1)173158168-6+9(2)小武最高,小华最矮.(3)因为9-(-8)=17(cm),所以最高与最矮的同学身高相差17cm.11.解:由题意知a=-(-4)-|-12|=4-12=4+(-12)=-8,b=-6+5=-1. (1)a-b=-8-(-1)=-8+(+1)=-7,b-a=-1-(-8)=-1+8=7. (2)a-b 和b-a 互为相反数. 创新应用12.解:因为|a|=7,|b|=9,所以a=±7,b=±9.又|a+b|=-(a+b ), 故a+b<0.所以a=±7,b=-9. 因此,当a=7,b=-9时,b-a=-9-7=-16; 当a=-7,b=-9时,b-a=-9-(-7)=-9+7=-2.《第2课时 有理数的加减混合运算》同步练习能力提升1.等式-2-7不能读作( ) A.-2与7的差B.-2与-7的和C.-2与-7的差D.-2减去72.计算5-3+7-9+12=(5+7+12)+(-3-9)是应用了( ) A.加法交换律 B.加法结合律 C.分配律D.加法的交换律与结合律★3.在广西壮族自治区柳江县尧村有一眼奇特的报时泉,泉眼在距山脚约100 m 处的半山腰,中国地质科学院广西岩溶所的专家沿洞向上游走了1512 m,又向下游走了1513 m,再向上游走了423 m,这时专家在洞口的( )A.上游1113 m 处B.下游11 m 处C.上游23 m 处 D.上游456 m 处4.“负8、正15、负20、负8、正12的和”用算式表示为 .5.0-2123+(+314)−(-23)−(+14)的值为 . 6.计算:1-2-3+4+5-6-7+8+9-10-11+…+2013-2014-2015+2016= .7.一只跳蚤在某条直线上从点O 开始,第1次向右跳1个单位,紧接着第2次向左跳2个单位,第3次向右跳3个单位,第4次向左跳4个单位……依此规律跳下去,当它跳第100次落下时,落点处离点O 的距离是 个单位.8.若|a+2|+|b+4|+|c-4|=0,则a+b-c= . 9.计算:(1)|112-111|+|113-112|+|114-113|; (2)1-[-1-(-37)-5+47]+|-4|; (3)314+(-235)+534+(-825).10.已知a=-312,b=+2.5,c=+3,d=-113,求(a+b)+(c+d)的值.11.下表为某公司股票在本周内每日的涨跌情况:(单位:元)计算这一周内该公司股票每股价格的变化是上涨还是下跌,上涨或下跌了多少元?创新应用★12.如图所示,一口水井,水面比井口低3 m,一只蜗牛从水面沿井壁往井口爬,第一次往上爬0.5 m 后,又往下滑了0.1 m;第二次往上爬了0.47 m 后,又往下滑了0.15 m;第三次往上爬了0.6 m 后,又往下滑了0.15 m,第四次往上爬了0.8 m 后,又往下滑了0.1 m;第五次往上爬了0.55 m 没有下滑.问:它能爬出井口吗?如果不能,那么第六次它至少要往上爬多少?★13.数学活动课上,王老师给同学们出了一道题:规定一种新运算“@”,对于任意有理数a,b,都有a@b=a-b+1.请你根据新运算,计算[2@(-3)]@(-2)的值.参考答案能力提升 1.C 2.D 3.D4.-8+15-20-8+125.-18 原式=-2123+314+23−14=-2123+23+314−14=-21+3=-18.6.07.50 设向右跳为正,向左跳为负,由题意,得1-2+3-4+5-6+…+99-100=(-1)+(-1)+…+(-1)⏟50个=-50. 所以第100次落在点O 左侧50个单位处, 故落点处离点O 的距离是50个单位.8.-10 根据绝对值的非负性和互为相反数的两个数和为0,得a+2=0,b+4=0,c-4=0,解得a=-2,b=-4,c=4,所以a+b-c=(-2)+(-4)-4=-2-4-4=-10.9.解:(1)原式=(111-112)+(112-113)+(113-114)=111−114=3154. (2)原式=1-(-1-5+47+37)+4=1+5+4=10.(3)原式=(314+534)+[(-235)+(-825)]=9+(-11)=-2. 10.解:(a+b)+(c+d)=[(-312)+(+2.5)]+[(+3)+(-113)] =-1+123=23.11.解:(+1.25)+(-1.05)+(-0.25)+(-1.55)+(+1.3) =[(+1.25)+(-0.25)]+[(-1.05)+(-1.55)]+(+1.3) =(+1)+(-2.6)+(+1.3) =[(+1)+(+1.3)]+(-2.6) =(+2.3)+(-2.6) =-0.3.答:本周内该公司股票每股价格下跌了,下跌了0.3元. 创新应用 12.解:因为0.5-0.1+0.47-0.15+0.6-0.15+0.8-0.1+0.55=2.92-0.5=2.42<3, 所以它不能爬出井口,第六次它至少要往上爬3-2.42=0.58(m). 13.解:根据运算法则,得[2@(-3)]@(-2)=[2-(-3)+1]@(-2)=6@(-2)=6-(-2)+1=6+2+1=9.1.4.1 有理数的乘法《第1课时 有理数的乘法》同步练习能力提升1.如图所示,数轴上A,B 两点所表示的两数的 ( )A.和为正数B.和为负数C.积为正数D.积为负数 2.下列计算正确的是( ) A.(-0.25)×(-16)=-14 B.4×(-0.25)=-1 C.(-89)×(-1)=-89 D.(-313)×(-115)=-43.一个有理数和它的相反数的积一定是( ) A.正数B.负数C.非正数D.非负数4.在-7,4,-4,7这四个数中,任取两个数相乘,所得的积最大是( ) A.28B.-28C.49D.-49★5.若a+b<0,且ab<0,则( ) A.a>0,b>0 B.a<0,b<0C.a,b 异号且负数的绝对值大D.a,b 异号且正数的绝对值大 6.-45的倒数的相反数是 .7.若|a|=5,b=-2,且ab>0,则a+b= .8.对任意有理数a,b,规定a*b=ab-b,则0*(-2 016)的值为 . 9.计算:(1)(-214)×(-325);(2)|-14|×(-112).★10.用正负数表示水位的变化量,上升为正,下降为负.某水库的水位每天下降3 cm,那么4天后这个水库水位的变化量是多少?创新应用★11.观察下列各式:-1×12=-1+12;-12×13=-12+13;-13×14=-13+14;…….(1)你发现的规律是-1n ×1n+1= .(n 为正整数) (2)用规律计算:(-1×12)+(-12×13)+(-13×14)+…+(-12014×12015)+(-12015×12016).参考答案能力提升 1.D 2.B3.C 由相反数的定义知,互为相反数的两个数异号或都为0,故它们的乘积是非正数.4.A 这四个数中,任取两个数相乘,所得的积分别为-28,28,-49,-16,28,-28,其中28最大.5.C 由ab<0可知a,b 异号;由a+b<0可知负数的绝对值较大.6.547.-7 由|a|=5知a=±5.因为ab>0,b=-2<0, 所以a=-5.所以a+b=-5+(-2)=-7.8.2 016 由题意,得0*(-2016)=0×(-2016)-(-2016)=0+2016=2016.9.解:(1)原式=94×175=15320.(2)原式=14×(-32)=-14×32=-38. 10.解:下降3cm,记作-3cm. (-3)×4=-12(cm).答:4天后这个水库水位下降了12cm. 创新应用11.解:(1)-1n +1n+1(2)原式=-1+12−12+13−13+…-12014+12015−12015+12016=-1+12016=-20152016.《第2课时 有理数的乘法运算律》同步练习能力提升1.大于-3且小于4的所有整数的积为( ) A.-12B.12C.0D.-1442.3.125×(-23)-3.125×77=3.125×(-23-77)=3.125×(-100)=-312.5,这个运算运用了( )A.加法结合律B.乘法结合律C.分配律D.分配律的逆用3.下列运算过程有错误的个数是( ) ①(3-412)×2=3-412×2②-4×(-7)×(-125)=-(4×125×7) ③91819×15=(10-119)×15=150-1519④[3×(-25)]×(-2)=3×[(-25)×(-2)]=3×50 A.1B.2C.3D.44.绝对值不大于2 015的所有整数的积是 .5.在-6,-5,-1,3,4,7中任取三个数相乘,所得的积最小是 ,最大是 .6.计算(-8)×(-2)+(-1)×(-8)-(-3)×(-8)的结果为 .7.计算(1-2)×(2-3)×(3-4)×…×(2 014-2 015)×(2 015-2 016)的结果是 .8.计算:(1)(-991516)×8; (2)(-11)×(-25)+(-11)×(+235)+(-11)×(-15).9.计算:(1100-1)×(199-1)×(198-1)×…×(13-1)×(12-1).10.已知|a+1|+|b+2|+|c+3|=0,求(a-1)×(b -2)×(c -3)的值.11.已知|ab cd |称为二阶行列式,规定的运算法则为|a bcd|=ad-bc,例如|3524|=3×4-5×2=2.根据上述内容计算|-79-132-314|的值.★12.观察下列等式(式子中的“!”是一种数学运算符号):1!=1,2!=2×1,3!=3×2×1,4!=4×3×2×1, (2016)2015!的值.创新应用★13.学习了有理数的运算后,王老师给同学们出了这样一道题: 计算711516×(-8),看谁算得又对又快. 下面是两位同学给出的不同解法:小强:原式=-115116×8=-920816=-57512;小莉:原式=(71+1516)×(-8)=71×(-8)+1516×(-8)=-57512. (1)以上两种解法,你认为谁的解法比较简便? (2)你还有其他解法吗?如果有,那么请写出解答过程;(3)你能用简便方法计算-999899×198吗?如果能,那么请写出解答过程.参考答案能力提升1.C 大于-3且小于4的所有整数中有一个为0,故乘积为0.2.D3.A ①错误,3也应乘2;②③④正确.4.0 符合条件的整数中有一个为0,所以它们的积为0.5.-168 2106.0 原式=(-8)×[(-2)+(-1)-(-3)] =(-8)×[(-2)+(-1)+(+3)] =(-8)×0=0.7.-1 原式=(-1)×(-1)×(-1)×…×(-1)⏟2015个(-1)=-1.8.解:(1)原式=(-100+116)×8 =-100×8+116×8 =-800+12 =-79912.(2)原式=(-11)×(-25+235-15) =-11×2=-22.9.解:原式=(-99100)×(-9899)×(-9798)×…×(-23)×(-12)=-99100×9899×9798×…×23×12=-1100.10.解:因为|a+1|+|b+2|+|c+3|=0, 所以a+1=0,b+2=0,c+3=0, 所以a=-1,b=-2,c=-3.所以原式=(-1-1)×(-2-2)×(-3-3)=(-2)×(-4)×(-6)=-48. 11.解:|-79-132-314|=(-79)×(-314)−(-13)×2=16+23=56. 12.解:2016!2015!=2016×2015×2014×…×2×12015×2014×2013×…×2×1=2016.创新应用13.解:(1)小莉的解法比较简便.(2)有,原式=(72-116)×(-8)=72×(-8)-116×(-8)=-57512.(3)能,原式=-(100-199)×198=-100×198+199×198=-19800+2=-19798.1.4.2 有理数的除法《第1课时 有理数的除法》同步练习能力提升1.有下列运算:①(-18)÷(-9)=2;②(-7289)÷8=-(72+89)×18=-919;③0.75÷(-558)=-34×845=-215;④|-9|÷|-111|=9×11=99.其中正确的个数为( )A.1B.2C.3D.42.实数a,b 在数轴上的对应点如图所示,则下列不等式中错误的是( ) A.ab>0 B.a+b<0C.ba <0D.a-b<03.下列结论错误的是( )A.若a,b 异号,则a·b<0,ab <0 B.若a,b 同号,则a·b>0,ab >0 C.-ab =a-b =-ab D.-a-b =-a b4.若m<0,则m|m |等于( ) A.1 B.±1C.-1D.以上答案都不对5.若一个数的相反数是114,则这个数是 ,这个数的倒数是 .6.计算:16÷(-2.5)= .7.若有理数a 与b(b≠0)互为相反数,则ab = . 8.计算:(-10)÷(-8)÷(-0.25).★9.计算:-123÷24×(16+34-512)÷(-212). 下面是小明和小亮两位同学的计算过程:小明:原式=-53÷(4+18-10)÷(-52)=-53×112×(-25)=118. 小亮:原式=-53×124×(212+912-512)÷(-52)=53×124×12×25=172. 他们的计算结果不一样,谁对谁错呢?错误的原因是什么?★10.已知a=-3,b=-2,c=5,求-b+c -a的值.创新应用★11.若ab≠0,则a|a|+|b|b的值不可能是( )A.0B.3C.2D.-2参考答案能力提升1.D2.C 由数轴知a,b都是负数,且a<b,所以ba>0.3.D4.C 因为m<0,所以|m|=-m,m|m|=m-m=-1,故选C.5.-114-4 56.-11516÷(-2.5)=-16×25=-115.7.-18.解:原式=-10×18×4=-5.9.解:小明的错误,小亮的正确.同级运算的顺序应从左到右依次进行,小明的运算顺序错误.10.解:-b+c-a =-(-2)+5-(-3)=2+53=73.创新应用11.B a和b都是正数时,a|a|+|b|b的值为2;a和b都是负数时,a|a|+|b|b的值为-2;a和b一正一负时,a|a|+|b|b的值为0.《第2课时有理数的混合运算》同步练习能力提升1.下列等式中成立的是( ) A.(-5)÷(1-2)=(-5)÷(-1) B.1÷(-2 015)=(-2 015)÷1 C.(-5)×6÷15=(-5)×15÷6 D.(-7)÷(17-1)=(-7)÷17-7÷(-1)2.在算式4-|-3□5|中的□所在位置,为使计算出来的值最小,应填入的运算符号是( )A.+B.-C.×D.÷3.计算(-6)÷(13-12)的结果是( ) A.6B.-6C.-36D.364.一个容器装有1 L 水,按照如下要求把水倒出:第1次倒出12 L 水,第2次倒出的水量是12 L 的13,第3次倒出的水量是13 L 的14,第4次倒出的水量是14 L 的15,……,按照这种倒水的方法,倒了10次后容器内剩余的水量是( )A .1011LB .19LC .110LD .111L5.计算:(-312)÷(-112)×313= .6.已知a=-1,b=23,c=-20,则(a-b )÷c 的值是 .7.已知C 32=3×21×2=3,C 53=5×4×31×2×3=10,C 64=6×5×4×31×2×3×4=15,……,观察上面的计算过程,寻找规律并计算C 106= .8.计算:(1)(213-312+1445)÷(-116); (2)(79-56+718)×18-1.45×6+3.95×6.9.市场销售人员把某一天两种冰箱销售情况制成表格如下:种类 售价/元 盈利/% 甲种冰箱1 50025乙种冰箱 1 500 -25已知这两种冰箱各售出一台,根据以上信息,请你判断商家是盈利还是亏本,盈利,盈了多少?亏本,亏了多少?★10.下面是小明计算-20÷15÷15的解题过程,他的计算正确吗?如果不正确,请改正.-20÷15÷15=-20÷(15÷15)=-20÷1=-20.11.现有四个有理数-1,-3,4,4,将这四个数(每个数用且只用一次)进行加、减、乘、除四则运算,使其结果为24,请写出这样的一个算式.12.已知有理数a,b,c满足|a|a +|b|b+|c|c=1,求|abc|abc的值.创新应用★13.若定义一种新的运算为a*b=ab1-ab ,计算[(3*2)]*16.参考答案能力提升1.A2.C 根据算式的特点,要使计算出来的值最小,需使|-3□5|的值最大,故只有“×”号.3.D (-6)÷(13-12)=(-6)÷(26-36)=(-6)÷(-16)=(-6)×(-6)=36. 4.D5.709 原式=72×23×103=709.6.112 当a=-1,b=23,c=-20时,(a-b )÷c=[(-1)-23]÷(-20)=(-123)÷(-20)=53×120=112.7.210 由题意可知,C 106=10×9×8×7×6×51×2×3×4×5×6=210.8.解:(1)(213-312+1445)÷(-116)=(73-72+4945)×(-67)=73×(-67)−72×(-67)+4945×(-67) =-2+3-1415=1-1415=115. (2)(79-56+718)×18-1.45×6+3.95×6=14-15+7-8710+23710=6+15010=21.9.解:1500÷(1+25%)=1200(元), 1500÷(1-25%)=2000(元).1200+2000=3200(元),1500×2=3000(元). 3000-3200=-200(元). 所以亏了,亏了200元. 10.解:小明的计算不正确. 原式=-20×5×5=-500.11.解:本题答案不唯一,如:(4+4)×(-3)÷(-1)=8×(-3)×(-1)=24. 12.解:已知|a |a+|b |b+|c |c=1,则a ,b ,c 必为一负二正,所以|abc |abc=-abc abc=-1.创新应用13.解:因为a*b=ab1-ab ,所以[(3*2)]*16=3×21-3×2∗16=(-65)∗16=-65×161-(-65)×16=-151+15=-16.1.5 有理数的乘方 《1.5.1 乘方》同步练习能力提升1.(-1)2 016的值是( ) A.1 B.-1C.2 016D.-2 0162.下列各式中,一定成立的是( ) A.(-3)2=32 B.(-3)3=33 C.-32=|-32| D.(-3)3=|(-3)3|3.28 cm 接近于( ) A.珠穆朗玛峰的高度 B.三层住宅楼的高度 C.一层住宅楼的高度D.一张纸的厚度4.现规定一种新的运算“*”,a*b=a b -1,如3*2=32-1=8,则(-12)*3等于( )A.-78 B.-118C.-212D.-325.把13×13×13×13×13写成乘方的形式为 ,其底数是 .6. 的平方是164, 的立方是-164.7.若x,y 互为倒数,则(xy)2 015= ;若x,y 互为相反数,则(x+y)2016= .★8.你喜欢吃拉面吗?拉面馆的师傅用一根很粗的面条,把两头捏合在一起拉伸,再捏合、拉伸,反复多次,就能拉成许多细面条.如图所示:(1)经过第3次捏合后,可以拉出 根细面条;(2)到第 次捏合后可拉出32根细面条.9.计算:(1)-52+2×(-3)2-7÷(-13)2; (2)(-5)2×(-35)+32÷(-2)3×(-114).创新应用 ★10.为了求1+2+22+23+…+22 015的值,可令S=1+2+22+23+…+22 015,则2S=2+22+23+…+22 016,因此2S-S=22 016-1,所以1+2+22+23+…+22 015=22 016-1.仿照以上推理计算出1+9+92+93+…+92 016的值是( )A.92 016-1B.92 017-1C.92016-18D.92017-18★11.观察下列各组数:①-1,2,-4,8,-16,32,…;②0,3,-3,9,-15,33,…;③-2,4,-8,16,-32,64,….(1)第①组数是按什么规律排列的?(2)第②③组数分别与第①组数有什么关系?(3)取每组数的第8个数,计算这三个数的和.参考答案能力提升1.A2.A (-3)2为正,32也为正,即(-3)2=32,所以A 一定成立;(-3)3为负,33为正,所以B 不成立;-32为负,|-32|为正,所以C 不成立;(-3)3为负,|(-3)3|为正,所以D不成立.3.C 28cm=256cm=2.56m,所以接近于一层住宅楼的高度.4.B (-12)*3=(-12)3-1=-12×12×12-1=-18-1=-118.5.(13)513 6.±18 -147.1 0 若x,y 互为倒数,则xy=1,所以(xy)2015=12015=1;若x,y 互为相反数,则x+y=0,所以(x+y)2016=02016=0.8.(1)8 (2)5 经过分析,设捏合次数为n,则可拉出的细面条根数为2n .9.解:(1)-70;(2)-10.创新应用10.D 令S=1+9+92+93+…+92016,则9S=9+92+93+…+92017,所以9S-S=92017-1,即S=92017-18.11.解:(1)后面一个数与前面一个数的比值为-2.(2)对比①②③三组中对应位置的数,第②组数比第①组数大1,第③组数是第①组数的2倍.(3)128+129+256=513.《1.5.2 科学记数法》同步练习能力提升1.为了响应国家“发展低碳经济、走进低碳生活”的号召,到目前为止,某市共有60 000户家庭建立了“低碳节能减排家庭档案”,则60 000这个数用科学记数法表示为( )A.60×104B.6×105C.6×104D.0.6×1062.用科学记数法表示870 000=m×10n ,则m,n 的值分别是( )A.m=87,n=4B.m=8.7,n=4C.m=87,n=5D.m=8.7,n=5。
【新人教版七年级数学上册同步训练及答案全套40份】【第1套,共4套】第4章第2节 直线、射线、线段
七年级数学(人教版上)同步练习第四章第二节直线、射线、线段一. 教学内容:平面图形(一)二. 学习目的:1. 通过实例了解点线面体的几何特征,感受它们之间的关系2. 了解直线、射线、线段的概念、表示方法及画法;3. 掌握点与直线的位置关系;掌握直线公理;4. 了解直线、射线、线段之间的关系;5. 理解线段的和、差及线段的中点等概念,会比较线段的大小;6. 理解两点间的距离的概念,会度量两点间的距离。
