七年级上册整式的加减培优训练

合集下载

整式的加减(培优篇)

整式的加减(培优篇)

初一(上)数学整式的加减(培优篇)关卡一:单项式、多项式1.(1)单项式是关于的五次单项式,则 ;z yx n 123-z y x ,,,=n (2)关于的多项式是二次三项式,则 , ;x b x x x a b-+--3)4(=a =b (3)如果是关于的五次四项式,那么 。

52)2(4232+---+-x x q x xp x =+q p 2.如果关于的多项式与是次数相同的多项式,求的值x 21424-+x ax x x b53+4322123-+-b b b 3.已知是关于的三次三项式,求的值.5)1(3||2+--y m yx m y x ,1322+-m m 4.若多项式是关于的五次二项式,求的值()22532mx y n y +--x y ,222m mn n -+5.如果为四次三项式,则________。

()1233m xy m xy x ---+m =关卡二:同类项1.my x 22与是同类项,则=_____,=_____.y x n3-m n 2.单项式与是同类项,则的值为( ) 1-+-a b a b x y x 23b a -A .2 B . C .0 D .12-3.如果与的和是单项式,那么与取值为( )2522+-n m b a23-n ab m n A . B . C . D .3,2==n m 2,3==n m 2,3=-=n m 2,3-==n m 4.已知与是同类项,则的值是( )y xn 72001+y x m 322002+-2)2(n m -A .16 B .4×2001 C .-4×2002 D .5关卡三:去括号、添括号法则去括号法则: (1)括号前面是”+”号,去掉”+”号和括号,括号里的各项不变号;(2)括号前面是”-”号,去掉”-”号和括号,括号里的各项都变号.添括号法则: (1)添括号时,括号前添“+”号,括到括号里的各项都不变符号; (2)添括号时,括号前添“-”号,括到括号里的各项都改变符号。

第3章《整式的加减》培优习题1:列代数式

第3章《整式的加减》培优习题1:列代数式

第3章《整式的加减》培优习题1:代数式考点1:代数式概念例1、在22x ,021=-x ,ab ,0 a ,0,a1,π中,是代数式的有( )A 、5个B 、4个C 、3个D 、2个【同步练习】1、下列各式:①a ;②b a ≥;③()ac ab c b a +=+;④t 4;⑤()2n m +;⑥m 31-;⑦0;其中代数式有( )A 、2个B 、3个C 、4个D 、5个2、下列式子b a +32,ab S 21=,5,m ,y +8,23=+m ,7532≥中,代数式有( )A 、6个B 、5个C 、4个D 、3个考点2:代数式的书写例2、下列代数式书写正确的是( )A 、48aB 、y x ÷C 、()y x a +D 、ab 211【同步练习】1、下列式子:(1)b ⨯2;(2)3÷m ;(3)ab 212;(4)c -90;(5)n m +万元,书写正确的有( )A 、1个B 、2个C 、3个D 、4个2、下列各式子中,符合代数式书写要求的是( )A 、5∙xB 、n m ⨯4C 、()431+x xD 、ab 21-考点3:列代数式例3、用代数式表示“a 、b 的和除以m 所得的商”( )A 、mba + B 、ba m + C 、m ba +D 、bma +【同步练习】1、某商品打九折后价格为a 元,则原价为( )元 A 、aB 、a %10C 、a 910 D 、a 109 2、一个长方形的周长为a ,长为b ,则长方形的宽为( ) A 、b a 2-B 、b a 22- C 、2b a - D 、22ba - 3、某校购进价格a 元的排球100个,价格b 元的篮球50个,则该校一共需支付( ) A 、b a 50100+B 、b a 50100-C 、b a 10050+D 、a b 10050+例4、北山超市销售茶壶茶杯,茶壶每只定价20元,茶杯每只6元,超市在“双十一”期间开展促销活动,向顾客提供两种优惠方案:①买一只茶壶赠一只茶杯;②茶壶和茶杯都按定价的90%付款。

七年级数学 整式的加减 培优题型总结(最全)

七年级数学 整式的加减  培优题型总结(最全)

第三讲整式的加减(一)一、常考题型题型总结【题型1】抄错题问题【例1】小郑在一次测验中计算一个多项式A 减去xz yz xy 235+-时,不小心看成加上xz yz xy 235+-,计算出错误结果为xz yz xy 462-+,试求出正确答案。

【例2】数学课上七年级一班的张老师给同学们写了这样一道题“当2,2-==b a 时,求多项式⎪⎭⎫ ⎝⎛---+-2233233414213b b a b a b b a b a ⎪⎭⎫ ⎝⎛++b a b a 23341322+-b 的值”,马小虎做题时把2=a 错抄成2-=a ,王小真没抄错题,但他们做出的结果却都一样,你知道这是怎么回事吗?说明理由.【培优练习】1、李明在计算一个多项式减去2245x x -+时,误认为加上此式,计算出错误结果为221x x -+-,试求出正确答案。

2、2、某同学做一道数学题,误将求“A-B ”看成求“A+B ”,结果求出的答案是3x 2-2x+5.已知A=4x 2-3x-6,请正确求出A-B.3、一位同学做一道题:“已知两个多项式A ,B ,计算2A+B ”。

他误将“2A+B ”看成“A+2B ”,求得的结果为。

已知B=,求原题的正确答案。

4、计算下式的值:甲同学把错抄成,但他计算的结果也是正确的,你能说明其中的原因吗? 7292+-x x 232-+xx【题型2】分类讨论型问题【例1】如果关于x 的多项式21424-+x ax 与x x b 53+是次数相同的多项式,求4322123-+-b b b 的值 【培优练习】1、多项式12423232+++-+x x x ax x a 是关于x 的二次多项式,求a a a ++221 【题型3】绝对值双值性【例1】已知3x 2y |m|-(m-1)y+5是关于x ,y 的三次三项式,求2m 2-3m+1的值. 【培优练习】1、若多项式()22532m xy n y +--是关于x y ,的五次二项式,求222m mn n -+的值 2、如果()1233m x y m xy x ---+为四次三项式,则m =________。

第四章整式的加减:多项式与整式的加减培优训练人教版2024—2025学年七年级上册

第四章整式的加减:多项式与整式的加减培优训练人教版2024—2025学年七年级上册

第四章整式的加减:多项式与整式的加减培优训练人教版2024—2025学年七年级上册例1:已知n 是自然数,多项式 x x y n 2331--+ 是三次三项式,那么n 等于 . 变式1:代数式b x x a 2431-++是四次二项式,求a,b 的值.变式2:已知关于x ,y 的代数式(a ﹣3)x 2y |a |+(b +2)为五次单项式,求a 2﹣3ab +b 2的值.变式3:多项式是关于x ,y 的三次二项式,则m 的值是 .变式4:若4xy |k |﹣5(k ﹣3)y 2+1是四次三项式,则k 的值为( )A .±2B .2C .﹣3D .±3 变式5:我们对一个单项式A 进行这样的变化:①A 的系数不发生变化;②将A 包含的所有字母按照英语字母表的顺序进行排列;③从左至右,将A 中每个字母的次数变为其右侧相邻字母的次数,最右侧字母的次数不发生变化.经历上述变化后,单项式A 变为单项式A ′.我们称A ′为A 的“右变次单项式”,例如,的“右变次单项式”为,﹣2a 3b 2c 的“右变次单项式”为﹣2a 2bc ,a 2b 4c 3d 5的“右变次单项式”为a 4b 3c 5d 5.(1)的“右变次单项式”为 ,﹣a 4b 3c 2的“右变次单项式”为 ;(2)若5次单项式A 的“右变次单项式”为3ab ,则A = ;(3)若单项式A 的“右变次单项式”为A ′,单项式B 的“右变次单项式”为B ′,且A +B =7a 6b 4c 2,则A ′+B ′= ;(4)若仅含有字母a ,b ,c 的27次单项式A 的系数为5,“右变次单项式”为A 1,A 1的“右变次单项式”为A 2,若A 1的次数为28,A 2的次数为27,则A = .例2:若多项式()x y x x x mx 537852222+--++-的值与x 无关,求])45(2[22m m m m +---的值.变式6:若多项式x 3+(3m ﹣1)x 2﹣5x +7与多项式x 4+2x 3+8x 2+x ﹣1的差不含二次项,则m 的值为( )A .4B .﹣4C .3D .﹣3变式7:若关于x 的多项式3x 2﹣x +1+kx 中不含一次项,则k 的值为( )A .1B .﹣1C .0D .±1变式8:已知M =2a 2﹣ab +b ﹣1,M ﹣3N =a 2+3ab +2b +1.若计算M ﹣[2N ﹣(M ﹣N )]的结果与字母b 无关,则a 的值是 . 变式9:已知关于x 的多项式2mx 3﹣2x 2+3x ﹣(2x 3+nx )不含三次项和一次项,求(m ﹣n )3的值.变式10:已知A =2a 2﹣a ﹣ab ,B =a 2﹣b +ab .(1)化简A ﹣2B ;(2)若A ﹣2B 的值与a 的取值无关,求A ﹣2B 的值.变式11:关于a 的多项式4a 3﹣2ma 2+3a ﹣1与5a 3﹣4a 2+(n ﹣1)a ﹣1的和不含a 2和a 项.(1)求m ,n 的值;(2)求(4m 2n ﹣3mn 2)﹣2(m 2n +mn 2)的值.变式12:已知代数式A=2x2+3xy+2y﹣1,B=x2﹣xy+x﹣1.(1)当x=2,y=﹣2时,求A﹣2B的值;(2)若A﹣2B的值与x的取值无关,求y的值.变式13:已知A=3x2﹣x+2y﹣4xy,B=2x2﹣3x﹣y+xy.(1)化简:2A﹣3B;(2)若,xy=1,求2A﹣3B的值;(3)若2A﹣3B的值与y的取值无关,求此时2A﹣3B的值.变式14:有四个数,第一个数是a2+b,第二个数比第一个数的2倍少a2,第三个数是第一个数与第二个数的差的3倍,第四个数比第一个数少﹣2b,若第二个数用x表示,第三个数用y表示,第四个数用z表示.(1)用a,b分别表示x,y,z三个数;(2)若第一个数的值是3时,求这四个数的和;(3)已知m,n为常数,且mx+2ny﹣3z﹣4的结果与a,b无关,求m,n的值.例3:若单项式与﹣2x n y3的和仍为单项式,则其和为.变式15:如果单项式﹣y与2x4y n+3的和是单项式,那么(m+n)2024的值为()A.22024B.0C.1D.﹣1变式16:如果代数式4x2a﹣1y与的差是单项式,那么3a+b=.变式17:若3a n+1b2与a3b m+3的差仍是单项式,则m﹣n=.例4:已知M=﹣2a2+4a+1,N=﹣3a2+4a﹣1,则M与N的大小关系是()A.M>N B.M<NC.M=N D.以上都有可能变式18:已知M=4x2﹣3x﹣2,N=6x2﹣3x+6,则M与N的大小关系是()A.M<N B.M>NC.M=N D.以上都有可能例5:理解与思考:整体代换是数学的一种思想方法.例如:若x2+x=0,则x2+x+1186=;我们将x2+x作为一个整体代入,则原式=0+1186=1186.仿照上面的解题方法,完成下面的问题:(1)若x2+x﹣1=0,则x2+x+2021=;(2)如果a+b=3,求2(a+b)﹣4a﹣4b+21的值;(3)若a2+2ab=20,b2+2ab=8,求a2+2b2+6ab的值.变式19:理解与思考:整体代换是数学的一种思想方法.例如:若x2+x=0,则x2+x+1186=;我们将x2+x作为一个整体代入,则原式=0+1186=1186.仿照上面的解题方法,完成下面的问题:(1)如果a+b=3,求2(a+b)﹣4a﹣4b+21的值;(2)若a2+2ab=20,b2+2ab=8,求a2+2b2+6ab的值.(3)当x=2024时,代数式ax5+bx3+cx﹣5的值为m,求当x=﹣2024时,代数式ax5+bx3+cx﹣5的值.变式20:如图.在正方形ABCD的边长为3,以A为圆心,2为半径作圆弧.以D为圆心,3为半径作圆弧.若图中阴影部分的面积分为S1、S2.则S1﹣S2=.。

