(完整版)反比例函数基本知识点题型梳理

合集下载

(完整版)初中数学反比例函数知识点及经典例

(完整版)初中数学反比例函数知识点及经典例
似。
04
利用相似三角形求解线段长度或角度大小
通过相似三角形的性质,我们可以建立 比例关系,从而求解未知线段长度或角 度大小。
解方程求解未知量。
具体步骤
根据相似比建立等式关系。
确定相似三角形,找出对应边或对应角 。
经典例题讲解和思路拓展
例题1
解题思路
例题2
解题思路
已知直角三角形ABC中, ∠C=90°,AC=3,BC=4,将 △ABC沿CB方向平移2个单位 得到△DEF,若AG⊥DE于点G ,则AG的长为____反比例函数$y = frac{m}{x}$的图像经过点$A(2,3)$,且与直线$y = -x + b$相 交于点$P(4,n)$,求$m,n,b$的
值。
XXX
PART 03
反比例函数与不等式关系 探讨
REPORTING
一元一次不等式解法回顾
一元一次不等式的定义
01
在材料力学中,胡克定律指出弹簧的 伸长量与作用力成反比。这种关系同 样可以用反比例函数来描述。
牛顿第二定律
在物理学中,牛顿第二定律表明物体 的加速度与作用力成正比,与物体质 量成反比。这种关系也可以用反比例 函数来表示。
经济学和金融学领域应用案例分享
供需关系
在经济学中,供需关系是决定商品价 格的重要因素。当供应量增加时,商 品价格下降;反之,供应量减少时, 商品价格上升。这种供需关系可以用 反比例函数来表示。
XXX
PART 02
反比例函数与直线交点问 题
REPORTING
求解交点坐标方法
方程组法
将反比例函数和直线的方程联立 ,解方程组得到交点坐标。
图像法
在同一坐标系中分别作出反比例 函数和直线的图像,找出交点并 确定其坐标。

反比例函数知识点总结

反比例函数知识点总结

反比例函数知识点总结一、定义和性质y=k/x其中k为常数,称为反比例函数的比例常数。

1.y随着x的增加而减小,或随着x的减小而增加。

2.当x=0时,函数y无定义。

3.曲线y=k/x在第一象限中,以坐标轴为渐近线。

二、图像和图像特征第一象限:当x>0时,y>0,两者同号,图像在该象限中呈现右上方向的增长,且随着x增大而逐渐降低,但不会等于0。

这个分支与y轴无交点,但是它和x轴的交点是(1/k,k)。

第二象限:当x<0时,y<0,两者异号,图像在该象限中呈现左下方向的增长,且随着x减小而逐渐增大,但不会等于0。

这个分支与y轴无交点,但是它和x轴的交点是(-1/k,-k)。

三、定义域和值域四、解析表达式五、反比例函数的性质与变换1.反比例函数的比例常数k越大,曲线的形状越平缓,即曲线与坐标轴之间的夹角越小。

2.反比例函数的图像关于y轴对称。

3.对于反比例函数的图像,x轴和y轴是渐近线,即曲线会无限接近x轴和y轴。

4.若给定一个特定的函数值y0,可以通过求解方程y0=k/x,得到x 与y的关系式。

六、反比例函数的应用1.马力与速度的关系:汽车的马力与速度成反比例关系,马力越大,达到其中一速度所需的时间越短。

2.投资收益与投资金额的关系:在一些投资项目中,投资收益与投资金额成反比例关系,这意味着投资金额较小的项目可能会有更高的投资收益率。

3.速度与时间的关系:在物理学中,速度和时间是反比例关系,速度越大,所需的时间越短。

4.电阻与电流的关系:根据欧姆定律,电阻与电流成反比例关系,电阻越大,所能通过的电流越小。

总结:反比例函数是一类常见的函数关系,具有重要的应用价值。

对于反比例函数的定义和性质,需要了解其图像特征以及定义域和值域的范围。

同时,反比例函数可以通过解析表达式表示,并具有一些特殊的性质和变换规律。

在实际生活中,反比例函数有着广泛的应用,例如在汽车马力与速度的关系、投资收益与投资金额的关系、速度与时间的关系以及电阻与电流的关系等方面。

反比例函数知识点知识点总结

反比例函数知识点知识点总结

反比例函数知识点知识点总结反比例函数知识点总结一、反比例函数的定义一般地,如果两个变量 x、y 之间的关系可以表示成 y = k/x(k 为常数,k≠0)的形式,那么称 y 是 x 的反比例函数。

需要注意的是,反比例函数中自变量 x 的取值范围是x≠0,因为分母不能为 0。

例如,当 k = 5 时,反比例函数为 y = 5/x。

二、反比例函数的表达式反比例函数常见的表达式有以下三种形式:1、 y = k/x (k 为常数,k≠0),这是最基本的形式。

2、 xy = k (k 为常数,k≠0),通过将 y = k/x 两边同乘 x 得到。

3、 y = kx^(-1) (k 为常数,k≠0),这是反比例函数的幂函数形式。

三、反比例函数的图像反比例函数的图像是双曲线。

当 k>0 时,双曲线的两支分别位于第一、三象限,在每一象限内 y 随 x 的增大而减小。

当 k<0 时,双曲线的两支分别位于第二、四象限,在每一象限内 y 随 x 的增大而增大。

例如,对于函数 y = 2/x,因为 k = 2>0,所以图像位于第一、三象限,在每个象限内,当 x 增大时,y 减小。

四、反比例函数图像的性质1、对称性反比例函数的图像关于原点对称,即若点(a,b)在反比例函数图像上,则点(a,b)也在其图像上。

2、渐近线双曲线逐渐接近但永远不会与坐标轴相交,其渐近线为 x 轴和 y 轴。

3、连续性反比例函数在定义域内不是连续的,存在间断点 x = 0。

五、反比例函数中 k 的几何意义在反比例函数 y = k/x 图像上任取一点 P,过点 P 分别作 x 轴、y轴的垂线 PM、PN,垂足分别为 M、N,则矩形 PMON 的面积 S =PM×PN =|y|×|x| =|xy| =|k|。

例如,在函数 y = 6/x 的图像上有一点 P(2,3),则矩形 PMON 的面积为 6。

六、反比例函数与一次函数的综合在解决反比例函数与一次函数的综合问题时,通常需要联立两个函数的解析式,组成方程组,求解交点坐标。

反比例函数知识点梳理

反比例函数知识点梳理

反比例函数知识点梳理
1. 反比例函数的定义
反比例函数是指当自变量 x 不为零时,函数值 y 的变化遵循比例关系,其中比例常数 k 不等于 0,即 y = k/x。

通常我们把它写成y = k/x+b,其中 b 为常数。

2. 反比例函数的图像
反比例函数的图像在 x 轴上有一个垂线渐近线,而在 y 轴上具有一个水平渐近线。

当 x 接近 0 时,y 显著变化,而当 x 变得很大时,y 变得很小。

例如,如果 k = 1,则函数 y = 1/x+b 的图像看起来如下:
3. 反比例函数的性质
反比例函数的图像不会穿过垂线渐近线和水平渐近线。

当自变量 x 非常大或非常小时,反比例函数的值渐近于 0。

反比例函数也不具有最大值或最小值。

4. 反比例函数的应用
反比例函数有很多实际应用,如工业、商业、科学等领域。

例如,在数学中,它可用于表征第一定律的 Ohm 定律,即电流与电压成反比例关系。

5. 反比例函数的问题解决
解决反比例函数问题的关键在于找到比例常数 k 和常数 b。

这可以通过已知的点对、图像或其他信息来确定。

以上是反比例函数的知识点梳理,希望对您有所帮助。

反比例函数基本知识点题型梳理

反比例函数基本知识点题型梳理

反比例函数基本知识点题型梳理知识点1 反比例函数的定义一般地,形如xky =(k 为常数,0k ≠)的函数称为反比例函数,它可以从以下几个方面来理解:⑴x 是自变量,y 是x 的反比例函数;⑵自变量x 的取值范围是0x ≠的一切实数,函数值的取值范围是0y ≠; ⑶比例系数0k ≠是反比例函数定义的一个重要组成部分; ⑷反比例函数有三种表达式:①xky =(0k ≠); ②1kx y -=(0k ≠); ③k y x =⋅(定值)(0k ≠); ⑸函数xky =(0k ≠)与y k x =(0k ≠)是等价的,所以当y 是x的反比例函数时,x 也是y 的反比例函数。