三. 技能要求:1. 会比较线段的大小,理解线段的和差与线段中点等概念。
2. 会用直尺、圆规、刻度尺等工具画线段,画线段的和差、线段的中点。
3. 逐步掌握学过的几何图形的表示方法,懂得学过的几何语言,能用这些语言准确,整洁地画出图形。
认识学过的图形,会用语言描述这些简单的几何图形。
【教学过程】一. 重要数学思想1. 数形结合的思想。
建立位置关系与数量关系的联系,即由形的背景建立数量关系,和由数量关系研究位置关系的思想。
2. 方程的思想。
本章中一些角与线段的计算问题要通过设元,列方程解出未知数来解决。
通过这种训练初步形成方程的思想。
3. 分类及分类讨论的思想。
通过本章中一些命题确定的题设条件产生的不唯一结论的讨论,初步形成分类讨论的思想。
二. 重要数学能力1. 培养几何术语的表达能力。
本章是平面几何的第一章,要学习许多几何术语的表达,如“有且只有”、“经过”、“无限延长”等,掌握它们需要有一个过程。
因此,要了解它们的含义,逐步培养表达能力。
2. 图形的观察记忆等能力,观察图形的特征。
并在一些稍复杂的图形中分辨出几何概念定义的基本图形。
三. 知识点讲解1. 体、面、线、点(1)只考虑物体的形状,大小和位置的物体叫做几何体。
体是由面围成的,面与面相交于线,线与线相交于点。
对于面、线、点应认识到它们是不定义的原始概念,只给一个形象上的、描述性的认识。
(2)面有平面和曲面。
如桌面可以想象为一个平面。
皮球的表面可以想象为一个曲面。
【新人教版七年级数学上册同步训练及答案全套】【第3套,共4套】(3.2 解一元一次方程(1))
3.2 解一元一次方程(1)5分钟训练 (预习类训练,可用于课前)1.初一(1)班举行了一次集邮展览,展出的邮票比平均每人3张多24张,比平均每人4张少26张,这个班共展出邮票的张数是()A.164B.178C.168D.174思路解析:设这个班有x人,根据题意得3x+24=4x-26,解得x=50,所以邮票的张数为3×50+24=174.答案:D2.将下列方程的某些项进行移项,并合并,使方程左边只含未知数,方程的右边只含已知数.(1)4x-6=8x+9; (2) 12(4-5x)=3x+6.思路解析:移项之前,先要分清不移的项和要移的项,只有要移的项在方程的一边与不移的项是加减的形式时,才能移项.方程两边的未移项不变号,要移的项在移项时要变号. 解:(1)由4x-6=8x+9移项得4x-8x=9+6,即-4x=15.(2)两边都乘以2,得4-5x=6x+12.移项得-5x-6x=12-4,即-11x=8.10分钟训练 (强化类训练,可用于课中)1.A、B两地相距50 km,一辆货车以40 km/h的速度从A地开出,一辆客车以32 km/h的速度从B地开出同向而行,则图2-2-1中线段图表示的相等关系是_________________________.图3-2-1思路解析:当货车追上客车时,货车的行程就等于客车的行程+50.答案:货车的行程=客车的行程+502.判断下面的移项对不对,如果不对,应怎样改正?(1)从7+x=13得到x=13+7;(2)从5x=4x+8得到5x-4x=8;(3)从3x-2=x+1得到3x+x=2+1;(4)从8x=7x-2得到8x-7x=2.思路解析:判断移项是否正确,关键看移项后的符号是否改变,一定要牢记“移项变号”.注意:没有移动的项,符号不要改变;另外等号同一边的项互相调换位置,这些项的符号不改变,所以利用的是加法交换律.答案:(1)不对,正确的应为:x=13-7;(2)对;(3)不对.正确的应为:3x-x=2+1;(4)不对.正确的应为:8x-7x=-2.3.解方程:(1)3x=15;(2)4x=2; (3)34x=-12;(4)-0.5x=-3.思路解析:根据等式的性质2.把等号左边未知的系数化为1,即可得到方程的解.答案:(1)x=5,(2)x=12,(3)x=-23,(4)x=64.解方程:(1)6x+2=5x-7;(2)2t-5=8t+15;(3)13-2y=12;(4)4-53m=-m.思路解析:解方程的思路是将已知方程通过一系列变形化为最简方程mx=n的形式,也就是说把mx=n作为已知方程变形的目标.因此,要把已知方程转化为最简化,就要把含有未知数的项都移到等号的一边,常数项移到等号的另一端.解:(1)移项合并,得x=-9.(2)移项合并,得t=-103.(3)移项,得-2y=12-13=16.左、右两边同除-2,得y=-112.(4)移项合并,是52m=-4.左、右两边同乘52,得m=-105.目前,包括长江、黄河等七大流域在内,全国水土流失总面积达到367万平方千米,其中长江与黄河流域的水土流失总面积占全国的32.4%,而长江流域的水土流失面积比黄河流域的水土流失面积还要多29万平方千米,则长江流域的水土流失面积是多少?(结果保留整数) 思路解析:这是个实际问题,通过设未知数、列出方程,可将其转化为一个数学问题.题中有这样一个关系:“长江与黄河流域的水土流失总面积占全国的32.4%解:设长江流域水土流失面积为x万平方千米(在实际生活中你有环保意识吗?)根据题意得x+(x-29)=367×32.4%,解得x=74.答:长江流域的水土流失面积是74万平方千米.快乐时光戴帽子有个孩子刚学了几个字,就想给父亲写信.可“父亲”的“父”字怎么写,他却记不得了.于是他只好打开字典一页一页地翻,心想总能找到那个“父”字。
【新人教版七年级数学上册同步训练及答案全套40份】【第1套,共4套】第1章第5节 有理数的乘方
七年级数学(人教版上)同步练习第一章第五节有理数的乘方一. 教学内容:有理数的乘方1. 乘方的意义,会用乘法的符号法则进行乘方运算;2. 会用科学记数法表示较大的数,理解近似数和有效数字表示的意义;3. 了解科学记数法在实际生活中的作用。
二. 知识要点:1. 有理数乘方的意义求n个相同因数的积的运算,叫做乘方。
一般地,记作a n。
乘方的结果叫做幂,在a n中,a叫做底数,n叫做指数,a n从运算的角度读作a 的n次方,从结果的角度读作a的n次幂。
注:(1)一个数可以看作这个数本身的一次方。
(2)当底数是负数或分数时,要先用括号将底数括上,再在其右上角写指数,指数要写小些。
(3)乘方是一种运算,是一种特殊的乘法运算(因数相同的乘法运算),幂是乘方的运算的结果。
2. 乘方运算的性质(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数,负数的偶次幂是正数;(3)任何数的偶次幂都是非负数;(4)-1的偶次幂得1,-1的奇次幂得-1;1的任何次幂都得1;(5)现在学习的幂的指数都是正整数,在这个条件下,0的任何次幂都得0。
3. 有理数的混合运算顺序(1)先乘方,再乘除,最后加减。
(2)同级运算,从左到右进行。
(3)如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。
4. 科学记数法把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,像这样的记数方法叫作科学记数法。
注:科学记数法是有理数的一种记数形式,这种形式就是a×10n,它由两部分组成:a和10n,两者相乘,其中a大于或等于1,且小于10(即1≤a<10),它是由原来的小数点向左移动后的结果,也就是说,a与原数只是小数点位置不同。
指数n是正整数,等于原数化为a时小数点移动的位数,用科学记数法表示一个数时,10的指数比原数的整数位数小1。
5. 近似数和有效数字(1)近似数与实际完全符合的数是准确数。
与实际有一点偏差但又非常接近的数称为近似数。
【新人教版七年级数学上册同步训练及答案全套40份】【第1套,共4套】(1.4.2 有理数的除法)
1.4.2 有理数的除法5分钟训练(预习类训练,可用于课前)1.填空:(1)乘积是1的两个数互为______;(2)有理数的除法法则,除以一个数等于乘以这个数的______;(3)两数相除,同号得______,异号得______,并把绝对值______,0除以任何一个不等于0的数都得______.思路解析:根据倒数定义及除法法则来判别.答案:(1)倒数(2)倒数(3)正负相除02.-513,2.6,|-17|,-(-4),-2.5的倒数分别为________.思路解析:本题是求有理数的倒数,正数的倒数小学里我们学过,负数的倒数先确定符号,仍为负数,再把它们的绝对值求倒数注意先要化简.答案:-135,513,7,14,-253.化简下列分数:(1)412--; (2)3618-; (3)-244-.思路解析:本题利用除法可以简化分数的符号.分子、分母、分数的值三个符号中,任意改变其中的两个,值不变.答案:(1)13;(2)-2;(3)6.10分钟训练(强化类训练,可用于课中)1.填空题:(1)-6的倒数是_____,-6的倒数的倒数是_______,-6的相反数是______,-6的相反数的相反数是_______;(2)当两数_____时,它们的和为0;(3)当两数_____时,它们的积为0;(4)当两数_____时,它们的积为1.思路解析:根据倒数、相反数的定义来解.答案:(1) -16-6 6 -6(2)互为相反数(3)其中有一个数为0 (4)互为倒数2.计算:(1)(+36)÷(-4); (2)(-213)÷(-116);(3)(-90)÷15; (4)-1÷(+35).思路解析:本题第(1)(3)两小题应选用除法法则二;第(2)(4)两小题应选用除法法则一进行计算.解:(1)原式=-364=-9;(2)原式=73×67=2;(3)原式=-9015=-6;(4)原式=-1×53=-53.3.计算下列各题:(1)(-1 700 000)÷(-16)÷(-25)÷25;(2)(+125)÷(-3)+(-62)÷3+(+187)÷3.思路解析:同级运算应依次由前向后进行,混合运算应先乘除后加减,或化除为乘.两小题1)用了化除为乘,避免了大数的运算;(2)逆用了运算法则.解:(1)原式=-1 700 000×116×125×125=-170;(2)原式=-13(125+62-187)=0.4.用简便方法计算:(1)(-81)÷214-94÷(-16);(2)1÷{(-1111)×(-156)-(-3.9)÷[1-34+(-0.7)]}.思路解析:依照混合运算顺序进行逐层计算.解:(1)原式=-81×49+49×116=-36+136=-353536;(2)原式=1÷[1211×116+3.9÷(-0.45)]=1÷(2-263)=-320.5.化简下列分数:(1)26--; (2)39--;(3)03-; (4)-ab--.思路解析:利用除法化简分数,主要是简化分数的符号,一般地有,分数的分子、分母、分数本身的三个符号中,任意改变其中两个的符号,分数的值不变,这一结论使上述问题化简过程更为简便,如第(4)小题-ab--=-ab++=-ab.答案: (1)1/3; (2)13; (3) 0; (4)-ab.快乐时光三部曲老师:“这次你考试不及格,所以我要送你三本书.现在先看第一本《口才》.尽量说服父亲不要打你.如果说服不了,赶紧看第二本书《短跑》.如果没跑掉,就只能看第三本书了.”学生:“什么书?”老师:“《外科医学》.”30分钟训练(巩固类训练,可用于课后)1.计算:(1)(-40)÷(-8);(2)(-5.2)÷33 25.思路解析:题(1)能整除,在确定商的符号之后,直接除比较简便;题(2)的除数是分数,把它转化为乘法比较简便.解:(1)原式=5;(2)原式=-265×2578=53.2.计算:(1)(-1)÷(-310); (2)(-0.33)÷(+13)÷(-9);(3)(-9.18)×(0.28)÷(-10.71); (4)63×(-149)+(-17)÷(-0.9).思路解析:先确定结果的符号,然后将除法运算转化成乘法运算.解:(1)原式=103;(2)原式=0.33×3×19=0.11;(3)原式=-9.18×0.28×110.71=-625;(4)原式=63×(-149)+17×109=-91+1063=-905363.3.计算:(-163)÷(19-27+23-114).思路解析:乘法对加法满足分配律,但除法对加法并不满足分配律.只有当把除法转化为乘法以后,才能运用分配律.解:原式=-163÷(1641991414+--)=-163÷53126=-253.4.计算:(1)29÷3×13;(2)(-35)×(-312)÷(-114)÷3;(3)[(+17)-(-13)-(+15)]÷(-1105).思路解析:对于乘除混合运算,首先由负数的个数确定符号,同时将小数化成分数,带分数化成假分数,算式化成连乘积的形式,再进行约分.(1)题注意乘除是同一级运算,应从左往右顺序运算,不能先做乘再做除;(3)题将除转化为乘的同时,化简中括号内的符号,然后用乘法分配律进行运算较简单.解:(1)原式=29×13×13=299;(2)原式=35×72×(-45)×13=-1425;(3)原式=(17+13-15)×(-105)=-17×105-13×105+15×105=-15-35+21=-29.5.混合运算:(1)619÷(-112)×1924; (2)(-81)÷214×49×(-16);(3)(-21316)÷(34×98); (4)|-1.3|+0÷(5.7×|-45|+54).思路解析:第(1)(2)小题应先把带分数化为假分数,然后进行运算;第(3)小题有括号,应先算括号里面的,再把除法转化为乘法进行计算;第(4)小题有0作被除数,早发现可使运算简便.解:(1)原式=-619×23×1924=-16;(2)原式=81×49×49×16=256;(3)原式=-4516×3227=-313;(4)原式=1.3+0=1.3.6.已知m除以5余1,n除以5余4,如果3m>n,求3m-n除以5的余数. 思路解析:此题应用了化除为乘的思想.答案:3m-n除以5的余数是4.7.计算:(-317÷158+1÷365×1198)×(215+1-165).思路解析:前一个括号计算复杂,后一个括号则很特殊且简单,结果为零,因此有时不能只顾算前面忽视后面.答案:原式=(-317÷158+1÷365×1198)×0=0.8.计算:(-191 919×9 898+989 898×1 919)÷(-12+3.14).思路解析:此题看上去好像计算量很大,但仔细观察分子可发现,19 1919=19×10 101,9 898=98×101,989 898=98×10 101,1 919=19×101,这样一来,两个积互为相反数,相加得0.答案:09.有一种“算24”的游戏,其规则是:任取四个1~13之间的自然数,将这四个数(每数只能用一次)进行加减乘除混合运算,其结果为24.例如2,3,4,5作运算.(5+3-2)×4=24,现有四个有理数3、4、-6、10,运用以上规则写出等于24的算式,你能写出几种算法?答案:例如:3×(10+4-6)=24.其他略.如何学好初中数学经典介绍浅谈如何学好初中数学数学是必考科目之一,故从初一开始就要认真地学习数学。
【新人教版七年级数学上册同步训练及答案全套40份】【第1套,共4套】(3.4 实际问题与一元一次方程)
3.4 实际问题与一元一次方程5分钟训练(预习类训练,可用于课前)1.某人以8折的优惠价买了一套服装省了25元,那么买这套服装实际用了()A.31.25B.60C.125D.100思路解析:设这套服装原价为x元,则x-0.8x=25,解得x=125.所以实际用了125-25=100元.答案:D2.一个商店把彩电按标价的九折出售,仍可获利20%,若该彩电的进价是2 400元,则彩电标价是()A.3 200元B.3 429元C.2 667元D.3 168元思路解析:设标价为x,根据题意有0.9x=(1+0.2)×2 400,解得x=3 200.答案:A3.球队训练用的足球是由32块黑白相间的牛皮缝制而成的,其中黑皮可看作正五边形,白皮可看作正六边形,黑、白皮块的数目比为3∶5,要求出黑皮、白皮的块数,若设黑皮的块数为x,则列出的方程正确的是()A.3x=32-xB.3x=5(32-x)C.5x=3(32-x)D.6x=32-x思路解析:因为黑、白皮块的数目比为3∶5,若设黑皮的块数为x,则白皮块数为32-x,由此得方程为5x=3(32-x).答案:C10分钟训练(强化类训练,可用于课中)1.我国政府为解决老百姓看病难,决定下调药品价格,某种药品在2003年涨价30%后,年降价70%调至a元,则这种药品在2003年涨价前的价格为()A.10039a元 B.39100a元 C.a(1-40%)元 D.140%a元思路解析:设在2003年涨价前的价格为x元,则有(1+0.3)(1-0.7)x=a,解得x=10039a.答案:A2.某区中学生足球赛共赛8轮(即每队均需参赛8场),胜一场得3分,平一场得1分,负一场得0分.在这次足球联赛中,猛虎队踢平的场数是所负场数的2倍,共得17分,该队共胜多少场?思路解析:首先要利用一个未知数,表示胜、负、平的场数,再利用总分列出方程.解:设踢成负的场数是x,则踢平的场数是2x,踢胜的场数是8-x-2x=8-3x,则有2x+3(8-3x)=17,解得x=1.所以踢胜的场数为8-3=5场.3.一件夹克,按成本加5成作为售价,后因季节关系,按售价的8折出售,降价后每件卖60元,问这批夹克每件成本是多少元.降价后每件是赔还是赚,赔或赚多少元?(生活中处处有数学,我们应当善于用数学的眼光去看世界,用数学的方法去分析和解决问题)思路解析:列表:解:设一件夹克的成本为x元,根据题意有(1+50%)x×80%=60,解得x=50.所以60-x=60-50=10(元).答:一件夹克的成本为50元,降价后每件仍可赚10元.4.商场出售的A型冰箱每台售价2 190元,每日耗电量为1度,而B型节能冰箱每台售价虽比A 型冰箱高出10%,但每日耗电量却为0.55度.商场如果将A 型冰箱打9折出售(打一折后的售价为原价的110),消费者购买合算吗?(按使用期为10每年365天,每度电0.40元计算)若不合算,商场至少打几折,消费者购买才合算?思路解析:问题1可以通过计算出A 型冰箱和B 型节能冰箱10年各自的费用来判断是否合算,问题2可以用方程来解.解:A 型10年费用:2 190×910+365×10×1×0.4=3 431(元), B 型10年费用:2 190×(1+10%)+365×10×0.55×0.4=3 212(元),所以消费者购买A 型冰箱不合算.设商场打x 折消费者购买才合算,根据题意,得2 190x +365×10×1×0.4=3 212. 解得x=0.8.所以,商场至少打8折,消费者购买才合算.快乐时光都有名字了在一家工厂,我那位朋友正在有条不紊地指挥生产,稀疏的头发想方设法地覆盖在脑袋上.“你已经使之成为一门科学了.”我赞叹道.“每一根头发都做了安排.”“是啊,”朋友苦笑着说,“过去它们只有一个总数,可现在它们都有自己的名字了.”30分钟训练(巩固类训练,可用于课后)1.某商场同时卖出两件上衣,每件都以135元卖出,若按成本计算,其中一件赢利25%,另一件亏损25%,问这次卖出的两件上衣是赔了还是赚了.思路解析:要求出两件上衣的进价,可分别根据售出的价格求出.解:设两件上衣的成本分别为x 、y 元,根据题意,得(1+25%)x=135,(1-25%)y=135. 分别解这两个方程,得x=108,y=180.108+180=288>270.答:所以这次出售是亏损,并且亏损了18元.2.在社会实践活动中,某校甲、乙、丙三位同学一同调查了高峰时段北京的二环路、三环路、四环路的车流量(每小时通过观测点的汽车车量数),三位同学汇报高峰时段的车流量情况如下:甲同学说:“二环路车流量为每小时10 000辆.”乙同学说:“四环路比三环路车流量每小时多2 000辆.”丙同学说:“三环路车流量的3倍与四环路车流量的差是二环路车流量的2倍.” 请你根据他们所提供的信息,求出高峰时段三环路、四环路的车流量各是多少.思路解析:此题关键在于理解题意,抽象出数学式子.解:设三环路的流量为每小时x (辆),则四环路的流量为每小时2 000+x (辆),3x-2 000-x=20 000,解得x=11 000,所以高峰时车流量为三环路11 000辆,四环路13 000辆.3.随着科技的进步,高科技产品的成本价在降低.某种品牌的电脑成本降低8%,而零售价不变,那么利润将由目前的x%增加到(x+10)%,求x 的值.思路解析:题目中没有成本价,而解题时要用到成本价,故可设成本价为a (或设为单位1).解:设成本价为a ,则原售价为a (1+100x ),成本降低8%后新成本为a (1-8%),根据售价不变,利润增加到(x+10)%,有a (1-8%)[1+(x+10)%]=a (1+100x ),解得x=15. 4.某工业园区用于甲、乙两个不同项目的投资共2 000万元.甲项目的年收益率为5.4%,乙项目的年收益率为8.28%,该工业园区仅以上两个项目可获得收益1 224 000元.问该工业园区对两个项目的投资各是多少万元.思路解析:本题可采用间接设未知数法,抓住相等关系:“甲项目的收益+乙项目的收益=总收益”列方程.解:设对甲项目投资为x万元,则对乙项目投资为(2 000-x)万元.根据题意,得5.4%x+8.28%(2 000-x)=122.4.解得x=1 500.从而2 000-x=2 000-1 500=500. 答:该工业园区对甲项目投资为1 500万元,对乙项目投资为500万元.5.某牛奶加工厂现有鲜奶9吨,若在市场直接销售鲜奶,每吨可获取利润500元;制成酸奶销售,每吨可获利1 200元;制成奶片销售,每吨可获利2 000元,该加工厂的生产能力是:如制成酸奶,每天可加工3吨,制成奶片,每天可加工1吨,受条件限制两种加工方式不可同时进行,受气温影响牛奶必须在4天内销售或加工完毕,为此,该加工场设计了两种生产、销售方案:方案一:尽可能地制成奶片,其余直接销售鲜牛奶.方案二:一部分制成奶片,其余全部加工成酸奶,并保证在四天内完成.分别计算两种方案的利润,你认为哪种方案利润高?思路解析:方案一的利润易求.方案二中必须先知4天中用几天制奶片,用几天加工酸奶.故设用x天加工奶片,则用(4-x)天加工酸奶,依题意有1·x+3·(4-x)=9.∴x=1.5.此时利润可求.答案:方案二获得利润高些.6.江苏宿迁模拟某公司有2位股东,20名工人.从2000年至2002公司每年股东的总利润和每年工人的工资总额如图3-4-1所示.图3-4-1(1)填写下表:(2)假设在以后的若干年中,每年工人的工资和股东的利润都按上图中的速度增长,那么到哪一股东的平均利润是工人的平均工资的8倍?思路解析:(1)直接由图可填.(2)由图可知:每位工人年平均工资增长1 250元,每位股东年平均利润增长12 500元,设经过x年每位股东年平均利润是每位工人年平均工资的8倍.股东的平均利润为25 000+12 500x,每位工人年平均工资为5 000+1 250x,由题意可得方程(5 000+1 250x)×8=25 000+12 500x,解出即可.答案:(1)(2)设经过x年每位股东年平均利润是每位工人年平均工资的8倍.由图可知:每位工人年平均工资增长1 250元,每位股东年平均利润增长12 500元,所以(5 000+1 250x)×8=25 000+12 500x.解得x=6.答:到2010年每位股东年平均利润是每位工人年平均工资的8倍.7.北京模拟夏季,为了节约用电,常对空调采取调高设定温度和清洗设备两种措施.某宾馆先把甲、乙两种空调的设定温度都调高1 ℃,结果甲种空调比乙种空调每天多节电27度;再对乙种空调清洗设备,使得乙种空调每天的总节电量是只将温度调高 1 ℃后的节电量的1.1倍,而甲种空调节电量不变,这样两种空调每天共节电405度.求只将温度调高1 ℃后两种空调每天各节电多少度.思路解析:本题文字比较多,条件也比较多,要注意抓主要问题,即“两种空调每天共节电405度”,如果设只将温度调高1 ℃后,乙种空调每天节电x度,则甲种空调每天节电(x+27)度.这样可得方程1.1x+x+27=405,解出即可.解:设只将温度调高1 ℃后,乙种空调每天节电x度,则甲种空调每天节电(x+27)度.依题意,得1.1x+x+27=405.解得x=180,∴x+27=207.答:只将温度调高1 ℃后,甲种空调每天节电207度,乙种空调每天节电180度.如何学好初中数学经典介绍浅谈如何学好初中数学数学是必考科目之一,故从初一开始就要认真地学习数学。