部编数学七年级上册第二章整式的加减(培优)(解析版)含答案

部编数学七年级上册第二章整式的加减(培优)(解析版)含答案

人教7年级 数学 第二章 整式 (培优).一、单选题1.若 3x m y 3 与﹣2x 2y n 是同类项,则( )A .m=1,n=1B .m=2,n=3C .m=﹣2,n=3D .m=3,n=2【答案】B2.单项式﹣5x 2yz 2的系数和次数分别是( )A .5,4B .﹣5,5C .5,5D .﹣5,﹣5【答案】B3.如果3ab 2m-1与9ab m +1是同类项,那么m 等于( )A .2B .1C .﹣1D .0【答案】A4.当x=1时,ax +b +1的值为−2,则(a +b−1)(1−a−b )的值为A .− 16B .− 8C .8D .16【答案】A5.下面四个代数式中,不能表示图中阴影部分面积的是( )A .()()322x x x ++-B .25x x+C .()232x x ++D .()36x x ++【答案】B6.若多项式32281x x x -+-与多项式323253x mx x +-+的差不含二次项,则m 等于( )A .2B .-2C .4D .-4【答案】D7.甲、乙、丙三家超市为了促销一种定价相同的商品,甲超市先降价20%,后又降价10%;乙超市连续两次降价15%;丙超市一次性降价30%.则顾客到哪家超市购买这种商品更合算( )A .甲B .乙C .丙D .一样【答案】C8.用棋子摆出下列一组图形:按照这种规律摆下去,第n 个图形用的棋子个数为( )A .3nB .6nC .3n +6D .3n +3【答案】D9.某天数学课上老师讲了整式的加减运算,小颖回到家后拿出自己的课堂笔记,认真地复习老师在课堂上所讲的内容,她突然发现一道题目:()()2222223355a ab b a ab b a +---++=26b -,空格的地方被墨水弄脏了,请问空格中的一项是( )A .+2abB .+3abC .+4abD .-ab【答案】A10.已知5,2a b ==,且||a b b a -=-,则a+b 的值为( )A .3或7B .-3或-7C .-3D .-7【答案】B二、填空题11.已知多项式x |m |+(m ﹣2)x ﹣10是二次三项式,m 为常数,则m 的值为_____.【答案】-212.若多项式3(a 2-2ab -b 2)-(a 2+mab +2b 2)中不含有ab 项,则m =________.【答案】-613.己知多项式1A ay =-,351B ay y =--,且多项式2A B +中不含字母y ,则a 的值为__________.【答案】114.某音像社出租光盘的收费方法是:每张光盘在租后的头两天每天收0.8元,以后每天收0.5元,那么一张光盘在出租后的第n 天(n 是大于2的自然数)应收租金____元;那么第10天应收租金__________元.【答案】(0.60.5)n + 5.615.若单项式-12a 2x b m 与a n b y-1可合并为12a 2b 4,则xy-mn=___________.【答案】-3三、解答题16.已知A =2x 2﹣1,B =3﹣2x 2,求A ﹣2B 的值.【答案】6x 2-717.已知有理数a ,b 在数轴上的位置如图所示,化简:232a b a b b a +----.【答案】73a b-+18.已知xy x y+=2,求代数式3533x xy y x xy y -+-+-的值。

《易错题》初中七年级数学上册第二章《整式的加减》知识点复习(培优练)

《易错题》初中七年级数学上册第二章《整式的加减》知识点复习(培优练)

