对数(定义及对数式与指数式的互相转化)

合集下载

高中数学对数的运算

高中数学对数的运算

对数函数专题对数及对数运算【要点梳理】要点一、对数概念 1.对数的概念如果()01b a N a a =>≠,且,那么数b 叫做以a 为底N 的对数,记作:log a N=b .其中a 叫做对数的底数,N 叫做真数.要点诠释:对数式log a N=b 中各字母的取值范围是:a>0 且a ≠1, N>0, b ∈R . 2.对数()log 0a N a >≠,且a 1具有下列性质:(1)0和负数没有对数,即0N >; (2)1的对数为0,即log 10a =; (3)底的对数等于1,即log 1a a =.3.两种特殊的对数通常将以10为底的对数叫做常用对数,N N lg log 10简记作.以e (e 是一个无理数, 2.7182e =⋅⋅⋅)为底的对数叫做自然对数, log ln e N N 简记作. 4.对数式与指数式的关系由定义可知:对数就是指数变换而来的,因此对数式与指数式联系密切,且可以互相转化.它们的关系可由下图表示.由此可见a ,b ,N 三个字母在不同的式子中名称可能发生变化. 要点二、对数的运算法则 已知()log log 010a a M N a a M N >≠>,且,、 (1)正因数的积的对数等于同一底数各个因数的对数的和; ()log log log a a a MN M N =+ 推广:()()121212log log log log 0a k a a a k k N N N N N N N N N =+++>、、、(2)两个正数的商的对数等于被除数的对数减去除数的对数;log log log a a a M M N N=-(3)正数的幂的对数等于幂的底数的对数乘以幂指数; log log a a M M αα=要点诠释:(1)利用对数的运算法则时,要注意各个字母的取值范围,即等式左右两边的对数都存在时等式才能成立.如:log 2(-3)(-5)=log 2(-3)+log 2(-5)是不成立的,因为虽然log 2(-3)(-5)是存在的,但log 2(-3)与log 2(-5)是不存在的.(2)不能将和、差、积、商、幂的对数与对数的和、差、积、商、幂混淆起来,即下面的等式是错误的:log a (M ±N )=log a M ±log a N , log a (M ·N )=log a M ·log a N ,log a N M N M a a log log =. 要点三、对数公式 1.对数恒等式:log log a b Na a N a N Nb ⎫=⇒=⎬=⎭2.换底公式同底对数才能运算,底数不同时可考虑进行换底,在a>0, a ≠1, M>0的前提下有:(1))(log log R n M M n a a n ∈=令 log a M=b , 则有a b =M , (a b )n =M n ,即n b n M a =)(, 即n a M b n log =,即:n a a M M n log log =.(2))1,0(log log log ≠>=c c aMM c c a ,令log a M=b , 则有a b =M , 则有)1,0(log log ≠>=c c M a c b c即M a b c c log log =⋅, 即a M b c c log log =,即)1,0(log log log ≠>=c c aMM c c a 当然,细心一些的同学会发现(1)可由(2)推出,但在解决某些问题(1)又有它的灵活性.而且由(2)还可以得到一个重要的结论:)1,0,1,0(log 1log ≠>≠>=b b a a ab b a .【典型例题】类型一、对数的概念例1.求下列各式中x 的取值范围: (1)2log (5)x -;(2)(1)log (2)x x -+;(3)2(1)log (1)x x +-. 【答案】(1)5x >;(2)1,2x x >≠且;(3)1x >-且0,1x x ≠≠ 【解析】(1)由题意50x ->,5x ∴>,即为所求.(2)由题意20,10,11,x x x +>⎧⎨->-≠⎩且即2,1,2,x x x >-⎧⎨>≠⎩且1,2x x ∴>≠且. (3)由题意2(1)0,10,11,x x x ⎧->⎨+>+≠⎩且解得1x >-且0,1x x ≠≠.【总结升华】在解决与对数有关的问题时,一定要注意:对数真数大于零,对数的底数大于零且不等于1.举一反三:【变式1】函数21log (2)x y x -=+的定义域为 .【答案】1|12x x x ⎧⎫>≠⎨⎬⎩⎭且类型二、指数式与对数式互化及其应用 例2.将下列指数式与对数式互化: (1)2log 164=;(2)13log 273=-;(3)3x =;(4)35125=;(5)1122-=;(6)2193-⎛⎫= ⎪⎝⎭.【解析】运用对数的定义进行互化.(1)4216=;(2)31273-⎛⎫= ⎪⎝⎭;(33x =;(4)5log 1253=;(5)21log 12=-;(6)13log 92=-.【总结升华】对数的定义是对数形式和指数形式互化的依据,而对数形式和指数形式的互化又是解决问题的重要手段.举一反三:【变式1】求下列各式中x 的值:(1)161log 2x =- (2)log 86x = (3)lg1000=x (4)2-2ln e x =【答案】(1)14;(2;(3)3;(4)-4.【解析】将对数式化为指数式,再利用指数幂的运算性质求出x .(1)1112()212221(16)(4)444x --⋅--=====;(2)111166366628()(8)(2)2x x x ======,所以 (3)10x =1000=103,于是x=3;(4)由22222ln ln 42x x e x e e e x --=-===-,得,即所以.例3.(2014 广东湛江期中)不用计算器计算:7log 203log lg25lg47(9.8)+++- 【答案】132【解析】原式323log 3lg(254)21=+⨯++23lg1032=++3132322=++=【总结升华】对数恒等式log a N a N =中要注意格式:①它们是同底的;②指数中含有对数形式;③其值为真数.举一反三:【变式1】求log log log a b c b c N a ⋅⋅的值(a ,b ,c ∈R +,且不等于1,N>0) 【答案】N【解析】将幂指数中的乘积关系转化为幂的幂,再进行运算.log log log log log log log log log ()()c a b c a b b c c Nb c N b cc N N a a b c N ⋅⋅⎡⎤====⎣⎦类型四、积、商、幂的对数例4. z y x a a a log ,log ,log 用表示下列各式35(1)log ;(2)log ();(3)log a a a a xy x y z 【解析】(1)log log log log aa a a xyx y z z=+-; (2)3535log ()log log 3log 5log a a a a a x y x y x y =+=+;(3)1log log log ()log log log 2a a a a a a yz x y z yz ==--;(4)log a211log ()log 2log log log 23a a a a a x y x y z -=+-.(有错误) 【总结升华】利用对数恒等式、对数性质及其运算性质进行化简是化简对数式的重要途径,因此我们必须准确地把握它们.在运用对数的运算性质时,一要注意真数必须大于零;二要注意积、商、幂的对数运算对应着对数的和、差、积得运算.举一反三: 【变式1】求值(1)1log 864log 325log 21025-+ (2)lg2·lg50+(lg5)2 (3)lg25+lg2·lg50+(lg2)2【答案】(1)22;(2)1;(3)2. 【解析】(1)1log 864log 325log 21025-+.220184082log 35log 26225=-+=⨯-+⋅=(2)原式=lg2(1+lg5)+(lg5)2=lg2+lg2lg5+(lg5)2=lg2+lg5(lg2+lg5)=lg2+lg5=1(3)原式=2lg5+lg2(1+lg5)+(lg2)2=2lg5+lg2+lg2lg5+(lg2)2=1+lg5+lg2(lg5+lg2)=1+lg5+lg2=2. 类型五、换底公式的运用例5.已知18log 9,185b a ==,求36log 45.【答案】2a ba+- 【解析】解法一:18log 9,185b a ==,18log 5b ∴=,于是181818183618181818log 45log (95)log 9log 5log 4518log 36log (182)1log 221log 9a b a ba ⨯+++=====⨯+-+. 【总结升华】(1)利用换底公式可以把题目中不同底的对数化成同底的对数,进一步应用对数运算的性质.(2)题目中有指数式和对数式时,要注意指数式与对数式的互化,将它们统一成一种形式.(3)解决这类问题要注意隐含条件“log 1a a =”的灵活运用. 【变式1】求值:(1))2log 2)(log 3log 3(log 9384++;【解析】(1))2log 2)(log 3log 3(log 9384++452log 233log 65)22log 2)(log 33log 23log ()9log 2log 2)(log 8log 3log 4log 3log (3233223332222=⋅⋅=++=++=类型六、对数运算法则的应用例6.求值(1)91log 81log 251log 32log 53264⋅⋅⋅(2)7lg142lg lg 7lg183-+-【解析】(1)原式=103log 2log 5log 2log 253322526-=---(2)原式=2lg(27)2(lg 7lg 3)lg 7lg(32)⨯--+-⨯ =lg 2lg72lg72lg3lg72lg3lg 20+-++--=举一反三:【变式1】计算下列各式的值 (1)()222lg5lg8lg5lg 20lg 23+++【解析】(1)原式=()22lg52lg 2lg5(2lg 2lg5)lg 2++++=22lg10(lg 5lg 2)++=2+1=3;【巩固练习】一、选择题1. 有以下四个结论:①lg (lg10)=0;②ln (lne )=0;③若10=lg x ,则x =10;④若e =ln x ,则x =e 2,其中正确的是( )A .①③B .②④C .①②D .③④ 【答案】C【解析】由log 1,log 10a a a ==知①②正确.2. 下列等式成立的有( )①1lg 2100=-;②33log 2=;③2log 525=;④ln 1e e =;⑤lg 333=;A .①②B .①②③C .②③④D .①②③④⑤ 【答案】B【解析】21lg lg102100-==-;3. 对数式2log (5)a a b --=中,实数a 的取值范围是( )A .(),5-∞B . ()2,5C .()()2,33,5D .()2,+∞【答案】C【解析】由对数的定义可知50,20,21,a a a ->⎧⎪->⎨⎪-≠⎩所以25a <<且3a ≠,故选C .4. 若0,1a a >≠,则下列说法正确的是( )①若M N =,则log log a a M N =;②log log a a M N =,则M N =; ③22log log a a M N =,则M N =;④若M N =,则22log log a a M N =. A .①③ B .②④ C .② D .①②③④ 【答案】C【解析】注意使log log a a M N =成立的条件是M 、N 必须为正数,所以①③④不正确,而②是正确的,故选C .5. 若56789log 6log 7log 8log 9log 10y =⋅⋅⋅⋅,则( )A .(0,1)y ∈B .(1,2)y ∈C .(2,3)y ∈D .(3,4)y ∈ 【答案】B 【解析】55lg 6lg 7lg8lg9lg10log 101log 2lg5lg 6lg 7lg8lg9y =⨯⨯⨯⨯==+,因为50log 21<<,所以12y <<,故选B .6. (2014江西三县月考)计算662log 3log 4+的结果是()A .6log 2B . 2C . 6log 3D . 3【答案】B【解析】666662log 3log 4log 9log 4log 362+=+==.故选:B . 二、填空题1. 若312log 19x-=,则x = .【答案】-13【解析】 由指数式与对数式互化,可得1239x-=,解得13x =-. 2. 若2log 2,log 3,m n a a m n a +=== ;【答案】12【解析】 2log 2log 3log 4log 34312a a a a a a a +=⋅=⨯=.3. 若2510a b ==,则11a b+= .【答案】1【解析】因为210,a =所以21log 10lg 2a ==,又因为510,b =所以51log 10lg 5b ==,所以原式=lg 2lg51+=.。

指数和对数的转换公式

指数和对数的转换公式

指数和对数的转换公式首先,我们来介绍指数的定义。

在数学中,指数是表示底数按照幂次相乘的运算,即a^n表示将底数a连乘n次。

指数的运算法则包括幂的乘法和幂的除法:1.幂的乘法:a^m*a^n=a^(m+n),即底数相同,指数相加。

2.幂的除法:a^m/a^n=a^(m-n),即底数相同,指数相减。

接下来,我们来介绍对数的定义。

对数是指数的逆运算,它可以将指数运算转化为乘法运算。

对数的定义如下:对于任意正实数a、正实数b(a≠1),如果a^x=b,则称x为以a为底b的对数,记作x=log_a(b)。

对数的运算法则包括乘积的对数和幂的对数:1. 乘积的对数:log_a(m*n) = log_a(m) + log_a(n),即底数相同,对数相加。

2. 幂的对数:log_a(m^n) = n * log_a(m),即底数相同,对数与指数相乘。

利用对数的定义和运算法则,我们可以推导出指数和对数之间的转换公式。

具体来说,如果a^x = b,则有x = log_a(b)。

这个公式表明,通过对数运算,我们可以将指数运算转换为乘法运算。

同样地,如果x =log_a(b),则有a^x = b。

这个公式表明,通过对指数运算,我们可以将对数运算转换为幂运算。

在实际应用中,指数和对数的转换公式在求解各种数学问题中起到了重要的作用。

下面我们通过几个例子来说明这一点。

例子1:计算log_2(8)的值。

根据对数的定义,我们可以知道2^3=8,因此log_2(8)=3例子2:计算3^log_3(5)的值。

根据对数的定义,我们可以知道log_3(5)是以3为底5的对数,因此log_3(5)的值可以用x表示,即3^x=5、所以3^log_3(5)=3^x=5例子3:计算log_10(1000)的近似值。

根据对数的定义,我们可以知道10^3=1000,因此log_10(1000)=3、因此log_10(1000)的近似值为3在实际问题中,我们经常会遇到指数和对数的转换,特别是在对数尺和指数增长等方面。