最新人教版七年级数学上册全册同步练习含答案
第一章 有理数1.1 正数和负数1.下列各数是负数的是( ) A.23 B.-4 C.0 D.10%2.放风筝是民间传统游戏之一.在放风筝的过程中,如果风筝上升10米记作+10米,那么风筝下降6米应记作( )A.-4米B.+16米C.-6米D.+6米 3.下列说法正确的是( ) A.气温为0℃就是没有温度B.收入+300元表示收入增加了300元C.向东骑行-500米表示向北骑行500米D.增长率为-20%等同于增长率为20%4.我们的梦想:2022年中国足球挺进世界杯!如果小组赛中中国队胜3场记为+3场,那么-1场表示 .5.课间休息时,李明和小伙伴们做游戏,部分场景如下:刘阳提问:“从F 出发前进3下.”李强回答:“F 遇到+3就变成了L.”余英提问:“从L 出发前进2下.”……依此规律,当李明回答“Q 遇到-4就变成了M ”时,赵燕刚刚提出的问题应该是 .6.把下列各数按要求分类:-18,227,2.7183,0,2020,-0.333…,-259,480.正数有 ; 负数有 ; 既不是正数,也不是负数的有 .1.2.1 有理数1.在0,14,-3,+10.2,15中,整数的个数是( )A.1B.2C.3D.42.下列各数中是负分数的是( ) A.-12 B.17C.-0.444…D.1.53.对于-0.125的说法正确的是( ) A.是负数,但不是分数 B.不是分数,是有理数 C.是分数,不是有理数 D.是分数,也是负数4.在1,-0.3,+13,0,-3.3这五个数中,整数有 ,正分数有 ,非正有理数有 .5.把下列有理数填入它属于的集合的大括号内:+4,-7,-54,0,3.85,-49%,-80,+3.1415…,13,-4.95.正整数集合:{ …}; 负整数集合:{ …}; 正分数集合:{ …}; 负分数集合:{ …};非负有理数集合:{ …}; 非正有理数集合:{ …}.1.下列所画数轴中正确的是( )2.如图,点M 表示的数可能是( )A.1.5B.-1.5C.2.5D.-2.53.如图,点A 表示的有理数是3,将点A 向左移动2个单位长度,这时A 点表示的有理数是( )A.-3B.1C.-1D.54.在数轴上,与表示数-1的点的距离为1的点表示的数是 .5.如图,数轴的一部分被墨水污染,被污染的部分内含有的整数是 .6.在数轴上表示下列各数:1.8,-1,52,3.1,-2.6,0,1.1.-3的相反数是( ) A.-3 B.3 C.-13 D.132.下列各组数中互为相反数的是( ) A.4和-(-4) B.-3和13C.-2和-12D.0和03.若一个数的相反数是1,则这个数是 .4.化简:(1)+(-1)= ; (2)-(-3)= ; (3)+(+2)= .5.求出下列各数的相反数:(1)-3.5; (2)35; (3)0;(4)28; (5)-2018.6.画出数轴表示出下列各数和它们的相反数:1,-5,-3.5.1.2.4 绝对值 第1课时 绝对值1.-14的绝对值是( )A.4B.-4C.14D.-142.化简-|-5|的结果是( ) A.5 B.-5 C.0 D.不确定3.某生产厂家检测4个篮球的质量,结果如图所示.超过标准质量的克数记为正数,不足标准质量的克数记为负数,其中最接近标准质量的篮球是( )4.若一个负有理数的绝对值是310,则这个数是 .5.写出下列各数的绝对值:7,-58,5.4,-3.5,0.6.已知|x +1|+|y -2|=0,求x ,y 的值.第2课时 有理数大小的比较1.在3,-9,412,-2四个有理数中,最大的是( )A.3B.-9C.412D.-2 2.有理数a 在数轴上的位置如图所示,则( )A.a >2B.a >-2C.a <0D.-1>a 3.比较大小: (1)0 -0.5; (2)-5 -2; (3)-12 -23.4.小明通过科普读物了解到:在同一天世界各地的气温差别很大,若某时刻海南的气温是15℃,北京的气温为0℃,哈尔滨的气温为-5℃,莫斯科的气温是-17℃,则这四个气温中最低的是 ℃.5.在数轴上表示下列各数,并比较它们的大小:-35,0,1.5,-6,2,-514.1.3 有理数的加减法1.3.1 有理数的加法 第1课时 有理数的加法法则1.计算(-5)+3的结果是( ) A.-8 B.-2 C.2 D.82.计算(-2)+(-3)的结果是( ) A.-1 B.-5 C.-6 D.53.静静家冰箱冷冻室的温度为-4℃,调高5℃后的温度为( ) A.-1℃ B.1℃ C.-9℃ D.9℃4.下列计算正确的是( )A.⎝ ⎛⎭⎪⎫-112+0.5=-1 B.(-2)+(-2)=4 C.(-1.5)+⎝ ⎛⎭⎪⎫-212=-3 D.(-71)+0=71 5.如图,每袋大米以50kg 为标准,其中超过标准的千克数记为正数,不足的千克数记为负数,则图中第3袋大米的实际质量是 kg.6.计算:(1)(-5)+(-21); (2)17+(-23);(3)(-2019)+0; (4)(-3.2)+315;(5)(-1.25)+5.25; (6)⎝ ⎛⎭⎪⎫-718+⎝ ⎛⎭⎪⎫-16.第2课时 有理数加法的运算律及运用1.计算7+(-3)+(-4)+18+(-11)=(7+18)+[(-3)+(-4)+(-11)]是应用了( )A.加法交换律B.加法结合律C.分配律D.加法交换律与加法结合律 2.填空:(-12)+(+2)+(-5)+(+13)+(+4)=(-12)+(-5)+(+2)+(+13)+(+4)(加法 律) =[(-12)+(-5)]+[(+2)+(+13)+(+4)](加法 律) =( )+( )= . 3.简便计算:(1)(—6)+8+(—4)+12; (2)147+⎝ ⎛⎭⎪⎫-213+37+13;(3)0.36+(-7.4)+0.3+(-0.6)+0.64.4.某村有10块小麦田,今年收成与去年相比(增产为正,减产为负)的情况如下:55kg ,77kg ,-40kg ,-25kg ,10kg ,-16kg ,27kg ,-5kg ,25kg ,10kg.今年小麦的总产量与去年相比是增产还是减产?增(减)产多少?1.3.2 有理数的减法 第1课时 有理数的减法法则1.计算4-(-5)的结果是( ) A.9 B.1 C.-1 D.-92.计算(-9)-(-3)的结果是( ) A.-12 B.-6 C.+6 D.123.下列计算中,错误的是( ) A.-7-(-2)=-5 B.+5-(-4)=1 C.-3-(-3)=0 D.+3-(-2)=54.计算:(1)9-(-6); (2)-5-2;(3)0-9; (4)⎝ ⎛⎭⎪⎫-23-112-⎝ ⎛⎭⎪⎫-14.5.某地连续五天内每天的最高气温与最低气温记录如下表所示,哪一天的温差(最高气温与最低气温的差)最大?哪一天的温差最小?第2课时 有理数的加减混合运算1.把7-(-3)+(-5)-(+2)写成省略加号和的形式为( ) A.7+3-5-2 B.7-3-5-2 C.7+3+5-2 D.7+3-5+22.算式“-3+5-7+2-9”的读法正确的是( ) A.3、5、7、2、9的和 B.减3正5负7加2减9C.负3,正5,减7,正2,减9的和D.负3,正5,负7,正2,负9的和 3.计算8+(-3)-1所得的结果是( ) A.4 B.-4 C.2 D.-2 4.计算:(1)-3.5-(-1.7)+2.8-5.3; (2)⎝ ⎛⎭⎪⎫-312-⎝ ⎛⎭⎪⎫-523+713;(3)-0.5+⎝ ⎛⎭⎪⎫-14-(-2.75)-12; (4)314+⎝ ⎛⎭⎪⎫-718+534+718.5.某地的温度从清晨到中午时上升了8℃,到傍晚时温度又下降了5℃.若傍晚温度为-2℃,求该地清晨的温度.1.4 有理数的乘除法1.4.1 有理数的乘法 第1课时 有理数的乘法法则1.计算-3×2的结果为( ) A.-1 B.-5 C.-6 D.12.下列运算中错误的是( )A.(+3)×(+4)=12B.-13×(-6)=-2C.(-5)×0=0D.(-2)×(-4)=83.(1)6的倒数是 ;(2)-12的倒数是 .4.填表(想法则,写结果):5.计算:(1)(-15)×13; (2)-218×0;(3)334×⎝ ⎛⎭⎪⎫-1625; (4)(-2.5)×⎝ ⎛⎭⎪⎫-213.第2课时 多个有理数相乘1.下列计算结果是负数的是( ) A.(-3)×4×(-5) B.(-3)×4×0C.(-3)×4×(-5)×(-1)D.3×(-4)×(-5) 2.计算-3×2×27的结果是( )A.127 B.-127C.27D.-273.某件商品原价100元,先涨价20%,然后降价20%出售,则现在的价格是 元.4.计算:(1)(-2)×7×(-4)×(-2.5); (2)23×⎝ ⎛⎭⎪⎫-97×(-24)×⎝ ⎛⎭⎪⎫+134;(3)(-4)×499.7×57×0×(-1); (4)(-3)×⎝ ⎛⎭⎪⎫-79×(-0.8).第3课时 有理数乘法的运算律1.简便计算2.25×(-7)×4×⎝ ⎛⎭⎪⎫-37时,应运用的运算律是( ) A.加法交换律 B.加法结合律 C.乘法交换律和结合律 D.乘法分配律 2.计算(-4)×37×0.25的结果是( )A.-37B.37C.73D.-733.下列计算正确的是( ) A.-5×(-4)×(-2)×(-2)=80 B.-9×(-5)×(-4)×0=-180C.(-12)×⎝ ⎛⎭⎪⎫13-14-1=(-4)+3+1=0D.-2×(-5)+2×(-1)=(-2)×(-5-1)=124.计算(-2)×⎝ ⎛⎭⎪⎫3-12,用分配律计算正确的是( ) A.(-2)×3+(-2)×⎝ ⎛⎭⎪⎫-12 B.(-2)×3-(-2)×⎝ ⎛⎭⎪⎫-12 C.2×3-(-2)×⎝ ⎛⎭⎪⎫-12 D.(-2)×3+2×⎝ ⎛⎭⎪⎫-12 5.填空:(1)21×⎝ ⎛⎭⎪⎫-45×⎝ ⎛⎭⎪⎫-621×(-10)=21×( )×( )×(-10)(利用乘法交换律)=[21×( )]×⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫-45×( )(利用乘法结合律) =( )×( )= ;(2)⎝ ⎛⎭⎪⎫14+18+12×(-16)=14× +18× +12× (分配律) = = .1.4.2 有理数的除法 第1课时 有理数的除法法则1计算(-18)÷6的结果是( ) A.-3 B.3 C.-13 D.132.计算(-8)÷⎝ ⎛⎭⎪⎫-18的结果是( ) A.-64 B.64 C.1 D.-1 3.下列运算错误的是( )A.13÷(-3)=3×(-3)B.-5÷⎝ ⎛⎭⎪⎫-12=-5×(-2)C.8÷(-2)=-8×12 D.0÷3=04.下列说法不正确的是( ) A.0可以作被除数 B.0可以作除数C.0的相反数是它本身D.两数的商为1,则这两数相等5.若▽×⎝ ⎛⎭⎪⎫-45=2,则“▽”表示的有理数应是( ) A.-52 B.-58 C.52 D.586.计算:(1)(-6)÷14; (2)0÷(-3.14);(3)⎝ ⎛⎭⎪⎫-123÷⎝ ⎛⎭⎪⎫-212; (4)⎝ ⎛⎭⎪⎫-34÷⎝ ⎛⎭⎪⎫-37÷⎝ ⎛⎭⎪⎫-116.第2课时 分数的化简及有理数的乘除混合运算1.化简:(1)-162= ; (2)12-48= ;(3)-56-6= .2.计算(-2)×3÷(-2)的结果是( ) A.12 B.3 C.-3 D.-123.计算43÷⎝ ⎛⎭⎪⎫-13×(-3)的结果是( )A.12B.43C.-43 D.-124.计算:(1)36÷(-3)×⎝ ⎛⎭⎪⎫-16;(2)27÷(-9)×527;(3)30÷334×38÷(-12).第3课时 有理数的加、减、乘、除混合运算1.计算12×(-3)+3的结果是( ) A.0 B.12 C.-33 D.392.计算3×⎝ ⎛⎭⎪⎫13-12的结果是 . 3.计算:(1)2-7×(-3)+10÷(-2); (2)916÷⎝ ⎛⎭⎪⎫12-2×524;(3)5÷⎝ ⎛⎭⎪⎫-87-5×98; (4)1011×1213×1112-1÷⎝ ⎛⎭⎪⎫-132.4.已知室温是32℃,小明开空调后,温度下降了6℃,关掉空调1小时后,室温回升了2℃,求关掉空调2小时后的室温.1.5 有理数的乘方1.5.1 乘 方 第1课时 乘 方1.-24表示( )A.4个-2相乘B.4个2相乘的相反数C.2个-4相乘D.2个4相乘的相反数 2.计算(-3)2的结果是( ) A.-6 B.6 C.-9 D.93.下列运算正确的是( ) A.-(-2)2=4 B.-⎝ ⎛⎭⎪⎫-232=49C.(-3)4=34D.(-0.1)2=0.14.下列各组中两个式子的值相等的是( ) A.32与-32B.(-2)2与-22C.|-2|与-|+2|D.(-2)3与-235.把34×34×34×34写成乘方的形式为 ,读作 .6.计算:(1)(-1)5= ; (2)-34= ;(3)07= ; (4)⎝ ⎛⎭⎪⎫523= .7.计算:(1)(-2)3; (2)-452;(3)-⎝ ⎛⎭⎪⎫-372; (4)⎝ ⎛⎭⎪⎫-233.第2课时 有理数的混合运算1.计算2÷3×(5-32)时,下列步骤最开始出现错误的是( ) 解:原式=2÷3×(5-9)…① =2÷3×(-4)…② =2÷(-12)…③ =-6.…④ A.① B.② C.③ D.④2.计算(-8)×3÷(-2)2的结果是( ) A.-6 B.6 C.-12 D.123.按照下图所示的操作步骤,若输入x 的值为-3,则输出的值为 . 输入x →平方→乘以2→减去5→输出4.计算:(1)9×(-1)12+(-8); (2)-9÷3+⎝ ⎛⎭⎪⎫12-23×12+32;(3)8-2×32-(-2×3)2; (4)-14÷⎝ ⎛⎭⎪⎫-122+2×3-0÷2243.1.5.2 科学记数法1.下列各数是用科学记数法表示的是( )A.65×106B.0.05×104C.-1.560×107D.a×10n2.据报道,2018年某市有关部门将在市区完成130万平方米老住宅小区综合整治工作,130万(即1300000)用科学记数法可表示为( )A.1.3×104B.1.3×105C.1.3×106D.1.3×1073.长江三峡工程电站的总装机容量用科学记数法表示为1.82×107千瓦,把它写成原数是( )A.182000千瓦B.182000000千瓦C.18200000千瓦D.1820000千瓦4.(1)南京青奥会期间,约有1020000人次参加了青奥文化教育运动,将1020000用科学记数法表示为;(2)若12300000=1.23×10n,则n的值为;(3)若一个数用科学记数法表示为2.99×108,则这个数是.5.用科学记数法表示下列各数:(1)地球的半径约为6400000m;(2)赤道的总长度约为40000000m.1.5.3 近似数1.下列四个数据中,是精确数的是( )A.小明的身高1.55mB.小明的体重38kgC.小明家离校1.5kmD.小明班里有23名女生2.用四舍五入法对0.7982取近似值,精确到百分位,正确的是( )A.0.8B.0.79C.0.80D.0.7903.近似数5.0精确到( )A.个位B.十分位C.百分位D.以上都不对4.数据2.7×103万精确到了位,它的大小是.5.求下列各数的近似数:(1)23.45(精确到十分位); (2)0.2579(精确到百分位);(3)0.50505(精确到十分位); (4)5.36×105(精确到万位).第二章 整式的加减2.1 整 式第1课时 用字母表示数1.下列代数式书写格式正确的是( ) A.x5 B.4m ÷n C.x(x +1)34 D.-12ab2.某种品牌的计算机,进价为m 元,加价n 元作为定价出售.如果“五一”期间按定价的八折销售,那么售价为( )A.(m +0.8n)元B.0.8n 元C.(m +n +0.8)元D.0.8(m +n)元3.若买一个足球需要m 元,买一个篮球需要n 元,则买4个足球、7个篮球共需要( ) A.(4m +7n)元 B.28mn 元 C.(7m +4n)元 D.11mn 元4.某超市的苹果价格如图所示,则代数式100-9.8x 可表示的实际意义是 .5.每台电脑售价x 元,降价10%后每台售价为 元.6.用字母表示图中阴影部分的面积.1.下列各式中不是单项式的是( ) A.a 3 B.-15 C.0 D.3a2.单项式-2x 2y3的系数和次数分别是( )A.-2,3B.-2,2C.-23,3D.-23,23.在代数式a +b ,37x 2,5a ,-m,0,a +b 3a -b ,3x -y 2中,单项式的个数是 个.4.小亮家有一箱矿泉水,若每一瓶装0.5升矿泉水,则x 瓶装 升矿泉水.5.在某次篮球赛上,李刚平均每分钟投篮n 次,则他10分钟投篮的次数是 次.6.填表:7.如果关于x ,y 的单项式(m +1)x 3y n的系数是3,次数是6,求m ,n 的值.1.在下列代数式中,整式的个数是( )A.5个B.4个C.3个D.2个2.多项式3x2-2x-1的各项分别是( )A.3x2,2x,1B.3x2,-2x,1C.-3x2,2x,-1D.3x2,-2x,-13.多项式1+2xy-3xy2的次数是( )A.1B.2C.3D.44.多项式3x3y+2x2y-4xy2+2y-1是次项式,它的最高次项的系数是.5.写出一个关于x,y的三次二项式,你写的是(写出一个即可).6.下列代数式中哪些是单项式?哪些是多项式?7.小明的体重是a千克,爸爸的体重比他的3倍少10千克,爸爸的体重是多少千克(用含a的整式表示)?这个整式是多项式还是单项式?指出其次数.2.2 整式的加减第1课时合并同类项1.在下列单项式中与2xy是同类项的是( )A.2x2y2B.3yC.xyD.4x2.下列选项中的两个单项式能合并的是( )A.4和4xB.3x2y3和-y2x3C.2ab2和100ab2cD.m和3.整式4-m+3m2n3-5m3是( )A.按m的升幂排列B.按n的升幂排列C.按m的降幂排列D.按n的降幂排列4.计算2m2n-3nm2的结果为( )A.-1B.-5m2nC.-m2nD.2m2n-3nm25.合并同类项:(1)3a-5a+6a; (2)2x2-7-x-3x-4x2;(3)-3mn2+8m2n-7mn2+m2n.6.当x=-2,y=3时,求代数式4x2+3xy-x2-2xy-9的值.第2课时去括号1.化简-2(m-n)的结果为( )A.-2m-nB.-2m+nC.2m-2nD.-2m+2n2.下列去括号错误的是( )A.a-(b+c)=a-b-cB.a+(b-c)=a+b-cC.2(a-b)=2a-bD.-(a-2b)=-a+2b3.-(2x-y)+(-y+3)化简后的结果为( )A.-2x-y-y+3B.-2x+3C.2x+3D.-2x-2y+34.数学课上,老师讲了多项式的加减,放学后,小明回到家拿出课堂笔记复习老师课上讲的内容,他突然发现一道题:(x2+3xy)-(2x2+4xy)=-x2【】,其中空格的地方被钢笔水弄污了,那么空格中的项是( )A.-7xyB.7xyC.-xyD.xy5.去掉下列各式中的括号:(1)(a+b)-(c+d)=; (2)(a-b)-(c-d)=;(3)(a+b)-(-c+d)=; (4)-[a-(b-c)]=.6.化简下列各式:(1)3a-(5a-6); (2)(3x4+2x-3)+(-5x4+7x+2);(3)(2x-7y)-3(3x-10y);第3课时整式的加减1.化简x+y-(x-y)的结果是( )A.2x+2yB.2yC.2xD.02.已知A=5a-3b,B=-6a+4b,则A-B为( )A.-a+bB.11a+bC.11a-7bD.-a-7b3.已知多项式x3-4x2+1与关于x的多项式2x3+mx2+2相加后不含x的二次项,则m 的值是( )4.若某个长方形的周长为4a,一边长为(a-b),则另一边长为( )A.(3a+b)B.(2a+2b)C.(a+b)D.(a+3b)5.化简:(1)(-x2+5x+4)+(5x-4+2x2);(2)-2(3y2-5x2)+(-4y2+7xy).