1.若8m x y 与36n x y 的和是单项式,则()3m n +的平方根为( ).A .4B .8C .±4D .±8D解析:D【分析】根据单项式的定义可得8m x y 和36n x y 是同类项,因此可得参数m 、n ,代入计算即可. 【详解】解:由8mx y 与36n x y 的和是单项式,得 3,1m n ==.()()333164m n +=+=,64的平方根为8±. 故选D .【点睛】本题主要考查单项式的定义,关键在于识别同类项,根据同类项计算参数.2.在代数式a 2+1,﹣3,x 2﹣2x ,π,1x 中,是整式的有( ) A .2个B .3个C .4个D .5个C 解析:C【分析】单项式和多项式统称为整式,分母中含有字母的不是整式.【详解】解:a 2+1和 x 2﹣2x 是多项式,-3和π是单项式,1x 不是整式,∵单项式和多项式统称为整式,∴整式有4个.故选择C.【点睛】本题考查了整式的定义.3.点 1A 、 2A 、 3A 、…… 、 n A (n 为正整数)都在数轴上.点 1A 在原点 O 的左边,且 1A O 1=;点 2A 在点 1A 的右边,且 21A A 2=;点 3A 在点 2A 的左边,且 32A A 3=;点 4A 在点 3A 的右边,且 43A A 4=;……,依照上述规律,点 2008A 、 2009A 所表示的数分别为( )A .2008 、 2009-B .2008- 、 2009C .1004 、 1005-D .1004 、 1004- C解析:C【分析】先找到特殊点,根据特殊点的下标与数值的关系找到规律,数较大时,利用规律解答.【详解】解:根据题意分析可得:点A₁, A₂,A₃, .. A n 表示的数为-1,1,-2,2,-3,3,...依照上述规律,可得出结论:点的下标为奇数时,点在原点的左侧,且为下标加1除以2的相反数;点的下标为偶数时,点在原点的右侧且表示的数为点的下标数除以2;即:当n 为奇数时,n 1A 2n +=-, 当n 为偶数时,2n n A = 所以点A 2008表示的数为: 2008÷2= 1004A 2009表示的数为:- (2009+1) ÷2=-1005故选: C .【点睛】本题考查探索与表达规律.这类题型在中考中经常出现,对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的,然后找到规律.4.下列代数式的书写,正确的是( )A .5nB .n5C .1500÷tD .114x 2y A 解析:A【分析】直接利用代数式书写方法分析得出答案.【详解】解:A 、5n ,书写正确,符合题意;B 、n5,书写错误,不合题意;C 、1500÷t ,应为1500t ,故书写错误,不合题意; D 、114x 2y=54x 2y ,故书写错误,不合题意; 故选:A .【点睛】此题主要考查了代数式,正确把握代数式的书写方式是解题关键.5.已知2a ﹣b =3,则代数式3b ﹣6a+5的值为( )A .﹣4B .﹣5C .﹣6D .﹣7A解析:A【分析】由已知可得3b ﹣6a+5=-3(2a ﹣b )+5,把2a ﹣b =3代入即可.【详解】3b ﹣6a+5=-3(2a ﹣b )+5=-9+5=-4.故选:A【点睛】利用乘法分配律,将代数式变形.6.如图,用若干大小相同的黑白两种颜色的长方形瓷砖,按下列规律铺成一列图案,则第7个图案中黑色瓷砖的个数是( )A .19B .20C .21D .22D解析:D【分析】观察图形,发现:黑色纸片在4的基础上,依次多3个;根据其中的规律,用字母表示即可.【详解】第个图案中有黑色纸片3×1+1=4张第2个图案中有黑色纸片3×2+1=7张,第3图案中有黑色纸片3×3+1=10张,…第n 个图案中有黑色纸片=3n+1张.当n=7时,3n+1=3×7+1=22.故选D.【点睛】此题考查规律型:图形的变化类,解题关键在于观察图形找到规律.7.单项式21412n a b --与83m ab 是同类项,则57(1)(1)n m +-=( ) A .14 B .14- C .4 D .-4B解析:B【分析】直接利用同类项的概念得出n ,m 的值,即可求出答案.【详解】21412n a b --与83m ab 是同类项, ∴21184n m -=⎧⎨=⎩解得:121m n ⎧=⎪⎨⎪=⎩ 则()()5711n m +-=14- 故答案选B.【点睛】本题考查的知识点是同类项,解题的关键是熟练的掌握数轴同类项.8.已知有理数1a ≠,我们把11a -称为a 的差倒数,如:2的差倒数是1112=--,1-的差倒数是()11112=--.如果12a =-,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数…依此类推,那么2020a 的值是( )A .2-B .13C .23D .32A 解析:A【分析】求出数列的前4个数,从而得出这个数列以-2,13,32依次循环,用2020除以3,再根据余数可求a 2020的值.【详解】 ∵a 1=-2, ∴2111(3)3a ==--,3131213a ==-, 412312a ==-- ∴每3个结果为一个循环周期∵2020÷3=673⋯⋯1,∴202012a a ==-故选:A.【点睛】本题考查了规律型:数字的变化类:通过从一些特殊的数字变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.9.一个多项式与²21x x -+的和是32x -,则这个多项式为( )A .253x x -+B .21x x -+-C .253x x -+-D .2513x x -- C解析:C【分析】根据题意列出关系式,去括号合并即可得到结果.【详解】∵一个多项式与x 2-2x+1的和是3x-2,∴这个多项式=(3x-2)-(x 2-2x+1)=3x-2-x 2+2x-1=253x x -+-.故选:C .【点睛】本题考查的是整式的加减,熟知整式的加减实质上就是合并同类项是解答此题的关键.10.下面去括号正确的是( )A .2()2y x y y x y +--=+-B .2(35)610a a a a --=-+C .()y x y y x y ---=+-D .222()2x x y x x y +-+=-+ B 解析:B【分析】根据去括号法则对四个选项逐一进行分析,要注意括号前面的符号,以选用合适的法则.【详解】A. 2()2y x y y x y +--=--,故错误;B. 2(35)610a a a a --=-+,故正确;C. ()y x y y x y ---=++,故错误;D. 222()22x x y x x y +-+=-+,故错误;故选:B【点睛】本题考查去括号的方法:去括号时,运用乘法的分配律,先把括号前的数字与括号里各项相乘;括号前是“+”,去括号后,括号里的各项都不改变符号;括号前是“一”,去括号后,括号里的各项都改变符号.11.下列式子中,是整式的是( )A .1x +B .11x +C .1÷xD .1x x + A 解析:A【分析】根据整式的定义即单项式和多项式统称为整式,找出其中的单项式和多项式即可.【详解】解:A. 1x +是整式,故正确; B. 11x +是分式,故错误; C. 1÷x 是分式,故错误; D.1x x+是分式,故错误. 故选A.【点睛】 本题主要考查了整式,关键是掌握整式的概念.12.把一个大正方形和四个相同的小正方形按图①、②两种方式摆放,则大正方形的周长与小正方形的周长的差是( )A .2+a bB .+a bC .3a b +D .3a b + D解析:D【分析】 利用大正方形的周长减去4个小正方形的周长即可求解.【详解】 解:根据图示可得:大正方形的边长为2a b +,小正方形边长为4a b -, ∴大正方形的周长与小正方形的周长的差是:2a b +×4-4a b -×4=a+3b. 故选;D.【点睛】本题考查了列代数式,正确求出大小正方形的边长列代数式,以及整式的化简,正确对整式进行化简是关键.13.点O ,A ,B ,C 在数轴上的位置如图所示,其中O 为原点,2BC =,OA OB =,若C 点所表示的数为x ,则A 点所表示的数为( )A .2x -+B .2x --C .2x +D .-2A解析:A【分析】由BC=2,C 点所表示的数为x ,求出B 表示的数,然后根据OA=OB ,得到点A 、B 表示的数互为相反数,则问题可解.【详解】解:∵BC=2,C 点所表示的数为x ,∴B 点表示的数是x-2,又∵OA=OB ,∴B 点和A 点表示的数互为相反数,∴A 点所表示的数是-(x-2),即-x+2.故选:A .【点睛】此题考查用数轴上的点表示数的方法和数轴上两点间的距离以及相反数的性质,解答关键是应用数形结合思想解决问题.14.探索规律:根据下图中箭头指向的规律,从2013到2014再到2015,箭头的方向是( )A.B.C.D. D解析:D【分析】根据图中规律可得,每4个数为一个循环组依次循环,用2013除以4,根据商和余数的情况解答即可.【详解】解:由图可知,每4个数为一个循环组依次循环,2013÷4=503余1,即0到2011共2012个数,构成前面503个循环,∴2012是第504个循环的第1个数,2013是第504个循环组的第2个数,∴从2013到2014再到2015,箭头的方向是.故选:D.【点睛】本题考查了数字变化规律,仔细观察图形,发现每4个数为一个循环组依次循环是解题的关键.15.代数式21ab-的正确解释是()A.a与b的倒数的差的平方B.a与b的差的平方的倒数C.a的平方与b的差的倒数D.a的平方与b的倒数的差D解析:D【分析】说出代数式的意义,实际上就是把代数式用语言叙述出来.叙述时,要求既要表明运算的顺序,又要说出运算的最终结果.【详解】解:代数式21ab-的正确解释是a的平方与b的倒数的差.故选:D.【点睛】用语言表达代数式的意义,一定要理清代数式中含有的各种运算及其顺序.具体说法没有统一规定,以简明而不引起误会为出发点.1.如图是用棋子摆成的“上”字:如果按照以下规律继续摆下去,第n个“上”字需用______枚棋子.(4n+2)【分析】先数出前三个上字各所需棋子数然后规律即可解答【详解】解:∵第一个上字需用6枚棋子第二个上字需用10枚棋子第三个上字需用14枚棋子∴依次多4个∴第n 个上字需用(4n+2)枚棋子故答解析:(4n+2).【分析】先数出前三个“上”字各所需棋子数,然后规律即可解答.【详解】解:∵第一个“上”字需用6枚棋子,第二个“上”字需用10枚棋子,第三个“上”字需用14枚棋子,∴依次多4个∴第n 个“上”字需用(4n+2)枚棋子.故答案为:(4n+2).【点睛】本题主要考查了图形的变化规律,观察出哪些部分发生了变化、是按照什么规律变化的是解答本题的关键.2.已知等式:222 2233+=⨯,233 3388+=⨯,244 441515+=⨯,…,2a a 1010b b+=⨯(a ,b 均为正整数),则 a b += ___.【分析】先根据已知代数式归纳出(n 为正整数)然后令n=10求得ab 最后求和即可【详解】解:由已知代数式可归纳出(n 为正整数)令n=10则b=102-1=99a=10∴a+b=10+99=109故答案 解析:109【分析】 先根据已知代数式归纳出22211+=⨯--n n n n n n (n 为正整数),然后令n=10,求得a 、b ,最后求和即可.【详解】 解:由已知代数式可归纳出22211+=⨯--n n n n n n (n 为正整数), 令n=10,则b=102-1=99,a=10∴a+b=10+99=109.故答案为109.【点睛】 本题考查数字类规律探索,根据已有等式总结出22211+=⨯--n n n n n n 是解答本题的关键.3.m,n互为相反数,则(3m–2n)–(2m–3n)=__________.0【解析】由题意m+n=0所以(3m-2n)-(2m-3n)=3m-2n-2m+3n=m+n=0【点睛】本题考查相反数去括号法则等解题的关键是根据题意得出m+n=0然后再对所求的式子进行去括号合并同解析:0【解析】由题意m+n=0,所以(3m-2n)-(2m-3n)=3m-2n-2m+3n=m+n=0.【点睛】本题考查相反数、去括号法则等,解题的关键是根据题意得出m+n=0,然后再对所求的式子进行去括号,合并同类项,整体代入数值即可.4.为庆祝“六一”儿童节,某幼儿园举行用火柴棒摆“金鱼”比赛.如图所示,按照这样的规律,摆第n个图,需用火柴棒的根数为_______________.6n+2【解析】寻找规律:不难发现后一个图形比前一个图形多6根火柴棒即:第1个图形有8根火柴棒第2个图形有14=6×1+8根火柴棒第3个图形有20=6×2+8根火柴棒……第n个图形有6n+2根火柴棒解析:6n+2.【解析】寻找规律:不难发现,后一个图形比前一个图形多6根火柴棒,即:第1个图形有8根火柴棒,第2个图形有14=6×1+8根火柴棒,第3个图形有20=6×2+8根火柴棒,……,第n个图形有6n+2根火柴棒.5.将代数式4a2b+3ab2﹣2b3+a3按a的升幂排列的是_____.﹣2b3+3ab2+4a2b+a3【分析】找出a的次数的高低后由低到高排列即可得出答案【详解】可得出﹣2b3+3ab2+4a2b+a3【点睛】本题考查了代数式中的次数熟悉掌握次数的概念和细心是解决本解析:﹣2b3+3ab2+4a2b+a3.【分析】找出a的次数的高低后,由低到高排列即可得出答案.【详解】可得出﹣2b3+3ab2+4a2b+a3.【点睛】本题考查了代数式中的次数,熟悉掌握次数的概念和细心是解决本题的关键.6.观察下列各等式中的数字特征:53-58=53×58,92-911=92×911,107-1017=107×1017,…将所发现的规律用含字母a ,b 的等式表示出来是_____.-=×【分析】从大的方面看两个数的差等于两个数的积从小的方面看所有的分子都相同可设两个分母分别为ab 分子用ab 表示即可【详解】观察发现都是两个分数的差等于两个分数的积设第一个分式为则第二个分式的分子 解析:a b -a a b +=a b ×a a b+ 【分析】 从大的方面看,两个数的差等于两个数的积.从小的方面看,所有的分子都相同,可设两个分母分别为a ,b ,分子用a ,b 表示即可.【详解】观察发现,都是两个分数的差等于两个分数的积. 设第一个分式为a b,则第二个分式的分子与第一个分式的分子相同,而分母恰好是a b +,∴用含字母a b ,的等式表示出来是a b -a a b +=a b ×a a b +. 故答案为:a b -a a b +=a b ×a a b +. 【点睛】本题考查了数字类规律的探索,解决此类探究性问题,关键在观察、分析已知数据,寻找它们之间的相互联系,探寻其规律.7.在迎新春活动中,三位同学玩抢2018游戏,甲、乙、丙围成一圈依序报数,规定:甲、乙、丙首次报的数依次为1、2、3,接着甲报4、乙报5…按此规律,后一位同学报的数比前一位同学报的数大1,当报的数是2018时,报数结束;按此规则,最后能抢到2018的同学是______.乙【分析】由题意可得甲乙丙报的数字顺序规律为从1起三个数字为一个循环即丙报的数字规律为3的倍数将2018除以3余数为2即2018为一个循环的第2个数字即可判断为乙报的数字【详解】解:∵2018÷3= 解析:乙【分析】由题意可得甲、乙、丙报的数字顺序规律为,从1起三个数字为一个循环,即丙报的数字规律为3的倍数,将2018除以3余数为2,即2018为一个循环的第2个数字,即可判断为乙报的数字.【详解】解:∵2018÷3=672 (2)∴最后能抢到2018的同学是乙.故答案为:乙【点睛】本题考查数字规律,读懂题意,找到数字循环规律是解答此题的关键.8.多项式234324x x x -+-按x 的降幂排列为______.【分析】先分清多项式的各项然后按多项式降幂排列的定义排列【详解】多项式的各项是3x2−2x3−4x4按x 降幂排列为故答案为:【点睛】本题考查了多项式我们把一个多项式的各项按照某个字母的指数从大到小或解析:432432x x x -++-【分析】先分清多项式的各项,然后按多项式降幂排列的定义排列.【详解】多项式234324x x x -+-的各项是3x 2,−2,x 3,−4x 4,按x 降幂排列为432432x x x -++-.故答案为:432432x x x -++-.【点睛】本题考查了多项式.我们把一个多项式的各项按照某个字母的指数从大到小或从小到大的顺序排列,称为按这个字母的降幂或升幂排列.要注意,在排列多项式各项时,要保持其原有的符号.9.观察单项式:x -,22x ,33x -,44x ,…,1919x -,2020x , …,则第2019个单项式为______.【分析】根据题目内容找到单项是的系数规律和字母的指数规律从而求解【详解】解:由题意可知:第一个单项式为;第二个单项式为;第三个单项式为…∴第n 个单项式为即第2019个单项式为故答案为:【点睛】本题考 解析:20192019x -【分析】根据题目内容找到单项是的系数规律和字母的指数规律,从而求解.【详解】解:由题意可知:第一个单项式为11(1)1x -⨯⨯;第二个单项式为22(1)2x -⨯⨯;第三个单项式为33(1)3x -⨯⨯… ∴第n 个单项式为(1)n n n x -⨯⨯即第2019个单项式为201920192019(1)20192019x x -⨯⨯=-故答案为:20192019x -【点睛】本题考查数的规律探索,找到单项式的系数规律和字母指数规律是本题的解题关键. 10.关于a ,b 的多项式-7ab-5a 4b+2ab 3+9为______次_______项式.其次数最高项的系数是__________.五四-5【分析】多项式共有四项其最高次项的次数为5次系数为-5由此可以确定多项式的项数次数及次数最高项的系数【详解】∵该多项式共有四项其最高次项是为5次∴该多项式为五次四项式∵次数最高项为∴它的系数 解析:五 四 -5【分析】多项式共有四项437,5,2,9ab a b ab --,其最高次项45a b -的次数为5次,系数为-5,由此可以确定多项式的项数、次数及次数最高项的系数.【详解】∵该多项式共有四项437,5,2,9ab a b ab --,其最高次项是45a b -,为5次∴该多项式为五次四项式∵次数最高项为45a b -∴它的系数为-5故填:五,四,-5.【点睛】本题考查了多项式的项数,次数和系数的求解.多项式中含有单项式的个数即为多项式的项数,包含的单项式中未知数的次数总和的最大值即为多项式的次数.11.请根据给出的x ,-2,y 2组成一个单项式和一个多项式________________-2xy2;-2x+y2;【分析】根据单项式的定义和多项式的定义即可得出答案单项式的定义:数或字母的积组成的式子叫做单项式单独的一个数或字母也是单项式几个单项式的和叫做多项式每个单项式叫做多项式的项解析:-2xy 2;-2x+y 2;【分析】根据单项式的定义和多项式的定义即可得出答案.单项式的定义:数或字母的积组成的式子叫做单项式,单独的一个数或字母也是单项式.几个单项式的和叫做多项式,每个单项式叫做多项式的项,其中不含字母的项叫做常数项.多项式中次数最高的项的次数叫做多项式的次数.【详解】由x 、-2、y 2组成一个单项式,这个单项式可以为-2xy 2,由x 、-2、y 2组成一个二项式,这个二次项式可以为-2x+y 2.故答案为:-2xy 2;-2x+y 2;【点睛】此题考查单项式,多项式,解题关键在于掌握其定义.1.观察下列式子:0×2+1=12……①1×3+1=22……②2×4+1=32……③3×5+1=42……④……(1)第⑤个式子____,第⑩个式子_____;(2)请用含n(n 为正整数)的式子表示上述的规律,并证明.解析:(1)4×6+1=52,9×11+1=102;(2)(n ﹣1)(n+1)+1=n 2;证明见解析.【分析】(1)根据已知等式中的规律即可得;(2)根据整数的平方等于前一个整数与后一个整数乘积与1的和可得,利用整理的运算法则即可验证.【详解】(1)第⑤个式子为4×6+1=52,第⑩个式子9×11+1=102;故答案为4×6+1=52,9×11+1=102;(2)第n个式子为(n﹣1)(n+1)+1=n2,证明:左边=n2﹣1+1=n2,右边=n2,∴左边=右边,即(n﹣1)(n+1)+1=n2.【点睛】本题主要考查数字的变化规律,解题的关键是根据已知等式得出(n﹣1)(n+1)+1=n2的规律,并熟练加以运用.2.观察下列单项式-2x,4x2,-8x3,16x4,-32x5,64x6,…(1)分别指出单项式的系数和指数是怎样变化的?(2)写出第10个单项式;(3)写出第n个单项式.解析:(1)见解析;(2)(-2)10x10=1024x10;(3)(-2)n x n.【分析】(1)根据单项式的次数与系数定义得出即可;(2)根据单项式系数与次数的变化得出一般性规律得出第10个单项式;(3)根据单项式系数与次数的变化得出一般性规律,进而得出第n个单项式.【详解】(1)通过观察,系数为:-2,4=(-2)2,-8=(-2)3,16=(-2)4,-32=(-2)5指数分别是:1,2,3,4,5,6(2)第10个单项式为:(-2)10x10=1024x10;(3)第n个单项式为:(-2)n x n.【点睛】本题考查了单项式的系数、次数以及数字变化规律,根据已知得出数字变化规律是解题关键.3.国庆期间,广场上设置了一个庆祝国庆70周年的造型(如图所示).造型平面呈轴对称,其正中间为一个半径为b的半圆,摆放花草,其余部分为展板.求:(1)展板的面积是.(用含a,b的代数式表示)(2)若a=0.5米,b=2米,求展板的面积.(3)在(2)的条件下,已知摆放花草部分造价为450元/平方米,展板部分造价为80元/平方米,求制作整个造型的造价(π取3).解析:(1)12ab 平方米;(2)12 (平方米);(3)3660元.【分析】(1)利用分割法求解即可.(2)把a ,b 的值代入(1)中代数式求值即可.(3)分别求出摆放花草部分造价,展板部分造价即可解决问题.【详解】(1)由题意:展板的面积=12a •b (平方米).故答案为:12ab (平方米).(2)当a =0.5米,b =2米时,展板的面积=12×0.5×2=12(平方米).(3)制作整个造型的造价=12×8012+π×4×450=3660(元). 【点睛】本题考查轴对称图形,矩形的性质,圆的面积等知识,解题的关键是熟练掌握基本知识. 4.化简下列各式:(1)32476x y y -+--+;(2)4(32)3(52)x y y x ----.解析:(1)352x y --+;(2)67x y --【分析】(1)根据合并同类项的法则解答即可;(2)先去括号,再合并同类项.【详解】解:(1)原式3(27)(46)352x y x y =-+-+-+=--+;(2)原式12815667x y y x x y =-+-+=--.【点睛】本题考查了整式的加减运算,属于基础题型,熟练掌握整式加减运算的法则是关键.。