注:(k 为常数,0k ≠)是反比例函数的一部分,当k=0时,xky =,就不是反比例函数了,由于反比例函数xky =(0k ≠)中,只有一个待定系数,因此,只要一组对应值,就可以求出k 的值,从而确定反比例函数的表达式。

(6)“反比例关系”与“反比例函数”:成反比例的关系式不一定是反比例函数,但是反比例函数x ky =中的两个变量必成反比例关系。

知识点2用待定系数法求反比例函数的解析式由于反比例函数xky =(0k ≠)中,只有一个待定系数,因此,只要一组对应值,就可以求出k 的值,从而确定反比例函数的表达式。

知识点3反比例函数的图像及画法反比例的画法分三个步骤:⑴列表;⑵描点;⑶连线。

注意:①列表时选取的数值宜对称选取;②列表时选取的数值越多,画的图像越精确;③连线时,必须根据自变量大小从左至右(或从右至左)用光滑的曲线连接,切忌画成折线;④画图像时,它的两个分支应全部画出,但切忌将图像与坐标轴相交。

知识点4反比例函数的性质☆关于反比例函数的性质,主要研究它的图像的位置及函数值的增减情况,如下表:反比例函数xky =(0k ≠) k 的符号0k > 0k <图像性质①x 的取值范围是0x ≠,y 的取值范围是0y ≠②当0k >时,函数图像的两个分支分别在第一、第三象限,在每个象限内,y随x 的增大而减小。

初三反比例函数知识点

初三反比例函数知识点

初三反比例函数知识点反比例函数知识点概述一、反比例函数的定义反比例函数是形如y = k/x (k ≠ 0,x ≠ 0) 的函数,其中 k 为常数,称为比例常数,x 为自变量,y 为因变量。

二、反比例函数的图象1. 形状:反比例函数的图象是一组双曲线。

2. 位置:当 k > 0 时,图象位于第一和第三象限;当 k < 0 0 时,图象位于第二和第四象限。

3. 对称性:反比例函数的图象关于原点对称。

三、反比例函数的性质1. 单调性:在每一象限内,随着 x 的增大,y 也增大;随着 x 的减小,y 也减小。

2. 无界性:当 x 趋向于 0 时,y 趋向于无穷大;当 x 趋向于无穷大时,y 趋向于 0。

3. 交点:反比例函数的图象不与 x 轴和 y 轴相交。

四、反比例函数的应用反比例函数常用于描述两个变量间的反比关系,如物理中的压力与体积的关系(波义耳定律),化学中的浓度与体积的关系等。

五、反比例函数的运算1. 复合函数:若有两个反比例函数 y = k1/x 和 w = k2/z,它们的复合函数为 v = (k1/x) / (k2/z) = (k1/k2) * z/x。

2. 反函数:反比例函数的反函数仍然是一个反比例函数,形式为 x =k/y。

六、反比例函数的图像变换1. 平移:若原函数为 y = k/x,将其向右平移 a 个单位,向上平移b 个单位,新函数为 y = k/(x-a) + b。

2. 伸缩:若原函数为 y = k/x,将其横向伸缩 m 倍,纵向伸缩 n 倍,新函数为 y = k/(m*x)。

七、反比例函数的极值问题反比例函数没有最大值和最小值,但可以通过求导数来分析函数的增减性。

八、反比例函数的积分与微分1. 微分:对于函数 y = k/x,其导数为 dy/dx = -k/x^2。

2. 积分:对于函数 y = k/x,其不定积分为∫(k/x)dx = k*ln|x| + C。

九、反比例函数的方程求解1. 解析解:通过交叉相乘法等代数方法求解。

反比例函数知识点汇总

反比例函数知识点汇总

反比例函数知识点汇总1.定义与图像特征:反比例函数的定义为y=k/x,在此函数中,x不等于0,k为常数。

反比例函数的图像特点是:经过第一、二象限两点,以y轴和x轴为渐进线,图像在x轴的正半轴和y轴的正半轴上都不会出现,图像呈现出一种双曲线的形状。

2.反比例函数的基本性质:(a)定义域:x≠0,即x不能为0。

(b)值域:排除0,即y不能为0。

当x趋近于0时,y趋近于无穷大;当x趋近于无穷大时,y趋近于0。

(c)对称中心:该函数关于原点(0,0)对称。

(d)渐进线:图像与x轴和y轴都有渐进线,即当x趋近于无穷大时,y趋近于0;当y趋近于无穷大时,x趋近于0。

(e)单调性:反比例函数在定义域内是单调递减的。

(f)异号性:当x与y异号时,k为负数;当x与y同号时,k为正数。

(g)零点:当x与y相等时,即x=y≠0。

3.确定反比例函数的常数k:y1=k/x1和y2=k/x2通过消去k,可以得到:y1*y2=k因此,可以通过已知点的y值的乘积来确定k的值。

4.反比例函数的应用:(a)正比例与反比例的混合问题:当一个问题与正比例和反比例函数有关时,可以通过组合两种函数来解决问题。

例如,当一个物体的质量与加速度成反比例关系,而力与加速度成正比例关系时,可以通过设置两个函数来解决问题。

(b)流速与管道宽度:根据波的传播速度,流速与管道宽度成反比例关系。

当管道宽度较小时,流速较大;当管道宽度较大时,流速较小。

(c)投资与收益率:投资的利润与投资金额成反比例关系。

当投资金额较小时,相对的利润率较大;当投资金额较大时,相对的利润率较小。

(d)电阻与电流:电阻与电流成反比例关系,即当电阻较大时,电流较小;当电阻较小时,电流较大。

总结起来,反比例函数是一种特殊的函数关系,其图像呈现出一种双曲线的形状。

反比例函数具有一些基本性质,如定义域、值域、对称中心和渐进线等。

确定反比例函数的常数k可以通过已知点进行求解。

反比例函数在实际生活中有很多应用,特别是与强度、速度和功率等相关的问题。

反比例函数知识点总结,比例系数k的几何意义和七大常考模型

反比例函数知识点总结,比例系数k的几何意义和七大常考模型

反比例函数知识点总结,比例系数k的几何意义和七大常考模型一.反比例函数的概念1.概念:一般地,函数y=k/x(k是常数,k≠0)叫做反比例函数。

反比例函数的解析式也可以写成的形式。

自变量x的取值范围是x≠0的一切实数,函数的取值范围也是一切非零实数。

注意:(1)比例系数k≠0是反比例函数的定义的重要部分;(2)在反比例函数的解析式中,k,x,y均不等于0;(3)反比例函数中的两个变量一定成反比例关系,反之,则不一定成立例 1 给出的六个关系式:①x(y+1); ②y=2/(x+2); ③y=1/x²;④y=1/2x; ⑤y=x/2 ; ⑥y=-3/x.其中y是x的反比例函数的是 ( )A.①②③④⑥B.③⑤⑥C.①②④D.④⑥例2 若函数是y关于x的反比例函数,则m= .例3 关于正比例函数y=-x/3和反比例函数y=-1/3x的说法正确的是 ( )A.自变量x的指数相同B.比例系数相同C.自变量x的取值范围相同D.函数y的取值范围相同2.易错点解析漏掉k≠0这一条件解答与反比例函数有关的问题时,要注意系数k≠0是反比例函数定义中必不可少的一部分,不能漏掉这一条件.例4已知函数为反比例函数,则k= .二.反比例函数的图像和性质1.反比例函数的图像是双曲线,它有两个分支,这两个分支分别位于第一、三象限,或第二、四象限,它们关于原点对称。