对数与指数的之间的关系理解和归纳

对数与指数的之间的关系理解和归纳

对数与指数的之间的关系理解和归纳知识点:对数与指数之间的关系理解和归纳一、对数与指数的定义和性质1.对数的定义:对数是幂的指数,用来表示幂的次数。

2.指数的定义:指数是基数的幂,用来表示幂的次数。

3.对数的基本性质:(1)对数的底数必须大于0且不等于1。

(2)对数的真数必须大于0。

(3)对数的值是实数。

4.指数的基本性质:(1)指数的底数必须大于0且不等于1。

(2)指数的值可以是正数、负数或0。

(3)指数的幂是实数。

二、对数与指数的互化关系1.对数与指数的互化公式:(1)如果y=log_a(x),则a^y=x。

(2)如果y=a^x,则log_a(y)=x。

2.对数与指数互化的意义:(1)对数可以用来求解指数方程。

(2)指数可以用来求解对数方程。

三、对数与指数的增长速度1.对数增长速度:对数函数的增长速度逐渐变慢。

2.指数增长速度:指数函数的增长速度逐渐变快。

四、对数与指数的应用1.对数与指数在科学计算中的应用:(1)天文学:计算星体距离。

(2)生物学:计算细菌繁殖。

(3)经济学:计算货币贬值。

2.对数与指数在实际生活中的应用:(1)通信:计算信号衰减。

(2)计算机科学:计算数据压缩率。

(3)物理学:计算放射性物质衰变。

五、对数与指数的图像和性质1.对数图像:对数函数的图像是一条斜率逐渐减小的曲线。

2.指数图像:指数函数的图像是一条斜率逐渐增大的曲线。

3.对数与指数的性质:(1)对数函数的定义域是(0,+∞),值域是R。

(2)指数函数的定义域是R,值域是(0,+∞)。

(3)对数函数和指数函数都是单调函数。

六、对数与指数的关系总结1.对数与指数是幂的两种表示形式,它们之间可以相互转化。

2.对数与指数具有不同的增长速度,对数增长速度逐渐变慢,指数增长速度逐渐变快。

3.对数与指数在科学研究和实际生活中有广泛的应用。

4.对数与指数的图像和性质反映了它们的单调性和变换规律。

通过以上对对数与指数之间关系的理解和归纳,我们可以更好地掌握对数与指数的知识,并在学习和生活中灵活运用。

知识讲解_对数及对数运算_基础

知识讲解_对数及对数运算_基础

(2)
log a
M

logc M logc a
(c 0, c 1) ,

logaM=b,
则 有 ab=M,
则有
logc ab logc M (c 0, c 1)
即 b logc
a

log c
M

即b

logc M logc a
,即 log a
M

logc M logc a
(c
(1)0 和负数没有对数,即 N 0 ; (2)1 的对数为 0,即 loga 1 0 ; (3)底的对数等于 1,即 loga a 1.
3.两种特殊的对数
通常将以 10 为底的对数叫做常用对数, log10 N作作作 为底的对数叫做自然对数, loge N简记作 ln N .
4.对数式与指数式的关系
质.
(2)题目中有指数式和对数式时,要注意指数式与对数式的互化,将它们统一成一种形式.
(3)解决这类问题要注意隐含条件“ loga a 1”的灵活运用.
举一反三:
【变式
1】求值:(1)
(log 4
3

log8
3)(log3
2

log 9
27
32
;(3)
91 2
log3
2

log 3 2
2 )

5 6

log 2
3
3 2
log 3
2

5 4

(2) log8
loga
M N
loga M
loga
N
(3) 正数的幂的对数等于幂的底数的对数乘以幂指数;

对数公式及对数函数的总结

对数公式及对数函数的总结

对数公式及对数函数的总结对数是数学中的一个重要概念。

如果一个数N可以表示为a的x次方(a>0且a≠1),那么x就是以a为底N的对数,记作x=logaN。

其中a称为底数,N称为真数。

负数和零没有对数。

对数式与指数式可以互相转化:x=logaN等价于ax=N (a>0,a≠1,N>0)。

常用的对数有lgN(即以10为底N的对数)和lnN(即以自然常数e为底N的对数)。

自然常数e≈2..对数函数是指函数y=logax(a>1或0<a<1)的图像。

它的定义域为正实数集,值域为实数集。

对数函数的图像经过点(1,0),在(0,+∞)上是增函数,在(0,1)上是减函数。

当x=1时,y=0.对数函数既非奇函数也非偶函数。

对数公式在数学中有广泛的应用。

例如,可以用对数公式计算各种对数值,如log26-log23=2,log212+log25=log=3,等等。

还可以用对数公式来解对数的值,如lg14-2lg7+lg7/lg18-2lg2-(-1)=log0.5,以及2(lg2+lg5)+log3(4/27)的值等。

在第一象限内,a越大图像越靠下,在第四象限内,a越大图像越靠上。

总之,对数及其函数在数学中有着广泛的应用,是不可或缺的数学工具。

4、已知a>b>c,那么a>b>c。

3、设a=log3π,b=log23,c=log32,则a>b>c。

2、如果a>b>logc1,那么B选项___c。

5、如果a>1,且a-x-logaxy。

1、已知函数f(x)=logx,如果f(ab)=1,则f(a)+f(b)=2.6、设函数f(x)={x-1,x<2;2logx-1,x≥2},那么f(f(2))=2log2-1.7、设函数f(x)满足:当x≥4时,f(x)=1/x;当x<4时,f(x)=f(x+1),那么f(2+log23)=1/7.参数问题部分无需改写。

对数与指数的关系

对数与指数的关系

对数与指数是数学中两个非常重要且密切相关的概念。

在数学中,我们常常会遇到非常大或非常小的数字,而使用对数和指数的概念可以方便地表示和计算这些数字。

首先,让我们来了解一下指数的概念。

指数是数学运算中的一种表示方式,用于表示一个数字被乘以自身多少次。

例如,2的平方就是2乘以2,结果为4,这里2就是底数,2是指数。

我们可以将指数看作是重复自身的次数。

接下来,让我们来看一下对数的概念。

对数是指一个数在某个底数下的指数。

换句话说,对数是指数字多少次方等于一个数。

我们可以用对数来表示一个指数。

对数与指数之间有着密切的关系,它们可以互相转化。

具体地说,如果使用底数为a的对数将b表示为x,那么我们可以将这条等式表示为a的x次方等于b。

换句话说,x就是将底数a进行几次乘法运算得到数字b。

我们可以通过一个简单的例子来理解对数与指数之间的关系。

假设我们要求解8的对数。

根据对数的定义,我们可以得到一个等式2的x次方等于8。

很明显,x的值是3,因为2的3次方等于8。

因此,我们可以说log2(8)=3,其中log2表示底数为2的对数。

对数和指数的关系还体现在它们的运算中。

当我们对指数进行加、减、乘、除等操作时,对应的对数也会有相应的操作。

例如,(a的x次方)乘以(a的y次方)等于a的(x+y)次方,而对应的对数表示为loga(b)+loga(c)=loga(b*c)。

除了加、减、乘、除,对数和指数之间还有其他一些运算规则。

例如,如果a的x次方等于b,那么a的y次方等于b的多少次方?根据对数和指数之间的关系,我们可以得到一个等式,即y=loga(b)/loga(a)。

这就是对数和指数之间的换底公式。

在科学和工程领域中,对数和指数也有着广泛的应用。

例如,在计算机科学中,我们经常用对数来衡量算法的复杂性,以及数据结构的性能。

在物理学中,对数和指数经常用来表示非常大或非常小的物理量,例如宇宙中的星球质量、原子的能量等。

总之,对数与指数在数学中是非常重要且密切相关的概念。

对数与对数函数

对数与对数函数

对数与对数函数1.对数的概念(1).对数的定义:如果 那么数b 叫做以a 为底N 的对数,记作 ,其中a 叫做对数的 ,N 叫做对数的 。

即指数式与对数式的互化:log ba a Nb N =⇔= 如22=4 ==> lg 24=2 注意:负数与0没有对数(2).常用对数: 10log N 叫做常用对数,记作lg N 如lg2 ,自然对数:无理数 2.71828e=⋅⋅⋅为底记作ln N 。

(3).注意:①log a 1=0 ②log a a=1 ③lg10=1 ④1ne=1 如log a (x-1)=1 则x-1=a 若log a (x-1)=0 则x-1=1 2.对数恒等式、换底公式 (1)对数恒等式:①log Na a = (01,0)a a N>≠>且②log Na a = (01,0)a a N >≠>且(2)换底:log aN =log log b b Na(a ,b>0且a ,b ≠1,N>0) log log log a b c b c d ⋅⋅=log a d (a ,b,c>0且a ,b,c ≠1)3.对数的运算性质:如果01,0,0aa M N >≠>>且,那么(1)log ()a MN = . (2)log a MN= (3)log n a M = (4)log n amM = (5)log log a b b a ⋅= (6)log a b =1log b a例1.指数式34 =81的对数式是 ,对数式41log 2=-2的指数式是 。

log 55= log 39= , (3)49log 77 = , (4) log 575-log 53 = ,(5) lg10 = , (6)log 21 = lne=_________例2.计算 (1)()()222lg 2lg 2lg 5lg 2lg 21+⋅+-+ (2)()()231lg 5lg8lg1000lg 2lg lg 0.066++++(3)22271log log 12log 421482+--(4)()2lg 2lg 2lg 50lg 25+⋅+(5)()()3948log 2log 2log 3log 3+⋅+ 例3.已知lg2=a ,lg3=b ,则15lg 12lg 等于( )A .b a b a +++12B .b a b a +++12C .b a b a +-+12D .b a ba +-+12例4.已知2 lg(x -2y)=lgx +lgy ,则yx 的值为 A .1 B .4 C .1或4 D .4 或2课堂练习:1、已知log 5X=3,则X =( )A 100 B 1000 C 25 D 1252、在对数式N alog =b 中,真数N 的取值范围是( )A N >0 B N>0且N ≠1 C N ≠1 D N 取任何实数3、式子lg5+lg800-2lg2 =( ) A 1000 B 100 C 3 D 24、如果a>0且a ≠1,则正确的是( )A 5log 3log 2log a a a=+ B 6log 3log 2log a a a =+C 3log 2log 3log 2log a a a a∙=+ D 6log 3log 2log a a a =∙5、ln 3e+lne 3=( ) A 2 B 3 C 4 D 66、如果a>0且a ≠1,则下列式子错误的是( ) A log a 1= 0 B log a a =1 C log a M n= n DN a N a =log7、式子=3log 9log 28( ) A.32B.1C.23D. 2 8、式子16log 8=( )A43 B4 C34 D 39、下列等式不成立的有( ) A lne=1 B ln1=0 C ln 2e=2 D e ln2=2 10.计算(1)25log 41log 49log 752∙∙(2)2)18(lg - -125(3)lg25+lg2·lg50+(lg2)2(4)()643log [log log 81](5)23lg 3lg 9lg 27lg 355lg81lg 27++-- (6)()502log 33335322log 2log log 85log 89-+-+11.若234342423log log log log log log log log log 0xy z ===,求x y z ++=的值。