第二章整式的加减 培优训练 人教版数学七年级上册

第二章整式的加减 培优训练  人教版数学七年级上册

人教版七年级上整式加减培优训练一.选择题 1.下列代数式书写中,格式符合规范标准的( )A .28x yB .213bC .3axD .1mn -2.下列代数式中2225,,,4553,,67x y ab xy z a bc π-+-中,单项式( ) A .1个 B .2 C .3个 D .4个3.下列说法中,正确的是( )A .单项式 223x y -的系数是-2,次数是3 B .单项式a 的系数是0,次数是0 C .2341x y x -+-是三次三项式,常数项是1 D .单项式232ab -的次数是2,系数为92- 4.把多项式2232x x y xy y --+-+一次项结合起来,放在前面带有“+”号的括号里,二次项结合起来,放在前面带有“-”号的括号里,等于( )A .()22(2)3x y xy x y -+---B .()22(2)3x y x xy y +--+ C .()22(2)3x y x xy y -+---+ D .()22(2)3x y x xy y -+-+- 5.下列各组代数式中,属于同类项的是( )A .3x 2y 与3xy 2B .与﹣xyC .2x 与2xyD .2x 2与2y 26.已知+3+1=0a b -,则a b +等于 ( )A .4-B .2-C .2D .47.下列运算中结果正确的是( )A .-3x+5x=-8xB .5y -3y=2C .D .8.长方形的长是3x ,宽是2x y -,则长方形的周长是( )A .102x y -B .102x y +C .62x y -D .10x y - 9.已知多项式A =﹣3x 2+5x ﹣4,B =﹣x 2﹣2x ,则A ﹣3B 的结果为( )A .﹣6x 2﹣x ﹣4B .11x ﹣4C .﹣x ﹣4D .﹣6x 2﹣5 10.有五张大小相同的长方形卡片(如图①):现按图②的放法将它们平铺放置在一个长方形(长比宽多2)的纸板上,每张长方形卡片的宽为a 、长为b ,纸板未被卡片覆盖的部分用阴影表示,则图②中阴影部分的周长可用a 、b 表示为( )A .10a +4bB .14a +4bC .4a +14b ﹣8D .14a +4b ﹣8 二.填空题11.如果单项式2a x ﹣3b 2与﹣ab y 是同类项,那么多项式a x +3a y ﹣1的次数是 次. 12.某居民生活用水收费标准:每月用水量不超过20立方米,每立方米a 元;超过部分每立方米(a +2),则应缴水费 元.13.如果某三角形的第一边长为(3a ﹣2b )cm ,第二边长比第一边长短(a ﹣b )cm ,第三边长比第一边长2倍少2b (cm ),则这个三角形的周长等于 cm .14.在等式y kx b =+中,当6x =时,3y =,则1225k b +-的值为 .15.有一道题目是:一个整式A 减去x 2﹣y 2,小张误当成了加法计算,结果得到一个整式x 2+y 2,那么原来的整式A 是 .16.有一列数,按照一定规律排列成1,3-,9,27-,81,…….其中第6,第7,第8三个数的和是______.三.解答题17.合并同类项(1)x 3﹣2x 2﹣x 3﹣5+5x 2+4; (2)2(a 2b ﹣3ab 2)﹣3(2ab 2﹣56a 2b ).18.先化简,再求值:(﹣4x 2+2x ﹣8y )﹣(﹣x ﹣2y ),其中x =,y =2022.19.已知多项式A =2x ﹣my ﹣3,B =nx ﹣3y +1.(1)若(m﹣4)2+|n+3|=0,化简A﹣B;(2)若A+B的结果中不含有x项以及y项,求mn的值.20.小王家买了一套新房,其结构如图所示(单位:m).他打算将卧室铺上木地板,其余部分铺上地砖.(1)木地板和地砖分别需要多少平方米?(2)如果地砖的价格为每平方米k元,木地板的价格为每平方米2k元,那么小王一共需要花多少钱?。

(必考题)七年级数学上册第二单元《整式加减》-解答题专项阶段练习(培优练)

(必考题)七年级数学上册第二单元《整式加减》-解答题专项阶段练习(培优练)