由于反比例函数中自变量x≠0,函数y≠0,所以,它的图像与x轴、y轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。

2.反比例函数的性质注意:y随x变化的情况必须指出“在每个象限内”或“在每一分支上”这一条件。

例5 关于反比例函数y=3/x的图象,下列说法正确的是 ( )A.图象经过点(1,1)B.两个分支分布在第二、四象限C.两个分支关于x轴成轴对称D.当x<0时,y随x的增大而减小例6.当x<0时,下列表示函数y=-1/x的图象的是 ( ) 例7.下列反比例函数中,图象位于第二、四象限的是( )A.y=2/x B.y=0.2/x C.y=√2/x D.y=-2/5x 例8.对于反比例函数y=(k-√10)/x,在每个象限内,y随x的增大而增大,则满足条件的非负整数k有 ( )A.1个B.2个C.3个D.4个三.反比例函数解析式的确定由于在反比例函数中,只有一个待定系数,因此只需要一对对应值或图像上的一个点的坐标,即可求出k的值,从而确定其解析式。

反比例函数最全知识点

反比例函数最全知识点

反比例函数最全知识点反比例函数是一种特殊的函数形式,它表示了一种两个变量之间的相互依赖关系。

在反比例函数中,当一个变量增大时,另一个变量会相应地减小,反之亦然。

本文将介绍反比例函数的定义、图像特征、性质、图像变换、实际应用以及解决反比例函数问题的方法等知识点。

一、反比例函数的定义反比例函数可以表示为:y=k/x(k≠0),其中y表示因变量(通常是函数的输出值),x表示自变量(通常是函数的输入值),k表示常数。

该定义中的k称为反比例函数的常数项,它决定了反比例函数的性质,也决定了函数图像的形状。

二、反比例函数的图像特征1.零点:当x=0时,由于分母为0,函数无定义。

因此,反比例函数没有定义在x=0的点,这个点称为函数的零点。

2.渐近线:反比例函数有两条渐近线,分别是x轴和y轴。

当x趋近于无穷大或无穷小时,y趋近于0;当y趋近于无穷大或无穷小时,x趋近于0。

3.反比例函数的图像是一个双曲线,由于分母不能为0,因此函数的图像始终存在。

当x取值较小时,y的取值较大;当x取值较大时,y的取值较小。

图像的形状与常数项k相关,k越大,图像越接近于x轴和y 轴。

三、反比例函数的性质1.定义域:反比例函数的定义域为除去零点以外的实数集合。

2.值域:反比例函数的值域为除去0以外的实数集合。

3.奇偶性:反比例函数是个奇函数,即满足f(-x)=-f(x)。

4.单调性:反比例函数在定义域上是单调递减的。

5.对称轴:反比例函数的对称轴为y=x,即函数图像关于对称轴对称。

四、反比例函数的图像变换对反比例函数进行图像变换可以通过调整常数项k的值来实现。

具体变换如下:1.平移:当k保持不变时,反比例函数的图像向上平移或向下平移。

若向上平移b个单位,则为y=k/(x+b);若向下平移b个单位,则为y=k/(x-b)。

2.拉伸:当k保持不变时,反比例函数的图像可以进行纵向拉伸或纵向压缩。

若纵向拉伸为a倍,则为y=(k/a)/x;若纵向压缩为a倍,则为y=(a*k)/x。

初中数学反比例函数知识点与题型总结大全

初中数学反比例函数知识点与题型总结大全

一、概述反比例函数是初中数学中的重要知识点之一。

掌握反比例函数的知识,对于学生理解数学规律和解决实际问题具有重要意义。

本文将系统总结反比例函数的相关知识点和常见题型,帮助学生更好地掌握这一部分内容。

二、反比例函数的定义1. 反比例函数的概念反比例函数是指两个变量之间的关系,当一个变量的值增加时,另一个变量的值减少。

通常用y=k/x(k≠0)来表示,其中k为比例系数。

2. 反比例函数的特点(1)反比例函数图像呈现出一条经过原点且斜率逐渐减小、趋近于x轴的曲线。

(2)当x增大时,y减小;当x减小时,y增大。

(3)反比例函数的图像经过点(1,k)和(k,1),其中k为比例系数。

三、反比例函数的性质1. 零点问题反比例函数y=k/x的零点为x≠0,y=0时的值。

2. 单调性问题当x1<x2时,y1>y2;当x1>x2时,y1<y2。

即当x增大时,y减小;当x减小时,y增大。

3. 渐近线问题反比例函数的图像有两个渐近线,分别为x轴和y轴。

四、反比例函数的图像与性质1. 反比例函数的图像(1)当k>0时,反比例函数图像位于第一象限和第三象限。

(2)当k<0时,反比例函数图像位于第二象限和第四象限。

2. 反比例函数图像的特点(1)当k>0时,图像呈现出y轴的镜像关系;当k<0时,图像呈现出x轴的镜像关系。

(2)当k的绝对值增大时,图像离x轴和y轴越远。

五、反比例函数的题型1. 反比例函数的应用题(1)水管填水:如何选择合适的水管来填满一个容器。

(2)工人齐心协力地工作,完成相同的工作需要的时间和工人数量。

(3)如何选择合适的空调功率。

2. 实际问题的数学抽象(1)根据实际问题找出反比例函数的表达式。

(2)利用反比例函数解决实际问题,如何做到最大效益。

3. 反比例函数的图像题(1)根据给定的k值绘制反比例函数的图像。

(2)根据图像判断k值的大小和符号。

六、结语反比例函数作为初中数学中的一个重要知识点,涉及到很多实际问题的解决。

反比例函数常用知识点总结

反比例函数常用知识点总结

反比例函数常用知识点总结一、反比例函数的定义反比例函数也叫做倒数函数,通常用y=k/x表示,其中k为非零常数。

这种函数的图像是一个双曲线,具有对称轴。

二、反比例函数的性质1. 反比例函数的定义域和值域反比例函数的定义域为x≠0,值域为y≠0。

2. 反比例函数的奇偶性反比例函数通常不具有奇偶性。

3. 反比例函数的单调性反比例函数在定义域内单调递减或递增。

4. 反比例函数的渐近线反比例函数的图像有两条渐近线,分别是x轴和y轴。

5. 反比例函数的对称性反比例函数的图像关于原点对称。

6. 反比例函数的零点和极限反比例函数有唯一的零点,即x=±√k。

当x→0时,y→±∞。

三、反比例函数的图像1. 反比例函数的基本图像反比例函数的基本图像是一个双曲线,具有对称轴。

2. 反比例函数的平移和缩放改变k的值可以使反比例函数的图像进行平移和缩放。

3. 反比例函数的特殊情况当k为正数时,反比例函数的图像在第一和第三象限。

当k为负数时,反比例函数的图像在第二和第四象限。

四、反比例函数的应用1. 反比例函数在物理学中的应用反比例函数可以用来描述两个物理量之间的关系,比如牛顿定律中的万有引力定律就是一个反比例函数。

2. 反比例函数在经济学中的应用反比例函数可以用来描述供求关系,比如需求曲线和供给曲线都是反比例函数。

3. 反比例函数在工程学中的应用反比例函数可以用来描述工程中的一些量与距离的关系,比如声音的传播距离与声音的强度之间的关系。

五、反比例函数的解题方法1. 求反比例函数的定义域和值域根据函数的定义,可以求出反比例函数的定义域和值域。

2. 求反比例函数的零点和极限根据函数的性质,可以求出反比例函数的零点和极限。

3. 求反比例函数的图像可以根据函数的性质和图形变换的知识,画出反比例函数的图像。

4. 求反比例函数的应用问题可以根据反比例函数在物理学、经济学和工程学中的应用问题,解决实际问题。

六、反比例函数的常见错误1. 关于定义域和值域的错误很多学生容易忽略反比例函数的定义域和值域,导致在解题过程中出现错误。

(完整版)初二数学《反比例函数》知识点

(完整版)初二数学《反比例函数》知识点

一、目标与要求1.使学生理解并掌握反比例函数的概念。

2.能判断一个给定的函数是否为反比例函数,并会用待定系数法求函数解析式。

3.能根据实际问题中的条件确定反比例函数的解析式,体会函数的模型思想。

4.会用描点法画反比例函数的图象。

5.结合图象分析并掌握反比例函数的性质。

6.体会函数的三种表示方法,领会数形结合的思想方法。

7.利用反比例函数的知识分析、解决实际问题。

8.渗透数形结合思想,进一步提高学生用函数观点解决问题的能力,体会和认识反比例函数这一数学模型。

二、知识框架三、重点、难点1.重点:利用反比例函数的知识分析、解决实际问题。

重点:理解并掌握反比例函数的图象和性质。

重点:利用反比例函数的图象和性质解决一些综合问题。

重点:理解反比例函数的概念,能根据已知条件写出函数解析式。

2.难点:分析实际问题中的数量关系,正确写出函数解析式,解决实际问题。

难点:正确画出图象,通过观察、分析,归纳出反比例函数的性质。

难点:学会从图象上分析、解决问题。

难点:理解反比例函数的概念。

四、知识点、概念总结1.反比例函数:形如y=k/x,(k为常数,k≠0)的函数称为反比例函数。

其他形式xy=k,y=kx(-1)。

2.自变量的取值范围:(1)k≠0;(2)在一般的情况下,自变量x的取值范围可以是不等于0的任意实数;(3)函数y的取值范围也是任意非零实数。

3.图像:反比例函数的图像属于双曲线。

反比例函数的图象既是轴对称图形又是中心对称图形。

有两条对称轴:直线y=x和y=-x。

对称中心是:原点。

4.反比例函数的几何意义|k|的几何意义:表示反比例函数图像上的点向两坐标轴所作的垂线段与两坐标轴围成的矩形的面积。

即:过反比例函数y=k/x(k不等于0),图像上一点P(x,y),作两坐标轴的垂线,两垂足、原点、P点组成一个矩形,矩形的面积S=(x的绝对值)*(y的绝对值)=(x*y)的绝对值=k的绝对值。

5. 反比例函数的性质:(1)(增减性)当k>0时,图象分别位于第一、三象限,同一个象限内,y随x的增大而减小;当k<0时,图象分别位于二、四象限,同一个象限内,y随x的增大而增大。