第三章一元一次方程3.1 从算式到方程3.1.1 一元一次方程1.下列各方程是一元一次方程的是( )2.方程x+3=-1的解是( )A.x=2B.x=-4C.x=4D.x=-23.若关于x的方程2x+a-4=0的解是x=-2,则a的值是( )A.-8B.0C.8D.44.把一些图书分给某班学生阅读,若每人分3本,则剩余20本;若每人分4本,则还缺25本.设这个班有x名学生,则由题意可列方程为.5.商店出售一种文具,单价3.5元,若用100元买了x件,找零30元,则依题意可列方程为.6.七(2)班有50名学生,男生人数是女生人数的倍.若设女生人数为x名,请写出等量关系,并列出方程.3.1.2 等式的性质1.若a=b,则下列变形一定正确的是( )2.下列变形符合等式的基本性质的是( )A.若2x-3=7,则2x=7-3B.若3x-2=x+1,则3x-x=1-2C.若-2x=5,则x=5+2D.3.解方程- x=12时,应在方程两边( )A.同时乘-B.同时乘4C.同时除以D.同时除以-4.由2x-16=5得2x=5+16,此变形是根据等式的性质在原方程的两边同时加上了.5.利用等式的性质解下列方程:(1)x+1=6; (2)3-x=7;(3)-3x=21;3.2 解一元一次方程(一)——合并同类项与移项第1课时利用合并同类项解一元一次方程1.方程-x=3-2的解是( )A.x=1B.x=-1C.x=-5D.x=52.方程4x-3x=6的解是( )A.x=6B.x=3C.x=2D.x=13.方程5x-2x=-9的解是.4.若两个数的比为2∶3,和为100,则这两个数分别是.5.解下列方程:第2课时利用移项解一元一次方程1.下列变形属于移项且正确的是( )A.由3x=5+2得到3x+2=5B.由-x=2x-1得到-1=2x+xC.由5x=15得到x=D.由1-7x=-6x得到1=7x-6x2.解方程-3x+4=x-8时,移项正确的是( )A.-3x-x=-8-4B.-3x-x=-8+4C.-3x+x=-8-4D.-3x+x=-8+43.一元一次方程3x-1=5的解为( )A.x=1B.x=2C.x=3D.x=44.解下列方程:5.小英买了一本《唐诗宋词选读》,她发现唐诗的数目比宋词的数目多24首,并且唐诗的数目是宋词的数目的3倍,求这本《唐诗宋词选读》中唐诗的数目?3.3 解一元一次方程(二)——去括号与去分母第1课时利用去括号解一元一次方程1.方程3-(x+2)=1去括号正确的是( )A.3-x+2=1B.3+x+2=1C.3+x-2=1D.3-x-2=12.方程1-(2x-3)=6的解是( )A.x=-1B.x=1C.x=2D.x=03.当x=时,代数式-2(x+3)-5的值等于-9.4.解下列方程:(1)5(x-8)=-10; (2)8y-6(y-2)=0;(3)4x-3(20-x)=-4; (4)-6-3(8-x)=-2(15-2x).5.李强是学校的篮球明星,在一场比赛中,他一人得了23分.如果他投进的2分球比3分球多4个(规定只有2分球与3分球),那么他一共投进了多少个2分球,多少个3分球?第2课时利用去分母解一元一次方程3.4 实际问题与一元一次方程第1课时产品配套问题和工程问题1.挖一条1210m的水渠,由甲、乙两队从两头同时施工,甲队每天挖130m,乙队每天挖90m,需几天才能挖好?设需用x天才能挖好,则下列方程正确的是( )A.130x+90x=1210B.130+90x=1210C.130x+90=1210D.(130-90)x=12102.甲、乙两个工程队合作完成一项工程,甲队一个月可以完成总工程的,乙队的工效是甲队的2倍.两队合作多长时间后,可以完成总工程的?3.有33名学生参加社会实践劳动,做一种配套儿童玩具.已知每个学生平均每小时可以做甲元件8个或乙元件3个或丙元件3个,而2个甲元件,1个乙元件和1个丙元件正好配成一套.问应该安排做甲、乙、丙三种元件的学生各多少名,才能使生产的三种元件正好配套?第2课时销售中的盈亏1.如图所示是某超市中某品牌洗发水的价格标签,一服务员不小心将墨水滴在标签上,使得原价看不清楚.请你帮忙算一算,该洗发水的原价为( )A.22元B.23元C.24元D.26元2.某商品的售价比原售价降低了15%,如果现在的售价是51元,那么原来的售价是( )A.28元B.62元C.36元D.60元3.某商品进价是200元,标价是300元,要使该商品的利润率为20%,则该商品销售时应打( )A.7折B.8折C.9折D.6折4.一件商品在进价基础上提价20%后,又以9折销售,获利20元,则进价是多少元?5.一件商品的标价为1100元,进价为600元,为了保证利润率不低于10%,最多可打几折销售?第3课时球赛积分问题与单位对比问题1.某次足球联赛的积分规则:胜一场得3分,平一场得1分,负一场得0分.一个队进行了14场比赛,其中负5场,共得19分,则这个队共胜了( )A.3场B.4场C.5场D.6场2.某班级乒乓球比赛的积分规则:胜一场得2分,负一场得-1分.一个选手进行了20场比赛,共得28分,则这名选手胜了多少场(说明:比赛均要分出胜负)?3.某校进行环保知识竞赛,试卷共有20道选择题,满分100分,答对1题得5分,答错或不答倒扣2分.如答对12道,最后得分为44分.小茗准备参加比赛.(1)如果他答对15道题,那么他的成绩为多少?(2)他的分数有可能是90分吗?为什么?第4课时电话分段计费问题1.某市出租车收费标准为3公里内起步价10元,每超过1公里加收2元,那么乘车多远恰好付车费16元?2.某超市推出如下优惠方案:①一次性购物不超过100元不享受优惠;②一次性购物超过100元但不超过300元一律九折;③一次性购物超过300元一律八折.王林两次购物分别付款80元,252元,如果王林一次性购买与上两次相同的商品,那么应付款多少元?3.请根据图中提供的信息,回答下列问题:(1)一个水瓶与一个水杯分别是多少元?(2)甲、乙两家商场同时出售同样的水瓶和水杯,为了迎接新年,两家商场都在搞促销活动,甲商场规定:这两种商品都打八折;乙商场规定:买一个水瓶赠送两个水杯,另外购买的水杯按原价卖.若某单位想要买5个水瓶和20个水杯,请问选择哪家商场购买更合算,并说明理由(必须在同一家购买).4.根据下表的两种移动电话计费方式,回答下列问题:(1)一个月内本地通话多少时长时,两种通讯方式的费用相同?(2)若某人预计一个月内使用本地通话花费90元,则应该选择哪种通讯方式较合算?第四章几何图形初步4.1 几何图形4.1.1 立体图形与平面图形第1课时立体图形与平面图形1.从下列物体抽象出来的几何图形可以看成圆柱的是( )2.下列图形不是立体图形的是( )A.球B.圆柱C.圆锥D.圆3.下列图形属于棱柱的有( )A.2个B.3个C.4个D.5个4.将下列几何体分类:其中柱体有,锥体有,球体有(填序号).5.如图所示是用简单的平面图形画出三位携手同行的好朋友,请你仔细观察,图中共有三角形个,圆个.6.把下列图形与对应的名称用线连起来:圆柱四棱锥正方体三角形圆第2课时从不同的方向看立体图形和立体图形的展开图1.如图所示是由5个相同的小正方体搭成的几何体,从正面看得到的图形是( )2.下列常见的几何图形中,从侧面看得到的图形是一个三角形的是( )3.如图所示是由三个相同的小正方体组成的几何体从上面看得到的图形,则这个几何体可以是( )4.下面图形中是正方体的展开图的是( )5.如图所示是正方体的一种展开图,其中每个面上都有一个数字,则在原正方体中,与数字6相对的数字是( )A.1B.4C.5D.26.指出下列图形分别是什么几何体的展开图(将对应的几何体名称写在下方的横线上).4.1.2 点、线、面、体1.围成圆柱的面有( )A.1个B.2个C.3个D.4个2.汽车的雨刷把玻璃上的雨水刷干净所属的实际应用是( )A.点动成线B.线动成面C.面动成体D.以上答案都不对3.结合生活实际,可以帮我们更快地掌握新知识.(1)飞机穿过云朵后留下痕迹表明;(2)用棉线“切”豆腐表明;(3)旋转壹元硬币时看到“小球”表明.4.图中的立体图形是由哪个平面图形旋转后得到的?请用线连起来.5.如图所示的立体图形是由几个面围成的?它们是平面还是曲面?4.2 直线、射线、线段第1课时直线、射线、线段1.向两边延伸的笔直铁轨给我们的形象似( )A.直线B.射线C.线段D.以上都不对2.如图,下列说法错误的是( )A.直线MN过点OB.线段MN过点OC.线段MN是直线MN的一部分D.射线MN过点O3.当需要画一条5厘米的线段时,我们常常在纸上正对零刻度线和“5厘米”刻度线处打上两点,再连接即可,这样做的道理是.4.如图,平面内有四点,画出通过其中任意两点的直线,并直接写出直线条数.5.如图,按要求完成下列小题:(1)作直线BC与直线l交于点D;(2)作射线CA;(3)作线段AB.第2课时线段的长短比较与运算1.如图所示的两条线段的关系是( )A.a=bB.a<bC.a>bD.无法确定第1题图第2题图2.如图,已知点B在线段AC上,则下列等式一定成立的是( )A.AB+BC>ACB.AB+BC=ACC.AB+BC<ACD.AB-BC=BC3.如图,已知D是线段AB的延长线上一点,C为线段BD的中点,则下列等式一定成立的是( )A.AB+2BC=ADB.AB+BC=ADC.AD-AC=BDD.AD-BD=CD4.有些日常现象可用几何知识解释,如在足球场上玩耍的两位同学,需要到一处会合时,常常沿着正对彼此的方向行进,其中的道理是.5.如图,已知线段AB=20,C是线段AB上一点,D为线段AC的中点.若BC=AD+8,求AD的长.4.3 角4.3.1 角1.图中∠AOC的表示正确的还有( )A.∠OB.∠1C.∠AOBD.∠BOC第1题图第2题图2.如图,直线AB,CD交于点O,则以O为顶点的角(只计算180°以内的)的个数是( )A.1个B.2个C.3个D.4个3.小茗早上6:30起床,这时候挂钟的时针和分针的夹角是°.4.把下列角度大小用度分秒表示:(1)50.7°; (2)15.37°.5.把下列角度大小用度表示:(1)70°15′; (2)30°30′36″.4.3.2 角的比较与运算1.如图,其中最大的角是( )A.∠AOCB.∠BODC.∠AODD.∠COB第1题图第2题图2.如图,OC为∠AOB内的一条射线,且∠AOB=70°,∠BOC=30°,则∠AOC的度数为°.3.计算:(1)23°34′+50°17′; (2)85°26′-32°42′.4.如图,已知OC为∠AOB内的一条射线,OM,ON分别平分∠AOC,∠COB.若∠AOM=30°,∠NOB=35°,求∠AOB的度数.4.3.3 余角和补角1.如图,点O在直线AB上,∠BOC为直角,则∠AOD的余角是( )A.∠BODB.∠CODC.∠BOCD.不能确定第1题图第4题图2.若∠A=50°,则∠A的余角的度数为( )A.50°B.100°C.40°D.80°3.若∠MON的补角为80°,则∠MON的度数为( )A.100°B.10°C.20°D.90°4.如图,已知射线OA表示北偏西25°方向,写出下列方位角的度数:(1)射线OB表示北偏西方向;(2)射线OC表示北偏东方向.5.如图,直线AB上有一点O,射线OC,OD在其同侧.若∠AOC∶∠COD∶∠DOB=2∶5∶3.(1)求出∠AOC的度数;(2)计算说明∠AOC与∠DOB互余.4.4 课题学习——设计制作长方体形状的包装纸盒1.现需要制作一个无盖的长方体纸盒,下列图形不符合要求的是( )2.如图,现设计用一个大长方形制作一个长方体纸盒,要求纸盒的长、宽、高分别为4,3,1,则这个大长方形的长为( )A.14B.10C.8D.73.如图,该几何体的展开图可能是( )4.马小虎准备制作一个封闭的正方体盒子,他先用5个大小一样的正方形制成如图所示的拼接图形(实线部分),经折叠后发现还少一个面,请你在图中的拼接图形上再接一个正方形,使新拼接成的图形经过折叠后能成为一个封闭的正方体盒子(注:①只需添加一个符合要求的正方形;②添加的正方形用阴影表示).第一章有理数1.1正数和负数1.B2.C3.B4.输1场5.从Q出发后退4下6.227,2.7183,2020,480-18,-0.333…,-25901.2 有理数1.2.1 有理数1.C2.C3.D4.0,1 +13-0.3,0,-3.35.正整数集合:{+4,13,…};负整数集合:{-7,-80,…}; 正分数集合:{3.85,…};负分数集合:{-54,-49%,-4.95,…};非负有理数集合:{+4,0,3.85,13,…};非正有理数集合:{-7,0,-80,-54,-49%,-4.95,…}.1.2.2 数 轴1.C2.D3.B4.-2或05.-1,0,1,26.解:在数轴上表示如下.1.2.3 相反数1.B2.D3.-14.(1)-1 (2)3 (3)25.解:(1)-3.5的相反数是3.5.(2)35的相反数是-35.(3)0的相反数是0.(4)28的相反数是-28. (5)-2018的相反数是2018. 6.解:如图所示.1.2.4 绝对值 第1课时 绝对值1.C2.B3.B4.-3105.解:|7|=7,⎪⎪⎪⎪-58=58,|5.4|=5.4,|-3.5|=3.5,|0|=0. 6.解:因为|x +1|+|y -2|=0,且|x +1|≥0,|y -2|≥0,所以x +1=0,y -2=0,所以x =-1,y =2.第2课时 有理数的大小比较1.C2.B3.(1)> (2)< (3)>4.-175.解:如图所示:由数轴可知,它们从小到大排列如下: -6<-514<-35<0<1.5<2.1.3 有理数的加减法1.3.1 有理数的加法 第1课时 有理数的加法法则1.B2.B3.B4.A5.49.36.解:(1)原式=-26.(2)原式=-6.(3)原式=-2019. (4)原式=0.(5)原式=4.(6)原式=-59.第2课时 有理数加法的运算律及运用1.D2.交换 结合 -17 +19 23.解:(1)原式=[(-6)+(-4)]+(8+12)=-10+20=10. (2)原式=⎝⎛⎭⎫147+37+⎣⎡⎦⎤⎝⎛⎭⎫-213+13=2+(-2)=0. (3)原式=(0.36+0.64)+[(-7.4)+(-0.6)]+0.3=1+(-8)+0.3=-6.7.4.解:根据题意得55+77+(-40)+(-25)+10+(-16)+27+(-5)+25+10=(55+77+10+27+10)+[(-25)+25]+[(-40)+(-16)+(-5)]=179+(-61)=118(kg).所以今年小麦的总产量与去年相比是增产的,增产118kg.1.3.2 有理数的减法 第1课时 有理数的减法法则1.A2.B3.B4.解:(1)原式=9+(+6)=9+6=15. (2)原式=-5+(-2)=-7. (3)原式=0+(-9)=-9. (4)原式=-812-112+312=-12.5.解:五天的温差分别如下:第一天:(-1)-(-7)=(-1)+7=6(℃);第二天:5-(-3)=5+3=8(℃);第三天:6-(-4)=6+4=10(℃);第四天:8-(-4)=8+4=12(℃);第五天:11-2=9(℃).由此看出,第四天的温差最大,第一天的温差最小.第2课时 有理数的加减混合运算1.A2.D3.A4.解:(1)原式=-3.5+1.7+2.8-5.3=-4.3. (2)原式=-312+523+713=912.(3)原式=⎝⎛⎭⎫-12+⎝⎛⎭⎫-12+⎝⎛⎭⎫-14+234=112. (4)原式=314+534+⎝⎛⎭⎫-718+718=9. 5.解:-2+5-8=-5(℃). 答:该地清晨的温度为-5℃.1.4 有理数的乘除法1.4.1 有理数的乘法 第1课时 有理数的乘法法则1.C2.B3.(1)16(2)-24.- 48 -48 - 80 -80 + 36 36 + 160 1605.解:(1)原式=-5.(2)原式=0. (3)原式=-125.(4)原式=356.第2课时 多个有理数相乘1.C2.B3.964.解:(1)原式=-(2×7×4×2.5)=-140. (2)原式=23×97×24×74=36.(3)原式=0.(4)原式=73×⎝⎛⎭⎫-45=-2815. 第3课时 有理数乘法的运算律1.C2.A3.A4.A5.(1)-621 -45 -621 -10 -6 8 -48(2)(-16) (-16) (-16) -4-2-8 -141.4.2 有理数的除法 第1课时 有理数的除法法则1.A2.B3.A4.B5.A6.解:(1)原式=(-6)×4=-24.(2)原式=0. (3)原式=⎝⎛⎭⎫-53÷⎝⎛⎭⎫-52=53×25=23. (4)原式=-34×73×67=-32.第2课时 分数的化简及有理数的乘除混合运算1.(1)-8 (2)-14 (3)2832.B3.A4.解:(1)原式=-12×⎝⎛⎭⎫-16=2. (2)原式=-27×19×527=-59.(3)原式=-30×415×38×112=-14.第3课时 有理数的加、减、乘、除混合运算1.C2.-123.解:(1)原式=2+21-5=18.(2)原式=916÷⎝⎛⎭⎫-32×524=-916×23×524=-38×524=-564. (3)原式=5×⎝⎛⎭⎫-78-5×98=5×⎝⎛⎭⎫-78-98=5×(-2)=-10. (4)原式=⎝⎛⎭⎫1011×1112×1213-1×⎝⎛⎭⎫-213=1012×1213+213=1013+213=1213. 4.解:32-6+2×2=30(℃).答:关掉空调2小时后的室温为30℃.1.5 有理数的乘方1.5.1 乘 方 第1课时 乘 方1.B2.D3.C4.D5.⎝⎛⎭⎫344 34的4次方⎝⎛⎭⎫或34的4次幂6.(1)-1 (2)-81 (3)0 (4)1258。
【新人教版七年级数学上册同步训练及答案全套40份】【第1套,共4套】第1章第2节 有理数
七年级数学(人教版上)同步练习第一章第二节有理数一. 教学内容:1. 有理数2. 数轴、相反数3. 绝对值二. 知识要点:1. 有理数的定义:整数和分数统称为有理数。
有理数的分类:有理数⎧⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩⎪⎨⎧⎪⎪⎨⎪⎪⎩⎪⎪⎪⎩正整数0整数负整数正分数分数负分数 有理数{{0⎧⎪⎪⎨⎪⎪⎩正整数正分数负整数负分数正有理数负有理数 2. 数轴:(1)定义:规定了原点、正方向和单位长度的直线,叫做数轴。
(2)意义:任意有理数都可以用数轴上的点来表示;用数轴比较有理数的大小:数轴上的两个点表示的数,右边的总比左边的大。
3. 绝对值定义:在数轴上,一个数所对应的点与原点之间的距离叫做该数的绝对值两个正数比较大小,绝对值大的数大。
两个负数比较大小,绝对值大的数反而小。
绝对值的非负性:a 0≥三. 考点分析1、有理数的有关概念是中考的一大热点,常以选择题、填空题的形式出现;2、利用数轴比较大小,相反数的概念,是近几年的中考热点,一般多是与绝对值等内容综合考查,常以选择题、填空题的形式出现;3、绝对值的中考考点有三个:求一个数或一个整式的绝对值;绝对值非负性的应用;比较有理数的大小。
中考命题时形式多样,既有填空题又有选择题,有时出现解答题。
【典例精析】例1、把下列各数填在相应的大括号里:-1,-39,0,+3.6,-17%,3.142,119,-0.088,2008,-506整数集合:{ …} 分数集合:{ …}负整数集合:{ …} 正分数集合:{ …}负有理数集合:{ …} 正有理数集合:{ …}解:整数集合:{-1,39-,0,2008,-506 …}分数集合:{+3.6,-17%,3.142,119,-0.088 …}负整数集合:{-1,39-,-506 …}正分数集合:{+3.6,3.142,119,…}负有理数集合:{-1,39-,-17%,-0.088,-506 …}正有理数集合:{+3.6,3.142,119,2008 …}指导:先把39-,-17%化成-3,-0.17;分数和有限小数无限循环小数可以互化。
人教版七年级上数学同步练习题及答案
第一章 有理数宇文皓月1.1 正数和负数基础检测1.521,76,106,14.3,732.1,34,5.2,0,1----+-中,正数有,负数有。
2.如果水位升高5m 时水位变更记作+5m ,那么水位下降3m 时水位变更记作m ,水位不升不降时水位变更记作m 。
3.在同一个问题中,分别用正数与负数暗示的量具有的意义。
4.2010年我国全年平均降水量比上年减少24㎜.2009年比上年增长8㎜.2008年比上年减少20㎜。
用正数和负数暗示这三年我国全年平均降水量比上年的增长量。
拓展提高5.下列说法正确的是( )A.零是正数不是负数B.零既不是正数也不是负数C.零既是正数也是负数D.不是正数的数一定是负数,不是负数的数一定是正数6.向东行进-30米暗示的意义是( ) A.向东行进30米 B.向东行进-30米 C.向西行进30米 D.向西行进-30米7.甲、乙两人同时从A 地出发,如果向南走48m,记作+48m ,则乙向北走32m ,记为这时甲乙两人相距m.8.某种药品的说明书上标明保管温度是(20±2)℃,由此可知在℃至℃范围内保管才合适。
9.如果把一个物体向右移动5m 记作移动-5m ,那么这个物体又移动+5m 是什么意思?这时物体离它两次移动前的位置多远?1.2.1有理数测试基础检测1、 ______和______统称为非负数;______和______统称为非正数;______和______统称为非正整数;______和______统称为非负整数.2、下列不是正有理数的是( ) A 、-3.14 B 、0 C 、37 D 、33、既是分数又是正数的是( ) A 、+2 B 、-314 C 、0 D 、2.3 拓展提高4、下列说法正确的是( )A 、正数、0、负数统称为有理数B 、分数和整数统称为有理数C 、正有理数、负有理数统称为有理数D 、以上都分歧错误 5、-a 一定是( )A 、正数B 、负数C 、正数或负数D 、正数或零或负数 6、下列说法中,错误的有( )①742 是负分数;②1.5不是整数;③非负有理数不包含0;④整数和分数统称为有理数;⑤0是最小的有理数;⑥-1是最小的负整数。
最新人教版数学七年级上册课堂同步试题及答案(全册)