知识讲解_对数及对数运算_基础

知识讲解_对数及对数运算_基础

对数及对数运算编稿:丁会敏 审稿:王静伟【学习目标】1.理解对数的概念,能够进行指数式与对数式的互化;2.了解常用对数与自然对数的意义;3.能够熟练地运用对数的运算性质进行计算;4.了解换底公式及其推论,能够运用换底公式及其推论进行对数的计算、化简与证明. 5.能将一般对数转化成自然对数或常用对数、体会换底公式在解题中的作用. 【要点梳理】要点一、对数概念 1.对数的概念如果()01ba N a a =>≠,且,那么数b 叫做以a 为底N 的对数,记作:log a N=b.其中a 叫做对数的底数,N 叫做真数.要点诠释:对数式log a N=b 中各字母的取值范围是:a>0 且a ≠1, N>0, b ∈R.2.对数()log 0a N a >≠,且a 1具有下列性质: (1)0和负数没有对数,即0N >; (2)1的对数为0,即log 10a =; (3)底的对数等于1,即log 1a a =.3.两种特殊的对数通常将以10为底的对数叫做常用对数,N N lg log 10简记作.以e (e 是一个无理数, 2.7182e =⋅⋅⋅)为底的对数叫做自然对数, log ln e N N 简记作.4.对数式与指数式的关系由定义可知:对数就是指数变换而来的,因此对数式与指数式联系密切,且可以互相转化.它们的关系可由下图表示.由此可见a ,b ,N 三个字母在不同的式子中名称可能发生变化. 要点二、对数的运算法则已知()log log 010a a M N a a M N >≠>,且,、(1) 正因数的积的对数等于同一底数各个因数的对数的和;()log log log a a a MN M N =+推广:()()121212log log log log 0a k a a a k k N N N N N N N N N =+++>L L L 、、、 (2) 两个正数的商的对数等于被乘数的对数减去除数的对数;log log log aa a MM N N=- (3) 正数的幂的对数等于幂的底数的对数乘以幂指数;log log a a M M αα=要点诠释:(1)利用对数的运算法则时,要注意各个字母的取值范围,即等式左右两边的对数都存在时等式才能成立.如:log 2(-3)(-5)=log 2(-3)+log 2(-5)是不成立的,因为虽然log 2(-3)(-5)是存在的,但log 2(-3)与log 2(-5)是不存在的.(2)不能将和、差、积、商、幂的对数与对数的和、差、积、商、幂混淆起来,即下面的等式是错误的:log a (M ±N)=log a M ±log a N , log a (M·N)=log a M·log a N ,log aNM N M a a log log =. 要点三、对数公式 1.对数恒等式:log log a b Na a Na N Nb ⎫=⇒=⎬=⎭2.换底公式同底对数才能运算,底数不同时可考虑进行换底,在a>0, a ≠1, M>0的前提下有: (1) )(loglog R n M M n aa n∈=令 log a M=b , 则有a b=M , (a b )n=M n,即nb n M a =)(, 即n aM b nlog =,即:n a a M M n log log =.(2) )1,0(log log log ≠>=c c aM M c c a ,令log a M=b , 则有a b =M , 则有 )1,0(log log ≠>=c c M a c bc即M a b c c log log =⋅, 即a M b c c log log =,即)1,0(log log log ≠>=c c aMM c c a 当然,细心一些的同学会发现(1)可由(2)推出,但在解决某些问题(1)又有它的灵活性.而且由(2)还可以得到一个重要的结论:)1,0,1,0(log 1log ≠>≠>=b b a a ab b a .【典型例题】类型一、对数的概念例1.求下列各式中x 的取值范围:(1)2log (5)x -;(2)(1)log (2)x x -+;(3)2(1)log (1)x x +-. 【答案】(1)5x >;(2)1,2x x >≠且;(3)1x >-且0,1x x ≠≠ 【解析】(1)由题意50x ->,5x ∴>,即为所求. (2)由题意20,10,11,x x x +>⎧⎨->-≠⎩且即2,1,2,x x x >-⎧⎨>≠⎩且1,2x x ∴>≠且. (3)由题意2(1)0,10,11,x x x ⎧->⎨+>+≠⎩且解得1x >-且0,1x x ≠≠.【总结升华】在解决与对数有关的问题时,一定要注意:对数真数大于零,对数的底数大于零且不等于1.举一反三:【变式1】函数21log (2)x y x -=+的定义域为.【答案】1|12x x x ⎧⎫>≠⎨⎬⎩⎭且 类型二、指数式与对数式互化及其应用例2.将下列指数式与对数式互化: (1)2log 164=;(2)13log 273=-;(3)3x =;(4)35125=;(5)1122-=;(6)2193-⎛⎫= ⎪⎝⎭.【解析】运用对数的定义进行互化.(1)4216=;(2)31273-⎛⎫= ⎪⎝⎭;(3)3x =;(4)5log 1253=;(5)21log 12=-;(6)13log 92=-. 【总结升华】对数的定义是对数形式和指数形式互化的依据,而对数形式和指数形式的互化又是解决问题的重要手段.举一反三:【变式1】求下列各式中x 的值:(1)161log 2x =-(2)log 86x = (3)lg1000=x (4)2-2ln e x =【答案】(1)14;(2;(3)3;(4)-4.【解析】将对数式化为指数式,再利用指数幂的运算性质求出x. (1)1112()212221(16)(4)444x --⋅--=====;(2)111166366628()(8)(2)2x x x ======,所以;(3)10x =1000=103,于是x=3;(4)由22222ln ln 42x x e x e e e x --=-===-,得,即所以.高清课程:对数及对数运算 例1【变式2】计算:222log 4;log 8;log 32并比较.【解析】222log 4log 22;==322log 8log 23;== 522log 32log 25==.类型三、利用对数恒等式化简求值例3.求值:71log 57+ 【答案】35【解析】771log 5log 57777535+=⋅=⨯=. 【总结升华】对数恒等式log a Na N =中要注意格式:①它们是同底的;②指数中含有对数形式;③其值为真数.举一反三:【变式1】求log log log a b c b c Na ⋅⋅的值(a ,b ,c ∈R +,且不等于1,N>0) 【答案】N【解析】将幂指数中的乘积关系转化为幂的幂,再进行运算.log log log log log log log log log ()()c a b c a b b c c Nb c Nb cc N N aa b c N ⋅⋅⎡⎤====⎣⎦.类型四、积、商、幂的对数高清课程:对数及对数运算例3例4.z y x a a a log ,log ,log 用表示下列各式35(1)log ;(2)log ();(3)log a a a a xy x y z 【解析】(1)log log log log a a a a xyx y z z =+-; (2)3535log ()log log 3log 5log a a a a a x y x y x y =+=+;(3)1log log log ()log log log 2a a a a a a yz x y z yz ==--; (4)log a211log ()log 2log log log 23a aa a a x y x y z -=+-.【总结升华】利用对数恒等式、对数性质及其运算性质进行化简是化简对数式的重要途径,因此我们必须准确地把握它们.在运用对数的运算性质时,一要注意真数必须大于零;二要注意积、商、幂的对数运算对应着对数的和、差、积得运算.举一反三:【变式1】求值(1)1log 864log 325log 21025-+ (2)lg2·lg50+(lg5)2 (3)lg25+lg2·lg50+(lg2)2【答案】(1)22;(2)1;(3)2.【解析】(1) 1log 864log 325log 21025-+.220184082log 35log 26225=-+=⨯-+⋅=(2)原式=lg2(1+lg5)+(lg5)2=lg2+lg2lg5+(lg5)2=lg2+lg5(lg2+lg5)=lg2+lg5=1(3)原式=2lg5+lg2(1+lg5)+(lg2)2=2lg5+lg2+lg2lg5+(lg2)2=1+lg5+lg2(lg5+lg2)=1+lg5+lg2=2. 类型五、换底公式的运用例5.已知18log 9,185ba ==,求36log 45. 【答案】2a ba+- 【解析】解法一:Q 18log 9,185ba ==,18log 5b ∴=,于是181818183618181818log 45log (95)log 9log 5log 4518log 36log (182)1log 221log 9a b a ba ⨯+++=====⨯+-+. 解法二:Q 18log 9,185ba ==,18log 5b ∴=,于是1818181836218181818log 45log (95)log 9log 5log 45.18log 362log 18log 92log 9a ba ⨯++====-- 解法三:Q 18log 9,185ba ==,lg9lg18,lg5lg18ab ∴==,362lg 45lg(95)lg9lg5lg18lg18log 4518lg362lg18lg92lg18lg182lg 9a b a ba a ⨯+++∴=====---.解法四:18log 9a =Q ,189.a ∴=又185,4559181818b b a a b+=∴=⨯==Q g.令36log 45x =,则364518x a b +==,即218181836()18,()18,339xx a bx a b ++==∴=g 21818log .9x a b ∴=+21818log 18log 92a b a bx a++∴==--. 【总结升华】(1)利用换底公式可以把题目中不同底的对数化成同底的对数,进一步应用对数运算的性质.(2)题目中有指数式和对数式时,要注意指数式与对数式的互化,将它们统一成一种形式. (3)解决这类问题要注意隐含条件“log 1a a =”的灵活运用.举一反三:【变式1】求值:(1))2log 2)(log 3log 3(log 9384++;(2)32log 9log 278⋅;(3)31log 529-.【答案】(1)54;(2)109;(3)325. 【解析】(1))2log 2)(log 3log 3(log 9384++452log 233log 65)22log 2)(log 33log 23log ()9log 2log 2)(log 8log 3log 4log 3log (3233223332222=⋅⋅=++=++=;(2)32log 9log 278⋅9103lg 32lg 52lg 33lg 227lg 32lg 8lg 9lg =⋅=⋅=; (3)法一:31log 529-33331log 2(log 5)1log 25252333325--====法二:31log 529-99112log 252log 25939925-===. 类型六、对数运算法则的应用 例6.求值 (1) 91log 81log 251log 32log 53264⋅⋅⋅ (2) 7lg142lglg 7lg183-+- (3))36log 43log 32(log log 42122++(4)()248125255log 125log 25log 5(log 8log 4log 2)++++ 【答案】(1)-10;(2)0;(3)3;(4)13 【解析】(1)原式=103log 2log 5log 2log 253322526-=---(2) 原式=2lg(27)2(lg 7lg 3)lg 7lg(32)⨯--+-⨯ =lg 2lg72lg72lg3lg72lg3lg 20+-++--= (3)原式=38log )6log 43log 5(log )6log 43log5(log 2222222221==+-=++-(4)原式135log 2log 3313)2log 3)(5log 315log 5log 3(255222=⋅=++= 举一反三:【变式1】计算下列各式的值 (1)()222lg5lg8lg5lg 20lg 23+++g ;(2)33(lg 2)3lg 2lg5(lg5)++g . 【答案】(1)3;(2)1.【解析】(1)原式=()22lg52lg 2lg5(2lg 2lg5)lg 2++++=22lg10(lg 5lg 2)++=2+1=3;(2)原式=()()22lg 2lg 5lg 2lg 2lg 5(lg 5)⎡⎤+-+⎣⎦g +3lg 2lg5g =()22lg 22lg 2lg5(lg5)++g=()2lg 2lg51+=. 【变式2】求值:107lg 2lg )21(7⋅ 【答案】2【解析】107lg 2lg )21(7⋅77log 2log 10lg7117()2-=⋅7777111log 2log 10log 10log 101111(7)()()(2)2 2.222-=⋅⋅=⋅⋅= 另解:设 107lg 2lg )21(7⋅=m (m>0).∴m lg )21lg(7lg 107lg 2lg =+, ∴m lg 21lg 107lg 7lg 2lg =⋅+⋅,∴m lg )2lg )(17(lg 7lg 2lg =--+⋅,∴ lg2=lgm , ∴ 2=m ,即2)21(7107lg 2lg =⋅.。