反比例函数知识点与题型归纳非常全面

反比例函数知识点与题型归纳非常全面

反比例函数讲义第1节 反比例函数■例1下列函数中是反比例关系的有___________________填序号; ①3x y -= ②131+=x y ③x y 2-= ④2211x y -= ⑤xy 23-= ⑥21=xy ⑦28xy = ⑧1-=x y ⑨2=x y ⑩x ky =k (为常数,)0≠k■ 例2由欧姆定律可知,电压不变时,电流强度I 与电阻R 成反比例,已知电压不变,电阻R=欧姆,电流强度I=安培;(1) 求I 与R 的函数关系式; (2) 当R=5欧姆时,求电流强度;本节作业:1、小明家离学校,小明步行上学需x min,那么小明的步行速度min)/(m y 可以表示为xy 1500=;水名地面上重1500N 的物体,与地面的接触面积为x 2m ,那么该物体对地面的压强)/(2m N y 可以表示为x y 1500=;函数表达式xy 1500=还可以表示许多不同情境中变量之间的函数关系,请你再列举一例; 2、某工人打算利用一块不锈钢条加工一个面积为2m 的矩形模具,假设模具的长与宽分别为y 与x ;1你能写出y 与x 之间的函数表达式吗 变量y 与x 之间是什么函数2若想使模具的长比宽多,已知每米这种不锈钢条6元钱,求加工这个模具共花多少钱3、若函数满足023=+xy,则y 与x 的函数关系式为______________,你认为y 是x 的______________函数;4、已知y =21y y +,1y 与x 成正比例,2y 与x 成反比例,并且当x =2时,y = —4;当x = —1时,y =5,求出y 与x 的函数关系式;5、已知y 是x 的函数,且其对应数据如下表所示,你认为y 是x 的正比例函数还是反比例函数你能写出函数的表达式,并填上表格中的空缺吗6、函数xky =的图象经过点A1,—2,则k 的值为 ; A .21 B. 21- C. 2 D. —27、若函数132)1(+++=m mx m y 是反比例函数,则m 的值为 ;A .m = —2 B. m = 1 C. m = 2或m = 1 D. m = —2,或m = —1 8、若甲、乙两城市间的路程为1000千米,车速为每小时x 千米,从甲市到乙市所需的时间为y 小时,那么y 与x 的函数表达式是_______________________不必写出x 的取值范围,y 是x 的__________函数;9、已知y 是x 的反比例函数,当x =5时,y = —1,那么,当y =3时,x =_________;当x =3时,y =________;第2节 反比例函数的图象与性质1、 反比例函数的图象及其画法 反比例函数图象的画法——描点法:(1) 列表——自变量取值应以0但)0(≠x 为中心,向两边取三对或三对以上互为相反数的数,再求出对应的y 的值;(2) 描点——先描出一侧,另一侧可根据中心对称点的性质去找;(3) 连线——按照从左到右的顺序连接各点并延伸,注意双曲线的两个分支是断开的,延伸部分有逐渐靠近坐标轴的趋势,但永远不与坐标轴相交;反比例函数xky =的图象是由两支曲线组成的;当0>k 时,两支曲线分别位于第一、三象限内,当0<k 时,两支曲线分别位于第二、四象限内;小注:1这两支曲线通常称为双曲线;2这两支曲线关于原点对称; 3反比例函数的图象与x 轴、y 轴没有公共点; 例1:画出反比例函数x y 6=与xy 6-=的图象; 解:1列表:2描点:(3) 连线;1 反比例函数的性质反比例函数 xky =)0(≠k k 的符号k >0k<0图象 双曲线x 、y 取值范围 x 的取值范围x ≠0 y 的取值范围y ≠0 x 的取值范围x ≠0 y 的取值范围y ≠0 位置第一,三象限内第二,四象限内增减性 每一象限内,y 随x 的增大而减小 每一象限内,y 随x 的增大而增大渐近性 反比例函数的图象无限接近于x,y 轴,但永远达不到x,y 轴,画图象时,要体现出这个特点.对称性 反比例函数的图象是关于原点成中心对称的图形.反比例函数的图象也是轴对称图形.例2 已知 2(1)m y m x -=+是反比例函数,则函数的图象在A 、一、三象限B 、二、四象限C 、一、四象限D 、三、四象限例3 函数2y kx =-与ky x=k ≠0在同一坐标系内的图象可能是例4 已知反比例函数xky =的图象经过点P 一l,2,则这个函数的图象位于 A .第二、三象限 B .第一、三象限 C .第三、四象限 D .第二、四象限3反比例函数xky =)0(≠k 中的比例系数k 的几何意义难点k 的几何含义:反比例函数y =k x k ≠0中比例系数k 的几何意义,即过双曲线y =kxk ≠0上任意一点P 作x 轴、y 轴垂线,设垂足分别为A 、B,则所得矩形OAPB 的面积为 .例5 A 、B 是函数2y x=的图象上关于原点对称的任意两点,BC ∥x 轴,AC ∥y 轴,△ABC 的面积记为S ,则A . 2S =B . 4S =C .24S <<D .4S >例6如图A 在反比例函数(0)ky k x=≠的图象上,AM x ⊥轴于点M ,AMO △的面积为3,则k =4反比例函数与正比例函数图象的交点凡是交点问题就联立方程例7如图,一次函数y kx b =+的图象与反比例函数my x=的图象交于(21)(1)A B n -,,,两点.1试确定上述反比例函数和一次函数的表达式; 2求AOB △的面积.O BxyC A 图1OyxBA本节练习一、选择题每小题6分,共36分1. 已知2(1)my m x-=+是反比例函数,则函数的图象在A、一、三象限B、二、四象限C、一、四象限D、三、四象限2.若反比例函数kyx=的图象经过点(12)-,,则这个函数的图象一定经过点A、(21)--,B、122⎛⎫-⎪⎝⎭,C、(21)-,D、122⎛⎫⎪⎝⎭,3.反比例函数5nyx+=的图象经过点2,3,则n的值是A、-2B、-1C、0D、14.反比例函数1kyx-=的图象在每个象限内,y随x的增大而减小,则k的值可为A、1- B、0 C、1 D、25.如果两点1P1,1y和2P2,2y都在反比例函数1yx=的图象上,那么A.2y<1y<0B.1y<2y<0C.2y>1y>0 D.1y>2y>06.函数(0)ky kx=≠的图象如图所示,那么函数y kx k=-的图象大致是A B C D二、填空题每小题6分,共24分7.如果反比例函数kyx=0k≠的图象经过点1,-2,则这个函数的表达式是_________.当0x<时,y随x的增大而______ 填“增大”或“减小8.如图7,双曲线xky=与直线mxy=相交于A、B两点,B点坐标为-2,-3,则A点坐标为_________.9. 