一、解答题1.先化简,再求值:()()22222322a b ab a b ab a b -+---,其中1a =,2b =-. 解析:2ab -,4-.【分析】先去括号,再合并同类项,再将1a =,2b =-代入原式求值即可.【详解】原式22222423a b ab a b ab a b +=-+-- 22(112)(34)a b ab =--++-2ab =-,当1a =,2b =-时,原式21(2)4=-⨯-=-【点睛】本题考查了整式的化简求值问题,掌握整式化简的方法、合并同类项的方法是解题的关键.2.已知22332A x y xy =+-,2222B xy y x =--.(1)求23A B -.(2)若|23|1x -=,29y =,且||x y y x -=-,求23A B -的值.解析:(1)2212127x y xy +-;(2)114或99. 【分析】(1)把22332A x y xy =+-,2222B xy y x =--代入23A B -计算即可;(2)根据|23|1x -=,29y =,且||x y y x -=-求出x 和y 的值,然后代入(1)中化简的结果计算即可.【详解】解:(1)()()2222232332322A B x y xy xy y x -=+----2222664366x y xy xy y x =+--++2212127x y xy =+-;(2)由题意可知:231x -=±,3=±y ,∴2x =或1,3=±y ,由于||x y y x -=-,∴2x =,3y =或1x =,3y =.当2x =,3y =时,23114A B -=.当1x =,3y =时,2399A B -=.所以,23A B -的值为114或99.本题考查了整式的加减运算,绝对值的意义,以及分类讨论的数学思想,熟练掌握整式的加减运算法则是解(1)的关键,分类讨论是解(2)的关键.3.计算:(1)()223537a ab a ab -+-++; (2)()222312424a a a a ⎛⎫+--- ⎪⎝⎭. 解析:(1)62ab --;(2)2321a a --+【分析】先去括号,然后合并同类项即可.【详解】解:(1)()223537a ab a ab -+-++ 223537a ab a ab =-+---2ab =-6-;(2)()222312424a a a a ⎛⎫+--- ⎪⎝⎭ 2222261a a a a =+--+2321a a =--+.【点睛】本题考查了整式的加减运算,熟记去括号法则和合并同类项的法则是解决此题的关键. 4.化简下列各式:(1)32476x y y -+--+;(2)4(32)3(52)x y y x ----.解析:(1)352x y --+;(2)67x y --【分析】(1)根据合并同类项的法则解答即可;(2)先去括号,再合并同类项.【详解】解:(1)原式3(27)(46)352x y x y =-+-+-+=--+;(2)原式12815667x y y x x y =-+-+=--.【点睛】本题考查了整式的加减运算,属于基础题型,熟练掌握整式加减运算的法则是关键. 5.化简:(1)()()22224232a b ab ab a b ---;(2)2237(43)2x x x x ⎡⎤----⎣⎦.解析:(1)22105a b ab -;(2)2533x x --(1)先去括号,再合并同类项即可得到答案;(2)先去括号,再合并同类项即可得到答案.【详解】(1)()()22224232a b ab ab a b ---22224236a b ab ab a b =--+22105a b ab =-.(2)2237(43)2x x x x ⎡⎤----⎣⎦2237(43)2x x x x =-+-+2237432x x x x =-+-+2533x x =--.【点睛】本题主要考查了整式的加减,整式加减的实质就是去括号,合并同类项,一般步骤是:先去括号,然后再合并同类项.6.先化简,再求值:()22323(2)x xy x y xy y --+-+,其中1,32x y =-=. 解析:8xy -,12【分析】根据题意,对原式利用整式的混合运算法则进行化简,然后将x ,y 的值代入求解即可.【详解】解:原式2236328x xy x y xy y xy =--+--=-, 当1,32x y =-=时,原式183122⎛⎫=-⨯-⨯= ⎪⎝⎭. 【点睛】本题主要考查了整式的化简求值,熟练掌握整式的混合运算法则以及有理数的运算是解决本题的关键.7.列出下列代数式:(1)a 、b 两数差的平方;(2)a 、b 两数平方的差;(3)a 、b 两数的和与a 、b 两数的差的积;(4)a 的相反数与b 的平方的和.解析:(1)2()a b -;(2)22a b -;(3)()()a b a b +-;(4)2a b -+【分析】(1)根据题意先列出a ,b 的差,再表示差的平方,即可得出答案;(2)根据题意先表示出a ,b 平方,再列出差,即可得出答案 ;(3)根据题意先表示出a 与b 两数的和以及这两数的差,再列出它们的积,即可得出答案;(4)利用相反数以及平方的定义得出答案.【详解】(1)根据题意可得:2()a b -;(2)根据题意可得:22a b -;(3)根据题意可得:()()a b a b +-;(4)根据题意可得:2a b -+.【点睛】本题考查了列代数式,关键是能够正确运用数学语言,即代数式来表示题意.8.(规律探究题)用计算器计算下列各式,将结果填写在横线上.99999×11=__________;99999×12=__________;99999×13=__________;99999×14=__________.(1)你发现了什么?(2)不用计算器,你能直接写出99999×19的结果吗?解析:1099989;1199988;1299987;1399986;(1)如果n 是11,12,13,…,20中的任何一个数,则:99999×n =(n -1)9998(20-n ),其中(n -1)9998(20-n )是1个7位数,前2位是n -1,个位是20-n ,中间4个数字总是9998;(2)99999×19=1899981【分析】用计算器分别进行计算,再根据结果找出规律,最后根据规律即可直接写出99999×19的结果.【详解】解:99999×11=1099989;99999×12=1199988;99999×13=1299987;99999×14=1399986.故答案为:1099989;1199988;1299987;1399986.(1)通过计算观察可发现以下规律:如果n 是11,12,13,…,20中的任何一个数,则:99999×n =(n -1)9998(20-n ),其中(n -1)9998(20-n )是1个7位数,前2位是n -1,个位是20-n ,中间4个数字总是9998.(2)根据以上规律可直接写出:99999×19=1899981.【点睛】此题考查了计算器−有理数,解题的关键是通过用计算器计算,找出规律,通过规律进行解答.9.上海与南京间的公路长为364km ,一辆汽车以xkm/h 的速度开往南京,请用代数式表示:(1)汽车从上海到南京需多少小时?(2)如果汽车的速度增加2km/h ,从上海到南京需多少小时?(3)如果汽车的速度增加2km/h ,可比原来早到几小时?解析:(1)364xh;(2)3642x+h;(3)3643642x x⎛⎫-⎪+⎝⎭h【分析】(1)根据题意,可以用代数式表示出汽车从上海到南京需要的时间;(2)根据题意,可以用代数式表示出汽车的速度增加2千米/时,从上海到南京需要的时间;(3)根据题意,可以用代数式表示出如果汽车的速度增加2千米/时,可比原来早到几小时.【详解】解:(1)汽车从上海到南京需364xh;(2)如果汽车的速度增加2km/h,从上海到南京需3642x+h;(3)如果汽车的速度增加2km/h,可比原来早到3643642x x⎛⎫-⎪+⎝⎭h.【点睛】本题考查列代数式,解答本题的关键是明确题意,列出相应的代数式.10.试写出一个含a的代数式,使a不论取何值,这个代数式的值不大于1.解析:所写代数式为:﹣a2+1【分析】从平方数非负数的角度考虑解答.【详解】解:所写代数式可以为:- a2+1.(答案不唯一)【点睛】本题考查了代数式,平方数非负数,考虑利用非负数是解题的关键.11.一种商品每件成本a元,原来按成本增加22%定出价格.(1)请问每件售价多少元?(2)现在由于库存积压减价,按售价的85%出售,请问每件还能盈利多少元?解析:(1)每件售价1.22a元;(2)每件盈利0.037a元.【分析】(1)根据每件成本a元,原来按成本增加22%定出价格,列出代数式,再进行整理即可;(2)用原价的85%减去成本a元,列出代数式,即可得出答案.【详解】(1)根据题意,得:(1+22%)a=1.22a(元),答:每件售价1.22a元;(2)根据题意,得:1.22a×85%-a=0.037a(元).答:每件盈利0.037a元.【点睛】本题考查了列代数式,解决问题的关键是读懂题意,找到所求的量的等量关系,注意把列出的式子进行整理.12.先化简,再求值:-2x 2-2[3y 2-2(x 2-y 2)+6],其中x =-1,y =-2.解析:2221012x y --,-50.【分析】根据整式的加减及合并同类项先对原式进行化简,得到2221012x y --,再将1,2x y =-=-代入即可求解,需要注意本题中两次遇到去括号,注意符号的改变.【详解】原式=2222223226x y x y ⎡⎤---++⎣⎦=2222264412x y x y --+--=2222246412x x y y -+---=2221012x y --,当1,2x y =-=-时,原式=222(1)10(2)1250⨯--⨯--=-.【点睛】本题主要考查了去括号,整式的加减,合并同类项,乘法的分配律等相关内容,熟练掌握各项计算法则是解决本题的关键,注意去括号中符号的改变原则.13.某学生在写作业时,不慎将一滴墨水滴在了数轴上,如下图所示,而此时他要化简并求代数式()()2222352xy x x xy x xy ⎡⎤-----+⎢⎥⎣⎦的值.结果同学告诉他:x 的值是墨迹遮盖住的最大整数,y 的值是墨迹遮盖住的最小整数.请你帮助这位同学化简并求值.解析:xy ,1-【分析】先把原式进行化简,得到最简代数式,结合x 的值是墨迹遮盖住的最大整数,y 的值是墨迹遮盖住的最小整数,得到x 、y 的值,然后代入计算,即可得到答案.【详解】解:()()2222352xy xx xy x xy ⎡⎤-----+⎢⎥⎣⎦ =22226552xy x x xy x xy ⎡⎤-+--++⎣⎦=22226552xy x x xy x xy -+-+--=xy ; ∵74-<被盖住的数2<, ∴x 的值是墨迹遮盖住的最大整数,∴1x =,∵y 的值是墨迹遮盖住的最小整数,∴1y =-,∴原式=1(1)1⨯-=-.【点睛】本题考查了整式的化简求值,以及利用数轴比较有理数的大小,解题的关键是正确求出x 、y 的值,以及掌握整式的混合运算.14.给定一列分式:3x y ,52x y -,73x y ,94x y-,…(其中0x ≠). (1)把任意一个分式除以前面一个分式,你发现了什么规律?(2)根据你发现的规律,试写出给定的那列分式中的第7个分式和第8个分式.解析:(1)任意一个分式除以前面一个分式,都得2x y -.(2)第7个分式为157x y,第8个分式为178x y-. 【分析】(1)分别算出第二个与第一个,第三个与第二个,第四个与第三个分式的除法结果,即可发现规律;(2)根据题中所给的式子找出分子、分母的指数变化规律、再找出符号的正负交替变化规律,根据规律写出所求的式子.【详解】解:(1)5352223x x x y x y y y x y, 757223235x x x y x y y y x y , 979324347x x x y x y y y x y , …… ∴任意一个分式除以前面一个分式,都得2x y-. (2)∵由式子3579234x x x x y y y y,-,,- …,发现分母上是y 1,y 2,y 3,y 4,……所以第7个式子分母上是y 7,第8个分母上是y 8;分子上是x 3,x 5,x 7,x 9,……所以第7个式子分子上是x 15,第8个分子上是x 17,再观察符号发现,第偶数个为负,第奇数个为正,∴第7个分式为157x y,第8个分式为178x y -. 【点睛】本题考查式子的规律,根据题意分别找出分子和分母及符号的变化规律是解答此题的关键.15.国庆期间,广场上设置了一个庆祝国庆70周年的造型(如图所示).造型平面呈轴对称,其正中间为一个半径为b 的半圆,摆放花草,其余部分为展板.求:(1)展板的面积是 .(用含a ,b 的代数式表示)(2)若a =0.5米,b =2米,求展板的面积.(3)在(2)的条件下,已知摆放花草部分造价为450元/平方米,展板部分造价为80元/平方米,求制作整个造型的造价(π取3).解析:(1)12ab 平方米;(2)12 (平方米);(3)3660元.【分析】(1)利用分割法求解即可.(2)把a ,b 的值代入(1)中代数式求值即可.(3)分别求出摆放花草部分造价,展板部分造价即可解决问题.【详解】(1)由题意:展板的面积=12a •b (平方米).故答案为:12ab (平方米).(2)当a =0.5米,b =2米时,展板的面积=12×0.5×2=12(平方米).(3)制作整个造型的造价=12×8012+π×4×450=3660(元). 【点睛】本题考查轴对称图形,矩形的性质,圆的面积等知识,解题的关键是熟练掌握基本知识. 16.在数学活动课上,李老师设计了一个游戏活动,四名同学分别代表一种运算,四名同学可以任意排列,每次排列代表一种运算顺序,剩余同学中,一名学生负责说一个数,其他同学负责运算,运算结果既对又快者获胜,可以得到一个奖品.下面我们用四个卡片代表四名同学(如下):(1)列式,并计算:①3-经过A ,B ,C ,D 的顺序运算后,结果是多少?②5经过B ,C ,A ,D 的顺序运算后,结果是多少?(2)探究:数a 经过D ,C ,A ,B 的顺序运算后,结果是45,a 是多少?解析:(1)①7;②206;(2)256a =或256a =-【分析】(1)把-3和5经过A ,B ,C ,D 的运算顺序计算即可;(2)根据已知条件列列出关于a 的方程计算即可;【详解】(1)①2[(3)2(5)]67-⨯--+=;②2[5(5)]26206--⨯+=;(2)()()226545a +--=,()2620a +=, 解得256a =-或256a =--.【点睛】本题主要考查了规律型数字变化类,一元二次方程的求解,准确计算是解题的关键. 17.如图,某市有一块长为(3a+b )米,宽为(2a+b )米的长方形地块,中间是边长为(a+b )米的正方形,规划部门计划将在中间的正方形修建一座雕像,四周的阴影部分进行绿化,(1)绿化的面积是多少平方米?(用含字母a 、b 的式子表示)(2)求出当a =20,b =12时的绿化面积.解析:(1)(5a 2+3ab )平方米;(2)2720平方米【分析】(1)根据割补法,用含有a,b 的式子表示出整个长方形的面积,然后用含有a,b 的式子表示出中间空白处正方形的面积,然后两者相减,即可求出绿化部分的面积.(2)将a =20,b =12分别代入(1)问中求出的关系式即可解决.