对数函数及其性质,对数的公式互化,详尽的讲解

对数函数及其性质,对数的公式互化,详尽的讲解

§2.2对数函数2.2.1对数与对数运算1.对数的概念一般地,如果a x=N (a>0,且a≠1),那么数x叫做以a为底N的对数,记作x=log a N,其中a叫做对数的底数,N叫做真数.说明:(1)实质上,上述对数表达式,不过是指数函数y=a x的另一种表达形式,例如:34=81与4=log381这两个式子表达是同一关系,因此,有关系式a x=N⇔x=log a N,从而得对数恒等式:a log a N=N.(2)“log”同“+”“×”“”等符号一样,表示一种运算,即已知一个数和它的幂求指数的运算,这种运算叫对数运算,不过对数运算的符号写在数的前面.(3)根据对数的定义,对数log a N(a>0,且a≠1)具有下列性质:①零和负数没有对数,即N>0;②1的对数为零,即log a1=0;③底的对数等于1,即log a a=1.2.对数的运算法则利用对数的运算法则,可以把乘、除、乘方、开方的运算转化为对数的加、减、乘、除运算,反之亦然.这种运算的互化可简化计算方法,加快计算速度.(1)基本公式①log a(MN)=log a M+log a N (a>0,a≠1,M>0,N>0),即正数的积的对数,等于同一底数的各个因数的对数的和.②log a MN=log a M-log a N(a>0,a≠1,M>0,N>0),即两个正数的商的对数,等于被除数的对数减去除数的对数.③log a M n=n·log a M (a>0,a≠1,M>0,n∈R),即正数的幂的对数等于幂的底数的对数乘以幂指数.(2)对数的运算性质注意点①必须注意M>0,N>0,例如log a[(-3)×(-4)]是存在的,但是log a(-3)与log a(-4)均不存在,故不能写成log a[(-3)×(-4)]=log a(-3)+log a(-4).②防止出现以下错误:log a(M±N)=log a M±log a N,log a(M·N)=log a M·log a N,log a M N=log a Mlog a N,log a M n =(log a M )n . 3.对数换底公式在实际应用中,常碰到底数不为10的对数,如何求这类对数,我们有下面的对数换底公式:log b N =log c Nlog c b(b >0,且b ≠1;c >0,且c ≠1;N >0).证明 设log b N =x ,则b x =N .两边取以c 为底的对数,得x log c b =log c N .所以x =log c N log c b ,即log b N =log c Nlog c b.换底公式体现了对数运算中一种常用的转化,即将复杂的或未知的底数转化为已知的或需要的底数,这是数学转化思想的具体应用.由换底公式可推出下面两个常用公式:(1)log b N =1log N b 或log b N ·log N b =1 (N >0,且N ≠1;b >0,且b ≠1);(2)log bn N m =mnlog b N (N >0;b >0,且b ≠1;n ≠0,m ∈R ).题型一 正确理解对数运算性质对于a >0且a ≠1,下列说法中,正确的是( ) ①若M =N ,则log a M =log a N ; ②若log a M =log a N ,则M =N ; ③若log a M 2=log a N 2,则M =N ; ④若M =N ,则log a M 2=log a N 2.A .①与③B .②与④C .②D .①、②、③、④解析 在①中,当M =N ≤0时,log a M 与log a N 均无意义,因此log a M =log a N 不成立. 在②中,当log a M =log a N 时,必有M >0,N >0,且M =N ,因此M =N 成立. 在③中,当log a M 2=log a N 2时,有M ≠0,N ≠0,且M 2=N 2,即|M |=|N |,但未必有M =N .例如,M =2,N =-2时,也有log a M 2=log a N 2,但M ≠N .在④中,若M =N =0,则log a M 2与log a N 2均无意义,因此log a M 2=log a N 2不成立. 所以,只有②成立. 答案 C点评 正确理解对数运算性质公式,是利用对数运算性质公式解题的前提条件,使用运算性质时,应牢记公式的形式及公式成立的条件.题型二 对数运算性质的应用求下列各式的值:(1)2log 32-log 3329+log 38-5log 53;(2)lg25+23lg8+lg5·lg20+(lg2)2;(3)log 52·log 79log 513·log 734.分析 利用对数的性质求值,首先要明确解题目标是化异为同,先使各项底数相同,才能使用性质,再找真数间的联系,对于复杂的真数,可以先化简再计算.解 (1)原式=2log 32-(log 332-log 39)+3log 32-3 =2log 32-5log 32+2+3log 32-3=-1.(2)原式=2lg5+2lg2+lg 102·lg(2×10)+(lg2)2=2lg(5×2)+(1-lg2)·(lg2+1)+(lg2)2 =2+1-(lg2)2+(lg2)2=3.(3)∵log 52·log 79log 513·log 734=12log 52·2log 73-log 53·13log 74=-lg2lg5·lg3lg7lg3lg5·13·lg4lg7=-32.点评 对数的求值方法一般有两种:一种是将式中真数的积、商、幂、方根利用对数的运算性质将它们化为对数的和、差、积、商,然后化简求值;另一种方法是将式中的和、差、积、商运用对数的运算法则将它们化为真数的积、商、幂、方根,然后化简求值.题型三 对数换底公式的应用计算:(log 2125+log 425+log 85)(log 52+log 254+log 1258).分析 由题目可获取以下主要信息:本题是一道对数化简求值题,在题目中各个对数的底数都各不相同.解答本题可先通过对数换底公式统一底数再进行化简求值. 解 方法一 原式=⎝⎛⎭⎫log 253+log 225log 24+log 25log 28⎝⎛⎭⎫log 52+log 54log 525+log 58log 5125=⎝⎛⎭⎫3log 25+2log 252log 22+log 253log 22⎝⎛⎭⎫log 52+2log 522log 55+3log 523log 55=⎝⎛⎭⎫3+1+13log 25·(3log 52) =13log 25·log 22log 25=13.方法二 原式=⎝⎛⎭⎫lg125lg2+lg25lg4+lg5lg8⎝⎛⎭⎫lg2lg5+lg4lg25+lg8lg125 =⎝⎛⎭⎫3lg5lg2+2lg52lg2+lg53lg2⎝⎛⎭⎫lg2lg5+2lg22lg5+3lg23lg5 =⎝⎛⎭⎫13lg53lg2⎝⎛⎭⎫3lg2lg5=13.点评 方法一是先将括号换底,然后再将底统一;方法二是在解题方向还不清楚的情况下,一次性地统一为常用对数(当然也可以换成其他非1的正数为底),然后再化简.上述方法是不同底数对数的计算、化简和恒等证明的常用方法.已知log (x +3)(x 2+3x )=1,数x 的值.错解 由对数的性质可得x 2+3x =x +3. 解得x =1或x =-3.错因分析 对数的底数和真数必须大于0且底数不等于1,这点在解题中忽略了.正解 由对数的性质知⎩⎪⎨⎪⎧x 2+3x =x +3,x 2+3x >0,x +3>0且x +3≠1.解得x =1,故实数x 的值为1.对数的定义及其性质是高考中的重要考点之一,主要性质有:log a 1=0,log a a =1,a log a N =N (a >0,且a ≠1,N >0).1.(高考)方程9x -6·3x -7=0的解是________. 解析 ∵9x -6·3x -7=0,即32x -6·3x -7=0 ∴(3x -7)(3x +1)=0 ∴3x =7或3x =-1(舍去) ∴x =log 37. 答案 log 372.(高考)设g (x )=⎩⎪⎨⎪⎧e x ,x ≤0,ln x ,x >0,则g ⎝⎛⎭⎫g ⎝⎛⎭⎫12=____. 解析 g ⎝⎛⎭⎫12=ln 12<0,g ⎝⎛⎭⎫ln 12=eln 12=12, ∴g ⎝⎛⎭⎫g ⎝⎛⎭⎫12=12. 答案 121.对数式log (a -3)(7-a )=b ,实数a 的取值围是( )A .(-∞,7)B .(3,7)C .(3,4)∪(4,7)D .(3,+∞) 答案 C解析 由题意得⎩⎪⎨⎪⎧a -3>0,a -3≠1,7-a >0,解得3<a <7且a ≠4.2.设a =log 32,则log 38-2log 36用a 表示的形式是( )A .a -2B .3a -(1+a )2C .5a -2D .-a 2+3a -1 答案 A解析 ∵a =log 32,∴log 38-2log 36=3log 32-2(log 32+1) =3a -2(a +1)=a -2. 3.log 56·log 67·log 78·log 89·log 910的值为( )A .1B .lg5 C.1lg5D .1+lg2答案 C解析 原式=lg6lg5·lg7lg6·lg8lg7·lg9lg8·lg10lg9=lg10lg5=1lg5.4.已知log a (a 2+1)<log a 2a <0,则a 的取值围是( )A .(0,1) B.⎝⎛⎭⎫0,12 C.⎝⎛⎭⎫12,1 D .(1,+∞) 答案 C解析 由题意,得⎩⎪⎨⎪⎧0<a <1,2a >1,∵a >0,a ≠1,log a (a 2+1)<log a 2a ,∴0<a <1.∴12<a <1.5.已知函数f (x )=a x -1+log a x (a >0,a ≠1)在[1,3]上最大值与最小值之和为a 2,则a 的值为( )A .4 B.14 C .3 D.13答案 D6.若方程(lg x )2+(lg7+lg5)lg x +lg7·lg5=0的两根为α,β,则αβ等于( )A .lg7·lg5B .lg35C .35 D.135答案 D解析 ∵lg α+lg β=-(lg7+lg5)=-lg35=lg 135∴α·β=135.7.已知f (log 2x )=x ,则f ⎝⎛⎭⎫12=________. 答案 2解析 令log 2x =12,则212=x ,∴f ⎝⎛⎭⎫12=212= 2.8.log (2-1)(2+1)=________. 答案 -1解析 log 2-1(2+1)=log 2-1(2+1)(2-1)2-1=log (2-1)12-1=-1.9.已知lg2=0.301 0,lg3=0.477 1,lg x =-2+0.778 1,则x =________. 答案 0.06解析 ∵lg2=0.301 0,lg3=0.477 1,而0.301 0+0.477 1=0.778 1,∴lg x =-2+lg2+lg3, 即lg x =lg10-2+lg6.∴lg x =lg(6×10-2),即x =6×10-2=0.06.10.(1)已知lg x +lg y =2lg(x -2y ),求log 2xy的值;(2)已知log 189=a,18b =5,试用a ,b 表示log 365. 解 (1)lg x +lg y =2lg(x -2y ), ∴xy =(x -2y )2,即x 2-5xy +4y 2=0. 即(x -y )(x -4y )=0,解得x =y 或x =4y , 又∵⎩⎪⎨⎪⎧x >0,y >0,x -2y >0,∴x >2y >0,∴x =y ,应舍去,取x =4y .则log 2x y =log 24y y =log 24=lg4lg 2=4.(2)∵18b =5,∴log 185=b, 又∵log 189=a , ∴log 365=log 185lg 1836=blog 18(18×2)=b 1+log 182=b 1+log 18189=b 1+(1-log 189)=b2-a. 11.设a ,b ,c 均为不等于1的正数,且a x =b y =c z ,1x +1y +1z =0,求abc 的值.解 令a x =b y =c z =t (t >0且t ≠1),则有1x =log t a ,1y =log t b ,1z =log t c ,又1x +1y +1z=0,∴log t abc =0,∴abc =1. 12.已知a ,b ,c 是△ABC 的三边,且关于x 的方程x 2-2x +lg(c 2-b 2)-2lg a +1=0有等根,试判定△ABC 的形状.解 ∵关于x 的方程x 2-2x +lg(c 2-b 2)-2lg a +1=0有等根, ∴Δ=0,即4-4[lg(c 2-b 2)-2lg a +1]=0.即lg(c2-b2)-2lg a=0,故c2-b2=a2,∴a2+b2=c2,∴△ABC为直角三角形.2.2.1对数与对数运算(一)学习目标1.理解对数的概念,能进行指数式与对数式的互化.2.了解常用对数与自然对数的意义.3.理解对数恒等式并能用于有关对数的计算.自学导引1.如果a(a>0且a≠1)的b次幂等于N,就是a b=N,那么数b叫做以a为底N的对数,记作b=log a N,其中a叫做对数的底数,N叫做真数.2.对数的性质有:(1)1的对数为零;(2)底的对数为1;(3)零和负数没有对数.3.通常将以10为底的对数叫做常用对数,以e 为底的对数叫做自然对数,log 10N 可简记为lg N ,log e N 简记为ln N .4.若a >0,且a ≠1,则a b =N 等价于log a N =b . 5.对数恒等式:a log a N =N (a >0且a ≠1).一、对数式有意义的条件例1 求下列各式中x 的取值围:(1)log 2(x -10);(2)log (x -1)(x +2);(3)log (x +1)(x -1)2.分析 由真数大于零,底数大于零且不等于1可得到关于x 的不等式(组),解之即可. 解 (1)由题意有x -10>0,∴x >10,即为所求.(2)由题意有⎩⎪⎨⎪⎧ x +2>0,x -1>0且x -1≠1,即⎩⎪⎨⎪⎧x >-2,x >1且x ≠2,∴x >1且x ≠2. (3)由题意有⎩⎪⎨⎪⎧(x -1)2>0,x +1>0且x +1≠1,解得x >-1且x ≠0,x ≠1.点评 在解决与对数有关的问题时,一定要注意:对数真数大于零,对数的底数大于零且不等于1.变式迁移1 在b =log (a -2)(5-a )中,实数a 的取值围是( ) A .a >5或a <2 B .2<a <5 C .2<a <3或3<a <5 D .3<a <4 答案 C解析 由题意得⎩⎪⎨⎪⎧5-a >0a -2>0a -2≠1,∴2<a <5且a ≠3.二、对数式与指数式的互化例2 将下列对数形式化成指数形式或将指数形式转化为对数形式:(1)54=625; (2)log 128=-3;(3)⎝⎛⎭⎫14-2=16; (4)log 101 000=3. 分析 利用a x =N ⇔x =log a N 进行互化. 解 (1)∵54=625,∴log 5625=4.(2)∵log 128=-3,∴⎝⎛⎭⎫12-3=8. (3)∵⎝⎛⎭⎫14-2=16,∴log 1416=-2. (4)∵log 101 000=3,∴103=1 000.点评 指数和对数运算是一对互逆运算,在解题过程中,互相转化是解决相关问题的重要途径.在利用a x =N ⇔x =log a N 进行互化时,要分清各字母分别在指数式和对数式中的位置.变式迁移2 将下列对数式化为指数式求x 值:(1)log x 27=32; (2)log 2x =-23;(3)log 5(log 2x )=0; (4)x =log 2719;(5)x =log 1216.解 (1)由log x 27=32,得x 32=27,∴x =2723=32=9.(2)由log 2x =-23,得2-23=x ,∴x =1322=322.(3)由log 5(log 2x )=0,得log 2x =1,∴x =21=2.(4)由x =log 2719,得27x =19,即33x =3-2,∴x =-23.(5)由x =log 1216,得⎝⎛⎭⎫12x =16,即2-x =24, ∴x =-4.三、对数恒等式的应用例3 (1)a log a b ·log b c ·log c N 的值(a ,b ,c ∈R +,且不等于1,N >0);(2)412(log 29-log 25).解 (1)原式=(a log a b )log b c ·log c N =b log b c ·log c N =(b log b c )log c N=c log c N =N .(2)原式=2(log 29-log 25)=2log 292log 25=95.点评 对数恒等式a log a N =N 中要注意格式:(1)它们是同底的;(2)指数中含有对数形式;(3)其值为真数.变式迁移3 计算:3log 35+(3)log 315.解 原式=5+312log 315=5+(3log 315)12=5+15=655.1.一般地,如果a (a >0,a ≠1)的b 次幂等于N ,就是a b =N ,那么b 叫做以a 为底N 的对数,记作log a N =b ,其中a 叫做对数的底数,N 叫做真数.2.利用a b =N ⇔b =log a N (其中a >0,a ≠1,N >0)可以进行指数与对数式的互化. 3.对数恒等式:a log a N =N (a >0且a ≠1).一、选择题1.下列指数式与对数式互化不正确的一组是( ) A .100=1与lg1=0B .27-13=13与log 2713=-13C .log 312=9与912=3D .log 55=1与51=5 答案 C2.指数式b 6=a (b >0,b ≠1)所对应的对数式是( )A .log 6a =aB .log 6b =aC .log a b =6D .log b a =6 答案 D3.若log x (5-2)=-1,则x 的值为( ) A.5-2 B.5+2C.5-2或5+2 D .2- 5 答案 B4.如果f (10x )=x ,则f (3)等于( ) A .log 310 B .lg3 C .103 D .310 答案 B解析 方法一 令10x =t ,则x =lg t , ∴f (t )=lg t ,f (3)=lg3.方法二 令10x =3,则x =lg3,∴f (3)=lg3.5.21+12·log 25的值等于( )A .2+ 5B .2 5C .2+52D .1+52答案 B解析 21+12log 25=2×212log 25=2×2log 2512=2×512=2 5.二、填空题6.若5lg x =25,则x 的值为________. 答案 100解析 ∵5lg x =52,∴lg x =2,∴x =102=100.7.设log a 2=m ,log a 3=n ,则a 2m +n 的值为________. 答案 12解析 ∵log a 2=m ,log a 3=n ,∴a m =2,a n =3, ∴a 2m +n =a 2m ·a n =(a m )2·a n =22×3=12.8.已知lg6≈0.778 2,则102.778 2≈________. 答案 600解析 102.778 2≈102×10lg6=600. 三、解答题9.求下列各式中x 的值(1)若log 3⎝⎛⎭⎫1-2x 9=1,则求x 值;(2)若log 2 003(x 2-1)=0,则求x 值. 解 (1)∵log 3⎝⎛⎭⎪⎫1-2x 9=1,∴1-2x 9=3 ∴1-2x =27,即x =-13 (2)∵log 2 003(x 2-1)=0 ∴x 2-1=1,即x 2=2 ∴x =±210.求x 的值:(1)x =log224;(2)x =log 93;(3)x =71-log 75; (4)log x 8=-3;(5)log 12x =4.解 (1)由已知得:⎝⎛⎭⎫22x =4,∴2-12x =22,-x2=2,x =-4.(2)由已知得:9x =3,即32x =312.∴2x =12,x =14.(3)x =7÷7log 75=7÷5=75.(4)由已知得:x -3=8, 即⎝⎛⎭⎫1x 3=23,1x =2,x =12. (5)由已知得:x =⎝ ⎛⎭⎪⎫124=116.2.2.1 对数与对数运算(二)学习目标1.掌握对数的运算性质及其推导.2.能运用对数运算性质进行化简、求值和证明.自学导引1.对数的运算性质:如果a >0,a ≠1,M >0,N >0,那么, (1)log a (MN )=log a M +log a N ;(2)log a MN=log a M -log a N ;(3)log a M n =n log a M (n ∈R ).2.对数换底公式:log a b =log c blog c a.一、正确理解对数运算性质例1 若a >0,a ≠1,x >0,y >0,x >y ,下列式子中正确的个数有( ) ①log a x · log a y =log a (x +y ); ②log a x -log a y =log a (x -y );③log a xy=log a x ÷log a y ;④log a (xy )=log a x ·log a y .A .0个B .1个C .2个D .3个 答案 A解析 对数的运算实质是把积、商、幂的对数运算分别转化为对数的加、减、乘的运算.在运算中要注意不能把对数的符号当作表示数的字母参与运算,如log a x ≠log a ·x ,log a x 是不可分开的一个整体.四个选项都把对数符号当作字母参与运算,因而都是错误的. 点评 正确理解对数运算性质公式,是利用对数运算性质公式解题的前提条件. 变式迁移1 若a >0且a ≠1,x >0,n ∈N *,则下列各式正确的是( )A .log a x =-log a 1xB .(log a x )n =n log a xC .(log a x )n =log a x nD .log a x =log a 1x答案 A二、对数运算性质的应用例2 计算:(1)log 535-2log 573+log 57-log 51.8;(2)2(lg 2)2+lg 2·lg5+(lg 2)2-lg2+1; (3)lg 27+lg8-lg 1 000lg1.2;(4)(lg5)2+lg2·lg50. 分析 利用对数运算性质计算.解 (1)原式=log 5(5×7)-2(log 57-log 53)+log 57-log 595=log 55+log 57-2log 57+2log 53+log 57-2log 53+log 55 =2log 55=2.(2)原式=lg 2(2lg 2+lg5)+(lg 2-1)2=lg 2(lg2+lg5)+1-lg 2=lg 2+1-lg 2=1.(3)原式=32lg3+3lg2-32lg3+2lg2-1=3lg3+6lg2-32(lg3+2lg2-1)=32.(4)原式=(lg5)2+lg2·(lg2+2lg5)=(lg5)2+2lg5·lg2+(lg2)2=(lg5+lg2)2=1.点评 要灵活运用有关公式.注意公式的正用、逆用及变形使用. 变式迁移2 求下列各式的值:(1)log 535+2log 122-log 5150-log 514;(2)[(1-log 63)2+log 62·log 618]÷log 64. 解 (1)原式=log 5(5×7)-2log 2212+log 5(52×2)-log 5(2×7)=1+log 57-1+2+log 52-log 52-log 57=2.(2)原式=[log 262+log 62·log 6(3×6)]÷log 622 =log 62(log 62+log 63+1)÷(2log 62)=1.三、换底公式的应用例3 (1)设3x =4y =36,求2x +1y的值;(2)已知log 189=a,18b =5,求log 3645. 解 (1)由已知分别求出x 和y . ∵3x =36,4y =36, ∴x =log 336,y =log 436,由换底公式得: x =log 3636log 363=1log 363,y =log 3636log 364=1log 364,∴1x =log 363,1y =log 364, ∴2x +1y =2log 363+log 364 =log 36(32×4)=log 3636=1.(2)∵log 189=a,18b =5,∴log 185=b .∴log 3645=log 1845log 1836=log 18(9×5)log 18(18×2)=log 189+log 1851+log 182=a +b 1+log 18189=a +b2-a .