如图8,点A 在反比例函数xky =的图象上,AB 垂直于x 轴,若4=∆AOB S ,那么这个反比例函数的解析式为__________.图810.老师给出一个函数,甲、乙各指出了这个函数的一个性质:甲:第一、三象限有它的图象; 乙:在每个象限内,y 随x 的增大而减小. 请你写一个满足上述性质的函数______________________三、解答题每小题,共40分11. 20分如图,一次函数b kx y +=的图象与反比例函数xmy =图象交于A -2,1、B1,n 两点.1求反比例函数和一次函数的解析式;2根据图象写出使一次函数的值大于反比例函数的值的x 的取值范围.12. 20分如图,已知反比例函数1(0)my m x=≠的图象经过点(21)A -,,一次函数2(0)y kx b k =+≠的图象经过点(03)C ,与点A ,且与反比例函数的图象相交于另一点B .1分别求出反比例函数与一次函数的解析式;2求点B 的坐标.第3节 反比例函数的应用 本节内容:运用函数的图象和性质解答实际问题例题1 .面积一定的梯形,其上底长是下底长的21,设下底长x =10 cm 时,高y =6 cm 1求y 与x 的函数关系式; 2求当y =5 cm 时,下底长多少16.一定质量的二氧化碳,当它的体积V=6 m 3时,它的密度ρ= kg/m 3. 1求ρ与V 的函数关系式.2当气体体积是1 m 3时,密度是多少3当密度为 kg/m 3时,气体的体积是多少例题2如图,Rt △AOB 的顶点A 是一次函数y =-x +m +3的图象与反比例函数y =xm的图象在第二象限的交点,且S △AOB =1,求点A 的坐标.例题3某厂要制造能装250mL1mL=1 cm 3饮料的铝制圆柱形易拉罐,易拉罐的侧壁厚度和底部厚度都是 cm,顶部厚度是底部厚度的3倍,这是为了防止“砰”的一声打开易拉罐时把整个顶盖撕下来,设一个底面半径是x cm 的易拉罐用铝量是y cm 3.用铝量=底面积×底部厚度+顶部面积×顶部厚度+侧面积×侧壁厚度,求y 与x 间的函数关系式.综合检测题一、填空题:1、u 与t 成反比,且当u =6时,81=t ,这个函数解析式为 ; 2、函数2x y -=和函数xy 2=的图像有 个交点; 3、反比例函数x k y =的图像经过-23,5点、a ,-3及10,b 点,则k = ,a = ,b = ;4、若函数()()414-+-=m x m y 是正比例函数,那么=m ,图象经过 象限;5、若反比列函数1232)12(---=k kx k y 的图像经过二、四象限,则k = _______6、已知y -2与x 成反比例,当x =3时,y =1,则y 与x 间的函数关系式为 ;7、已知正比例函数kx y =与反比例函数3y x=的图象都过A m ,1,则m = ,正比例函数与反比例函数的解析式分别是 、 ; 8、 设有反比例函数y k x=+1,(,)x y 11、(,)x y 22为其图象上的两点,若x x 120<<时,y y 12>,则k 的取值范围是___________9、右图3是反比例函数xk y =的图象,则k 与0的大小关系是k 0.10、函数xy 2-=的图像,在每一个象限内,y 随x 的增大而 ; 11、反比例函数()0>=k xky 在第一象限内的图象如图,点M 是图像上一点,MP 垂直x 轴于点P,如果△MOP 的面积为1,那么k 的值是 ; 12、()7225---=m mx m y 是y 关于x 的反比例函数,且图象在第二、四象限,则m 的值为 ;二、选择题: 分数3分×14=42分,并把答案填在第12题后的方框内 1、下列函数中,反比例函数是 A 、 1)1(=-y x B 、 11+=x y C 、 21xy = D 、 x y 31=2、已知反比例函数的图像经过点a ,b ,则它的图像一定也经过yO PMA 、 -a ,-bB 、 a ,-bC 、 -a ,bD 、 0,0 3、如果反比例函数xky =的图像经过点-3,-4,那么函数的图像应在 A 、 第一、三象限B 、 第一、二象限C 、 第二、四象限D 、 第三、四象限 4、若y 与-3x 成反比例,x 与z4成正比例,则y 是z 的 A 、 正比例函数B 、 反比例函数C 、 一次函数 D 、 不能确定 5、若反比例函数22)12(--=m x m y 的图像在第二、四象限,则m 的值是A 、 -1或1B 、小于21的任意实数 C 、 -1 D、 不能确定 6、函数x k y =的图象经过点-4,6,则下列各点中不在xky =图象上的是A 、 3,8B 、 3,-8C 、 -8,-3D 、 -4,-67、正比例函数kx y =和反比例函数ky =在同一坐标系内的图象为8、如上右图,A 为反比例函数xky =图象上一点,AB垂直x 轴于B 点,若S △AOB =3,则k的值为 A 、6B 、3C 、23 D 、不能确定9、如果矩形的面积为6cm 2,那么它的长y cm 与宽x cm 之间的函数关系用图象表示大致A10、在同一直角坐标平面内,如果直线x k y 1=与双曲线xk y 2=没有交点,那么1k 和2k 的关系一定是 A 1k <0,2k >0B 1k >0,2k <0C 1k 、2k 同号D 1k 、2k 异号11、已知变量y 与x 成反比例,当x =3时,y =―6;那么当y =3时,x 的值是 A 6 B ―6 C 9 D ―912、当路程s 一定时,速度v 与时间t 之间的函数关系是A 正比例函数B 反比例函数C 一次函数D 二次函数 13、2001北京西城在同一坐标系中,函数x ky =和3+=kx y 的图像大致是14、已知反比例函数)0(<=k xky 的图像上有两点A 1x ,1y ,B 2x ,2y ,且21x x <,则21y y -的值是A 、 正数B 、 负数C 、 非正数D 、 不能确定 三、解答题:第1、2小题各7分、第3小题8分,共22分1、在某一电路中,保持电压不变,电流I 安培与电阻R 欧姆成反比例,当电阻R=5欧姆时,电流I=2安培;1求I 与R 之间的函数关系式 2当电流I=安培时,求电阻R 的值;2、如图,Rt △ABO 的顶点A 是双曲线xky =与直线)1(+--=k x y 在第二象限的交点, AB ⊥x 轴于B 且S △ABO =23 1求这两个函数的解析式2求直线与双曲线的两个交点A,C 的坐标和△AOC 的面积;3、如图,一次函数b kx y +=的图像与反比例函数xmy =的图像相交于A 、B 两点, 1利用图中条件,求反比例函数和一次函数的解析式2根据图像写出使一次函数的值大于反比例函数的值的x 的取值范围2001江苏苏州。