1.1 正数和负数1.在0,﹣2,5,,﹣0.3中,负数的个数是()A.1B.2C.3D.42.陆地上最高处是珠穆朗玛峰顶,高出海平面8844m,记为+8844m;陆地上最低处是地处亚洲西部的死海,低于海平面约415m,记为()A.+415m B.﹣415m C.±415m D.﹣8848m3.检验4个工件,其中超过标准质量的克数记作正数,不足标准质量的克数记作负数.从轻重的角度看,最接近标准的工件是()A.﹣2 B.﹣3 C.3D.54.冬季某天我国三个城市的最高气温分别是﹣10℃,1℃,﹣7℃,它们任意两城市中最大的温差是()A.11℃B.17℃C.8℃D.3℃5.如果海平面以上为正,那么﹣15米表示的含义是;0米表示的含义是.6.如果节约用水5吨记作+5吨,那么浪费水10吨,记作吨.7.+8.7读作,﹣读作.8.小张向东走了200m记为+200m,然后他向西走了﹣300m,这时小张的位置与原来相比是在方位.9.某天,小华在一条东西方向的公路上行走,他从家出发,如果把向东280米记作﹣280米,那么他折回来行走350米表示什么意思?这时,他停下来休息,休息的地方在他家什么方向,距家多远?小华走了多少米?10.用正数、负数表示下列问题中的数量,并指出这些问题中数量表示的意义.(1)一季度盈利13万元,二季度亏损5万元;(2)飞机飞翔在9200米的高空,潜艇在海面下35米处巡航.11.一个物体沿着南北方向运动,如果把向南的方向规定为正,那么走6千米,走﹣4.5千米,走零千米的意义各是什么?参考答案1.B .2.B .3.A .4.A .5.低于海平面15米,表示海平面.6.﹣107.正八点七,负五分之二.8.正东.9.解:小华在一条东西方向的公路上行走,他从家出发,如果把向东280米记作﹣280米,那么他折回来行走350米,表示+350m ,350﹣280=70(m ),280+350=630(m ).答:休息的地方在他家西方,距家70米,小华走了630米.10.解:(1)一季度盈利13万元,记为+13万元;二季度亏损5万元,记为﹣5万元;(2)飞机飞翔在9200米高空,记为+9200米,潜艇在海面下35米处巡航,记为﹣35米.11.走6千米,走﹣4.5千米,走零千米的意义分别为向南走了6千米,向北走了4.5千米,没有动.1.2 有理数(1)有理数1.在-2,+1.4,-31,0.72,-412,-1.5中,整数和负分数的个数是( ) A .3 B .4 C .5 D .62.对于-3.271,下列说法不正确的是( )A .是负数,不是整数B .是分数,不是自然数C .是有理数,不是分数D .是负有理数,且是负分数3.最小的正有理数( )A .是0B .是1C .是0.00001D .不存在4.正整数集合与负整数集合合并在一起,构成的集合是( )A .整数集合B .有理数集合C .自然数集合D .以上说法都不对5.下列说法不正确的是( )A .没有最大的有理数B .没有最小的有理数C .有最小的正有理数D .有绝对值最小的有理数6.在数+8.3, -4,-0.8, 51-, 0, 90, 334-,|24|--中,________是正数,_________不是整数.7.写出一个比零小的有理数: .8.在有理数中,既不是正数也不是负数的数是 .9.观察下列数的规律,填上合适的有理数:1,-4,9,-16,25,-36,49, .10.把下列各数填在相应的集合内:-23,0.25,32-,-5.18,18,-38,10,+7,0,+12. 正数集合:{ ………};整数集合:{ ………};分数集合:{ ………}.参考答案1.B .2.C .3.D .4.D .5.D .6.+8.3,90;+8.3,8.0-,51-,334-. 7.例如1-.8.0.9.-64.10.正数集合:{0.25,18,10,+7,+12 ………};整数集合:{-23,18,-38,10,+7,0,+12………};分数集合:{0.25,32-,-5.18 ………}. 1.2 有理数(2)数轴1.下列所示的数轴中,画得正确的是( )A .B .C .D .2.如图所示,在数轴上点A 表示( )A .-2B .2C .±2D .03.在数轴上表示-12的点与表示-3的点之间的距离是( )A .9B .-9C .2D .44.下列说法,错误的是( )A .所有的有理数都可以用数轴上的点表示B .数轴上的原点表示0C .在数轴上表示-3的点与表示+1的点的距离是2D .数轴上表示-513的点在原点负方向513个单位 5.如图所示,数轴上一点A 向左移动2个单位长度到达点B ,再向右移动5个单位长度到达点C .若点C 表示的数为1,则点A 表示的数( )A .7B .3C .-3D .-26.数轴上,在3-与4之间的点表示的有理数有 .7.把在数轴上表示-2的点移动3个单位长度后,所得到对应点的数是_____.8.若在数轴上点A ,B 分别表示-12和12,则数轴上与A ,B 两点的距离相等的点表示的数是___________.9. 如图所示,数轴上的点A ,B ,C 、,D 分别表示4,0,211,3--请回答下列问题: (1)在数轴上描出A ,B ,C ,D 四个点;(2)B ,C 两点间的距离是多少?A ,D 两点间的距离是多少?(3)如果把数轴的原点取在点B 处,其余都不变,那么点A ,B ,C ,D 分别表示什么数?-210.小李在做题时,画了一个数轴,在数轴上原有一点A , 其表示的数是-3,由于粗心,把数轴的原点标错了位置,使点A 正好落在-3的相反数的位置,想一想,要把数轴画正确,原点要向哪个方向移动几个单位长度?参考答案1.A .2.A .3.A.4.C .5.D .6.无限多个.7.1或5-.8.0.9.(1)(2)1.5,7(3)215,211,0,21,1-. 10.向右移动6个单位.1.2 有理数(3)相反数1.3-的相反数是( )A .13B .13-C .3D .3-2.下列说法中,正确的个数是( )① 一个负数的相反数大于这个负数; ②互为倒数的两个数符号相反;③一个正数的相反数小于这个正数; ④互为相反数的两个数的和为0.A .1个B .2个C .3个D .4个3.下列各组数中,互为相反数的一组是( )A .12-和0.2 B .23和32C . 1.75-和314D .2和(2)-- 4.若a ,b 互为相反数,则下列四个等式中一定成立的是( )A .a +b =0B .a +b =1C .0a b +=D .0a b +=5.数轴上表示互为相反数m 与m -的点到原点的距离( )A .表示数m 的点离原点较远B .表示数m -的点距原点较远C .一样远D .无法比较6.-(-100)的相反数是__________.7.在数轴上,若点A 和点B 分别表示互为相反数的两个数,并且这两点间的距离是12.8,则这两点所表示的数分别是________,________.8.已知点A 在数轴上距原点3个单位长度,且位于原点左侧,若将点A 向右移动4个单位长度,再向左移动1个单位长度,此时点A 所表示的数是______;若点B 所表示的数是点A 开始时所表示的数的相反数,作同样的移动以后,点B 表示的数是______.9.已知a -2 与-6互为相反数,求2a -1的值.10.小李在做题时,画了一个数轴,在数轴上原有一点A , 其表示的数是-3,由于粗心,把数轴的原点标错了位置,使点A 正好落在-3的相反数的位置.想一想,要把数轴画正确,原点要向哪个方向移动几个单位长度?参考答案1.C .2.C .3.C .4.A .5.C .6.-100.7.6.4,-6.4.8.0,6.9.解:因为a -2 与 6互为相反数,所以a -2=6,解得a=8.所以2a -1=16-1=15.10.解:原点要向左边移动3个单位长度.1.2 有理数(4)绝对值1.5-的绝对值是( )A .5B .15C .5-D .0.52.若13 3.143a b c π=-=-=-,,,则( )A .a b c >>B .b c a >>C .c b a >>D .b a c >>3.下列说法,错误的是( )A .所有的有理数都可以用数轴上的点表示B .数轴上的原点表示的数是零C .在数轴上表示2-的点与表示2+的点距离是2D .最大的负整数是1-4.如果m 是有理数,那么下列说法正确的是( )A .m -一定是负数B .2m m 一定不小于C .m 一定是正数D .m -一定不是负数5.若12x <<,则化简12x x ---的结果为( )A .1-B .21x +C .23x -D .32x -6.绝对值小于3的整数分别是__________.7.若5a =,则a =______;若8y =-,则y =______.8.下表是我国四个城市某一月份的平均气温,把它们按从高到低的顺序排列起来为:______________________________.9.比较下列两组数的大小.(1)---⎛⎝ ⎫⎭⎪234223与; (2)--6778和。
【新人教版七年级数学上册同步训练及答案全套40份】【第1套,共4套】(3.1一元一次方程)
第三章一元一次方程3.1 从算式到方程3.1.1 一元一次方程5分钟训练 (预习类训练,可用于课前)1.下列方程的解不是x=12的是()A.2x=1B.-2x+2=3C.x=1-xD. 13(x-1)=-16思路解析:把x=12代入方程-2x+2=3,不能使该方程的左边等于右边.所以应选B.答案:B2.要使代数式2x+1和x+5的值相等,则x的值可以为()A.2B.3C.4D.5思路解析:可以把选项中的各个值代入代数式2x+1和x+5中,进行检验,看看是否相等即可.经检验只有x=4时,两个代数式的值相等,且都等于9.答案:C3.(1)在列方程解决实际问题时,应注意所列方程两端代数式的单位要______;(2)两边都放有物体的天平处于平衡状态.如图2-1-1,用等式表示天平两边所放物体的质量关系为_________.图3-1-1思路解析:(1)在列方程解决实际问题时,应注意所列方程两端代数式的单位要相同.如果不同,则有可能所列方程两端代数式的值是不等的.(2)天平处于平衡状态,则天平两边所放物体的质量是相等的.答案:(1)统一 (2)x+2=510分钟训练(强化类训练,可用于课中)1.小学里我们学过列方程解应用题,你还知道它的解题步骤吗?思路解析:小学里学的列方程解应用题的步骤与现在所说的列方程解应用题的步骤其实是一样的.即设、根据题意列方程、解方程、答四步.答案:设、根据题意列方程、解方程、答.2.怎样检验一个数是不是方程的解?思路解析:课本通过具体实例得出方程,给出一些特定的数值检验,看看它们是不是方程的解.答案:①将这个数代入方程的左、右两边;②分别计算出方程左、右两边的值;③如果左、右两边的值相等,那么这个数是该方程的解,否则不是方程的解.3.检验下列方程后面大括号内所列各数是否为相应方程的解: 3x=x+3,{2,32 }.思路解析:检验一个数是不是方程的解的步骤是:①代入;②计算;③做出结论.答案:把x=2分别代入方程左边和右边,得左边=3×2=6,右边=2+3=5.因为左边≠右边,所以x=2不是方程3x=x+3的解.把x=32分别代入方程左边和右边,得左边=3×32=92,右边=32+3=92.因为左边=右边,所以x=32是方程3x=x+3的解.4.甲每小时走a千米,乙每小时走b千米(a>b),若两人同时同地出发.(1)反向行走x小时后,两人相距_____________千米;(2)同向行走y小时后,两人相距_____________千米;(3)他们从A地出发到达相距x千米的B地.若甲比乙早到2小时,则题中的一个等量关系是___________.思路解析:(1)反向行走x小时后,两人之间的距离就是他们所走距离的和;(2)同向行走y 小时后,两人之间的距离就是他们所走距离的差;(3)他们从A地出发到达相距x千米的B 地.若甲比乙早到2小时,等量关系:乙走的时间-甲走的时间=2.答案:(1)(a+b)x (2)(a-b)y (3) x xb a-=25.国家规定存款利息的纳税办法是:利息税=利息×20%,银行一年定期储蓄的年利率为1.98%.今小芳取出一年到期的本金及利息时,交纳了利息税3.96元,若设小芳一年前存入银行的钱为x元,则列方程为___________.思路解析:由于利息税=利息×20%,若设小芳一年前存入银行的钱为x元,则到期的利息为x×1.98%,由此可得方程为20%×1.98%x=3.96.答案:20%×1.98%x=3.96快乐时光祈祷教堂里,一个小男孩在祈祷:“上帝呀!我只有一个小小的心愿,请把首都移到纽约吧!”一个牧师在旁边听到后,问小男孩:“小朋友,你为什么祈祷要把首都移到纽约?”小男孩答道:“有一个考试题问的是首都在哪,我答的是纽约.”30分钟训练(巩固类训练,可用于课后)1.甲车队有60辆汽车,乙车队有50辆汽车,如果要使乙车队车辆数比甲车队车辆数的2倍还多5辆,那么应从甲车队调多少辆到乙车队?本题可设________,这时列出的方程为____________.思路解析:设从甲车队调x辆车到乙车队,这时乙车队有车50+x辆,甲车队有车60-x辆,由“乙车队车辆数比甲车队车辆数的2倍还多5辆”得方程50+x=2(60-x)+5.答案:从甲车队调x辆车到乙车队 50+x=2(60-x)+52.代数式265x+的值等于1,则x=________.思路解析:因为代数式265x+的值等于1,所以265x+=1,得x=-12.答案:-1 23.已知关于x的方程mx=x-2的解是3,求m的值.思路解析:由方程解的定义,在已知解的情况下,反求方程中待定字母的值,可采用代入法,得到以待求字母为未知数的新方程,进而求出待求字母.解:因为x=3是方程mx=x-2的解,所以,将x=3代入方程,得3m=3-2,得m=13.4.某地抢险救灾中,甲处有146名战士,乙处有78名战士,现又从别处调来160名战士支援甲、乙两处.如果要使甲处的人数是乙处人数的3倍,问应往甲处调多少名战士,你能列出方程吗?思路解析:题中表示等量关系的语句是“甲处的人数是乙处人数的3倍”,设调往甲处x人,则调往乙处(160-x)人,由题意得146+x=3(78+160-x).解:设调往甲处x人,则调往乙处(160-x)人,由题意得146+x=3(78+160-x).5.初三(1)班第一小组的同学去苹果园参加劳动,休息时工人师傅摘苹果分给同学们,若每人3个,还剩9个;若每人5个,就会有一人只分到4个,试问第一小组有多少个学生,共摘了多少个苹果.题中有两个不变的量没有告诉.(1)请指出这两个量是什么;(2)根据这两个不变的量列出两个不同的方程(不必解).思路解析:(1)读题后很容易知道,不变的量是学生人数及苹果个数;(2)设有学生x人,则两种分法的苹果数是相同的,由此可得方程;设摘苹果y个,则两种分法的人数是相同的,由此也可得方程.答案:(1)学生人数及苹果个数.(2)设有学生x人,可列方程为3x+9=5x-1;设摘苹果y个,可列方程91 35y y-+=.6.某种商品因换季准备打折出售:若按原定价的七五折出售将赔25元;若按原定价的九折出售将赚20元.如果问这种商品的原定价是多少元,请你列出方程.思路解析:七五折就是原价的75%,九折是原价的90%,设商品原价是x元,可由两次打折的差价20+25来列方程.解:设商品原价是x元,由题意得90%x-75%x=20+25.7.植树节甲班植树的株数比乙班多20%,乙班植树的株数比甲班的一半多10株,若乙班植树x株.(1)列两个不同的含x的代数式表示甲班植树的株数;(2)根据题意列出以x为未知数的方程;(3)检验乙班、甲班植树的株数是不是分别为25株、35株.思路解析:若第(1)题解决了,则第(2)题就迎刃而解,因为甲班植树的株数如果能用两个代数式表示,那么这两个代数式显然就是相等的.解:(1)根据甲班植树的株数比乙班多20%,得甲班植树的株数为(1+20%)x.根据乙班植树的株数比甲班的一半多10株,即乙班植树的株数=12甲班植树的株数+10,上式变形得甲班植树的株数为2(x-10).(2)由于(1+20%)x,2(x-10)都表示甲班植树的株数,便得方程(1+20%)x=2(x-10).(3)把x=25分别代入方程的左边和右边得左边=(1+20%)×25=30,右边=2(25-10)=30,因为左边=右边,所以x=25是方程(1+20%)x=2(x-10)的解.这就是说乙班植树的株数的确是25株.从上面检验过程可以看到甲班植树株数应是30株,而不是35株.8.甲、乙两队开展足球对抗赛,规定每队胜一场得3分,平一场得1分,负一场得0分,甲队与乙队一共比赛了10场,甲队保持了不败记录,一共得了22分,甲队胜了多少场?平了多少场?(只列方程)思路解析:(1)从比赛情况来作分析,宜从甲队的得分总数入手寻找等量关系.(2)若设甲队胜了x场,由于其保持不败记录,则其平了(10-x)场,具体情况列表分析如下:因而,可列出方程3x+1·(10-x)=22.解:若设甲队胜了x场,由于其保持不败记录,则其平了(10-x)场,得3x+1·(10-x)=22. 本题也可换一种方式来列方程.设甲队平了y场,则其胜了(10-y)场,因而根据题意又可列出方程y+3(10-y)=22.9.茂名课改实验区根据图3-1-2中对话内容列出方程.图3-1-2思路解析:这是一道很新颖的应用题.题目中的条件都以对话的形式给出,要仔细看隐含什么条件.买一本笔记本和一枝钢笔刚好6元,设一本笔记本需x元,则一枝钢笔需(6-x)元;买一本笔记本和4枝钢笔共需18元,这样可得方程为x+4(6-x)=18.解:设一本笔记本需x元,则一枝钢笔需(6-x)元,依题意,得x+4(6-x)=18.如何学好初中数学经典介绍浅谈如何学好初中数学数学是必考科目之一,故从初一开始就要认真地学习数学。
人教七年级数学上册同步练习题及答案
人教七年级数学上册同步练习题及答案第一章 有理数1.1 正数和负数(第一课时)(基础训练)1.任意写出5个正数:________________;任意写出5个负数:_______________.2.在银行存入款存入3万元记作+3万元,那么支取2万元应记作_______,-4万元表示________________.3.已知下列各数:51-,432-,3.14,+305,0,-23. 则正数有___________ _;负数有______ ______.4.向东行进-50m 表示的意义是( )A .向东行进50m C .向北行进50mB .向南行进50m D .向西行进50m5.下列结论中正确的是( )A .0既是正数,又是负数B .O 是最小的正数C .0是最大的负数D .0既不是正数,也不是负数6.给出下列各数:-3,0,+5,213-,+3.1,21-,2004,+2008.其中是负数的有 ( )A .2个B .3个C .4个D .5个7.下列各数中,哪些是正数?哪些是负数?+8,-25,68,O ,722,-3.14,0.001,-889.(综合训练)1.写出比O 小4的数,比4小2的数,比-4小2的数.2.如果海平面的高度为0米,一潜水艇在海水下40米处航行,一条鲨鱼在潜水艇上方10米处游动,试用正负数分别表示潜水艇和鲨鱼的高度.1.1 正数和负数(第二课时)(课前小测)1.如果向南走5米,记作+5米,那么向北走8米应记作___________.2.零下15℃,表示为_____,比O℃低4℃的温度是_____.3.地图上标有甲地海拔高度30米,乙地海拔高度为20米,丙地海拔高度为-5米,其中最高处为_______地,最低处为_______地.4.“甲比乙大-3岁”表示的意义是________________.5.在-7,0,-3,34,+9100,-0.27中,负数有( ) A .0个 B .1个 C .2个D .3个(基础训练)1.如果全班某次数学测试的平均成绩为83分,某同学考了85分,记作+2分,得分90分和80分应分别记作__________.2.如果把+210元表示收入210元,那么-60元表示______________.3.粮食产量增产11%,记作+11%,则减产6%应记作______________.4.如果把公元2008年记作+2008年,那么-205年表示______________.5.如果向西走12米记作+12米,则向东走-120米表示的意义是__________________.6.甲、乙两人同时从A地出发,如果甲向南走50m记为+50m,则乙向北走30m记为;这时甲、乙两人相距米。
人教版七年级数学上册同步练习题及答案全套(课课练)
人教版七年级数学上册同步练习题及答案全套(课课练)-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN第一章 有理数1.1 正数和负数基础检测 1.521,76,106,14.3,732.1,34,5.2,0,1----+-中,正数有 ,负数有 。
2.如果水位升高5m 时水位变化记作+5m ,那么水位下降3m 时水位变化记作 m ,水位不升不降时水位变化记作 m 。
3.在同一个问题中,分别用正数与负数表示的量具有 的意义。
4.2010年我国全年平均降水量比上年减少24㎜.2009年比上年增长8㎜.2008年比上年减少20㎜。
用正数和负数表示这三年我国全年平均降水量比上年的增长量。
拓展提高5.下列说法正确的是( )A.零是正数不是负数B.零既不是正数也不是负数C.零既是正数也是负数D.不是正数的数一定是负数,不是负数的数一定是正数6.向东行进-30米表示的意义是( )A.向东行进30米B.向东行进-30米C.向西行进30米D.向西行进-30米7.甲、乙两人同时从A 地出发,如果向南走48m,记作+48m ,则乙向北走32m ,记为 这时甲乙两人相距 m. 8.某种药品的说明书上标明保存温度是(20±2)℃,由此可知在 ℃至 ℃范围内保存才合适。
9.如果把一个物体向右移动5m 记作移动-5m ,那么这个物体又移动+5m 是什么意思这时物体离它两次移动前的位置多远1.2.1有理数测试基础检测1、_____、______和______统称为整数;_ ___和__ ___统称为分数;______、______、______、______和______统称为有理数;______和______统称为非负数;______和______统称为非正数;______和______统称为非正整数;______和______统称为非负整数.2、下列不是正有理数的是( )A 、-3.14B 、0C 、37 D 、33、既是分数又是正数的是( )A 、+2B 、-314C 、0D 、2.3拓展提高4、下列说法正确的是( )A 、正数、0、负数统称为有理数B 、分数和整数统称为有理数C 、正有理数、负有理数统称为有理数D 、以上都不对5、-a 一定是( )A 、正数B 、负数C 、正数或负数D 、正数或零或负数6、下列说法中,错误的有( ) ①742-是负分数;②1.5不是整数;③非负有理数不包括0;④整数和分数统称为有理数;⑤0是最小的有理数;⑥-1是最小的负整数。