【详解】解:(1)(3a+b )(2a+b )﹣(a+b )2=6a 2+3ab+2ab+b 2﹣(a 2+2ab+b 2)=6a 2+3ab+2ab+b 2﹣a 2﹣2ab ﹣b 2=5a 2+3ab ,答:绿化的面积是(5a 2+3ab )平方米;(2)当a =20,b =12时5a 2+3ab =5×202+3×20×12=2000+720=2720,答:当a =20,b =12时的绿化面积是2720平方米.【点睛】(1)本题考查了割补法,多项式乘多项式和完全平方式的运算法则,解决本题的关键是正确理解题意,能够熟练掌握多项式乘多项式的运算法则.(2)本题考查了整式的化简求值,解决本题的关键是熟练掌握整式的运算法则和步骤. 18.观察下列单项式-2x ,4x 2,-8x 3,16x 4,-32x 5,64x 6,…(1)分别指出单项式的系数和指数是怎样变化的?(2)写出第10个单项式;(3)写出第n 个单项式.解析:(1)见解析;(2)(-2)10x 10=1024x 10;(3)(-2)n x n .【分析】(1)根据单项式的次数与系数定义得出即可;(2)根据单项式系数与次数的变化得出一般性规律得出第10个单项式;(3)根据单项式系数与次数的变化得出一般性规律,进而得出第n 个单项式.【详解】(1)通过观察,系数为:-2,4=(-2)2,-8=(-2)3,16=(-2)4,-32=(-2)5指数分别是:1,2,3,4,5,6(2)第10个单项式为:(-2)10x 10=1024x 10;(3)第n 个单项式为:(-2)n x n .【点睛】本题考查了单项式的系数、次数以及数字变化规律,根据已知得出数字变化规律是解题关键.19.观察下列单项式:﹣x ,2x 2,﹣3x 3,…,﹣9x 9,10x 10,…从中我们可以发现: (1)系数的规律有两条:系数的符号规律是系数的绝对值规律是(2)次数的规律是(3)根据上面的归纳,可以猜想出第n 个单项式是 .解析:(1)奇数项为负,偶数项为正;与自然数序号相同;(2)与自然数序号相同;(3)(1)n n nx - 【分析】通过观察题意可得:奇数项的系数为负,偶数项的系数为正,且系数的绝对值与自然数序号相同,次数也与与自然数序号相同.由此可解出本题.【详解】(1)奇数项为负,偶数项为正,与自然数序号相同;(2)与自然数序号相同;(3)(1)n n nx -.【点睛】本题考查了单项式的有关概念.确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.分别找出单项式的系数和次数的规律也是解决此类问题的关键.20.已知多项式2x 2+4xy ﹣3y 2+x 2+kxy+5y 2,当k 为何值时,它与多项式3x 2+6xy+2y 2是相等的多项式.解析:k=2.根据两个多项式是相同的多项式,可以直接列等式根据各项前对应系数相等直接列式计算.【详解】解:2x 2+4xy ﹣3y 2+x 2+kxy+5y 2,=3x 2+(4+k )xy+2y 2,因为它与多项式3x 2+6xy+2y 2是相等的多项式,所以4+k=6,解得:k=2.【点睛】本题考查了带系数多项式与已知多项式相等求未知系数,掌握多项式的概念是解决此题的关键.21.数a 、b 、c 在数轴上对应的位置如图所示,化简a c c b a b +-++-.解析:0;【分析】由数轴可得a >0>b >c ,并从数轴上可得出a ,b ,c 绝对值的大小,从而可以得出各项式子的正负,去绝对值可得出答案. 【详解】 解:由数轴得,c b 0a <<<,且c a b >>,a c cb a b +-++-a c cb a b =--+++- 0=.【点睛】本题考查了数轴上数的大小,去绝对值,熟悉掌握定义是解决本题的关键.22.父母带着孩子(一家三口)去旅游,甲旅行社报价大人为a 元,小孩为a 2元;乙旅行社报价大人、小孩均为a 元,但三人都按报价的90%收费,则乙旅行社收费比甲旅行社贵多少元?(结果用含a 的代数式表示)解析:乙旅行社收费比甲旅行社贵0.2a 元. 【分析】根据题意分别表示出甲乙两旅行社的费用,相减即可得到结果.【详解】根据题意得:(a+a+a )×90%-(a+a+12a ) =2.7a-2.5a=0.2a (元),则乙旅行社收费比甲旅行社贵0.2a 元.此题考查了整式的加减,熟练掌握运算法则是解本题的关键.23.观察下列各式:13+23=1+8=9,而(1+2)2=9,∴13+23=(1+2)2;13+23+33=36,而(1+2+3)2=36,∴13+23+33=(1+2+3)2;13+23+33+43=100,而(1+2+3+4)2=100,∴13+23+33+43=(1+2+3+4)2;∴13+23+33+43+53=(______ )2= ______ .根据以上规律填空:(1)13+23+33+…+n 3=(______ )2=[ ______ ]2.(2)猜想:113+123+133+143+153= ______ .解析:1+2+3+4+5;225;1+2+…+n ;()n n 12+;11375 【解析】分析:观察题中的一系列等式发现,从1开始的连续正整数的立方和等于这几个连续正整数和的平方,根据此规律填空;(1)、根据上述规律填空,然后把1+2+…+n 变为2n 个(n+1)相乘,即可化简;(2)、对所求的式子前面加上1到10的立方和,然后根据上述规律分别求出1到15的立方和与1到10的立方和,求出的两数相减即可求出值.详解:由题意可知:13+23+33+43+53=(1+2+3+4+5)2=225(1)、∵1+2+…+n=(1+n )+[2+(n-1)]+…+[n 2+(n-n 2+1)]=()n n 12+, ∴13+23+33+…+n 3=(1+2+…+n )2=[()n n 12+]2; (2)、113+123+133+143+153=13+23+33+...+153-(13+23+33+ (103)=(1+2+…+15)2-(1+2+…+10)2 =1202-552=11375.点睛:此题要求学生综合运用观察、想象、归纳、推理概括等思维方式,探索问题,获得解题途径.考查了学生善于观察,归纳总结的能力,以及运用总结的结论解决问题的能力.24.国庆期间,王老师计划组织朋友去晋西北游览两日.经了解,现有甲、乙两家旅行社针对组团两日游的游客报价均为每人500元,且提供的服务完全相同.甲旅行社表示,每人都按八五折收费;乙旅行社表示,若人数不超过20人,每人都按九折收费,超过20人,则超出部分每人按八折收费.假设组团参加甲、乙两家旅行社两日游的人数均为x 人. (1)请列式表示甲、乙两家旅行社收取组团两日游的总费用;(2)若王老师组团参加两日游的人数共有30人,请你通过计算,在甲、乙两家旅行社中,帮助王老师选择收取总费用较少的一家.解析:(1)甲旅行社收取组团两日游的总费用为425x 元;若人数不超过20人时,乙旅行社收取组团两日游的总费用为450x 元;若人数超过20人时,乙旅行社收取组团两日游的总费用为(4001000x +)元;(2)王老师应选择甲旅行社.【分析】(1)根据总费用等于人数乘以打折后的单价,易得甲旅行社的费用=500 x×0.85,对于乙家旅行社的总费用,应分类讨论:当0≤x≤20时,乙旅行社的费用=500 x×0.9;当x >20时,乙旅行社的费用=500×20×0.9+500(x-20)×0.8;(2)把x=30分别代入(1)中对应关系计算甲旅行社的费用和乙旅行社的费用的值,然后比较大小即可.【详解】(1)甲旅行社收取组团两日游的总费用为:5000.85425x x ⨯=元若人数不超过20人时,乙旅行社收取组团两日游的总费用为:5000.9450x x ⨯=元 若人数超过20人时,乙旅行社收取组团两日游的总费用为:()500(20)0.8500200.94001000-⨯+⨯⨯=+x x 元(2)因为王老师组团参加两日游的人数共有30人,所以甲旅行社收取组团两日游的总费用为:4253012750⨯=元乙旅行社收取组团两日游的总费用为40030100013000⨯+=元1275013000<,王老师应选择甲旅行社.【点睛】本题考查了代数式,能根据具体情境列代数式并求代数式的值是关键.25.将正整数1,2,3,4,5,……排列成如图所示的数阵:(1)十字框中五个数的和与框正中心的数11有什么关系?(2)若将十字框上下、左右平移,可框住另外五个数,这五个数的和与框正中心的数还有这种规律吗?请说明理由;(3)十字框中五个数的和能等于180吗?若能,请写出这五个数;若不能,请说明理由; (4)十字框中五个数的和能等于2020吗?若能,请写出这五个数;若不能,请说明理由.解析:(1)十字框中五个数的和是正中心数的5倍;(2)十字框中五个数的和是正中心数的5倍,理由见解析;(3)不能,理由见解析;(4)这五个数是404,403,405,397,411.【分析】(1)把框住的数相加即可求解;(2)设中心的数为a ,则其余4个数分别为1a -,1a +,7a -,7a +,相加即可得到规律;(3)由(2)得五个数的和为5a ,令5a=180,根据解得情况即可求解;(4)由(2)得五个数的和为5a ,令5a=2020,根据解得情况即可求解;【详解】解:(1)十字框中五个数的和是正中心数的5倍.∵十字框中五个数的和41011121855511=++++==⨯,∴十字框中五个数的和是正中心数的5倍.(2)五个数的和与框正中心的数还有这种规律.设中心的数为a ,则其余4个数分别为1a -,1a +,7a -,7a +.11775a a a a a a +-+++-++=,∴十字框中五个数的和是正中心数的5倍.(3)十字框中五个数的和不能等于180.∵当5180a =时,解得36a =,36751÷=,36在数阵中位于第6排的第1个数,其前面无数字,∴十字框中五个数的和不能等于180.(4)十字框中五个数的和能等于2020.∵当52020a =时,解得404a =,4047575÷=,404在数阵中位于第58排的第5个数,∴十字框中五个数的和能等于2020,这五个数是404,403,405,397,411.【点睛】此题主要考查一元一次方程的应用,解题的关键是设中心的数为a ,求出十字框中五个数的和为5a.26.老师在黑板上书写了一个正确的演算过程,随后用一张纸挡住了一个二次三项式,形式如下:+3(x ﹣1)=x 2﹣5x +1.(1)求所挡的二次三项式;(2)若x =﹣2,求所挡的二次三项式的值.解析:(1)x 2﹣8x +4;(2)24【分析】(1)根据“已知两个加数的和与其中的一个加数,求另一个加数用减法”,列出代数式并合并即可;(2)把x=-2代入(1)的结果,计算即可.【详解】(1)x 2﹣5x +1﹣3(x ﹣1)=x 2﹣5x +1﹣3x +3=x 2﹣8x +4;∴所挡的二次三项式为x 2﹣8x +4.(2)当x =﹣2时,x 2﹣8x +4=(﹣2)2﹣8×(﹣2)+4=4+16+4=24.【点睛】本题考查了整式的加减.根据加数与和的关系,列出求挡住的二次三项式的式子是解决本题的关键.27.先化简,再求值: ()()()()24222x x y x y x y x y -++---,其中2x =-, 12y . 解析:132【解析】试题分析:原式利用平方差公式,完全平方公式,以及单项式乘以多项式法则计算,去括号合并得到最简结果,把x 与y 的值代入计算即可求出值.试题原式222222244442x xy x y x xy y x y =-+--+-=-, 当12,2x y =-=-时,原式174.22=-= 28.设A =2x 2+x ,B =kx 2-(3x 2-x+1).(1)当x= -1时,求A 的值; (2)小明认为不论k 取何值,A-B 的值都无法确定.小红认为k 可以找到适当的数,使代数式A-B 的值是常数.你认为谁的说法正确?请说明理由.解析:(1)A =1;(2)小红的说法正确,理由见解析.【解析】试题分析:(1)把x=-1代入A 进行计算即可得;(2)先计算出A-B ,根据结题即可得.试题(1)当x=-1时,A=2x 2+x=2×(-1)2+(-1)=2-1=1;(2)小红的说法正确,理由如下:A-B=(2x 2+x )-[kx 2-(3x 2-x+1)]=(5-k )x 2+1,所以当k=5时,A-B=1,所以小红的说法是正确的.29.如图所示,一个点从数轴上的原点开始,先向右移动3单位长度,再向左移动5个单位长度,可以看到终点表示的数是﹣2,已知点A ,B 是数轴上的点,请参照下图并思考,完成下列各题.(1)如果点A 表示数-3,将A 点向右移动7个单位长度,那么终点B 表示的数是 ,A ,B 两点间的距离为 .(2)如果点A 表示数3,将A 点向左移动7个单位长度,再向右移动5个单位长度,那么终点B 表示的数是 ,A ,B 两点间的距离为 .(3)如果点A 表示数4-,将A 点向右移动168个单位长度,再向左移动256个单位长度,那么终点B 表示的数是 ,A ,B 两点间的距离是 .(4)一般地,如果A 点表示数为m ,将A 点向右移动n 个单位长度,再向左移动P 个单位长度,那么,请你猜想终点B 表示什么数?A ,B 两点间的距离为多少?解析:(1)4,7;(2) 1,2;(3) -92,88;(4)m+n-p ,|n-p|【分析】(1)根据数轴上的点向右平移加,向左平移减,可得B 点表示的数为-3+7=4,根据数轴上两点间的距离是大数减小数,可得答案;(2)根据数轴上的点向右平移加,向左平移减,可得B 点表示的数3-7+5=1,根据数轴上两点间的距离是大数减小数,可得答案;(3)根据数轴上的点向右平移加,向左平移减,可得B 点表示的数-4+168-256=-92,根据数轴上两点间的距离是大数减小数,可得答案;(4)按照(1)(2)(3)中的方法讨论更加一般的情况即可求解.【详解】解:(1)∵点A 表示数-3,∴将A 点向右移动7个单位长度,那么终点B 表示的数是-3+7=4,A ,B 两点间的距离为4-(-3)=7,故答案为:4,7;(2)∵点A 表示数3,∴将A 点向左移动7个单位长度,再向右移动5个单位长度,那么终点B 表示的数是3-7+5=1,A ,B 两点间的距离为3-1=2,故答案为:1,2;(3)∵点A 表示数-4,将A 点向右移动168个单位长度,再向左移动256个单位长度,那么终点B 表示的数是-4+168-256=-92,A ,B 两点间的距离是-4-(-92)=88,故答案为:-92,88;(4)∵A 点表示的数为m ,∴将A 点向右移动n 个单位长度,再向左移动p 个单位长度, 那么点B 表示的数为m+n-p ,A ,B 两点间的距离为|m-(m+n-p)|=|n-p|.故答案为:m+n-p ,|n-p|.【点睛】本题考查的是数轴上点的平移规律及数轴上两点之间的距离公式,点在数轴上平移遵循“左减右加”原则;注意数轴上两点之间的距离为大数减小数,当不确定谁大谁小时记得加绝对值符号;正确利用数形结合分析是解题关键.30.已知多项式234212553x x x x ++-- (1)把这个多项式按x 的降冥重新排列;(2)请指出该多项式的次数,并写出它的二次项和常规项.解析:(1)432215253x x x x -+++-;(2)该多项式的次数为4,二次项是22x ,常数项是13-.【分析】(1)按照x 的指数从大到小的顺序把各项重新排列即可;(2)根据多项式的次数的定义找出次数最高的项即是该多项式的次数,再找出次数是2的项和不含字母的项即可得二次项和常数项.【详解】(1)按的降幂排列为原式432215253x x x x -+++-. (2)∵234212553x x x x ++--中次数最高的项是-5x 4, ∴该多项式的次数为4,它的二次项是22x ,常数项是13-. 【点睛】 本题考查多项式的定义,正确掌握多项式次数及各项的判定方法及多项式升幂、降幂排列方法是解题关键.。