反比例函数知识点梳理

反比例函数知识点梳理

反比例函数知识点梳理
y=k/x
其中,y表示一个变量的值,x表示另一个变量的值,k是比例常数。

反比例函数的特点是,一个变量的值增大,另一个变量的值就会减小;一
个变量的值减小,另一个变量的值就会增大。

1.定义域和值域:
2.变化趋势:
当x增大时,y就会减小;当x减小时,y就会增大。

两者是成反比
的关系。

3.特殊情况:
当y和x有一个为零时,反比例函数无定义。

这是因为在反比例函数中,不能除以零。

4.x和y的初始值:
当x=1时,y=k/1=k。

这意味着当x取1时,y的值就等于比例常数k。

5.比例常数k的取值:
比例常数k可以是任意非零实数,但取值不同会导致反比例函数的图
像形状不同。

比例常数k的正负性决定了反比例函数的图像是在y轴的上
方还是下方,而比例常数k的绝对值大小决定了函数图像的陡峭程度。

6.图像:
反比例函数的图像一般是一个平面上的曲线,碰触坐标轴上的点是
x=0和y=0,称为渐近线。

当比例常数k为正时,曲线在第一象限和第三象限之间开口;当比例常数k为负时,曲线在第二象限和第四象限之间开口。

曲线越靠近坐标轴,其图像就越陡峭。

7.标准方程:
8.反比例函数的应用:
总结起来,反比例函数是数学中一种特殊的函数形式,表示两个变量之间的关系满足y=k/x。

它具有一些特点和性质,包括定义域和值域、变化趋势、特殊情况、x和y的初始值、比例常数k的取值、图像特征等。

反比例函数在实际生活中有广泛的应用。

反比例函数知识点和常考求K值题型的技巧

反比例函数知识点和常考求K值题型的技巧

A.4
B.-4
C.8
D.-8
7、 如图,已知双曲线 y k ( k>0 ) 经过直角三角形 OAB 斜边 OB 的中点 D,与
x
直角边 AB 相交于点 C.若△OBC 的面积为 3,则 k=____________
9、如图,直线 y 3x 6 分别交 x 轴,y 轴于 A,B,M 是反比例函数 y k x
A. 81 3 25
B. 81 3 16
C. 81 3 5
D. 81 3 4
课堂练习
1、如图,在直角坐标系 xOy 中,点 A,B 分别在 x 轴和 y 轴, OA 3 .∠AOB OB 4
的角平分线与 OA 的垂直平分线交于点 C,与 AB 交于点 D,反比例函数 y k 的图 x
象过点 C.当以 CD 为边的正方形的面积为 2 时,k 的值是( ) 7
二.解题小技巧 ①反比例函数算 k 的两大方向,第一,设出某个点的坐标(x,y),然后运
用整体思想算出 xy 的值(xy=k);第二,运用 k 的几何意义,算出 S△xoy= 1 |k| 2
。 ②反比例函数上的任意两点 A(a,b)、B(c,d),那么 ab=cd,若 A、B 两
点有倍数关系,就可以用一点来代表另一点(例如 a=2c,那么 b=0.5d)。 ③一般会涉及到相似三角形和三角函数,常用的辅助线就是做坐标轴的垂线
A.3
B.4
C.6
D.8
6、 如图,已 知双曲线 y k 与直线 y=﹣x+6 相交于 A,B 两点,过点 A 作 x 轴 x
的垂线与过点 B 作 y 轴的垂线相交于点 C,若△ABC 的 面积为 8,则 k 的值


7、如图,过原点 O 的直线 AB 与反比例函数 y k ( k 0 )的图象交于 A、B 两 x

反比例函数讲义(知识点+典型例题)

反比例函数讲义(知识点+典型例题)

变式1 如果y 是m 的反比例函数,m 是x 的反比例函数,那么y 是x 的( ) A .反比例函数 B .正比例函数 C .一次函数 D .反比例或正比例函数 变式2 若函数11-=m xy (m 是常数)是反比例函数,则m =________,解析式为________.题型二:反比例函数解析式例3 已知A (﹣1,m )与B (2,m ﹣3)是反比例函数图象上的两个点.则m 的值 .例4 已知y 与2x -3成反比例,且41=x 时,y =-2,求y 与x 的函数关系式.变式3已知y 与x 成反比例,当x =2时,y =3.(1)求y 与x 的函数关系式;(2)当y =-23时,求x 的值.变式4 已知函数12y y y =-,其中1y 与x 成正比例, 2y 与x 成反比例,且当x =1时,y =1;x =3时,y =5.求:(1)求y 关于x 的函数解析式; (2)当x =2时,y 的值.1、反比例函数的图像(1)形状与位置:反比例函数的图像是双曲线,它有两个分支,这两个分支分别位于第一、三象限,或第二、四象限,它们关于原点对称。

(2)变化趋势:由于反比例函数中自变量x ≠0,函数y ≠0,所以,它的图像与x 轴、y 轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。

2、反比例函数的性质(1)对称性:反比例函数的图像是关于原点对称的中心对称图形,同时也是轴对称图形,有两条对称轴,分别是一、三象限和二、四象限的角平分线,即直线y x =±。

(注:过原点的直线与双曲线的两个交点关于原点对称)(2)双曲线的位置:当k>0时,双曲线位于一、三象限(x ,y 同号);当k<0时,双曲线位于二、四象限(x ,y 同号异号),反之也成立。