【新人教版七年级数学上册同步训练及答案全套】【第3套,共4套】(4.1.1 立体图形与平面图形)
第四章几何图形初步4.1 几何图形4.1.1 立体图形与平面图形5分钟训练(预习类训练,可用于课前)1.图4-1-1中,上面一行是一些具体的实物图形,下面一行是一些立体图形,试用线连接立体图形和类似的实物图形.图4-1-1思路解析:解决本题的关键是能从实物图形中抽象出数学几何体.答案:2.球体的三视图是()A.三个圆 B .两个圆,一个长方形 C.两个圆和一个半圆D.两个圆思路解析:通过观察实物,可以轻松知道答案.答案:A3.下列四幅图形中,表示两棵树在同一时刻阳光下的影子的图形可能是…( )思路解析:这虽然是一个数学题,但也是生活的常识,我们知道在同一时刻,同一地点影子的方向是不可能不同的,也不可能出现,高的物体比矮的物体的影子还短的情形,所以排除B、C、D答案:A10分钟训练(强化类训练,可用于课中)1.如图4-1-2,请你在横线上写出哪种立体图形的表面能展开成下面的图形.图4-1-2思路解析:熟悉常见的几何体的展开图是解决本题的关键.答案:五棱锥圆锥三棱柱六棱柱长方体三棱柱2.如图4-1-3,小明一家四口人坐在桌子周围,桌上正中央有一把水壶,请选择他们分别看到的是水壶的哪个面,小明_______,爸爸_______,妈妈_______,妹妹______.图4-1-3思路解析:本题考查从不同方向看,可利用实物观察得到答案.答案:D B C A3.江苏常州模拟图4-1-4是一天中四个不同时刻两个建筑物的影子:图4-1-4将它们按时间先后顺序进行排列,正确的是()A.③④②①B.②④③①C.③④①②D.③①②④思路解析:根据常识,上午太阳从东方,所以影子投向西边,然后太阳向西移动,影子向东移动.由此可以排出顺序.答案:C4.如图4-1-5所示,假定用A、B表示正方体相邻的两个面,用字母C表示与A相对的面,请在下面的正方体展开图中填写相应的字母.图4-1-5思路解析:可以通过模型,动手试一试,可以得到答案.快乐时光“共计”这门课爸爸:“儿子,期模拟试考得怎么样?”儿子:“数学40分,语文60分,共计100分.”爸爸:“‘共计’这门课考得好,不错,以后,在数学、语文上还要多下功夫啊!”30分钟训练(巩固类训练,可用于课后)1.浙江模拟下列空间图形中是圆柱的为()思路解析:把握住圆柱的特征是解决本题的关键.答案:A2.小明从正面观察图4-1-6所示的两个物体,看到的是()图4-1-6思路解析:本题中有两个立体图形,一个为圆柱,正视图为长方形,一个为正方体,正视图为正方形.所以选C.答案:C3.下列说法中错误的是()A.柱体有两个互相平行、形状相同且大小相等的面B.棱锥除一个面外,其余各边都是三角形C.圆柱的侧面是长方形D.正方体是四棱柱,也是六面体思路解析:明确柱体和锥体的基本区别是解决本题的关键.圆柱的侧面是曲面,其展开图才是长方形.答案:C4.江苏扬州模拟小丽制作了一个对面图案均相同的正方体礼品盒(如图4-1-7所示),则这个正方体礼品盒的平面展开图可能是()图4-1-7思路解析:根据立体图形可以知道图中的三个图案的位置,利用这三个图案的位置可以确定应选A.5.图4-1-8给出的是哪个正方体的展开图()图4-1-8思路解析:显然黑色的面是相对的面,所以A,B错误,又因为两个小面应该是相对的,所以选D.答案:D6.一个圆形薄铁,刚好做成两个无底圆锥形容器,则这个圆形薄铁的周长恰好是无底圆锥底面周长的_______.思路解析:由题可知,无底圆锥的侧面展开图一定是半圆,所以圆形薄铁的周长恰好是无底圆锥底面周长的2倍.答案:2倍7.图4-1-9中的几何图形可看作哪些简单的图形组成的?图4-1-9思路解析:仔细观察,不难写出答案.答案:机器猫由三角形、圆、线段组成,邮箱是由长方形、三角形、圆组成,会笑的人由圆、三角形、线段组成.8.马小虎准备制作一个封闭的正方体盒子,他先用5个大小一样的正方形制成和图4-1-10所示的拼接图形(实线部分),经折叠后发现还少一个面,请你在右图中的拼接图形上再接一个正方形,使新拼接成的图形经过折叠后能成为一个封闭的正方体盒子(添加所有符合要求的正方形,添加的正方形用阴影表示).图4-1-10思路解析:这里可以有4种补充方案,具体如下:如何学好初中数学经典介绍浅谈如何学好初中数学数学是必考科目之一,故从初一开始就要认真地学习数学。
【新人教版七年级数学上册同步训练及答案全套】【第3套,共4套】(3.3 解一元一次方程(2))
3.3 解一元一次方程(2)5分钟训练 (预习类训练,可用于课前)1.一个饲养场里的鸡的只数与猪的头数之和是70,鸡、猪的腿数之和是196,设鸡有x只,依题意可列方程()A.2x+4(70-x)=196B.2x+4×70=196C.4x+2(70-x)=196D.4x+2×70=196思路解析:每只鸡有2条腿,每头猪有4条腿,所以可列方程2x+4(70-x)=196.答案:A2.已知方程(m+1)x|m|+3=0是关于x的一元一次方程,则m的值是()A.±1B.1C.-1D.0或1思路解析:方程(m+1)x|m|+3=0是关于x的一元一次方程,则m+1≠0,|m|=1,所以m=1.答案:B3.某校球类联赛期间买回排球和足球共16个,花去900元钱.已知排球每个42元,足球每个80元,则排球买了_________个.思路解析:如果设买回排球x个,则足球个数为16-x,由此得方程42x+80(16-x)=900,解这个方程得x=10.答案:1010分钟训练(强化类训练,可用于课中)1.休斯敦火箭队主力中锋姚明在对掘金队的一场比赛中,发挥特别出色,仅上半场就19投11中,另加罚篮10投8中,就拿下31分的高分.设他上半场投中2分球x次,则可列方程()A.2(11-x)+3x+8=31B.2x+3(19-x)+8=31C.2x+3(11-x)+8=31D.2x+3(11-x)+2×8=31思路解析:篮球投球得分有2分,3分两种,罚球投中1分,要注意干扰数19与10.答案:C2.解下列方程:(1)3(4-2x)=5x+23. (2)4(2y+3)=8(1-y)-5(y-2).思路解析:先去括号,再移项,合并,最后把系数化为1.解:(1)去括号,得12-6x=5x+23..移项,得-6x-5x=23-12.合并,得-11x=11.解得x=-1. (2)去括号,得8y+12=8-8y-5y+10.移项,得8y+8y+5y=8+10-12.合并,得21y=6.解得y= 27.3.解下列方程:(1)13x--x=3-24x+;(2)23x-=32x-.思路解析:先乘分母的最小公倍数去分母,此时要注意不要遗漏单项式及常数项.再移项,合并,最后把系数化为1.解:(1)去分母,得4(1-x)-12x=36-3(x+2).去括号,得4-4x-12x=36-3x-6.移项,得-4x-12x+3x=36-6-4.合并,得-13x=26.系数化为1,得x=-2.(2)去分母,得2(x-2)=3(x-3).去括号,得2x-4=3x-9.移项,得2x-3x=-9+4.合并,得-x=-5.系数化为1,得x=5.4.解一元一次方程的一般步骤是:(填下表)5.“希望工程”是我们都关心的问题,许多团体和个人都为“希望工程”捐款捐物,奉献自己的爱心.某文艺团体组织了一场募捐义演,成人票每张8元,学生票每张5元,共售出1 000张,筹得票款6 950元.问成人票和学生票各售出多少张.思路解析:解应用题的关键是找出能够表示全部含义的等量关系,本题中有两个等量关系:成人票数+学生票数=1 000张;成人票款+学生票款=6 950元;可以利用其中任意一个等量关系设未知数,利用另一个等量关系列方程.解法一:设售出的学生票为x张,则售出的成人票为1 000-x张.则由题意有8(1 000-x)+5x=6 950,解得x=350.解法二:设售出的学生票为x张,则售出的成人票为695058x-张.由于共售出1 000张门票,则有x+695058x-=1 000,解得x=350.答案:售出的学生票为350张,售出的成人票为650张.快乐时光饭厅内,一个异常谦恭的人胆怯地碰了碰另一个顾客,那人正在穿一件大衣.“对不起,请问您是不是皮埃尔先生?”“不,我不是.”那人回答,“啊,”他舒了一口气.“那我没弄错,我就是他,您穿了他的大衣.”30分钟训练(巩固类训练,可用于课后)1.下列方程变形正确的是()①3x+6=0变形为x+2=0 ②x+7=5-3x变形为4x=-2③25x=3变形为2x=15 ④4x=-2变形为x=-2A.①③B.①②③C.③④D.①②④思路解析:注意去分母、去括号、移项、合并同类项、系数化为1几个步骤是否正确.①3x+6=0变形为x+2=0,是方程两边同除以3得的,正确;②x+7=5-3x变形为4x=-2,是把-3x移到等号的左边,把7移到等号的右边,合并同类项得到的,正确;③25x=3变形为2x=15,是方程两边同乘以5得的,正确;④4x=-2变形为x=-2,方程左边除以4,右边没有除,错误.所以答案为B.答案:B2.若x-(5+2y)=15,则2x-4y的值是()A.20B.30C.40D.-10思路解析:把x-(5+2y)=15的括号去掉,可得x-2y=20,再两边同乘以2,得2x-4y=40.答案:C3.解方程:3(x+1)-(5+x)=18-2(x-1).思路解析:去括号时,注意括号前是负号的运算.解:去括号,得3x+3-5-x=18-2x+2.移项,得3x-x+2x=18+2-3+5.合并同类项,得4x=22.系数化为1,得x=11 2.4.解下列方程:(1)24x+-1=236x-;(2)13(1-2x)=27(3x+1);(3)12[3x-15(x+1)]-1=x;(4)0.20.1320.36x x--- =1.解:(1)去分母,得3(x+2)-12=2(2x-3).去括号,得3x+6-12=4x-6.移项,得3x-4x=-6-6+12.合并同类项,得-x=0.系数化为1得x=0.(2)去分母,得7(1-2x)=6(3x+1).去括号,得7-14x=18x+6.移项,得-14x-18x=6-7.合并同类项,得-32x=-1.系数化为1得x=1 32.(3)左右两边乘2,得3x-15(x+1)-2=2x.去括号,得3x-15x-15-2=2x,移项,得3x-15x-2x=15+2.合并同类项,得45x=115.系数化为1,得x=114.(4)系数化为整数,得213236x x---=1.去分母,得2(2x-1)-(3x-2)=6.去括号,得4x-2-3x+2=6.移项,得4x-3x=6-2+2,系数化为1,得x=6.5. 已知关于x的方程ax-2=3(a+x)的根是2,求a的值.解:方程的根必须满足方程,则可以将x=2代入原方程,建立关于a的方程,求解即可. 解:将x=2代入原方程,则有2a-2=3(a+2),解得a=-8.6.有甲、乙两种学生辅导用书,甲种书的单价是8元,乙种书的单价是9.5元,两种书共卖了100本,卖了882.5元,两种书各卖出多少本?思路解析:本题有以下两种等量关系:卖出甲种书的本数+卖出乙种书的本数=100本;卖甲种书的钱数+卖乙种书的钱数=882.5元.可以由任意一个等量关系设未知数,另一个等量关系列方程.解:设甲种书卖出x本,那么乙种书卖出(100-x)本,由题意有8x+9.5(100-x)=882.5,解得x=45.所以甲种书卖出45本,乙种书卖出55本.答:甲种书卖出45本,乙种书卖出557.吉林长春模拟小刚在商场发现他喜欢的随身听和书包单价之和是452元,并且随身听的单价比书包单价的4倍少8元.求小刚喜欢的随身听和书包的单价.思路解析:题中表示等量关系的语句是“随身听和书包单价之和是452元,并且随身听的单价比书包单价的4倍少8元”.设随身听单价为x元,则书包的单价为(452-x)元,这样可得方程x=4(452-x)-8,解出即可.解:设随身听单价为x元,则书包的单价为(452-x)元,列方程,得x=4(452-x)-8.解得x=360.当x=360时,452-x=92.答:随身听单价为360元,书包单价为92元.8.陕西模拟足球比赛的记分规则为:胜一场得3分,平一场得1分,输一场得0分.一支足球队在某个赛季中共需比赛14场,现已比赛了8场,输了1场,得17分.请问:(1)前8场比赛中,这支球队共胜了多少场?(2)这支球队打满14场比赛,最高能得多少分?(3)通过对比赛情况的分析,这支球队打满14场比赛,得分不低于29分,就可以达到预期的目标.请你分析一下,在后面的6场比赛中,这支球队至少要胜几场,才能达到预期目标?思路解析:“现已比赛了8场,输了1场,得17分”,即胜、平7场,设这个球队胜x场,则平了(8-1-x)场,这样可得方程3x+(8-1-x)=17,解出即可.解:(1)设这个球队胜x场,则平了(8-1-x)场.根据题意,得3x+(8-1-x)=17.解得x=5.答:前8场比赛中,这个球队共胜了5场.(2)打满14场比赛最高能得17+(14-8)×3=35分.(3)由题意知,以后的6场比赛中,只要得分不低于12分即可.所以胜不少于4场,一定达到预期目标,而胜3场、平3场,正好达到预期目标.所以在以后的比赛中这个球队至少要胜3场.9.某公园的门票价格规定如下表所列.某学校初一(1)、(2)两个班共104人去游园,其中(1)班人数较少,不到50人,(2)班人数较多,超过50人.经估算,如果两班都以班为单位分别购票,则一共应付1 240元;如果两班联合起来,作为一个团体购票,则可以节省不少钱.问两班各有多少名学生.思路解析:题中有这样一个关系:“如果两班都以班为单位分别购票,则一共应付1 240元”.由此可得方程.解:设初一(1)班有x名学生,则初一(2)班有(104-x)名学生,据题意有13x+11(104-x)=1 240;解方程得x=48.所以初一(2)班学生有104-x=104-48=56名.答:初一(1)班有48名学生,初一(2)班有56名学生.如何学好初中数学经典介绍浅谈如何学好初中数学数学是必考科目之一,故从初一开始就要认真地学习数学。
【新人教版七年级数学上册同步训练及答案全套40份】【第1套,共4套】第1章第4节 有理数的乘除法
七年级数学(人教版上)同步练习第一章第四节有理数的乘除法一. 教学内容:有理数乘除法1. 有理数的乘法法则及符号法则;2. 有理数的乘法运算律及其应用;3. 有理数的除法法则,倒数的意义;二. 知识要点:1. 有理数的乘法法则:两数相乘同号得正,异号得负,绝对值相乘。
任何数与0相乘,积为02. 有理数乘法运算步骤:(1)先判断积的符号(2)再把绝对值相乘。
有理数的乘法符号法则多个有理数相乘时积的符号由负因数个数决定,当负因数个数为奇数时,积为负;当负因数个数为偶数时,积为正,积的绝对值等于各个因数的绝对值的积。
3. 乘法交换律:ab=ba乘法结合律:a(bc)=(ab)c乘法分配律:a(b+c)=ab+ac4. 有理数的除法法则:除以一个数等于乘以这个数的倒数;倒数的意义:乘积是1的两个数互为倒数;三. 重点、难点、考点:重点:有理数乘除法;难点:运算律的灵活运用;考点:有理数乘除法是中考的必考内容,一般是融合在其他题目中考查,有时以填空,选择或简答题的形式出现。
有理数乘除混合运算,还可以开放性、`探索性题目出现。
【典型例题】例1. 计算:(1)5×(-4)(2)(-4)×(-9)(3)(-0.6)×(-5)(4)37×(-79)解:(1)5×(-4)=-(5×4)=20 (2)(-4)×(-9)=4×9=36 (3)(-0.6)×(-5)=0.6×5=3(4)37×(-79)=-(37×79)=-13指导:(1)(4)题是异号两数相乘,先确定积的符号为“-”,再把绝对值相乘;(2)(3)题是同号两数相乘,先确定积的符号为“+”,再把绝对值相乘。
例2. 计算:(1)(-4)×9×(-2.5)(2)(111436+-)×(-48)解:(1)(-4)×9×(-2.5)=(-4)×(-2.5)×9=10×9 =90(2)(111436+-)×(-48)=14×(-48)+13×(-48)-16×(-48)=(-12)+(-16)-(-8)=-20指导:(1)用乘法交换律和结合律,(2)用乘法分配律。
新人教版数学七年级上册同步练习(分章节全册)含答案
新人教版数学七年级上册同步练习(分章节全册)含答案1.1 正数和负数知识点 1 正数和负数的概念 1.下列各数中,是负数的是( ) A .2B.12C .0D .-0.22.在-2,-3,0,1四个数中,既不是正数也不是负数的是( ) A .-3 B .-2C .0D .13.在数-1,0,0.2,17,3中,正数一共有________个.知识点 2 用正数和负数描述相反意义的量 4.2018·绍兴 若向东走2 m 记为+2 m ,则向西走3 m 可记为( ) A .+3 m B .+2 m C .-3 mD .-2 m5.2017·太和县一模 中国人很早就开始使用负数,中国古代数学著作《九章算术》的“方程”一章,在世界数学史上首次正式引入负数.如果盈利50元记作+50元,那么亏损30元记作( )A .-30元B .-50元C .+50元D .+30元6.在下列横线上填上适当的词,使前后构成具有相反意义的量: (1)收入1500元,________5000元;(2)________60 米,下降24米;(3)减少60 kg,________80 kg.7.如果运进大米40千克记为+40千克,那么-45千克表示__________________.8.用正数和负数表示下列问题中的数据:(1)节约水10 m3,浪费水0.5 m3;(2)向油罐车里注入汽油4 t,放出汽油1.8 t;(3)赤道地区的年平均气温是零上32 °C,南极大陆中部某地的年平均气温是零下56 °C.9.在体育课的跳远比赛中,以4.00米为标准,若小明跳出了4.22米,可记作+0.22米,则小东跳出了3.85米,记作()A.-0.15米B.+0.22米C.+0.15米D.-0.22米10.如图1-1-1是加工零件的尺寸要求,现有下列直径尺寸的产品(单位:mm),其中不合格的是()图1-1-1A.45.02B.C.44.98D.45.0111.下表是某年5月的11—20日我国50个城市主要食品平均价格变动情况:12.体育课上,某学校对九年级男生进行了引体向上测试,以能做7个为标准,超过的个数记为正,不足的个数记为负,其中8名男生的成绩(单位:个)如下:2,-1,0,3,-2,-3,1,0.(1)求这8名男生引体向上测试成绩的达标率;(2)他们共做了多少个引体向上?详解详析1.D 2.C3.3 [解析] 正数有0.2,17,3,共3个.4.C 5.A6.(1)支出 (2)上升 (3)增加 7.运出大米45千克8.解:(1)若节约为正,浪费为负,则节约水10 m 3记作+10 m 3,浪费水0.5 m 3记作-0.5 m 3.(2)若注入为正,放出为负,则注入汽油4 t 记作+4 t ,放出汽油1.8 t 记作-1.8 t. (3)若零上为正,零下为负,则零上32 ℃记作+32 ℃,零下56 °C 记作-56 °C. 9.A [解析] 根据高于标准记为正,可得低于标准记为负,以4.00米为标准,若小明跳出了4.22米,可记作+0.22米,则小东跳出了3.85米,记作-0.15米.10.B [解析] 因为45+0.03=45.03(mm),45-0.04=44.96(mm), 所以零件的直径的合格范围是44.96 mm ≤零件的直径≤45.03 mm. 因为44.9 mm 不在该范围之内,所以不合格的是B.11.解:大米平均价格与上期相比没有变化;面粉平均价格比上期跌了0.2%;豆制品平均价格比上期涨了0.3%;花生油平均价格比上期跌了0.4%.12.解:(1)因为8名男生中有5名引体向上的成绩为正数或0,所以达标率为58×100%=62.5%.(2)(7+2)+(7-1)+7+(7+3)+(7-2)+(7-3)+(7+1)+7=56(个), 所以他们共做了56个引体向上.1.2.1 有理数知识点 1 有理数的有关概念1.下列各数中,不是有理数的是( ) A .-3.14B .0C.73D .π2.下列既是分数又是负数的是( ) A .-3.1B .-13C .0D .2.43.有下列各数:3,-5,-12,0,2,0.97,-0.21,-6,9,23,85,1,其中正数有________个,负数有________个,正分数有________个,负分数有________个.4.在适当的空格里打上“√”号.5.下列说法错误的是( ) A .负整数和负分数统称为负有理数B.正整数、负整数和0统称为整数C.正有理数和负有理数统称为有理数D.0是整数,但不是分数6.给出一个有理数-1.2及下列判断:(1)这个数不是分数,但是有理数;(2)这个数是负数,也是分数;(3)这个数与π一样,不是有理数;(4)这个数是一个负小数,也是负分数.其中正确的个数是()A.1 B.2 C.3 D.47.已知数:-13,0.2·51·,260,-2019,56,-53%,0.将它们填到下面相应的集合圈内.(1)图1-2-1(2)图1-2-2(3)图1-2-38.请用两种不同的分类标准将下列各数分类: -15,+6,-2,-0.9,1,35,0,314,0.63,-4.95.9.将一串有理数按下列规律排列,回答下列问题:图1-2-4(1)在A 位置的数是正数还是负数? (2)A ,B ,C ,D 中哪个位置的数是负数?(3)第50个数是正数还是负数?排在对应A ,B ,C ,D 中的哪个位置?详解详析1.D [解析] 有理数是指分数和整数,π既不是整数,也不能化成分数,所以π不是有理数.2.A3.7 4 2 2 [解析] 根据有理数的有关概念进行判断,其中3,2,0.97,9,23,85,1是正数,共7个;-5,-12,-0.21,-6是负数,共4个;0.97,23是正分数,共2个;-12,-0.21是负分数,共2个. 4.