点评 指数式化为对数式后,两对数式的底不同,但式子两端取倒数后,利用对数的换底公式可将差异消除.变式迁移3 (1)设log 34·log 48·log 8m =log 416,求m ; (2)已知log 1227=a ,求log 616的值.解 (1)利用换底公式,得lg4lg3·lg8lg4·lg mlg8=2,∴lg m =2lg3,于是m =9.(2)由log 1227=a ,得3lg32lg2+lg3=a ,∴lg3=2a lg23-a ,∴lg3lg2=2a3-a .∴log 616=4lg2lg3+lg2=42a 3-a +1=4(3-a )3+a.1.对于同底的对数的化简常用方法是:(1)“收”,将同底的两对数的和(差)化成积(商)的对数; (2)“拆”,将积(商)的对数拆成对数的和(差).2.对于常用对数的化简要充分利用“lg5+lg2=1”来解题. 3.对于多重对数符号对数的化简,应从向外逐层化简求值.一、选择题1.lg8+3lg5的值为( )A .-3B .-1C .1D .3 答案 D解析 lg8+3lg5=lg8+lg53=lg1 000=3. 2.已知lg2=a ,lg3=b ,则log 36等于( ) A.a +b a B.a +b bC.a a +bD.b a +b 答案 B解析 log 36=lg6lg3=lg2+lg3lg3=a +bb.3.若lg a ,lg b 是方程2x 2-4x +1=0的两个根,则⎝⎛⎭⎫lg ab 2的值等于( ) A .2 B.12 C .4 D.14答案 A解析 由根与系数的关系,得lg a +lg b =2,lg a ·lg b =12,∴⎝⎛⎭⎫lg ab 2=(lg a -lg b )2 =(lg a +lg b )2-4lg a ·lg b=22-4×12=2.4.若2.5x =1 000,0.25y =1 000,则1x -1y等于( )A.13 B .3 C .-13 D .-3 答案 A解析 由指数式转化为对数式:x =log 2.51 000,y =log 0.251 000, 则1x -1y =log 1 0002.5-log 1 0000.25=log 1 00010=13.5.设函数f (x )=log a x (a >0,且a ≠1),若f (x 1x 2…x 2 005)=8,则f (x 21)+f (x 22)+…+f (x 22 005)的值等于( )A .4B .8C .16D .2log a 8 答案 C解析 因为f (x )=log a x ,f (x 1x 2…x 2 005)=8,所以f (x 21)+f (x 22)+…+f (x 22 005) =log a x 21+log a x 22+…+log a x 22 005=2log a |x 1|+2log a |x 2|+…+2log a |x 2 005| =2log a |x 1x 2…x 2 005|=2f (x 1x 2…x 2 005)=2×8=16. 二、填空题6.设lg2=a ,lg3=b ,那么lg 1.8=__________.答案 a +2b -12解析 lg 1.8=12lg1.8=12lg 1810=12lg 2×910=12(lg2+lg9-1)=12(a +2b -1). 7.若log a x =2,log b x =3,log c x =6,则log abc x 的值为____. 答案 1解析 log abc x =1log x abc =1log x a +log x b +log x c∵log a x =2,log b x =3,log c x =6∴log x a =12,log x b =13,log x c =16,∴log abc x =112+13+16=11=1.8.已知log 63=0.613 1,log 6x =0.386 9,则x =________. 答案 2解析 由log 63+log 6x =0.613 1+0.386 9=1. 得log 6(3x )=1.故3x =6,x =2. 三、解答题9.求下列各式的值: (1)12lg 3249-43lg 8+lg 245; (2)(lg5)2+2lg2-(lg2)2.解 (1)方法一 原式=12(5lg2-2lg7)-43·32lg2+12(2lg7+lg5) =52lg2-lg7-2lg2+lg7+12lg5 =12lg2+12lg5=12(lg2+lg5) =12lg10=12. 方法二 原式=lg 427-lg4+lg7 5=lg42×757×4=lg(2·5)=lg 10=12.(2)方法一 原式=(lg5+lg2)(lg5-lg2)+2lg2=lg10·lg 52+lg4=lg ⎝⎛⎭⎫52×4=lg10=1. 方法二 原式=(lg10-lg2)2+2lg2-lg 22 =1-2lg2+lg 22+2lg2-lg 22=1.10.若26a =33b =62c ,求证:1a +2b =3c .证明 设26a =33b =62c =k (k >0),那么 ⎩⎪⎨⎪⎧6a =log 2k ,3b =log 3k ,2c =log 6k ,∴⎩⎪⎨⎪⎧1a =6log 2k=6log k 2,1b =3log 3k =3log k3,1c =2log 6k =2log k6.∴1a +2b=6·log k 2+2×3log k 3 =log k (26×36)=6log k 6=3×2log k 6=3c,即1a +2b =3c. 2.2.2 对数函数及其性质1.对数函数的概念形如y =log a x (a >0且a ≠1)的函数叫做对数函数. 对于对数函数定义的理解,要注意:(1)对数函数是由指数函数变化而来的,由指数式与对数式关系知,对数函数的自变量x 恰好是指数函数的函数值y ,所以对数函数的定义域是(0,+∞);(2)对数函数的解析式y=log a x中,log a x前面的系数为1,自变量在真数的位置,底数a 必须满足a>0,且a≠1;(3)以10为底的对数函数为y=lg x,以e为底的对数函数为y=ln x.实际上,观察对数函数的图象不难发现,对数函数中的值y =log m n 有以下规律:(1)当(m -1)(n -1)>0,即m 、n 围相同(相对于“1”而言),则log m n >0;(2)当(m -1)(n -1)<0,即m 、n 围相反(相对于“1”而言),则log m n <0.有了这个规律,我们再判断对数值的正负就很简单了,如log 213<0,log 52>0等,一眼就看出来了!题型一 求函数定义域求下列函数的定义域:(1)y =log 3x -12x +3x -1;(2)y =11-log a (x +a ) (a >0,a ≠1).分析 定义域即使函数解析式有意义的x 的围. 解 (1)要使函数有意义,必须{2x +3>0,x -1>0,3x -1>0,3x -1≠1同时成立,解得⎩⎨⎧x >-32,x >1,x >13,x ≠23. ∴x >1. ∴定义域为(1,+∞).(2)要使原函数有意义,需1-log a (x +a )>0, 即log a (x +a )<1=log a a .当a >1时,0<x +a <a ,∴-a <x <0. 当0<a <1时,x +a >a ,∴x >0.∴当a >1时,原函数定义域为{x |-a <x <0}; 当0<a <1时,原函数定义域为{x |x >0}.点评 求与对数函数有关的定义域问题,首先要考虑:真数大于零,底数大于零且不等于1,若分母中含有x ,还要考虑不能使分母为零.题型二 对数单调性的应用(1)log 43,log 34,log 4334的大小顺序为( )A .log 34<log 43<log 4334B .log 34>log 43>log 4334C .log 34>log 4334>log 43D .log 4334>log 34>log 43(2)若a 2>b >a >1,试比较log a a b ,log b ba ,logb a ,log a b 的大小.(1)解析 ∵log 34>1,0<log 43<1,log 4334=log 43⎝⎛⎭⎫43-1=-1, ∴log 34>log 43>log 4334.答案 B(2)解 ∵b >a >1,∴0<ab<1.∴log a a b <0,log b ba ∈(0,1),logb a ∈(0,1).又a >b a >1,且b >1,∴log b ba<log b a ,故有log a a b <log b ba<log b a <log a b .点评 比较对数的大小,一般遵循以下几条原则:①如果两对数的底数相同,则由对数函数的单调性(底数a >1为增;0<a <1为减)比较. ②如果两对数的底数和真数均不相同,通常引入中间变量进行比较.③如果两对数的底数不同而真数相同,如y =log a 1x 与y =log a 2x 的比较(a 1>0,a 1≠1,a 2>0,a 2≠1).当a 1>a 2>1时,曲线y 1比y 2的图象(在第一象限)上升得慢.即当x >1时,y 1<y 2;当0<x <1时,y 1>y 2.而在第一象限,图象越靠近x 轴对数函数的底数越大.当0<a 2<a 1<1时,曲线y 1比y 2的图象(在第四象限)下降得快.即当x >1时,y 1<y 2;当0<x <1时,y 1>y 2即在第四象限,图象越靠近x 轴的对数函数的底数越小. 已知log a 12<1,那么a 的取值围是________.分析 利用函数单调性或利用数形结合求解.解析 由log a 12<1=log a a ,得当a >1时,显然符合上述不等式,∴a >1;当0<a <1时,a <12,∴0<a <12. 故a >1或0<a <12.答案 a >1或0<a <12点评 解含有对数符号的不等式时,必须注意对数的底数是大于1还是小于1,然后再利用相应的对数函数的单调性进行解答.理解会用以下几个结论很有必要:(1)当a >1时,log a x >0⇔x >1,log a x <0⇔0<x <1;(2)当0<a <1时,log a x >0⇔0<x <1,log a x <0⇔x >1.题型三 函数图象的应用若不等式2x -log a x <0,当x ∈⎝⎛⎭⎫0,12时恒成立,数a 的取值围. 解要使不等式2x<logax 在x ∈⎪⎭⎫ ⎝⎛21,0时恒成立,即函数y=logax 的图象在⎪⎭⎫ ⎝⎛21,0恒在函数y=2x 图象的上方,而y=2x 图象过点⎪⎭⎫⎝⎛2,21.由图可知,loga 21>2,显然这里0<a<1,∴函数y=logax 递减. 又loga21>2=log 2a a ,∴a2>21,即a>2221⎪⎭⎫ ⎝⎛.∴所求的a 的取值围为2221⎪⎭⎫⎝⎛<a<1.点评 原问题等价于当x ∈⎪⎭⎫ ⎝⎛21,0时,y1=2x 的图象在y2=logax 的图象的下方,由于a 的大小不确定,当a>1时,显然y2<y1,因此a 必为小于1的正数,当y2的图象通过点⎪⎭⎫⎝⎛2,21时,y2满足条件,此时a 0=2221⎪⎭⎫⎝⎛.那么a 是大于a 0还是小于a 0才满足呢?可以画图象观察,请试着画一画.这样可以对数形结合的方法有更好地掌握.设函数f(x)=lg(ax2+2x+1),若f(x)的值域是R,数a的取值围.错解∵f(x)的值域是R,∴ax2+2x+1>0对x∈R恒成立,即{a>0Δ<0⇔{a>04-4a<0⇔a>1.错因分析出错的原因是分不清定义域为R与值域为R的区别.正解函数f(x)=lg(ax2+2x+1)的值域是R⇔真数t=ax2+2x+1能取到所有的正数.当a=0时,只要x>-12,即可使真数t取到所有的正数,符合要求;当a≠0时,必须有{a>0Δ≥0⇔{a>04-4a≥0⇔0<a≤1.∴f(x)的值域为R时,实数a的取值围为[0,1].本节容在高考中考查的形式、地位与指数函数相似,着重考查对数的概念与对数函数的单调性,考查指数、对数函数的图象、性质及其应用.1.(高考)已知函数f(x)=11-x的定义域为M,g(x)=ln(1+x)的定义域为N,则M∩N等于()A .{x |x >-1}B .{x |x <1}C .{x |-1<x <1}D .∅解析 由题意知M ={x |x <1},N ={x |x >-1}. 故M ∩N ={x |-1<x <1}. 答案 C2.(高考)下列不等式成立的是( ) A .log 32<log 23<log 25 B .log 32<log 25<log 23 C .log 23<log 32<log 25 D .log 23<log 25<log 32解析 ∵y =log 2x 在(0,+∞)上是增函数, ∴log 25>log 23>log 22=1.又y =log 3x 在(0,+∞)上为增函数,∴log 32<log 33=1.∴log 32<log 23<log 25. 答案 A3.(全国高考)若x ∈(e -1,1),a =ln x ,b =2ln x ,c =ln 3x ,则( ) A .a <b <c B .c <a <b C .b <a <c D .b <c <a解析 ∵1e <x <1,∴-1<ln x <0.令t =ln x ,则-1<t <0. ∴a -b =t -2t =-t >0.∴a >b . c -a =t 3-t =t (t 2-1)=t (t +1)(t -1), 又∵-1<t <0,∴0<t +1<1,-2<t -1<-1,∴c -a >0,∴c >a . ∴c >a >b . 答案 C1.已知函数f (x )=1+2x 的定义域为集合M ,g (x )=ln(1-x )的定义域为集合N ,则M ∩N 等于( )A .{x |x >-1}B .{x |x <1}C.⎩⎨⎧⎭⎬⎫x |-12<x <1 D .∅答案 C2.已知函数f (x )=lg 1-x 1+x,若f (a )=12,则f (-a )等于( )A.12 B .-12 C .-2 D .2 答案 B解析 f (-a )=lg 1+a1-a =-lg ⎝ ⎛⎭⎪⎫1+a 1-a -1=-lg 1-a 1+a=-f (a )=-12.3.已知a =log 23,b =log 32,c =log 42,则a ,b ,c 的大小关系是( )A .c <b <aB .a <b <cC .b <c <aD .c <a <b 答案 A解析 因为a =log 23>1,b =log 3 2<1,所以a >b ;又因为2>3,则log 32>log 33=12,而log 42=log 22=12,所以b >12,c =12,即b >c .从而a >b >c .4.函数f (x )=lg|x |为( )A .奇函数,在区间(0,+∞)上是减函数B .奇函数,在区间(0,+∞)上是增函数C .偶函数,在区间(-∞,0)上是增函数D .偶函数,在区间(-∞,0)上是减函数 答案 D解析 已知函数定义域为(-∞,0)∪(0,+∞),关于坐标原点对称,且f (-x )=lg|-x |=lg|x |=f (x ),所以它是偶函数.又当x >0时,|x |=x ,即函数y =lg|x |在区间(0,+∞)上是增函数.又f (x )为偶函数,所以f (x )=lg|x |在区间(-∞,0)上是减函数.5.函数y =a x 与y =-log a x (a >0,且a ≠1)在同一坐标系中的图象只可能为( )答案 A解析 方法一 若0<a <1,则曲线y =a x 下降且过(0,1),而曲线y =-log a x 上升且过(1,0);若a >1,则曲线y =a x 上升且过(0,1),而曲线y =-log a x 下降且过(1,0).只有选项A 满足条件.方法二 注意到y =-log a x 的图象关于x 轴对称的图象的表达式为y =log a x ,又y =log a x 与y =a x 互为反函数(图象关于直线y =x 对称),则可直接选定选项A.6.设函数f (x )=log 2a (x +1),若对于区间(-1,0)的每一个x 值都有f (x )>0,则实数a 的取值围为( )A .(0,+∞) B.⎝⎛⎭⎫12,+∞ C.⎝⎛⎭⎫12,1 D.⎝⎛⎭⎫0,12 答案 D 解析 已知-1<x <0,则0<x +1<1,又当-1<x <0时,都有f (x )>0,即0<x +1<1时都有f (x )>0,所以0<2a <1,即0<a <12.7.若指数函数f (x )=a x (x ∈R )的部分对应值如下表:则不等式log a (x -1)<0答案 {x |1<x <2}解析 由题可知a =1.2,∴log 1.2(x -1)<0, ∴log 1.2(x -1)<log 1.21,解得x <2, 又∵x -1>0,即x >1,∴1<x <2. 故原不等式的解集为{x |1<x <2}.8.函数y =log a x (1≤x ≤2)的值域为[-1,0],那么a 的值为________.答案 12解析 若a >1,则函数y =log a x 在区间[1,2]上为增函数,其值域不可能为[-1,0]; 故0<a <1,此时当x =2时,y 取最小值-1,即log a 2=-1,得a -1=2,所以a =12.9.已知函数f (x )=⎩⎪⎨⎪⎧(3a -1)x +4a ,x <1log a x ,x ≥1是实数集R 上的减函数,那么实数a 的取值围为__________.答案 ⎣⎡⎭⎫17,13解析 函数f (x )为实数集R 上的减函数,一方面,0<a <1且3a -1<0,所以0<a <13,另一方面,由于f (x )在R 上为减函数, 因此应有(3a -1)×1+4a ≥log a 1,即a ≥17.因此满足题意的实数a 的取值围为17≤a <13.10.已知f (x )=1+log 2x (1≤x ≤4),求函数g (x )=f 2(x )+f (x 2)的最大值和最小值. 解 ∵f (x )的定义域为[1,4], ∴g (x )的定义域为[1,2].∵g (x )=f 2(x )+f (x 2)=(1+log 2x )2+(1+log 2x 2) =(log 2x +2)2-2, 又1≤x ≤2,∴0≤log 2x ≤1. ∴当x =1时,g (x )min =2;当x =2时,g (x )max =7.学习目标1.掌握对数函数的概念、图象和性质.2.能够根据指数函数的图象和性质得出对数函数的图象和性质,把握指数函数与对数函数关系的实质.自学导引1.对数函数的定义:一般地,我们把函数y=log a x(a>0,且a≠1)叫做对数函数,其中x是自变量,函数的定义域是(0,+∞).对数函数y =log a x (a >0且a ≠1)和指数函数y =a x _(a >0且a ≠1)互为反函数.一、对数函数的图象例1 下图是对数函数y =log a x 的图象,已知a 值取3,43,35,110,则图象C 1,C 2,C 3,C 4相应的a 值依次是( )A.101,53,34,3B .53,101,34,3C .101,53,3,34 D .53,101,3,34 答案 A解析 方法一 因为对数的底数越大,函数的图象越远离y 轴的正方向,所以C1,C2,C3,C4的a 值依次由大到小,即C1,C2,C3,C4的a 值依次为101,53,34,3. 方法二 过(0,1)作平行于x 轴的直线,与C1,C2,C3,C4的交点的横坐标为(a1,1),(a2,1),(a3,1),(a4,1),其中a1,a2,a3,a4分别为各对数的底,显然a1>a2>a3>a4,所以C1,C2,C3,C4的底值依次由大到小.点评 函数y=logax (a>0,且a ≠1)的底数a 的变化对图象位置的影响如下:①上下比较:在直线x=1的右侧,底数大于1时,底数越大,图象越靠近x 轴;底数大于0且小于1时,底数越小,图象越靠近x 轴.②左右比较:(比较图象与y=1的交点)交点的横坐标越大,对应的对数函数的底数越大. 变式迁移1 借助图象比较m ,n 的大小关系:(1)若logm5>logn5,则m n ;(2)若logm0.5>logn0.5,则m n.答案 (1)< (2)>二、求函数的定义域例2 求下列函数的定义域:(1)y =3log 2x ;(2)y =log 0.5(4x -3);(3)y =log (x +1)(2-x ).分析 定义域即使函数解析式有意义的x 的围.解 (1)∵该函数是奇次根式,要使函数有意义,只要对数的真数是正数即可, ∴定义域是{x |x >0}.(2)要使函数y =log 0.5(4x -3)有意义,必须log 0.5(4x -3)≥0=log 0.51,∴0<4x -3≤1.解得34<x ≤1. ∴定义域是⎩⎨⎧⎭⎬⎫x |34<x ≤1. (3)由⎩⎪⎨⎪⎧ x +1>0x +1≠12-x >0,得⎩⎨⎧ x >-1x ≠0,x <2即0<x <2或-1<x <0,所求定义域为(-1,0)∪(0,2).点评 求与对数函数有关的函数定义域时,除遵循前面已学习过的求函数定义域的方法外,还要对这种函数自身有如下要求:一是要特别注意真数大于零;二是要注意对数的底数;三是按底数的取值应用单调性,有针对性的解不等式.变式迁移2 求y =log a (4x -3)(a >0,a ≠1)的定义域.解 log a (4x -3)≥0.(*)当a >1时,(*)可化为log a (4x -3)≥log a 1,∴4x -3≥1,x ≥1.当0<a <1时,(*)可化为log a (4x -3)≥log a 1,∴0<4x -3≤1,34<x ≤1. 综上所述,当a >1时,函数定义域为[1,+∞),当0<a <1时,函数定义域为⎝⎛⎦⎤34,1.三、对数函数单调性的应用例3 比较大小:(1)log 0.81.5与log 0.82;(2)log 35与log 64.分析 从比较底数、真数是否相同入手.解 (1)考查对数函数y =log 0.8x 在(0,+∞)是减函数,∵1.5<2,∴log 0.81.5>log 0.82.(2)log 35和log 64的底数和真数都不相同,找出中间量“搭桥”,再利用对数函数的单调性,即可求解.∵log 35>log 33=1=log 66>log 64,∴log 35>log 64.点评 比较两个对数值的大小,常用方法有:①底数相同真数不同时,用函数的单调性来比较;②底数不同而真数相同时,常借助图象比较,也可用换底公式转化为同底数的对数后比较;③底数与真数都不同,需寻求中间值比较.变式迁移3 比较下列各组中两个值的大小:(1)log 0.52.7,log 0.52.8; (2)log 34,log 65;(3)log a π,log a e (a >0且a ≠1).解 (1)∵0<0.5<1,∴对数函数y =log 0.5x 在(0,+∞)上是减函数.又∵2.7<2.8,∴log 0.52.7>log 0.52.8.(2)∵y =log 3x 在(0,+∞)上是增函数,∴log 34>log 33=1.∵y =log 6x 在(0,+∞)上是增函数,∴log 65<log 66=1.∴log 34>log 65.(3)当a >1时,y =log a x 在(0,+∞)上是增函数.∵π>e ,∴log a π>log a e.当0<a <1时,y =log a x 在(0,+∞)上是减函数.∵π>e ,∴log a π<log a e.综上可知,当a >1时,log a π>log a e ;当0<a <1时,log a π<log a e.例4 若-1<log a 34<1,求a 的取值围. 分析 此不等式为对数不等式且底数为参数.解答本题可根据对数函数的单调性转化为一般不等式求解,同时应注意分类讨论.解 -1<log a 34<1⇔log a 1a <log a 34<log a a . 当a >1时,1a <34<a ,∴a >43. 当0<a <1时,1a >34>a ,∴0<a <34. ∴a 的取值围是⎝⎛⎭⎫0,34∪⎝⎛⎭⎫43,+∞. 点评 (1)解对数不等式问题通常转化为不等式组求解,其依据是对数函数的单调性.(2)解决与对数函数相关的问题时要遵循“定义域优先”原则.(3)若含有字母,应考虑分类讨论.变式迁移4 已知log a (2a +1)<log a 3a <0,求a 的取值围.解 log a (2a +1)<log a 3a <0(*)当a >1时,(*)可化为⎩⎨⎧ 0<2a +1<10<3a <12a +1<3a, 解得⎩⎪⎨⎪⎧ -12<a <00<a <13a >1,∴此时a 无解.当0<a <1时,(*)可化为⎩⎨⎧ 2a +1>13a >12a +1>3a ,解得⎩⎨⎧ a >0a >13a <1,∴13<a <1. 综上所述,a 的取值围为⎝⎛⎭⎫13,1.1.求对数函数定义域要注意底数中是否含有自变量,此时底数大于0且不等于1.2.应用对数函数的图象和性质时要注意a >1还是0<a <1。