(3)增减性: 当k>0时,双曲线走下坡路,在同一象限内,y 随x 的增大而减小;当k<0时,双曲线走上坡路,在同一象限内,y 随x 的增大而增大。

反比例函数最全知识点

反比例函数最全知识点

反比例函数的图象和性质知识点一:反比例函数的概念及其图象、性质关键点拨与对应举例1.反比例函数的概念(1)定义:形如y=kx(k≠0)的函数称为反比例函数,k叫做比例系数,自变量的取值范围是非零的一切实数.(2)形式:反比例函数有以下三种基本形式:①y=kx;②y=kx-1; ③xy=k.(其中k为常数,且k≠0)例:函数y=3x m+1,当m=-2时,则该函数是反比例函数.2.反比例函数的图象和性质k的符号图象经过象限y随x变化的情况(1)判断点是否在反比例函数图象上的方法:①把点的横、纵坐标代入看是否满足其解析式;②把点的横、纵坐标相乘,判断其乘积是否等于k.失分点警示(2)反比例函数值大小的比较时,首先要判断自变量的取值是否同号,即是否在同一个象限内,若不在则不能运用性质进行比较,可以画出草图,直观地判断.k>0 图象经过第一、三象限(x、y同号)每个象限内,函数y的值随x的增大而减小.k<0 图象经过第二、四象限(x、y异号)每个象限内,函数y的值随x的增大而增大.3.反比例函数的图象特征(1)由两条曲线组成,叫做双曲线;(2)图象的两个分支都无限接近x轴和y轴,但都不会与x轴和y轴相交;(3)图象是中心对称图形,原点为对称中心;也是轴对称图形,2条对称轴分别是平面直角坐标系一、三象限和二、四象限的角平分线.例:若(a,b)在反比例函数kyx=的图象上,则(-a,-b)在该函数图象上.(填“在"、"不在")4.待定系数法只需要知道双曲线上任意一点坐标,设函数解析式,代入求出反比例函数系数k即可.例:已知反比例函数图象过点(-3,-1),则它的解析式是y=3/x.知识点二:反比例系数的几何意义及与一次函数的综合5.系数k的几何意义(1)意义:从反比例函数y=kx(k≠0)图象上任意一点向x轴和y轴作垂线,垂线与坐标轴所围成的矩形面积为|k|,以该点、一个垂足和原点为顶点的三角形的面积为1/2|k|.(2)常见的面积类型:失分点警示已知相关面积,求反比例函数的表达式,注意若函数图象在第二、四象限,则k<0.例:已知反比例函数图象上任一点作坐标轴的垂线所围成矩形为3,则该反比例函数解析式为:3yx=或3yx=-.6.与一次函数的综合(1)确定交点坐标:【方法一】已知一个交点坐标为(a,b),则根据中心对称性,可得另一个交点坐标为(-a,-b).【方法二】联立两个函数解析式,利用方程思想求解.(2)确定函数解析式:利用待定系数法,先确定交点坐标,再分别代入两个函数解析式中求解(3)在同一坐标系中判断函数图象:充分利用函数图象与各字母系数的关系,可采用假设法,分k>0和k<0两种情况讨论,看哪个选项符合要求即可.涉及与面积有关的问题时,①要善于把点的横、纵坐标转化为图形的边长,对于不好直接求的面积往往可分割转化为较好求的三角形面积;②也要注意系数k的几何意义.例:如图所示,三个阴影部分的面积按。

反比例函数专题知识点归纳 常考(典型)题型 重难点题型(含详细答案)

反比例函数专题知识点归纳 常考(典型)题型  重难点题型(含详细答案)

反比例函数专题知识点归纳+常考(典型)题型+重难点题型(含详细答案)一、目录一、目录 (1)二、基础知识点 (2)1.知识结构 (2)2.反比例函数的概念 (2)3.反比例函数的图象 (2)4.反比例函数及其图象的性质 (2)5.实际问题与反比例函数 (4)三、常考题型 (6)1.反比例函数的概念 (6)2.图象和性质 (6)3.函数的增减性 (8)4.解析式的确定 (10)5.面积计算 (12)6.综合应用 (17)三、重难点题型 (22)1.反比例函数的性质拓展 (22)2.性质的应用 (23)1.求解析式 (23)2.求图形的面积 (23)3. 比较大小 (24)4. 求代数式的值 (25)5. 求点的坐标 (25)6. 确定取值范围 (26)7. 确定函数的图象的位置 (26)二、基础知识点1.知识结构2.反比例函数的概念(k≠0)可以写成y=x−1(k≠0)的形式,注意自变量x 1.y=kx的指数为-1,在解决有关自变量指数问题时应特别注意系数k≠0这一限制条件;(k≠0)也可以写成xy=k的形式,用它可以迅速地求出反2.y=kx比例函数解析式中的k,从而得到反比例函数的解析式;的自变量x≠0,故函数图象与x轴、y轴无交点.3.反比例函数y=kx3.反比例函数的图象的图象时,应注意自变量x的取值在用描点法画反比例函数y=kx不能为0,且x应对称取点(关于原点对称).4.反比例函数及其图象的性质1.函数解析式:y=k(k≠0)x2.自变量的取值范围:x≠03.图象:(1)图象的形状:双曲线.|k|越大,图象的弯曲度越小,曲线越平直.|k|越小,图象的弯曲度越大.(2)图象的位置和性质:①与坐标轴没有交点,称两条坐标轴是双曲线的渐近线.②当k>0时,图象的两支分别位于一、三象限;在每个象限内,y随x的增大而减小;③当k<0时,图象的两支分别位于二、四象限;在每个象限内,y随x的增大而增大.(3)对称性:①图象关于原点对称,即若(a,b)在双曲线的一支上,则(-a,-b)在双曲线的另一支上.②图象关于直线y=±x对称,即若(a,b)在双曲线的一支上,则(b,a)和(-b,-a)在双曲线的另一支上.(4)k的几何意义图1上任意一点,作PA⊥x①如图1,设点P(a,b)是双曲线y=kx轴于A点,PB⊥y轴于B点,则矩形PBOA的面积是|k|(三角形PAO|k|).和三角形PBO的面积都是12图2②如图2,由双曲线的对称性可知,P关于原点的对称点Q也在双曲线上,作QC⊥PA的延长线于C,则有三角形PQC的面积为2|k|.(5)说明:①双曲线的两个分支是断开的,研究反比例函数的增减性时,要将两个分支分别讨论,不能一概而论.的关系:②直线y=k1x与双曲线y=k2x当k1k2<0时,两图象没有交点;当k1k2>0时,两图象必有两个交点,且这两个交点关于原点成中心对称.5.实际问题与反比例函数1.求函数解析式的方法:(1)待定系数法;(2)根据实际意义列函数解析式.2.注意学科间知识的综合,但重点放在对数学知识的研究上.三、常考题型1.反比例函数的概念(1)下列函数中,y是x的反比例函数的是().A.y=3x B.y-3=2x C.3xy=1 D.y=x2答案:A为正比例函数B为一次函数C变型后为反比例函数D为二次函数(2)下列函数中,y是x的反比例函数的是().A.y=14x B.y=−1x2C.y=1x−1D.y=1+1x答案:A为反比例函数,k为14B、C、D都不是反比例函数2.图象和性质(1)已知函数y=(k+1)x k2+k−3是反比例函数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

反比例函数基本知识点题型梳理
知识点1 反比例函数的定义
一般地,形如x
k
y =(k 为常数,0k ≠)的函数称为反比例函数,它可以从以下几个方面来理解:
⑴x 是自变量,y 是x 的反比例函数;
⑵自变量x 的取值范围是0x ≠的一切实数,函数值的取值范围是0y ≠; ⑶比例系数0k ≠是反比例函数定义的一个重要组成部分; ⑷反比例函数有三种表达式:
①x
k
y =
(0k ≠); ②1
kx y -=(0k ≠); ③k y x =⋅(定值)(0k ≠); ⑸函数x
k
y =
(0k ≠)与y k x =(0k ≠)是等价的,所以当y 是x 的反比例函数时,x
也是y 的反比例函数。