人教版七年级数学上册第2章 2.2.3 整式的加减 培优训练 (含答案)

人教版七年级数学上册第2章    2.2.3  整式的加减   培优训练  (含答案)

人教版七年级上册第二章整式的加减2.2.3整式的加减培优训练一.选择题(共10小题,3*10=30)1.化简5(2x-3)+4(3-2x)的结果为( )A.2x-3 B.2x+9C.8x-3 D.18x-32.化简a-(5a-3b)+(2b-a)的结果是()A.7a-bB.-5a+5bC.7a+5b D.-5a-b3. 若a-b=2,b-c=-3,则a-c等于( )A.1 B.-1C.5 D.-54.已知A=5a-3b,B=-6a+4b,则A-B等于()A.-a+bB.11a+bC.11a-7b D.-a-7b5.一个多项式与x2-2x+1的和是3x-2,则这个多项式为( )A.x2-5x+3 B.-x2+x-1C.-x2+5x-3 D.x2-5x-136.用2a+5b减去4a-4b的一半,应当得到( )A.4a-b B.b-aC.a-9b D.7b7.如果(3x2-2)-(3x2-y)=-2,那么代数式(x+y)+3(x-y)-4(x-y-2)的值是() A.4B.20C.8D.-68.若P是三次多项式,Q也是三次多项式,P+Q一定是()A .三次多项式B .六次多项式C .不高于三次的多项式或单项式D .单项式9.多项式36x 2-3x +5与3x 3+12mx 2-5x +7相加后,不含二次项,则常数m 的值是( )A .2B .-3C .-2D .-810.一家商店以每包a 元的价格买进30包甲种茶叶,又以每包b 元的价格买进60包乙种茶叶.如果以每包a +b 2的价格卖出这两种茶叶,那么卖完后,这家商店( ) A .赚了 B .赔了C .不赔不赚D .不能确定赔或赚二.填空题(共8小题,3*8=24)11.化简:(x 2+y 2)-3(x 2-2y 2)=________________.12.一个长方形的一边长是2a +3b ,另一边的长是a +b ,则这个长方形的周长是________.13.某客车上原有(4a -2b)人,中途有一半人下车,又上来若干人,这时车上共有乘客(10a -6b)人,则中途上车的乘客有_____________人.14.三个小队植树,第一队种x 棵,第二队种的树比第一队种的树的2倍多8棵,第三队种的树比第二队种的树的一半少6棵,三队共种树____________棵.15.三角形的周长为48,第一边长为4a +3b ,第二边比第一边的2倍少2a -b ,则第三边的长为_______________.16. 如果关于x 的多项式(8x 2-2nx +14)-(8x 1-m -6x +5)的值与x 无关,则m +n =___.17.已知小明的年龄是m 岁,小红的年龄比小明的年龄的2倍少4岁,小华的年龄比小红年龄的12还多1岁,则这三名同学的年龄之和是____________. 18. 已知两个完全相同的大长方形,长为a ,各放入四个完全一样的白色小长方形后,得到图(1)、图(2),那么,图(1)阴影部分的周长与图(2)阴影部分的周长的差是______________.(用含a 的代数式表示)三.解答题(共7小题,46分)19. (6分)化简:(1)(9x-6y)-(5x-4y);(2)2(m2+2m)-(5m-m2);(3)3(2x2-y2)-2(3y2-2x2).20. (6分)化简,再求值:(1)(x3-2x2+x-4)-2(x3-x2+2x-2),其中x=-2;(2)3x2y-[2xy2-2(xy-32x2y)]+3xy2-xy,其中x=3,y=-13.21. (6分)计算:(1)(x2-y2)-3(x2-2y2);(2)(9a-2b)-[8a-(5b-2a)]+2c;(3)2a2-3[2a-2(-a2+2a-1)-4].22. (6分) 黑板上有一道题,是一个多项式减去3x2-5x+1,某同学由于大意,将减号抄成了加号,得出的结果是5x2+3x-7,求出这道题的正确结果.23. (6分)某校有A,B,C三个课外活动小组,A小组有学生(x+2y)名,B小组学生人数是A小组学生人数的3倍,C小组比A小组多3名学生,问A,B,C三个课外活动小组共有多少名学生?24. (8分)已知多项式A,B,其中B=5x2+3x-4,马小虎同学在计算“3A+B”时,误将“3A+B”看成了“A+3B”,求得的结果为12x2-6x+7.求正确答案.25. (8分)老师在黑板上书写了一个正确的演算过程,随后用手掌捂住了一个多项式,形式如下:+(-3x2+5x-7)=-2x2+3x-6.(1)求所捂的多项式;(2)若x为正整数,任取几个x值并求出所捂多项式的值,你能发现什么规律?(3)若所捂多项式的值为144,请直接写出正整数x的取值.参考答案1-5ABBCC 6-10DCCBD11. -2x2+7y212.6a+8b13. (8a-5b)14. (4x+6)15. 48-10a-10b16. 217. (4m-5)岁18.a19. 解:(1)原式=9x-6y-5x+4y=4x-2y(2)原式=2m2+4m-5m+m2=3m2-m(3)原式=6x2-3y2-6y2+4x2=10x2-9y220. 解:(1)原式=x3-2x2+x-4-2x3+2x2-4x+4=-x3-3x. 当x=-2时,原式=-(-2)3-3×(-2)=14解:原式=3x2y-2xy2+2xy-3x2y+3xy2-xy=xy2+xy.当x=3,y=-13时,原式=3×(-13)2+3×(-13)=-2321. 解:(1)原式=x2-y2-3x2+6y2=-2x2+5y2(2)原式=9a-2b-(8a-5b+2a)+2c=9a-2b-8a+5b-2a+2c=-a+3b+2c(3)原式=2a2-3(2a+2a2-4a+2-4)=2a2-3(2a2-2a-2)=2a2-6a2+6a+6=-4a2+6a+622. 解:该多项式为(5x2+3x-7)-(3x2-5x+1)=2x2+8x-8.所以正确的结果为(2x2+8x-8)-(3x2-5x+1)=-x2+13x-923. 解:(x+2y)+3(x+2y)+(x+2y)+3=5(x+2y)+3=5x+10y+3.答:A,B,C三个课外活动小组共有(5x+10y+3)名学生24. 解:根据题意知A=12x2-6x+7-3B=12x2-6x+7-3(5x2+3x-4)=12x2-6x+7-15x2-9x+12=-3x2-15x+19,则3A+B=3(-3x2-15x+19)+5x2+3x-4=-9x2-45x+57+5x2+3x-4=-4x2-42x+5325. 解:(1)(-2x2+3x-6)-(-3x2+5x-7)=-2x2+3x-6+3x2-5x+7=x2-2x+1,即所捂的多项式是x2-2x+1(2)当x=1时,x2-2x+1=1-2+1=0;当x=2时,x2-2x+1=4-4+1=1;当x=3时,x2-2x+1=9-6+1=4;当x=4时,x2-2x+1=16-8+1=9,由上可以发现规律是所捂多项式的值是(x-1)2(3)x=13。