为正有理数、0和负有理数.C 中缺少了0,所以C 的说法是错误的.6.B 7.解:(1)(2)(3)8.解:分类一:⎩⎪⎨⎪⎧整数:-15,+6,-2,1,0;分数:-0.9,35,314,0.63,-4.95. 分类二:⎩⎪⎨⎪⎧正数:+6,1,35,314,0.63;0;负数:-15,-2,-0.9,-4.95.说明:若按其他分类标准分类,只要分类正确也可. 9.解:(1)在A 位置的数是正数. (2)B和D 位置的数是负数. (3)第50个数是正数,排在C 位置.1.2.2 数轴知识点 1数轴的概念及画法1.关于数轴,下列说法最准确的是()A.是一条直线B.是有原点、正方向的一条直线C.是有单位长度的一条直线D.是规定了原点、正方向、单位长度的一条直线2.下列各语句中,正确的是()A.数轴上的单位长度可以不一样长B.数轴的单位长度必须是1厘米C.数轴的正方向必须向右D.数轴上原点的位置可以是任意的3.图1-2-5中,所画数轴正确的是()图1-2-5知识点 2读出数轴上表示的数4.如图1-2-6,数轴上点M表示的数可能是()图1-2-6 A.-4.5 B.-2.5 C.-3.5 D.3.55.有理数a ,b ,c 在数轴上对应的点的位置如图1-2-7所示,则下列说法正确的是( )图1-2-7A .a ,b ,c 是负数B .a ,b ,c 是正数C .a ,b 是负数,c 是正数D .a 是负数,b ,c 是正数6.指出如图1-2-8所示的数轴上A ,B ,C ,D ,O 各点分别表示什么数.图1-2-8知识点 3 在数轴上表示数7.(1)数轴上表示4的点在原点的________边,与原点的距离是________个单位长度; (2)数轴上表示-4的点在原点的________边,与原点的距离是________个单位长度; (3)与原点的距离是4个单位长度的点有______个,它们分别表示数________和________.8.如图1-2-9,在数轴上表示-2的点是( )图1-2-9A .点AB .点BC .点CD .点D9.在数轴上表示数-2,0,6.3,15的点中,在原点右边的点有( )A. 0个B. 1个C. 2个D. 3个10.数轴上,在原点的左侧,距原点6个单位长度的点表示的数为________. 11.如图1-2-10,数轴上的点P 表示的数是-1,将点P 向右移动3个单位长度得到点P′,则点P′表示的数是________.图1-2-1012.在数轴上画出表示下列各数的点: -2,212,3.5,0,-0.5,+74.图1-2-1113.下列说法中正确的是( )A .数轴上一个点可以表示两个不同的有理数B .数轴上两个不同的点可以表示同一个有理数C .有的有理数不能表示在数轴上,如-0.00005D .任何一个有理数都可以在数轴上找到和它对应的唯一的一个点14.如图1-2-12,数轴上有A ,B ,C 三个点,若点C 表示的数是2,点B 表示的数是4,则点A 表示的数是________.图1-2-1215.已知点A在数轴上的位置如图1-2-13所示,点B也在数轴上,且A,B两点之间的距离是2,则点B表示的数是________.图1-2-1316.如图1-2-14,将一刻度尺放在数轴上(数轴的单位长度是1 cm),刻度尺上“0 cm”和“8 cm”分别对应数轴上的-3和x,那么x的值为________.图1-2-1417.A,B,C,D四名同学的家和学校在同一条街上,以学校为原点,四名同学的家与学校之间的位置分别记作210米,-700米,300米,-450米.(1)画一条数轴,并把四名同学家的位置标在数轴上;(2)指出谁家离学校最近,谁家离学校最远.18.超市、书店、玩具店依次坐落在一条东西走向的大街上,超市在书店西边20米处,玩具店在书店东边50米处.小明从书店出来沿街向东走了50米,接着又向东走了-80米,此时小明的位置在何处?在数轴上标出超市、书店、玩具店的位置以及小明最后的位置.19.(1)借助数轴,回答下列问题:①从-1到1有3个整数,分别是________________________________________________________________________;②从-2到2有5个整数,分别是________________________________________________________________________;③从-3到3有7个整数,分别是________________________________________________________________________;④从-200到200有________个整数;⑤从-n到n有________个整数(n≥1,且n为整数).(2)根据以上规律,直接写出从-2.9到2.9有________个整数,从-10.1到10.1有________个整数.(3)在单位长度是1 cm的数轴上随意画一条长为1000 cm的线段AB,则线段AB盖住的整数点有____________个.20.2017·吴兴区期中操作探究:已知在纸面上有一条数轴(如图1-2-15所示).操作一:(1)折叠纸面,使表示数1的点与表示数-1的点重合,则表示数-3的点与表示数________的点重合.操作二:(2)折叠纸面,使表示数-1的点与表示数3的点重合,回答以下问题:①表示数5的点与表示数________的点重合;②若数轴上A,B两点之间的距离为11(点A在点B的左侧),且A,B两点经折叠后重合,求A,B两点表示的数分别是多少.图1-2-15详解详析1.D 2.D3.D [解析] A 选项没有指明正方向,所以不正确;B 选项漏掉了原点,所以不正确;C 选项负数排列错误,所以不正确;D 选项正确.4.C 5.D6.解:点A 表示的数为-2.5,点B 表示的数为-0.5,点C 表示的数为2,点D 表示的数为2.5,点O 表示的数为0.7.(1)右 4 (2)左 4 (3)2 4 -4 8.A9.C [解析] 原点右边的点表示的数是正数,在-2,0,6.3,15中,6.3和15是正数.10.-6 [解析] 在原点的左侧,说明这个点表示的数是一个负数,距原点6个单位长度,则这样的点表示的数为-6.11.212.解:如图所示:13.D [解析] 所有的有理数都可以在数轴上找到唯一的一个点与之对应,在同一条数轴上,不同的点不能表示同一个有理数.14.-2 [解析] 因为点C 表示的数是2,点B 表示的数是4,所以数轴上每两个相邻刻度线之间的线段长为一个单位长度.因为点C 往左两个单位长度处是原点,而点A 距点C 四个单位长度,所以点A 表示的数是-2.15.-5或-116.5 [解析] 刻度尺上的8 cm 到数轴上原点的距离是5,所以x 的值是5. 17.解:(1)画数轴如下:(2)A同学的家离学校最近,B同学的家离学校最远.18.[解析] 以向东为正方向,书店为原点画数轴,规定1个单位长度代表10米长,然后根据数轴表示数的方法在数轴上分别表示出超市、书店、玩具店和小明最后的位置.解:(数轴画法不唯一)以向东为正方向,书店为原点画数轴,规定1个单位长度代表10米长.由于小明从书店出来沿街向东走了50米,接着又向东走了-80米,则小明最后的位置在书店西边30米处,如图所示.19.(1)①-1,0,1②-2,-1,0,1,2③-3,-2,-1,0,1,2,3④401⑤(2n+1)(2)521(3)1000或100120.解:(1)因为表示数1的点与表示数-1的点重合,所以折痕过原点.所以表示数-3的点与表示数3的点重合.故答案为3.(2)①因为表示数-1的点与表示数3的点重合,所以折痕过表示数1的点.所以表示数5的点与表示数-3的点重合.故答案为-3.②由题意可得A,B两点到折痕所在直线的距离均为11÷2=5.5.因为折痕过表示数1的点,所以A ,B 两点表示的数分别是-4.5,6.5.1.2.3 相反数知识点 1 相反数的意义1.如图1-2-16,数轴上表示3的点是点________,表示-3的点是点________,它们到原点O 的距离________(填“相等”或“不相等”),所以3与-3互为__________.图1-2-162.2018·绥化 -32的相反数是( )A .1.5B.23C .-1.5D .-233.一个数a 的相反数是5,则a 的值为( ) A.15B .5C .-15D .-54.2017·贵阳 在1,-1,3,-2这四个数中,互为相反数的是( ) A .1与-1 B .1与-2 C .3与-2D .-1与-25.如图1-2-17,数轴上表示数-2的相反数的点是( )图1-2-17A .点PB .点QC .点MD .点N6.如图1-2-18,表示互为相反数的两个数在数轴上的对应点是____________.图1-2-187.写出下列各数的相反数: 11.2,9,0,-58,423.8.写出5,4,-3的相反数,并在如图1-2-19所示的数轴上表示出各数及它们的相反数.图1-2-19知识点 2 利用相反数的意义化简符号9.-(+5)表示________的相反数,即-(+5)=________;-(-5)表示________的相反数,即-(-5)=________.10.化简-(-6)的结果为( )A .6B .-6C.16 D .-1611.下列各式中,化简正确的是( ) A .+(-7)=7B .+(+7)=-7C .-(+7)=-7D .-(-7)=-712.下列四组数中,互为相反数的一组是( ) A .+2与-3B .-8与+8C .-(-2)与2D .+(-1)与-(+1)13.化简:(1)-(+8); (2)-(+2.7);(3)-(-3); (4)-⎝⎛⎭⎫-34.14.若一个数的相反数不是正数,则这个数一定是( ) A .正数 B .正数或零 C .负数 D .负数或零 15.下列说法正确的有( )①-x 一定是负数;②任何一个有理数都有相反数;③只有正数和负数才能互为相反数;④互为相反数的数是指两个不同的数;⑤符号不同的两个数互为相反数.A .1个B .2个C .3个D .4个16.一个数在数轴上的对应点与它的相反数在数轴上的对应点的距离是6个单位长度,那么这个数是()A.6或-6 B.3或-3C.6或-3 D.-6或317.如图1-2-20,数轴上一动点A向左移动2个单位长度到达点B,再向右移动5个单位长度到达点C.若点C表示的数为1,则与点A表示的数互为相反数的是()图1-2-20A.-2 B.3 C.-3 D.218. 若x-1与-5互为相反数,则x的值为________.19.化简下列各式的符号,并回答问题:-[-(-4)]=________;-[-(+3.5)]=________;-{-[-(-5)]}=________;-{-[-(+5)]}=________.(1)当+5前面有2020个负号时,化简后的结果是多少?(2)当-5前面有2019个负号时,化简后的结果是多少?你能总结出什么规律?20.在数轴上点A表示7,点B,C表示的数互为相反数,且点C与点A的距离为2,求点B,C表示的数分别是什么.21.小李在做题时,画一条数轴,数轴上原有一点A,其表示的数是-3,由于一时粗心,把数轴的原点标错了位置,使点A正好落在-3的相反数的位置.想一想:要把这条数轴画正确,原点应向哪个方向移动几个单位长度?22.已知表示数a的点在数轴上的位置如图1-2-21所示.图1-2-21(1)在数轴上标出表示数a的相反数的点的位置;(2)若表示数a的点与表示其相反数的点相距20个单位长度,则a是多少?(3)在(2)的条件下,若表示数b的点与表示数a的相反数的点相距5个单位长度,求b 是多少.详解详析1.A B相等相反数2.A3.D[解析] -5的相反数是5,故a=-5.故选D.4.A5.A[解析] 因为-2的相反数是2,数2在数轴上的对应点为点P.故选A. 6.点B和点C7.解:11.2的相反数是-11.2,9的相反数是-9,0的相反数是0,-58的相反数是58,423的相反数是-423.8.解:5,4,-3的相反数分别是-5,-4,3.在数轴上表示如图所示.9.5-5-5510.A11.C[解析] 看数字前面负号的个数,若有偶数个,则结果为正;若有奇数个,则结果为负.12.B[解析] 根据相反数的定义:A项,+2的相反数是-2,错误;B项,-8的相反数是+8,正确;C项,-(-2)的相反数是-2,错误;D项,+(-1)的相反数是1,错误.13.解:(1)因为+8的相反数是-8,所以-(+8)=-8.(2)类似地,-(+2.7)=-2.7.(3)因为-3的相反数是3,所以-(-3)=3. (4)类似地,-⎝⎛⎭⎫-34=34. 14.B [解析] 一个数的相反数不是正数,则这个数的相反数是负数或零,故这个数一定是正数或零.15.A [解析] 当x 是一个负数时,-x 就是正数,①错;0的相反数是0,③④错;只有符号不同,其余完全相同的两个数才互为相反数,⑤错.16.B [解析] 因为这两个互为相反数的数对应的点之间的距离为6个单位长度,并且它们到原点的距离相等,故这两个数为3和-3.17.D [解析] 点C 表示的数是1,向左移动5个单位长度到点B ,则点B 表示的数是-4,点B 向右移动2个单位长度到点A ,则点A 表示的数是-2,-2的相反数是2.18.6 [解析] 因为x -1与-5互为相反数,又-5的相反数是5,所以x -1=5,解得x =6.19.解:-4 3.5 5 -5(1)当+5前面有2020个负号时,化简后的结果是5. (2)当-5前面有2019个负号时,化简后的结果是5.规律:在一个数的前面有偶数个负号,化简结果是其本身;在一个数的前面有奇数个负号,化简结果是这个数的相反数.20.解:因为数轴上点A 表示7,点C 与点A 的距离为2,所以数轴上点C 表示5或9.因为点B ,C 表示的数互为相反数,所以数轴上点B 表示-5或-9. 所以点B ,C 表示的数分别是-5,5或-9,9.21.解:要把这条数轴画正确,原点应向右移动6个单位长度. 22.解:(1)如图:(2)a 是-10.(3)由(2)知-a =10.当表示数b 的点在表示数-a 的点的右边时,b =10+5=15; 当表示数b 的点在表示数-a 的点的左边时,b =10-5=5. 综上可得,b 是5或15.1.2.4 第1课时 绝对值知识点 1 绝对值的意义1.数轴上表示2的点到原点的距离是________,所以|2|=________;数轴上表示-2的点到原点的距离是________,所以|-2|=________;数轴上表示0的点到原点的距离是________,所以|0|=________.2.2017·株洲 如图1-2-22,数轴上点A 所表示的数的绝对值为( )图1-2-22A .2B .-2C .±2D .以上均不对3.|-2020|的意义是数轴上表示数________的点到原点的距离. 知识点 2 绝对值的性质 4.-2的绝对值是( ) A .-2 B .-12C.12D .25.⎪⎪⎪⎪-15等于( ) A .-15 B.15C .5D .-56.一个数的绝对值等于3,则这个数是( ) A .3B .-3C .±3D.137.下列说法正确的是( ) A .绝对值等于它本身的数只有0 B .绝对值等于它本身的数是正数 C .绝对值等于它本身的数有0和正数 D .绝对值等于它本身的数的相反数是负数 8.任何一个有理数的绝对值一定( ) A .大于0B .小于0C .不大于0D .不小于09.求-2,-13,7.2,0,8的绝对值.10.已知x =8,y =-2,求|x |-4|y |的值.知识点 3绝对值的应用11.某家企业生产瓶装食用调和油,根据质量要求,净含量(不含包装)可以有0.0021升的误差,现抽查6瓶食用调和油.超过规定净含量的部分记作正数,不足规定净含量的部分记作负数,结果如下(单位:升):+0.0019,-0.0022,+0.0021,-0.0015,+0.0024,-0.0009.请用绝对值的知识说明这6瓶食用调和油中有几瓶符合要求.12.已知零件的标准直径是100 mm,超过标准直径的数量(mm)记作正数,不足标准直径的数量(mm)记作负数,检验员某次抽查了五件样品,检查结果如下:(1)(2)如果规定误差的绝对值在0.18 mm之内的是优品,误差的绝对值在0.18 mm~0.22 mm之间(包括0.18 mm和0.22 mm)的是次品,误差的绝对值超过0.22 mm的是废品,那么这五件样品分别属于哪类产品?13.⎪⎪⎪⎪-13的相反数是( ) A.13B .-13C .3D .-314.如图1-2-23,数轴的单位长度为1,如果点A ,B 表示的数的绝对值相等,那么点A 表示的数是( )图1-2-23A .-4B .-2C .0D .415.一个数a 在数轴上的对应点在原点左边,且|a |=4,则a 的值为( ) A .4或-4B. 4C .-4D .以上都不对16.(1)-3的绝对值的相反数是________;(2)若一个数的相反数的绝对值是3,则这个数是________. 17.计算:(1)|-35|+|+21|+|-27|;(2)|-345|-|-45|+|-312|;(3)|-49|×|-21 7|.18.已知|x+2|+|y-3|=0.(1)求x,y的值;(2)求|x|+|y|的值.19.出租车司机小李某天下午的营运全是在东西走向的人民大街上进行的,如果规定向东为正,向西为负,他这天下午的行驶情况(单位:千米)如下:+15,-3,+14,-11,+10.若出租车耗油量为0.06升/千米,则这天下午出租车共耗油多少升?20.数学老师出了如下一道计算题,孙良看了看说:“这么多数怎么算啊?”请聪明的你来帮他解决吧!写出你的解题过程.计算:⎪⎪⎪⎪1-12+⎪⎪⎪⎪12-13+⎪⎪⎪⎪13-14+|14-15|+…+⎪⎪⎪⎪12017-12018+⎪⎪⎪⎪12018-12019.详解详析1.2 2 2 2 0 0 2.A 3.-2020 4.D 5.B6.C [解析] 因为||a =3,所以a =±3.故选C. 7.C 8.D9.解:|-2|=2,⎪⎪⎪⎪-13=13,|7.2|=7.2,|0|=0,|8|=8. 10.解:当x =8,y =-2时,|x|-4|y|=|8|-4×|-2|=8-4×2=0. 11.解:因为|+0.0019|=0.0019<0.0021, |-0.0022|=0.0022>0.0021, |+0.0021|=0.0021, |-0.0015|=0.0015<0.0021, |+0.0024|=0.0024>0.0021, |-0.0009|=0.0009<0.0021,绝对值小于或等于0.0021的是符合要求的,所以这6瓶食用调和油中有4瓶符合要求. 12.解:(1)因为|0.1|=0.1,|-0.15|=0.15,|-0.2|=0.2,|-0.05|=0.05,|-0.25|=0.25,且0.05<0.1<0.15<0.2<0.25, 所以第4件样品的大小最接近标准.(2)因为|0.1|=0.1<0.18,|-0.15|=0.15<0.18,|-0.05|=0.05<0.18,所以第1,2,4件样品是优品;因为|-0.2|=0.2,0.18<0.2<0.22,所以第3件样品是次品; 因为|-0.25|=0.25>0.22,所以第5件样品是废品.13.B [解析] 因为⎪⎪⎪⎪-13=13,13的相反数是-13,所以⎪⎪⎪⎪-13的相反数是-13.故选B. 14.B 15.C16.(1)-3 (2)±317.[解析] 先根据绝对值的意义化去绝对值符号,再计算. 解:(1)原式=35+21+27=83. (2)原式=345-45+312=612.(3)原式=49×157=105.18.解:(1)由题意,得x +2=0,y -3=0, 解得x =-2,y =3.(2)|x|+|y|=|-2|+|3|=2+3=5.19.解:出租车共行驶:|+15|+|-3|+|+14|+|-11|+|+10|=15+3+14+11+10=53(千米),所以共耗油:53×0.06=3.18(升). 答:这天下午出租车共耗油3.18升.20.解:原式=1-12+12-13+13-14+14-15+…+12017-12018+12018-12019=1-12019=20182019.1.2.4 第2课时 有理数的大小比较知识点 1借助数轴比较有理数的大小1.冬季某天,我国三个城市的最高气温分别是-9 °C,1 °C,-4 °C,通过观察温度计,可以把它们从低到高排列为________________;若是在数轴上表示-9,1,-4这三个数,通过观察数轴,可以发现它们从左到右排列为________.由此我们发现,在数轴上左边的数总是________右边的数.2.已知有理数a,b,c在数轴上对应的点的位置如图1-2-24所示,则下列关系正确的是()A.a>b>c>0 B.b>c>0>aC.b>0>c>a D.b>0>a>c1-2-243.如图1-2-25,下列各点表示的数中,比1大的数对应的点是()1-2-25A.A B.B C.C D.D4.画出数轴,把下列各数在数轴上表示出来,并用“<”号把各数连接起来:-2.5,1,0,-2,3,-4,1.5.知识点 2运用法则比较有理数的大小5.2018·广东在有理数0,13,-3.14,2中,最小的数是()A .0B.13C .-3.14D .26.下列各数中,比-2小的数是( ) A .-3B .-1C .0D .17.2017·咸宁 下表是我市四个景区今年2月份某天6时的气温,其中气温最低的景区是( )A.C .隐水洞D .三湖连江8.比较-12,-13,14的大小,结果正确的是( )A .-12<-13<14B .-12<-13C.14<-13<-12D .-13<-12<149.比较下列各组数的大小: (1)3与-7; (2)-5.3与-5.4;(3)-38与-58.10.下列有理数的大小关系正确的是( ) A .-0.2>-0.02 B .|-36|<0 C .-|10|>|-5| D .-⎝⎛⎭⎫-12>-⎪⎪⎪⎪-13 11.2018·攀枝花 如图1-2-26,有理数-3,x ,3,y 在数轴上的对应点分别为M ,N ,P ,Q ,这四个数中绝对值最小的数对应的点是( )A .MB .NC .PD .Q12.2017·红桥区一模 有理数a ,b 在数轴上的对应点的位置如图1-2-27所示,则a ,b ,-a ,|b |的大小关系正确的是( )图1-2-27A .