注:(k 为常数,0k ≠)是反比例函数的一部分,当k=0时,x
k
y =,就不是反比例函数了,由于反比例函数x
k
y =
(0k ≠)中,只有一个待定系数,因此,只要一组对应值,就可以求出k 的值,从而确定反比例函数的表达式。

(6)“反比例关系”与“反比例函数”:成反比例的关系式不一定是反比例函数,但是反
比例函数
x k
y =
中的两个变量必成反比例关系。

知识点2用待定系数法求反比例函数的解析式
由于反比例函数x
k
y =
(0k ≠)中,只有一个待定系数,因此,只要一组对应值,就可以求出k 的值,从而确定反比例函数的表达式。

知识点3反比例函数的图像及画法
反比例的画法分三个步骤:⑴列表;⑵描点;⑶连线。

注意:①列表时选取的数值宜对称选取;
②列表时选取的数值越多,画的图像越精确;
③连线时,必须根据自变量大小从左至右(或从右至左)用光滑的曲线连接,切忌画成折线;
④画图像时,它的两个分支应全部画出,但切忌将图像与坐标轴相交。

知识点4反比例函数的性质
☆关于反比例函数的性质,主要研究它的图像的位置及函数值的增减情况,如下表:
反比例函数
x
k
y =
(0k ≠) k 的
符号
0k > 0k <
图像
性质
①x 的取值范围是0x ≠,y 的取值范围是
0y ≠
②当0k >时,函数图像的两个分支分别在第一、第三象限,在每个象限内,y 随x 的增大而减小。


x 的取值范围是
0x ≠,y 的取值范围是
0y ≠
②当0k
<时,
函数图像的两个分支分别在第二、第四象限,在每个象限内,y 随x 的增大而增大。

注意:描述函数值的增减情况时,必须指出“在每个象限内……”否则,笼统地说,当0k >时,y 随x 的增大而减小“,就会与事实不符的矛盾。

☆反比例函数x
k
y =
(0k ≠)中比例系数k 的绝对值k 的几何意义: 如图所示,过双曲线上任一点P (x ,y )分别作x 轴、y 轴的垂线,E 、F 分别为垂足, 则OEPF S PE PF y x xy 矩形=⋅=⋅==k
☆ 反比例函数x k y =(0k ≠)中,k 越大,双曲线x
k
y =越远离坐标原点;k 越小,双曲线x
k
y =
越靠近坐标原点。

☆ 双曲线是中心对称图形,对称中心是坐标原点;双曲线又是轴对称图形,对称轴是直
线y=x 和直线y=-x 。

经典例题透析
类型一 反比例函数的概念
1.判断下列各式是否表示y 是x 的反比例函数,若是,指出比例系数k 的值;若不是,指出是什么函数.
(1)8;y x =-
(2)1;
9xy = (3)43;y x =- (4)1
;7y x =- (5)2=x y ; (6) x y 76-=; (7)x
k y =(k 为常数,k 0≠)
2. 根据题意列出函数关系式,并判断是什么函数. (1)面积为常数m 的长方形的长y 与宽x 之间的关系;
(2)一本500页的书,每天看15页,x 天后尚未看完的页数y 与天数x 之间的关系.
专题2 反比例函数图象的位置与系数的关系
【专题解读】 反比例函数k
y x
=的图象是由两个分支组成的双曲线,图象的位置与比例系数k 的关系有如下两种情况:
(1)0k >⇔双曲线的两个分支在第一、三象限⇔在第一象限内,y 随x 的增大而减小. (2)0k <⇔双曲线的两个分支在第二、四象限⇔在第一象限内,y 随x 的增大而增大.
3. 函数y ax a =-+与(0)a
y a x
-=
≠在同一坐标系中的图象可能是( )
专题3 反函数的图象
【专题解读】 如左下图所示,若点A (x ,y )为反比例函数k
y x
=
图象上的任意一点,过A 作AB ⊥x 轴于B ,作AC ⊥y 轴于C ,则S △AOB =S △AOC =12S 矩形ABOC =1
||2
k .
4. 如右上图所示,点P 是x 轴正半轴上的一个动点,过P 作x 轴的垂线交双曲线1
y x
=于点Q ,连接OQ ,当点P 沿x 轴正方向运动时,Rt △QOP 的面积( )
A .逐渐增大
B .逐渐减小
C .保持不变
D .无法确定
5.在反比例函数
x y 1
-
=的图像上有三点(1x ,)1y ,(2x ,)2y ,(3x ,)3y 。


3
210x x x >>>则下列各式正确的是( ) A .
213y y y >> B .
1
23y y y >> C .
3
21y y y >> D .
2
31y y y >>
6. 如果函数
2
22
-+=k k
kx y 的图像是双曲线,且在第二,四象限内,那么k 的值是多
少?
7.如果一次函数
()的图像与反比例函数x m
n y m n mx y -=
≠+=30相交于点
(221
,),那么该直线与双曲线的另一个交点为( )
8. 已知一次函数y kx b =+的图象与反比例函数6
y x
=的图象相交于A ,B 两点,点A 的横坐标是3,点B 的纵坐标是-3.
(1)求一次函数的表达式;
(2)当一次函数值小于0时,求x 的取值范围.
9. 已知反比例函数k
y x
=
的图象经过点A (-2,3). (1)求这个反比例函数的表达式;
(2)经过点A 的正比例函数y k x '=的图象与反比例函数k
y x
=的图象还有其他交点吗?若有,求出交点坐标;若没有,说明理由.
10.如图,在AOB Rt ∆中,点A 是直线m x y +=与双曲线x m
y =
在第一象限的交
点,且
2
=∆AOB S ,则m 的值是_____.
11.如右上图所示,在反比例函数2
(0)y x x
=
>的图象上有点1234,,,P P P P ,它们的横坐标依次为1,2,3,4,分别过些点作x 轴与y 轴的垂线,图中所构成的阴影部分的面积从左到右依次为1234,,,S S S S ,则123S S S ++= ________ .
求n S S ++++......S S 321的值(用含n 的代数式来表示)_________________
中考真题精选:
1.(江苏扬州)某反比例函数的图象经过点(-1,6),则下列各点中,此函数图象也经过的点是( )
A. (-3,2)
B. (3,2)
C.(2,3)
D.(6,1) 2.(重庆江津区)已知如图,A 是反比例函数k
y x
=的图象上的一点,AB 丄x 轴于点B ,且△ABC 的面积是3,则k 的值是( )
A 、3
B 、﹣3
C 、6
D 、﹣6
3.(吉林)反比例函数的图象如图所示,则k 的值可能是( )
A 、﹣1
B 、
C 、1
D 、2
4. (辽宁阜新)反比例函数6y x =
与3
y x
=在第一象限的图象如图所示,作一条平行于x 轴的直线分别交双曲线于A 、B 两点,连接OA 、OB ,则△AOB 的面积为( )
A.
3
2
B.2
C.3
D.1
5.(玉林)如图是反比例函数y=
x k 1和y=x
k
2(k 1<k 2)在第一象限的图象,直线AB ∥x 轴,并分别交两条曲线于A 、B 两点,若S △AOB =2,则k 2﹣k 1的值是( )
A 、1
B 、2
C 、4
D 、8。

相关文档
最新文档