指数与对数知识点总结

指数与对数知识点总结

指数与对数知识点总结一、指数指数是数学中一个重要的概念,用于表示某个数的幂次。

(一)指数的定义如果有一个数$a$,$n$是一个正整数,那么$a^n$表示$n$个$a$相乘,即$a^n = a×a×···×a$($n$个$a$)。

例如,$2^3 = 2×2×2 = 8$,$3^4 = 3×3×3×3 = 81$。

(二)指数的运算性质1、$a^m × a^n = a^{m + n}$例如,$2^2 × 2^3 = 2^{2 + 3} = 2^5 = 32$2、$\frac{a^m}{a^n} = a^{m n}$($a ≠ 0$)比如,$\frac{3^5}{3^2} = 3^{5 2} = 3^3 = 27$3、$(a^m)^n = a^{mn}$例如,$(2^3)^2 = 2^{3×2} = 2^6 = 64$4、$(ab)^n = a^n b^n$比如,$(2×3)^3 = 2^3 × 3^3 = 8×27 = 216$(三)指数函数一般地,函数$y = a^x$($a > 0$且$a ≠ 1$)叫做指数函数。

当$a > 1$时,指数函数是增函数;当$0 < a < 1$时,指数函数是减函数。

例如,$y = 2^x$是增函数,$y =\left(\frac{1}{2}\right)^x$是减函数。

(四)负指数与分数指数1、负指数:$a^{n} =\frac{1}{a^n}$($a ≠ 0$,$n$为正整数)例如,$2^{-3} =\frac{1}{2^3} =\frac{1}{8}$2、分数指数:$a^{\frac{m}{n}}=\sqrtn{a^m}$($a >0$,$m$、$n$为正整数,$n > 1$)比如,$8^{\frac{2}{3}}=\sqrt3{8^2} =\sqrt3{64} = 4$二、对数对数是指数的逆运算。

(学习指导) 对数的概念Word版含解析

(学习指导) 对数的概念Word版含解析

§1对数的概念学习目标核心素养1.理解对数的概念.(重点)2.掌握指数式与对数式的互化.(重点)3.理解并掌握对数的基本性质.(难点、易混点)通过指数式与对数式的互化及对数的基本性质的学习,培养逻辑推理素养与数学运算素养.(1)指数式与对数式的互化及有关概念:(2)底数a的范围是a>0,且a≠1.2.常用对数与自然对数3.对数的基本性质(1)负数和零没有对数.(2)log a1=0(a>0,且a≠1).(3)log a a=1(a>0,且a≠1).(4)a log a N=N思考:为什么零和负数没有对数?提示:由对数的定义:a x=N(a>0且a≠1),则总有N>0,所以转化为对数式x=log a N时,不存在N≤0的情况.1.log22的值为()A.-2B.2C.-12D.12D[设log22=x,则2x=2=212,∴x=1 2.]2.下列指数式与对数式互化不正确的一组是() A.e0=1与ln 1=0B.8-13=12与log812=-13C.log39=2与912=3D .log 77=1与71=7C [根据a b =N ⇔b =log a N 可知,A ,B ,D 均正确,C 不正确.]3.若lg(ln x )=0,则x =________.e [ln x =1,x =e.]4.求下列对数的值:(1)log 28;(2)log 919;(3)ln e ;(4)lg 1.[解](1)设log 28=x ,则2x =8=23,∴x =3.∴log 28=3.(2)设log 919=x ,则9x =19=9-1,∴x =-1.∴log 919=-1.(3)ln e =1.(4)lg 1=0.对数的概念【例1】 已知对数log (1-a )(a +2)有意义,求实数a 的取值范围.[解]由于对数log (1-a )(a +2)有意义,则有⎩⎪⎨⎪⎧a +2>01-a >01-a ≠1,解得-2<a <0或0<a <1.所以实数a 的取值范围是(-2,0)∪(0,1).正确理解对数的概念(1)底数大于0且不等于1,真数大于0.(2)明确指数式和对数式的区别和联系,以及二者之间的相互转化.[跟进训练]1.若对数log 3a (-2a +1)有意义,则a 的取值范围是________.⎝ ⎛⎭⎪⎫0,13∪⎝ ⎛⎭⎪⎫13,12[根据题意可得⎩⎨⎧-2a +1>03a >03a ≠1解得0<a <12,a ≠13.所以a 的取值范围是(0,13)∪(13,12).]指数式与对数式的互化【例2】 求下列各式中x 的值:(1)log 16x =-2; (2)log x 27=34.[思路点拨] 利用对数的定义,把对数式化为指数式,即可解得x 的值.[解](1)由log 16x =-2,得x =16-2=⎝ ⎛⎭⎪⎫116=1256, 故x =1256.(2)由log x 27=34,得x 34=27,即x 34=33,∴x =34=81.1.首先掌握指数式与对数式的关系,即a b =N ⇔b =log a N .2.对数的定义是对数式和指数式互化的依据,在互化过程中应注意各自的位置及表示方式.[跟进训练]2.将下列指数式化为对数式,对数式化为指数式:(1)2-7=1128;(2)33=27;(3)10-1=0.1;(4)log 1232=-5;(5)lg 0.001=-3. [解](1)log 21128=-7;(2)log 327=3;(3)lg 0.1=-1;(4)⎝ ⎛⎭⎪⎫12-5=32;(5)10-3=0.001.对数的性质【例3】 求下列各式中x 的值(1)log 2(log 5x )=0;(2)log 3(lg x )=1;(3)log 3(log 4(log 5x ))=0.[解](1)∵log2(log5x)=0,∴log5x=20=1,∴x=51=5.(2)∵log3(lg x)=1,∴lg x=31=3,∴x=103=1 000.(3)由log3(log4(log5x))=0可得log4(log5x)=1,故log5x=4,所以x=54=625.(1)求多重对数式的值解题方法是由内到外,如求log a(log b c)的值,先求log b c 的值,再求log a(log b c)的值.(2)已知多重对数式的值,求变量值,应从外到内求,逐步脱去“log”后再求解.1.对数概念与指数概念有关,指数式和对数式是互逆的,即a b=N⇔log a N=b(a>0且a≠1,N>0),据此可得两个常用恒等式:(1)log a a b=b;(2)a log a N=N.2.在关系式a x=N中,已知a和x求N的运算称为求幂运算;而已知a和N 求x的运算就是对数运算,两个式子实质相同而形式不同,互为逆运算.3.指数式与对数式的互化1.思考辨析(正确的画“√”,错误的画“×”)(1)log a N 是log a 与N 的乘积.( )(2)(-2)3=-8可化为log (-2)(-8)=3.( )(3)对数运算的实质是求幂指数.( )[答案](1)×(2)×(3)√2.若a 2=M (a >0且a ≠1),则有( )A .log 2M =aB .log a M =2C .log a 2=MD .log 2a =M[答案]B3.已知log 32x -15=0,则x =________. 3[2x -15=30=1,解得x =3.]4.若log 12x =m ,log 14y =m +2,求x 2y 的值. [解]∵log 12x =m ,∴⎝ ⎛⎭⎪⎫12m =x ,x 2=⎝ ⎛⎭⎪⎫122m . ∵log 14y =m +2,∴⎝ ⎛⎭⎪⎫14m +2=y ,y =⎝ ⎛⎭⎪⎫122m +4. ∴x 2y =⎝ ⎛⎭⎪⎫122m ⎝ ⎛⎭⎪⎫122m +4=⎝ ⎛⎭⎪⎫122m -(2m +4)=⎝ ⎛⎭⎪⎫12-4=16.。