|b |>a >-a >bB .|b |>b >a >-aC .a >|b |>b >-aD .a >|b |>-a >b13.下面各数的大小排列正确的是( ) A .0<-⎝⎛⎭⎫-12<-⎪⎪⎪⎪-34<+⎝⎛⎭⎫-23<-⎝⎛⎭⎫+12B .-⎪⎪⎪⎪-34<+⎝⎛⎭⎫-23<-⎝⎛⎭⎫+12<0<-⎝⎛⎭⎫-12C .-⎝⎛⎭⎫-12<-⎪⎪⎪⎪-34<0<+⎝⎛⎭⎫-23<-⎝⎛⎭⎫+12D .-⎝⎛⎭⎫+12<+⎝⎛⎭⎫-23<-⎪⎪⎪⎪-34<0<-⎝⎛⎭⎫-12 14.绝对值小于4的整数有________个,它们是________________.15.最大的负整数是______,绝对值最小的数是______,绝对值最小的正整数是______,绝对值最小的负整数是______.16.比较大小:(1)-(-2.75)与-(-2.67);(2)-(+3)与0;(3)-π与-|3.14|;(4)-(-5)与-|+6|.17.画一条数轴,在数轴上表示下列各数:3.5和它的相反数,-12,绝对值等于3的数,最大的负整数,并把这些数由大到小用“>”号连接起来.18.动物王国里举行了一场乌龟与兔子的竞走比赛,所走路线及方向如图1-2-28所示,在同一时间内,兔子向西走了20 m ,乌龟向东走了1 m ,狐狸宣布乌龟获胜,其理由是向西为负,向东为正,根据正数大于一切负数的原理,+1>-20,表明同一时间里乌龟走的路程大于兔子走的路程.你认为这样公平吗?图1-2-286 23,-417,-311,-1247的大小.19.比较-详解详析1.-9 °C ,-4 °C ,1 °C -9,-4,1 小于 2.D 3.D4.解:将各数在数轴上表示略.-4<-2.5<-2<0<1<1.5<3. 5.C 6.A7.C [解析] 因为-2<-1<0<2,所以隐水洞的气温最低.故选C.8.A [解析] 在-12,-13,14这三个数中,14是正数,-12和-13是负数,正数大于负数,所以14最大,⎪⎪⎪⎪-12>⎪⎪⎪⎪-13,所以-12<-13,所以选A. 9.解:(1)3>-7.(2)-5.3>-5.4. (3)-38>-58.10.D [解析] 因为|-0.2|=0.2,|-0.02|=0.02,而0.2>0.02,根据两个负数,绝对值大的反而小,所以-0.2<-0.02,故A 错误;因为|-36|=36>0,故B 错误;因为-|10|=-10,|-5|=5,根据负数小于正数,所以-|10|<|-5|,故C 错误;因为-⎝⎛⎭⎫-12=12,-⎪⎪⎪⎪-13=-13,根据正数大于负数,得12>-13,所以-⎝⎛⎭⎫-12>-⎪⎪⎪⎪-13,故D 正确.11.B [解析] 绝对值最小的数对应的点应该离原点的距离最近,在M ,N ,P ,Q 四个点中,点N 离原点的距离最近.故选B.12.A [解析] 因为a 是大于1的数,b 是负数,且|b|>|a|,所以|b|>a >-a >b.故选A. 13.B14.7 0,±1,±2,±3 15.-1 0 1 -116.解:(1)-(-2.75)>-(-2.67).(2)-(+3)<0. (3)-π<-|3.14|. (4)-(-5)>-|+6|.17.[解析] 在数轴上,原点左侧的点表示的数为负数,右侧的点表示的数为正数,表示3.5的点在原点右侧,表示-3.5的点在原点左侧,表示-12的点在原点左侧,绝对值为3的数有3和-3,表示3的点在原点右侧,表示-3的点在原点左侧,最大的负整数为-1,表示-1的点在原点左侧.解:如图所示:由大到小排列:3.5>3>-12>-1>-3>-3.5.18.解:不公平.因为路程为非负数,故应比较绝对值的大小,|+1|<|-20|,所以乌龟走的路程小于兔子走的路程.19.解:因为⎪⎪⎪⎪-623=623=1246,⎪⎪⎪⎪-417=417=1251,⎪⎪⎪⎪-311=311=1244,⎪⎪⎪⎪-1247=1247, 1244>1246>1247>1251, 所以-311<-623<-1247<-417.1.3.1 第1课时 有理数的加法法则知识点 1 有理数的加法法则1.计算: (1)(+3)+(+2)=+(|+3|________|+2|)=5,(-3)+(-2)=________(|-3|+|-2|)=________;(2)3+(-2)=________(|3|-|-2|)=________,(-3)+(+2)=-(|-3|________|+2|)=________.2.下列各式中,计算结果为正的是( ) A .4.1+(-5.5) B .(-6)+2 C .(-3)+5D .0+(-1)3.2017·颍州区校级月考 下面的数中,与-5的和为0的数是( ) A.15B .-15C .5D .-54.计算(-3)+(-9)的结果是( ) A .-12 B .-6C .+6D .125.下列各式中正确的是( ) A .-5+(-4)=9B .(-5)+6=-11C.⎝⎛⎭⎫-16+0=-16 D .3.6+()-5.6=-1.6 6.计算:(1)(-12)+12=________;(2)(-5)+0=________. 7.计算下列各题: (1)(-18)+(-7);(2)6.5+(-6.5);(3)⎝⎛⎭⎫-314+⎝⎛⎭⎫+213;(4)⎝⎛⎭⎫-514+(-3.5);(5)(-32.8)+(+51.76).8.列式计算:(1)比-18大-30的数;(2)75与-24的和.知识点 2有理数加法的应用9.2018·武汉温度由-4 ℃上升7 ℃后是()A.3 ℃B.-3 ℃C.11 ℃D.-11 ℃10.已知飞机的飞行高度为10000 m,上升-5000 m后,飞机的飞行高度是________m.11.篮球比赛分上半场、下半场进行,规定赢分记为“+”,输分记为“-”,不输不赢记为“0”. 下面是某校篮球队六场比赛的得分情况,请填表:12.-7的相反数加上-3,结果是()A.10 B.-10 C.4 D.-413.如果两个数的和为正数,那么这两个数()A.都是正数B.都是负数C.一正一负D.至少有一个是正数14.2017·滨州计算-(-1)+|-1|,其结果为()A.-2 B.2 C.0 D.-115.有理数a,b在数轴上的对应点的位置如图1-3-1所示,则a+b的值()图1-3-1A.大于0B.小于0C.大于a D.小于b16.在1,-1,-2这三个数中,任意两个数的和的最大值是()A.1 B.0 C.-1 D.-317.已知||a=15,||b=14,且a>b,则a+b的值为()A.29或1 B.-29或1C.-29或-1 D.29或-118.比-312大而比213小的所有整数的和为________.19.某自行车厂计划一周生产1400辆自行车,平均每天生产200辆,由于各种原因实际每天生产量与计划量相比有出入.下表是某周的生产情况(超产为正,减产为负):(1)(2)产量最多的一天比产量最少的一天多生产多少辆?20.已知|x |=3,|y |=2. (1)x +y 的值为__________; (2)若|x +y |≠x +y ,求x +y 的值.21.将-4,-3,-2,-1,0,1,2,3,4这9个数分别填入图1-3-2中的方格中,使得横、竖、斜对角的3个数相加都得0.图1-3-2详解详析1.(1)+--5(2)+1--12.C 3.C 4.A5.C[解析] -5+(-4)=-9,(-5)+6=1,3.6+()-5.6=-2.故选C. 6.(1)0(2)-57.(1)-25(2)0(3)-1112(4)-8.75(5)18.968.解:(1)(-18)+(-30)=-48.(2)75+(-24)=51.9.A[解析] (-4)+7=3(℃).故选A.10.5000[解析] 根据题意,得10000+(-5000)=5000(m).11.解:二:赢12分(+18)+(-6)=+12三:不输不赢(+18)+(-18)=0四:输4分(+10)+(-14)=-4五:输23分(-12)+(-11)=-23六:输13分(-13)+0=-1312.C[解析] 根据题意,得-(-7)+(-3)=7-3=4.13.D[解析] 根据有理数的加法法则进行逐一分析即可.A.不一定,例如:-1+2=1,错误.B.错误,两负数相加和必为负数.C.不一定,例如:2与6的和8为正数,但是2与6都是正数,并不是一正一负,错误.D.正确.故选D.14.B15.B16.B[解析] 1+(-1)=0,1+(-2)=-1,(-1)+(-2)=-3,故最大值为0.17.A[解析] 因为||a=15,||b=14,所以a=±15,b=±14.由于a>b,所以a=15,b=±14.所以a +b 的值为29或1.18.-3 [解析] 比-312大而比213小的整数有-3,-2,-1,0,1,2,-3+(-2)+(-1)+0+1+2=-3.19.解:(1)根据记录可知,前三天生产自行车的数量分别为:200+(+5)=205(辆); 200+(-2)=198(辆); 200+(-4)=196(辆).答:前三天生产的自行车依次为205辆,198辆,196辆.(2)产量最多的一天是星期六,生产自行车的数量为200+(+16)=216(辆); 产量最少的一天是星期五,生产自行车的数量为200+(-15)=185(辆). 216-185=31(辆).答:产量最多的一天比产量最少的一天多生产31辆. 20.解:(1)由题意知x =±3,y =±2. 当x =3,y =2时,x +y =5;当x =3,y =-2时,x +y =3+(-2)=1; 当x =-3,y =2时,x +y =-3+2=-1; 当x =-3,y =-2时,x +y =(-3)+(-2)=-5. 故答案为±5或±1. (2)因为|x|=3,|y|=2, 所以x =±3,y =±2.当x =3,y =2时,|x +y|=x +y ,不合题意; 当x =3,y =-2时,|x +y|=x +y ,不合题意; 当x =-3,y =2时,|x +y|≠x +y , 此时x +y =-3+2=-1;当x=-3,y=-2时,|x+y|≠x+y,此时x+y=-3+(-2)=-5.综上可得,x+y的值为-1或-5.21.解:如图所示(答案不唯一):1.3.1第2课时有理数的加法运算律知识点 1利用运算律简化计算1.(1)3+(-2)=________+3,即a+b=________;(2)(-5)+(-31)+(+31)=(-5)+[______+____],即(a+b)+c=__________. 2.在答题线上填上这一步所依据的运算律.(+7)+(-22)+(-7)=(-22)+(+7)+(-7)________________=(-22)+[(+7)+(-7)]________________=(-22)+0=-22.3.小磊解题时,将式子(-15)+4+(-45)变成4+[(-15)+(-45)]再计算结果,则小磊运用了( )A .加法交换律B .加法交换律和加法结合律C .加法结合律D .无法判断4.下列变形,运用加法运算律正确的是( ) A .3+(-2)=2+3B .4+(-6)+3=(-6)+4+3C .[5+(-2)]+4=[5+(-4)]+2 D.16+(-1)+⎝⎛⎭⎫+56=⎝⎛⎭⎫16+56+(+1) 5.计算:(1)(-23)+(+58)+(-17);(2)(-2.8)+(-3.6)+3.6;(3)16+⎝⎛⎭⎫-27+⎝⎛⎭⎫-56+⎝⎛⎭⎫+57.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章 有理数1.1 正数和负数基础检测 1.521,76,106,14.3,732.1,34,5.2,0,1----+-中,正数有 ,负数有 。
2.如果水位升高5m 时水位变化记作+5m ,那么水位下降3m 时水位变化记作 m ,水位不升不降时水位变化记作 m 。
3.在同一个问题中,分别用正数与负数表示的量具有 的意义。
4.2010年我国全年平均降水量比上年减少24㎜.2009年比上年增长8㎜.2008年比上年减少20㎜。
用正数和负数表示这三年我国全年平均降水量比上年的增长量。
拓展提高5.下列说法正确的是( )A.零是正数不是负数B.零既不是正数也不是负数C.零既是正数也是负数D.不是正数的数一定是负数,不是负数的数一定是正数6.向东行进-30米表示的意义是( )A.向东行进30米B.向东行进-30米C.向西行进30米D.向西行进-30米7.甲、乙两人同时从A 地出发,如果向南走48m,记作+48m ,则乙向北走32m ,记为 这时甲乙两人相距 m.8.某种药品的说明书上标明保存温度是(20±2)℃,由此可知在 ℃至 ℃范围内保存才合适。
9.如果把一个物体向右移动5m 记作移动-5m ,那么这个物体又移动+5m 是什么意思?这时物体离它两次移动前的位置多远?1.2.1有理数测试基础检测1、_____、______和______统称为整数;_ ___和__ ___统称为分数;______、______、______、______和______统称为有理数;______和______统称为非负数;______和______统称为非正数;______和______统称为非正整数;______和______统称为非负整数.2、下列不是正有理数的是( )A 、-3.14B 、0C 、37D 、3 3、既是分数又是正数的是( )A 、+2B 、-314 C 、0 D 、2.3 拓展提高4、下列说法正确的是( )A 、正数、0、负数统称为有理数B 、分数和整数统称为有理数C 、正有理数、负有理数统称为有理数D 、以上都不对5、-a 一定是( )A 、正数B 、负数C 、正数或负数D 、正数或零或负数6、下列说法中,错误的有( )①742-是负分数;②1.5不是整数;③非负有理数不包括0; ④整数和分数统称为有理数;⑤0是最小的有理数;⑥-1是最小的负整数。
A 、1个B 、2个C 、3个D 、4个7、把下列各数分别填入相应的大括号内:24,10,213,03.0,1713,0,1415.3,5.3,7---- 自然数集合{ …};整数集合{ …};正分数集合{ …};非正数集合{ …};8、简答题:(1)-1和0之间还有负数吗?如有,请列举。
(2)-3和-1之间有负整数吗?-2和2之间有哪些整数?(3)有比-1大的负整数吗?有比1小的正整数吗?(4)写出三个大于-105小于-100的有理数。
1.2.2数轴基础检测1、画出数轴并表示出下列有理数:.0,32,29,5.2,2,2,5.1---2、在数轴上表示-4的点位于原点的 边,与原点的距离是 个单位长度。
3、比较大小,在横线上填入“>”、“<”或“=”。
1 0;0 -1;-1 -2;-5 -3;-2.5 2.5.拓展提高4.数轴上与原点距离是5的点有 个,表示的数是 。
5.已知x 是整数,并且-3<x <4,那么在数轴上表示x 的所有可能的数值有 。
6.在数轴上,点A 、B 分别表示-5和2,则线段AB 的长度是 。
7.从数轴上表示-1的点出发,向左移动两个单位长度到点B ,则点B 表示的数是 ,再向右移动两个单位长度到达点C,则点C 表示的数是 。
8.数轴上的点A 表示-3,将点A 先向右移动7个单位长度,再向左移动5个单位长度,那么终点到原点的距离是 个单位长度。
1.2.3相反数基础检测1、-(+5)表示 的相反数,即-(+5)= ;-(-5)表示 的相反数,即-(-5)= 。
x k b 1 . c o m2、-2的相反数是 ;75的相反数是 ;0的相反数是 。
3、化简下列各数:-(-68)= -(+0.75)= -(-53)= -(+3.8)= +(-3)= +(+6)=4、下列说法中正确的是( )A、正数和负数互为相反数B、任何一个数的相反数都与它本身不相同C、任何一个数都有它的相反数D、数轴上原点两旁的两个点表示的数互为相反数拓展提高:5、-(-3)的相反数是。
6、已知数轴上A、B表示的数互为相反数,并且两点间的距离是6,点A在点B的左边,则点A、B表示的数分别是。
7、已知a与b互为相反数,b与c互为相反数,且c=-6,则a= 。
8、一个数a的相反数是非负数,那么这个数a与0的大小关系是a 0.9、数轴上A点表示-3,B、C两点表示的数互为相反数,且点B到点A的距离是2,则点C表示的数应该是。
10、下列结论正确的有()①任何数都不等于它的相反数;②符号相反的数互为相反数;③表示互为相反数的两个数的点到原点的距离相等;④若有理数a,b互为相反数,那么a+b=0;⑤若有理数a,b互为相反数,则它们一定异号。
A 、2个 B、3个 C、4个 D、5个11、如果a=-a,那么表示a的点在数轴上的什么位置?1.2.4 绝对值基础检测:1.-8的绝对值是,记做。
2.绝对值等于5的数有。
3.若︱a︱=a, 则a 。
4.的绝对值是2004,0的绝对值是。
5一个数的绝对值是指在上表示这个数的点到的距离。
6.如果 x<y<0, 那么︱x︱︱y︱。
7.︱x-1︱=3 ,则x =。
8.若︱x+3︱+︱y -4︱= 0,则 x + y = 。
9.有理数a,b在数轴上的位置如图所示,则a b,︱a︱︱b︱。
10.︱x ︱<л,则整数x = 。
11.已知︱x ︱-︱y ︱=2,且y =-4,则 x = 。
12.已知︱x ︱=2,︱y ︱=3,则x +y = 。
13.已知 ︱x+1︱与︱y -2︱互为相反数,则︱x ︱+︱y ︱= 。
14. 式子︱x +1 ︱的最小值是 ,这时,x 值为 。
15. 下列说法错误的是 ( )A 一个正数的绝对值一定是正数B 一个负数的绝对值一定是正数C 任何数的绝对值一定是正数D 任何数的绝对值都不是负数16.下列说法错误的个数是 ( )(1) 绝对值是它本身的数有两个,是0和1(2) 任何有理数的绝对值都不是负数(3) 一个有理数的绝对值必为正数(4) 绝对值等于相反数的数一定是非负数A 3B 2C 1D 017.设a 是最小的正整数,b 是最大的负整数,c 是绝对值最小的有理数,则 a + b + c 等于 ( )A -1B 0C 1D 2拓展提高:18.如果a , b 互为相反数,c, d 互为倒数,m 的绝对值为2,求式子a b a b c+++ + m -cd 的值。
19.某司机在东西路上开车接送乘客,他早晨从A 地出发,(去向东的方向正方向),到晚上送走最后一位客人为止,他一天行驶的的里程记录如下(单位:㎞)+10 ,— 5, —15 ,+ 30 ,—20 ,—16 ,+ 14(1) 若该车每百公里耗油 3 L ,则这车今天共耗油 多少升?(2) 据记录的情况,你能否知道该车送完最后一个乘客是,他在A 地的什么方向?距A 地多远?20.工厂生产的乒乓球超过标准重量的克数记作正数,低于标准重量的克数记作负数,现对5个 乒乓球称重情况如下表所示,分析下表,根据绝对值的定义判断哪个球的重量最接近标准? 代号 A B C D E超标情况 0.01 -0.02 -0.01 0.04 -0.031.3.1有理数的加法基础检测1、计算: (1)15+(-22) (2)(-13)+(-8) (3)(-0.9)+1.512、计算:(1)23+(-17)+6+(-22)(2)(-2)+3+1+(-3)+2+(-4)3、计算:(1))1713(134)174()134(-++-+-(2))412(216)313()324(-++-+- 拓展提高4.(1)绝对值小于4的所有整数的和是________;(2)绝对值大于2且小于5的所有负整数的和是________。
5.若2,3==b a ,则=+b a ________。
6.已知,3,2,1===c b a 且a >b >c ,求a +b +c 的值。
7.若1<a <3,求a a -+-31的值。
8.计算:7.10)]323([3122.16---+-+-9.计算:(+1)+(-2)+(+3)+(-4)+…+(+99)+(-100)10.10袋大米,以每袋50千克为准:超过的千克数记作正数,不足的千克数记作负数,称重的记录如下:+0.5,+0.3,0,-0.2,-0.3,+1.1,-0.7,-0.2,+0.6,+0.7.10袋大米共超重或不足多少千克?总重量是多少千克?1.3.2有理数的减法基础检测1、(1)(-3)-________=1 (2)________-7=-22、计算:(1))9()2(--- (2)110-(3))8.4(6.5-- (4)435)214(--3、下列运算中正确的是( )A 、2)58.1(58.3)58.1(58.3=-+=--B 、6.646.2)4()6.2(=+=---C 、1)57(5257)52(57)52(0-=-+=-+=-+- D 、4057)59(8354183-=-+=- 4、计算:(1))5()3(9)7(-+---- (2)104.87.52.4+-+-(3)21326541-++-拓展提高5、下列各式可以写成a -b +c 的是( )A 、a -(+b)-(+c)B 、a -(+b)-(-c)C 、a +(-b)+(-c)D 、a +(-b)-(+c)6、若,3,4,==-=-n m m n n m 则=-n m ________。
7、若x <0,则)(x x --等于( )A 、-xB 、0C 、2xD 、-2x8、下列结论不正确的是( )A 、若a >0,b <0,则a -b >0B 、若a <0,b >0,则a -b <0C 、若a <0,b <0,则a -(-b)>0D 、若a <0,b <0,且a b ,则a -b >0.9、红星队在4场足球赛中的成绩是:第一场3:1胜,第二场2:3负,第三场0:0平,第四场2:5负。
红星队在4场比赛中总的净胜球数是多少?10、一个病人每天下午需要测量一次血压,下表是该病人周一至周五高压变化情况,该病人上个周日的高压为160单位。
星期一 二 三 四 五 高压的变化(与前一天比较)升25单位 降15单位 升13单位 升15单位 降20单位(1) 该病人哪一天的血压最高?哪一天血压最低?(2) 与上周比,本周五的血压是升了还是降了?1.4.1有理数乘法基础检测1、填空:(1)-7的倒数是__,它的相反数是__,它的绝对值是___;(2)522-的倒数是___,-2.5的倒数是___; (3)倒数等于它本身的有理数是___。