对数概念及其运算

对数概念及其运算

对数概念及其运算之阿布丰王创作知识点1 对数1.对数的定义如果()1,0≠>a a a 的b 次幂等于N ,那么数b 叫做以a 为底N 的对数,记作,log b N a =其中a 叫做对数的底数,N 叫做真数。

在对数函数b N a =log 中,a 的取值范围是()1,0≠>a a 且,N 的取值范围是0>N ,b 的取值范围是R b ∈。

【注意】根据对数的定义可知(1)零和负数没有对数,真数为正数,即0>N (2)在对数中必须强调底数0>a 且1≠a 2.经常使用对数 (1)定义:以10为底的对数叫做经常使用对数,N 10log 记做Nlg 。

(2)经常使用对数的性质10的整数指数幂的对数就是幂的指数,即()是整数n n n=10lg 3.自然对数(1)定义:以 71828.2=e 为底的对数叫做自然对数,Ne log 通常记为InN 。

(2)自然对数与经常使用对数之间的关系:依据对数换底公式,可以得到自然对数与经常使用对数之间的关系:4343.0lg lg lg Ne N InN ==,即N InN lg 303.2=。

4.指数式与对数式的互化(1)符号Na log 既是一个数值,也是一个算式,即已知底数和在某一个指数下的幂,求其指数的算式。

对数式b N a =log 的a 、N 、b在指数式N a b=中分别是底数、指数和幂。

(2)充分利用指数式和对数式的互换,讲述四条规则:①在b N a =log 中,必须0>N ,这是由于在实数范围内,正数任何次幂都是正数,因而N a b=中的N 总是正数,须强调零和负数没有对数。

②因为10=a ,所以01log =a 。

③因为,1a a =所以1log =a a 。

④因为N a b=,所以b N a =log ,所以N aN g l a=0。

【例1】下列说法错误的是()(A)负数和零没有对数 (B )任何一个指数式都可以化为对数式(C )以10为底的对数叫做经常使用对数 (D )以e 为底的对数叫做自然对数【例2】(1)把下列指数式写成对数式①;2713=x ②;6441=⎪⎭⎫ ⎝⎛x ③;16121=⎪⎭⎫ ⎝⎛x④51521=- (2)把下列对数式写成指数式:①;29log 3=②;3001.0lg -=③5321log 2-=。

对数运算法则

对数运算法则

对数与对数运算教学目标1、 理解对数的概念;能够说明对数与指数的关系;2、 掌握对数式与指数式的相互转化,并能运用指对互化关系研究一些问题.知识梳理一、对数的定义一般地,如果 ()1,0≠>a a a 的b 次幂等于N , 就是 N a b=,那么数 b 叫做 以a 为底 N 的对数,记作 b N a =log ,a 叫做对数的底数,N 叫做真数。

特别提醒: 1、对数记号log a N 只有在01a a ≠且>,0N >时才有意义,就是说负数和零是没有对数的。

2、记忆两个关系式:①log 10a =;②log 1a a =。

3、常用对数:我们通常将以10为底的对数叫做常用对数。

为了简便, N 的常用对数N 10log , 简记作:lg N 。

例如:10log 5简记作lg 5 5.3log 10简记作lg 3.5。

4、自然对数:在科学技术中常常使用以无理数e 为底的对数,以e 为底的对数叫自然对数。

为了简便,N 的自然对数N e log ,简记作:ln N 。

如:3log e 简记作ln 3;10log e 简记作ln10。

二、对数运算性质:如果 0,1,0,0,a a M N n R ≠∈>>> 有:log ()log log a a a MN M N =+log log log a a a MM N N=- log log () n a a M n M n R =∈特别提醒:1、对于上面的每一条运算性质,都要注意只有当式子中所有的对数记号都有意义时,等式才成立。

如[]2log (3)(5)--是存在的,但[]222log (3)(5)log (3)log (5)--=-+-是不成立的。

2、注意上述公式的逆向运用:如lg5lg 2lg101+==;三、对数的换底公式及推论: 对数换底公式:()log log 0,1,0,1,0log m a m NN a a m m N a=≠≠>>>两个常用的推论:(1)1log log =⋅a b b a(2)1log log log =⋅⋅a c b c b a四、两个常用的恒等式:N a N a =log ,log log m n a a nb b m=()0,1,0,0a a b N ≠>>>例题讲解类型一 指数式与对数式的相互转化例1:将下列指数式与对数式进行互化.(1)3x=127;(2)⎝ ⎛⎭⎪⎫14x=64; (3)5-12 =15;(4)4=4;(5)lg0.001=-3; (6)11)=-1.解析:(1)log 3127=x .(2) log 14 64=x .(3)log 515=-12.(4)(2)4=4. (5)10-3=0.001. (6)(2-1)-1=2+1.答案:见解析练习1:将下列指数式与对数式进行互化. (1)e 0=1;(2)(2+3)-1=2-3; (3)log 327=3; (4)log 0.10.001=3.答案:(1)ln1=0.(2)2log -=-1.(3)33=27.(4)0.13=0.001.练习2:将下列对数式与指数式进行互化.(1)2-4=116;(2)53=125;(3)lg a =2;(4)log 232=5.答案:(1)log 2116=-4.(2)log 5125=3. (3)102=a . (4)25=32.类型二 对数基本性质的应用 例2:求下列各式中x 的值.(1)log 2(log 5x )=0; (2)log 3(lg x )=1; 解析:(1)∵log 2(log 5x )=0, ∴log 5x =1,∴x =5.(2)∵log 3(lg x )=1,∴lg x =3,∴x =103=1 000.答案:(1)x =5.(2) x =1 000.练习1:已知log 2(log 3(log 4x ))=log 3(log 4(log 2y ))=0,求x +y 的值. 答案:80练习2:已知4a=2,lg x =a ,则x =______. 答案:10类型三 对数的运算法则例3:计算(1)log a 2+log a 12(a >0且a ≠1);(2)log 318-log 32; (3)2log 510+log 50.25;解析:(1)log a 2+log a 12=log a (2×12)=log a 1=0.(2)log 318-log 32=log 3(18÷2)=log 39=2. (3)2log 510+log 50.25=log 5100+log 50.25 =log 5(100×0.25)=log 525=2. 答案: (1)0(2)2(3)2练习1:计算log 535+2log 22-log 5150-log 514的值.答案:4练习2:计算:2log 510+log 50.25的值为________. 答案:2类型四 带有附加条件的对数式的运算例4:lg2=a ,lg3=b ,试用a 、b 表示lg108,lg 1825.解析:lg108=lg(27×4)=lg(33×22)=lg33+lg22=3lg3+2lg2=2a +3b .lg 1825=lg18-lg25=lg(2×32)-lg 10222=lg2+lg32-lg102+lg22=lg2+2lg3-2+2lg2=3a +2b -2.答案:3a +2b -2.练习1:已知lg2=0.3010,lg3=0.4771,求lg 45.答案:0.8266练习2:若lg x -lg y =a ,则lg(x2)3-lg(y2)3等于( )A .a2B .aC .3a2D .3a答案:D类型五 应用换底公式求值例5: 计算:lg 12-lg 58+lg12.5-log 89·log 278.解析:lg 12-lg 58+lg12.5-log 89·log 278=lg 12-lg 58+lg 252-lg9lg8·lg8lg27=lg ⎝ ⎛⎭⎪⎫12×85×252-2lg33lg3=1-23=13. 答案:13练习1:计算(log 2125+log 425+log 85)·(log 52+log 254+log1258).答案:13练习2:log 89·log 32的值为( ) A .23 B .1C .32D .2答案:A类型六 应用换底公式化简例6: 已知log 89=a ,log 25=b ,用a 、b 表示lg3. 解析:∵log 89=lg9lg8=2lg33lg2=a ,①又∵log 25=lg5lg2=1-lg2lg2=b ,②由①②消去lg2可得:lg3=3a21+b .答案:lg3=3a21+b.练习1: 已知log 23=a ,log 37=b ,则log 1456=( ) A .ab +3ab +1B .a b +3ab +1C .b +3ab +1D .ab -3ab +1答案:A练习2: 已知log 72=p ,log 75=q ,则lg5用p 、q 表示为( ) A .pq B .qp +qC .1+pq p +qD .pq1+pq答案:B自我练习1、使对数log a (-2a +1)有意义的a 的取值范围为( ) A .0<a <12且a ≠1B .0<a <12C .a >0且a ≠1D .a <12答案: B2、已知x 、y 为正实数,则下列各式正确的是( )A .2lg x +lg y 2=2lg x +2lg yB .2lg(x +y )=2lg x ·2lg yC .2(lg x ·lg y )=2lg x +2lg yD .2lg(xy )=2lg x ·2lg y答案:A3、若lg2=a ,lg3=b ,则lg12lg15等于( )A .2a +b 1-a +bB .2a +b1+a +bC .a +2b 1-a +bD .a +2b 1+a +b答案:A 4、.log 52·log 425等于( ) A .-1 B .12C .1D .2答案:C5、化简log 1a b -log a 1b 的值为( )A .0B .1C .2log a bD .-2log a b答案:A课后作业基础巩固1.已知log 7[log 3(log 2x )]=0,那么x -12等于( )A .13B .123C .122D .133答案:C2.若f (10x )=x ,则f (3)的值为( ) A .log 310 B .lg3 C .103 D .310答案:B3.如果lg x =lg a +3lg b -5lg c ,那么( ) A .x =a +3b -cB .x =3ab5cC .x =ab 3c 5D .x =a +b 3-c 3答案:C4.方程2log 3x =14的解是( )A .33B .3C .19D .9答案:C 5.e ln3-e -ln2等于( )A .1B .2C .52D .3答案: C能力提升6.若log (1-x )(1+x )2=1,则x =________. 答案:-37.若log x (2+3)=-1,则x =________. 答案:2-38.已知log 32=a ,则2log 36+log 30.5=________. 答案:2+a9. (1)设log a 2=m ,log a 3=n ,求a 2m+n的值;(2)设x =log 23,求22x +2-2x +22x +2-x 的值. 答案:(1)12.(2)103. 10. 已知log a x +3log x a -log x y =3(a >1). (1)若设x =a t ,试用a 、t 表示y ;(2)若当0<t ≤2时,y 有最小值8,求a 和x 的值. 答案:(1)y =at 2-3t +3(t ≠0). (2)a =16,x =64.。

对数公式的运算

对数公式的运算

对数公式的运用1.对数的概念如果a(a>0,且a≠1)的b次幂等于N,即ab=N,那么数b叫做以a为底N的对数,记作:logaN=b,其中a叫做对数的底数,N叫做真数.由定义知:①负数和零没有对数;②a>0且a≠1,N>0;③loga1=0,logaa=1,alogaN=N(对数恒等式),logaab=b。

特别地,以10为底的对数叫常用对数,记作log10N,简记为lgN;以无理数e(e=2.718 28…)为底的对数叫做自然对数,记作logeN,简记为lnN.2.对数式与指数式的互化式子名称ab=N指数式ab=N(底数)(指数)(幂值)对数式logaN=b(底数) (真数) (对数)3.对数的运算性质如果a>0,a≠1,M>0,N>0,那么(1)loga(MN)=logaM+logaN.(2)loga(M/N)=logaM-logaN.(3)logaMn=nlogaM (n∈R).问:①公式中为什么要加条件a>0,a≠1,M>0,N>0?②logaan=?(n∈R)③对数式与指数式的比较.(学生填表)式子ab=N,logaN=b 名称:a—幂的底数 b—N—a—对数的底数 b— N—运算性质:am·an=am+nam÷an= am-n(a>0且a≠1,n∈R) logaMN=logaM+logaNlogaMN=logaMn= (n∈R) (a>0,a≠1,M>0,N>0)难点疑点突破对数定义中,为什么要规定a>0,,且a≠1?理由如下:1 a<0,则N的某些值不存在,例如log-28=?②若a=0,则N≠0时b不存在;N=0时b不惟一,可以为任何正数?③若a=1时,则N≠1时b不存在;N=1时b也不惟一,可以为任何正数? 为了避免上述各种情况,所以规定对数式的底是一个不等于1的正数?解题方法技巧1. (1)将下列指数式写成对数式:①54=625;②26=64;③3x=27;④13m=5.73.(2)将下列对数式写成指数式:①log216=4;②log2128=7;③log327=x;④lg0.01=-2;⑤ln10=2.303;⑥lgπ=k.解析由对数定义:ab=N,logaN=b.解答(1)①log5625=4.②log264=6.③log327=x.④log135.73=m.解题方法指数式与对数式的互化,必须并且只需紧紧抓住对数的定义:ab=N logaN=b(2)①24=16,②27=128,③3x=27,④10-2=0.01,⑤e2.303=10,⑥10k=π.2.根据下列条件分别求x的值:(1)log8x= -2/3;(2)log2(log5x)=0;(3)logx27=3×;(4)logx(2+)= -1.解析(1)对数式化指数式,得:x==?(2)log5x=20=1. x=?(3)3×3log32=? . 27=x?(4) 2+=x-1=1/x. x=?解答(1)x===2-2=1/4.(2)log5x=20=1,x=51=5.(3)logx27=3×=3×2=6,∴x6=27=33=()6,故x=.(4)+=x-1=1/x,∴x=1/(+)=.解题技巧①转化的思想是一个重要的数学思想,对数式与指数式有着密切的关系,在解决有关问题时,经常进行着两种形式的相互转化.②熟练应用公式:loga1=0,logaa=1,alogaM=M,logaan=n.3.已知logax=4,logay=5,求A=〔x5/12·y -1/3〕的值.解析:思路一,已知对数式的值,要求指数式的值,可将对数式转化为指数式,再利用指数式的运算求值;思路二,对指数式的两边取同底的对数,再利用对数式的运算求值?解答:解法一∵logax=4,logay=5,∴x=a4,y=a5,∴A=x(5/12)y(-1/3)=(a4)5/12(a5)-1/3=a5/3·a -5/3=a0=1.解法二对所求指数式两边取以a为底的对数得logaA=loga(x(5/12)y(-1/3))=(5/12)logax-(1/3)logay=(5/12)×4-(1/3)×5=0,∴A=1.解题技巧有时对数运算比指数运算来得方便,因此以指数形式出现的式子,可利用取对数的方法,把指数运算转化为对数运算.4 .设x,y均为正数,且x·y1+lgx=1(x≠1/10),求lg(xy)的取值范围.解析一个等式中含两个变量x、y,对每一个确定的正数x由等式都有惟一的正数y与之对应,故y是x的函数,从而lg(xy)也是x的函数.因此求lg(xy)的取值范围实际上是一个求函数值域的问题,怎样才能建立这种函数关系呢?能否对已知的等式两边也取对数?解答∵x>0,y>0,x·y1+lgx=1,两边取对数得:lgx+(1+lgx)lgy=0.即lgy=-lgx/(1+lgx) (x≠1/10,lgx≠-1).令lgx=t,则lgy=-t/(1+t) (t≠-1).∴lg(xy)=lgx+lgy=t-t/(1+t)= t2/(1+t) (t≠-1).(解题规律:对一个等式两边取对数是解决含有指数式和对数式问题的常用的有效方法;而变量替换可把较复杂问题转化为较简单的问题.)设S=t2/(1+t),得关于t的方程t2-St-S=0因为它一定有实数解.∴Δ=S2+4S≥0,得S≤-4或S≥0,故lg(xy)的取值范围是(-∞,-4〕∪〔0,+∞).5 .求值:(1)lg25+lg2·lg50+(lg2)2;(2)2log32-log3(32/9)+log38-52log53;(3)设lga+lgb=2lg(a-2b),求log2a-log2b的值;(4)求7lg20·(1/2)lg0.7的值.解析:(1)25=52,50=5×10。

指数式与对数式转化

指数式与对数式转化

指数式与对数式转化指数式与对数式之间的转化是数学中重要的概念之一。

首先,我们需要了解指数式和对数式的定义。

指数式:指数式是指一个数学表达式,它的值等于某个基数的指数。

例如,a^x表示a的x次方。

对数式:对数式是指一个数学表达式,它的值等于某个基数(底数)的对数。

例如,log(a, x)表示以a为底,x的对数。

在数学和实际应用中,我们经常需要将指数式和对数式进行相互转换。

下面介绍一些常用的转换方法:1.换底公式换底公式是指数式与对数式之间转化的重要工具。

它基于对数的性质,可以将任何对数式转换为以10或e为底的对数。

假设有一个对数式:log(a, b),其中a为底数,b为真数。

我们可以使用换底公式将其转换为:log(a, b) = log(c, b) / log(c, a)其中c可以是任意不等于1的正数。

例如,我们可以取c为10,则有:log(a, b) = log10(b) / log10(a)这样就将底数为a的对数式转换为以10为底的对数式。

2.反对数性质反对数性质是指数的逆运算。

对于一个给定的对数式,我们可以使用反对数性质将其转换为指数式。

假设有一个对数式:log(a, b),其中a为底数,b为真数。

根据反对数性质,有:log(a, b) = a^x = b(假设log(a, b) = x)将这个等式两边取对数,得到:log(a, b) = x = log(b, a) (反对数性质)因此,可以使用反对数性质将任何对数式转换为指数式。

3.应用例子假设有一个问题,需要求解方程:2^x + 3^x = 5^x。

这个方程可以用指数式与对数式转化来求解。

首先,将方程中的指数式转换为对数式:log(2, x) + log(3, x) = log(5, x)然后,使用换底公式将不同底的对数式转换为以10为底的对数式:log(3, x) = log(10, x) / log(10, 3)log(2, x) = log(10, x) / log(10, 2)将上述等式带入原方程,得到:log(10, x) / log(10, 2) + log(10, x) / log(10, 3) = log(10, x) / log(10, 5)通过移项和合并同类项,得到:[log(10, 2) + log(10, 3)] - log(10, 5) = 0log(10, 60) = 0因此,方程的解为x = log(60, 10)。

知识讲解_对数及对数运算_基础(学生)

知识讲解_对数及对数运算_基础(学生)

对数及对数运算【要点梳理】要点一、对数概念1.对数的概念如果()01b a N a a =>≠,且,那么数b 叫做以a 为底N 的对数,记作:log a N=b .其中a 叫做对数的底数,N 叫做真数.要点诠释:对数式log a N=b 中各字母的取值范围是:a>0 且a ≠1, N>0, b ∈R .2.对数()log 0a N a >≠,且a 1具有下列性质:(1)0和负数没有对数,即0N >;(2)1的对数为0,即log 10a =;(3)底的对数等于1,即log 1a a =.3.两种特殊的对数通常将以10为底的对数叫做常用对数,N N lg log 10简记作.以e (e 是一个无理数, 2.7182e =⋅⋅⋅)为底的对数叫做自然对数, log ln e N N 简记作.4.对数式与指数式的关系由定义可知:对数就是指数变换而来的,因此对数式与指数式联系密切,且可以互相转化.它们的关系可由下图表示.由此可见a ,b ,N 三个字母在不同的式子中名称可能发生变化.要点二、对数的运算法则已知()log log 010a a M N a a M N >≠>,且,、(1)正因数的积的对数等于同一底数各个因数的对数的和;()log log log a a a MN M N =+推广:()()121212log log log log 0a k a a a k k N N N N N N N N N =+++>、、、(2)两个正数的商的对数等于被除数的对数减去除数的对数;log log log a a a M M N N=- (3)正数的幂的对数等于幂的底数的对数乘以幂指数;log log a a M M αα=要点诠释:(1)利用对数的运算法则时,要注意各个字母的取值范围,即等式左右两边的对数都存在时等式才能成立.如:log 2(-3)(-5)=log 2(-3)+log 2(-5)是不成立的,因为虽然log 2(-3)(-5)是存在的,但log 2(-3)与log 2(-5)是不存在的.(2)不能将和、差、积、商、幂的对数与对数的和、差、积、商、幂混淆起来,即下面的等式是错误的:log a (M ±N )=log a M ±log a N ,log a (M·N )=log a M·log a N ,log aNM N M a a log log =.要点三、对数公式1.对数恒等式: log log a b N a a Na N Nb ⎫=⇒=⎬=⎭2.换底公式同底对数才能运算,底数不同时可考虑进行换底,在a>0, a≠1, M>0的前提下有:(1))(log log R n M M n a a n ∈=令 log a M=b , 则有a b =M , (a b )n =M n ,即n b n M a =)(, 即n a M b n log =,即:n aa M M n log log =. (2))1,0(log log log ≠>=c c aM M c c a ,令log a M=b , 则有a b =M , 则有)1,0(log log ≠>=c c M a c b c 即M a b c c log log =⋅, 即a M b c c log log =,即)1,0(log log log ≠>=c c a M M c c a 当然,细心一些的同学会发现(1)可由(2)推出,但在解决某些问题(1)又有它的灵活性.而且由(2)还可以得到一个重要的结论:)1,0,1,0(log 1log ≠>≠>=b b a a ab b a . 【典型例题】类型一、对数的概念例1.求下列各式中x 的取值范围:(1)2log (5)x -; (2)(1)log (2)x x -+; (3)2(1)log (1)x x +-.举一反三:【变式1】函数21log (2)x y x -=+的定义域为 .类型二、指数式与对数式互化及其应用例2.将下列指数式与对数式互化:(1)2log 164=; (2)13log 273=-; (3)3x =;(4)35125=;(5)1122-=;(6)2193-⎛⎫= ⎪⎝⎭.举一反三:【变式1】求下列各式中x 的值:(1)161log 2x =- (2)log 86x = (3)lg1000=x(4)2-2ln e x = 【变式2】计算:222log 4;log 8;log 32并比较.类型三、利用对数恒等式化简求值例3.不用计算器计算:7log 203log lg25lg47(9.8)+++-举一反三:【变式1】求log log log a b c b c N a ⋅⋅的值(a ,b ,c ∈R +,且不等于1,N>0).类型四、积、商、幂的对数例4. z y x a a a log ,log ,log 用表示下列各式举一反三:【变式1】求值(1)1log 864log 325log 21025-+ (2)lg2·lg50+(lg5)2 (3)lg25+lg2·lg50+(lg2)2类型五、换底公式的运用例5.已知18log 9,185ba ==,求36log 45.35(1)log ;(2)log ();(3)log a a a a xy x y z yz举一反三:【变式1】求值:(1))2log 2)(log 3log 3(log 9384++; (2)32log 9log 278⋅;(3)31log 529-.类型六、对数运算法则的应用例6.计算 (1)34331654()log log 8145-++ (2)7lg142lg lg 7lg183-+-(3))36log 43log 32(log log 42122++ (4)353log 21log 235++-举一反三:【变式1】计算下列各式的值(1)()222lg5lg8lg5lg 20lg 23+++; (2)33(lg 2)3lg 2lg5(lg5)++.【变式2】已知1,(1,0)()44,(0,1)x x x f x x ⎧∈-⎪=⎨⎪∈⎩,则4(log 3)f = .。

指数与对数的运算

指数与对数的运算

指数与对数的运算指数与对数是数学中常见的运算方法,它们在各个领域都有广泛的应用。

本文将介绍指数和对数的基本概念、性质以及它们之间的关系。

一、指数的定义与性质指数是一种表示乘法运算的简便方法。

在指数运算中,底数表示要乘的数,指数表示要乘的次数。

例如,a的n次方可表示为an,其中a为底数,n为指数。

指数具有以下性质:1. 相同底数的指数相乘,即a的n次方乘以a的m次方等于a的n+m次方。

2. 指数之差为相同底数的商,即a的n次方除以a的m次方等于a的n-m次方。

3. 指数的0次方等于1,即a的0次方等于1。

4. 指数为1的情况下,a的1次方等于a本身。

二、对数的定义与性质对数是指数的逆运算。

如果a的x次方等于b,那么记作loga(b)=x,其中a为底数,b为真数,x为对数。

对数具有以下性质:1. 底数为1时,对数为0,即log1(b)=0。

2. 底数为b时,对数为1,即logb(b)=1。

3. 对数的乘法法则,即loga(b) + loga(c) = loga(b × c)。

4. 对数的除法法则,即loga(b) - loga(c) = loga(b / c)。

5. 对数的指数法则,即loga(b的n次方) = n × loga(b)。

三、指数与对数的关系指数与对数是相互关联的,它们满足以下关系:1. 如果a的x次方等于b,那么x即为loga(b)。

2. 如果loga(b) = c,那么b等于a的c次方。

指数与对数的关系使得它们可以互相转化,解决一些复杂的运算问题。

在实际应用中,指数与对数经常用于科学计算、经济学、物理学等领域。

四、指数与对数的运算规则在实际运算中,指数和对数有一些常见的运算规则和公式:1. 指数的乘法规则,即(a的b次方)的c次方等于a的b × c次方。

2. 指数的除法规则,即(a的b次方)除以(a的c次方)等于a的b - c 次方。

3. 对数的乘法规则,即loga(b) × logb(c) = loga(c)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(3) 对数的真数大于零.
二、对数式与指数式的互化 a b = N log a N = b 例如 32 = 9 log 3 9 = 2; 42=16 log 4 16 = 2; 10-2 = 0.01 log 10 0.01 = -2.
课本P110 练习1、2
三、对数的性质 (1)1 的对数等于零,即 log a 1 = 0;
1. 对数的概念. 2. 指数式与对数式的关系:
真 数 对 数 指 数 幂
log a N b
底 数
ab N
底 数
《练习册》P59-60:
巩固练习1—4
)4 尺
)x 尺
ห้องสมุดไป่ตู้
问题 1
庄子曰:一尺之棰,日取其半,万世不竭. (2)取多少次,还有 0.125 尺 ? 由(1)易知
x 1 ( ) 2 = 0.125.
问题 2
细胞分裂问题.
一个细胞经过几次分裂后细胞的个数为 4 096 个 ?
第1次 第2次 第3次 第x次
2=21 4=22 8=23
……
则有 2x = 4 096 .
(2)底数的对数等于 1,即 log a a = 1 ;
(3)0 和负数没有对数.
1 例 3 求: log 2 2 ,log 2 1 ,log 2 16, log 2 2 . 解:(1)因为 2 1 = 2 ,所以 log 2 2 = 1; (2)因为 2 0 = 1 ,所以 log 2 1 = 0 ; (3)因为 2 4 = 16 ,所以 log 2 16 = 4 ; 1 1 (4)因为 2 -1= 2 ,所以 log 2 2 = -1.
指数 指 4.5 数 对数
对数
对数
问题 1
庄子曰:一尺之棰,日取其半,万世不竭. (1)取 5 次,还有多长? 1 第 1 次,截取一半,还余 1 2 尺 尺 )2 尺 )3 尺
?
1 第 2 次,截取一半,还余 ( 2 1 第 3 次,截取一半,还余 ( 2 第 4 次,截取一半,还余 ( 1 2 第 x 次,截取一半,还余 ( 1 2
2x
一、对数的概念 一般地,a b= N ( a>0 且 a ≠ 1 ) ,称幂指
数 b 是以 a 为底 N 的对数.
记作 b = log a N ( a>0 且 a ≠ 1 ). 其中, a 叫做对数的底数,N 叫做真数. 注意 (1) 底数的限制: a>0 且 a ≠ 1 ; (2) 对数的书写格式;
相关文档
最新文档