第四章整式培优训练试题人教版2024—2025学年七年级数学上册

第四章整式培优训练试题人教版2024—2025学年七年级数学上册

第四章整式培优训练试题人教版2024—2025学年七年级数学上册(一)整式的加减例1.已知一个多项式与3x2+9x的和等于5x2+4x﹣1,则这个多项式是()A.8x2+13x﹣1B.﹣2x2+5x+1C.8x2﹣5x+1D.2x2﹣5x﹣1笔记:变式1.一个多项式加上2x2﹣4x﹣3得x2﹣3x,则这个多项式为.变式2.一个多项式与单项式﹣4x的差等于3x2﹣2x﹣1,那么这个多项式为.例2.若长方形的周长为6m,一边长为m+n,则另一边长为()A.3m+n B.2m+2n C.m+3n D.2m﹣n笔记:变式1.一个长方形的周长为6a+8b,其中一边长为2a﹣b,则另一边长为()A.4a+5b B.a+b C.a+5b D.a+7b例3.某同学做了一道数学题:“已知两个多项式为A,B,B=3x﹣2y,求A﹣B的值.”他误将“A﹣B”看成了“A+B”,结果求出的答案是x﹣y,那么原来的A﹣B的值应该是()A.4x﹣3y B.﹣5x+3y C.﹣2x+y D.2x﹣y笔记:变式1.某同学做一道数学题,“已知两个多项式A、B,B=2x2+3x﹣4,试求A﹣2B”.这位同学把“A﹣2B”误看成“A+2B”,结果求出的答案为5x2+8x﹣10.请你替这位同学求出“A﹣2B”的正确答案.变式2.小明在一次测验中计算一个多项式M加上5ab﹣3bc+2ac时,不小心看成减去:5ab ﹣3bc+2ac,结果计算出错误答案为2ab+6bc﹣4ac.(1)求多项式M;(2)试求出原题目的正确答案.变式3.小刚在计算一个多项式A减去多项式2b2﹣3b﹣5时,因一时疏忽忘了对两个多项式用括号括起来,因此减式后面两项没有变号,结果得到的差是b2+3b﹣1.(1)求这个多项式A;(2)求出这两个多项式运算的正确结果;(3)当b=﹣1时,求(2)中结果的值.(二)整体代入例1.已知2x﹣3y=6,则7﹣6x+9y的值为()A.25B.﹣25C.11D.﹣11笔记:变式1.已知2a+3b=4,则整式﹣4a﹣6b+1的值是()A.5B.3C.﹣7D.﹣10变式2.若a+2b=3,则代数式2a+4b的值为()A.3B.4C.5D.6变式3.已知a﹣b=2,则代数式2a﹣2b﹣3的值是()A.1B.2C.5D.7例2.若代数式x﹣2y=3,则代数式2(x﹣2y)2+4y﹣2x+1的值为()A.7B.13C.19D.25笔记:变式1.已知x+y=3,xy=1,则代数式(5x+3)﹣(2xy﹣5y)的值为.变式2.若x+y=3,xy=2,则(x+2)+(y﹣2xy)=.变式3.已知y=3xy+x,求代数式=.变式4.已知a+b=4,ab=﹣2,求代数式(2a﹣5b﹣2ab)﹣(a﹣6b﹣ab)的值.例3.若a﹣b=2,b﹣c=﹣5,则a﹣c=.笔记:变式1.如果m和n互为相反数,则化简(3m﹣2n)﹣(2m﹣3n)的结果是()A.﹣2B.0C.2D.3变式2.若a与b互为相反数,m和n互为倒数,则=.练习1.已知a2+2a﹣3=0,则代数式2a2+4a﹣3的值是()A.﹣3B.0C.3D.6练习2.已知1﹣a2+2a=0,则的值为()A.B.C.1D.5练习3.若x2+4x﹣4=0,则7﹣8x﹣2x2的值等于.练习4.若x=2y+3,则代数式3x﹣6y+1的值是.练习5.如果2x2﹣3x的值为﹣1,则6x﹣4x2+3的值为.练习6.已知代数式a﹣2b+7=13,那么代数式2a﹣4b的值为.练习7.若2m+n=3,则代数式6﹣2m﹣n的值为.练习8.已知a2+3a=2,则3a2+9a+1的值为.练习9.若x2﹣2x﹣2=0,则3x2﹣6x的值是.练习10.若a﹣5b=3,则17﹣3a+15b=.练习11.若a﹣2b=3,则9﹣2a+4b的值为.练习12.如果代数式﹣2a2+3b+8的值为1,那么代数式4a2﹣6b+2的值等于.练习13.已知x2+2x﹣1=0,则3x2+6x﹣2=.练习14.我们知道,2x+3x﹣x=(2+3﹣1)x=4x,类似地,我们也可以将(a+b)看成一个整体,则2(a+b)+3(a+b)﹣(a+b)=(2+3﹣1)(a+b)=4(a+b).整体思想是中学数学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛.请根据上面的提示和范例,解决下面的题目:(1)把(x﹣y)2看成一个整体,求将2(x﹣y)2﹣5(x﹣y)2+(x﹣y)2合并的结果;(2)已知2m﹣n=4,求8m﹣6n+5的值;(3)已知a﹣2b=﹣5,b﹣c=﹣2,3c+d=6,求(a+3c)﹣(2b+c)+(b+d)的值.(三)绝对值化简例1.有理数a、b、c在数轴上的位置如图,(1)判断正负,用“>”或“<”填空:c﹣b0,a+b0,a﹣c0.(2)化简:|c﹣b|+|a+b|﹣|a﹣c|.笔记:变式1.当1≤m<3时,化简|m﹣1|﹣|m﹣3|=.变式2.如果a<2,那么|﹣1.5|+|a﹣2|等于.变式3.已知有理数a、b、c在数轴上对应点的位置如图所示.解答下列各题:(1)判断下列各式的符号(填“>”或“<”)a﹣b0,b﹣c0,c﹣a0,b+c0(2)化简:|a﹣b|+|b﹣c|﹣|c﹣a|+|b+c|.变式4.如图,已知a、b、c在数轴上的位置,求|b+c|﹣|a﹣b|﹣|c﹣b|的值.。

初一数学整式的加减培优训练题(附答案)

初一数学整式的加减培优训练题(附答案)
初一数学整式的加减培优训练题(附答案)
一、单选题
1.如图1,将一个边长为α的正方形纸片剪去两个小矩形,得到一个“S”的图案,如图2所示,则图形中“S”的周长与正方形的周长的差为()
A.4a+3bB.5a+6bC.4a-4bD.8a-4b
2.某种商品进价为每件a元,销售商先以高出进价50%定价后又以7折的价格销售,这时一件该商品的在买卖过程中盈亏情况为( )
A.(a–2b)cmB.( –2b)cmC. cmD. cm
二、填空题
7.若代数式 的值为 ,则代数式 的值为_____.
9.观察下列各等式:
……
根据以上规律可知第11行左起第一个数是__.
10.按下列规律排列的一列数对(-1,2)、(3,-5)、(-6,8)、(10,-11)、……,第n个数对是_______.
A. B. C. D.
5.下列说法:①若一个数的倒数等于它本身,则这个数是1或-1;②若2a2与3ax+1的和是单项式,则x=1;③若|x|=|-7|,则x=-7;④若a,b互为相反数,则a,b的商为-1.其中正确的个数为( )
A.1B.2C.3D.4
6.长方形的周长为acm,长为bcm,则长方形的宽为( )
19.观察一组数据:2,4,7,11,16,22,29,…,它们有一定的规律,若记第一个数为a1,第二个数记为a2,…,第n个数记为an.
(1)请写出29后面的第一个数;
(2)通过计算a2-a1,a3-a2,a4-a3,…由此推算a100-a99的值;
(3)根据你发现的规律求a100的值.
20.小明在求一个多项式减去x2—3x+5时,误认为加上x2—3x+5, 得到的答案是5x2—2x+4,请求出正确的结果.

(人教版)石家庄七年级数学上册第二章《整式的加减》经典练习(培优)

(人教版)石家庄七年级数学上册第二章《整式的加减》经典练习(培优)

1.若8m x y 与36n x y 的和是单项式,则()3m n +的平方根为( ).A .4B .8C .±4D .±8D解析:D【分析】根据单项式的定义可得8m x y 和36n x y 是同类项,因此可得参数m 、n ,代入计算即可. 【详解】解:由8mx y 与36n x y 的和是单项式,得 3,1m n ==.()()333164m n +=+=,64的平方根为8±. 故选D .【点睛】本题主要考查单项式的定义,关键在于识别同类项,根据同类项计算参数.2.某养殖场2018年年底的生猪出栏价格是每千克a 元.受市场影响,2019年第一季度出栏价格平均每千克下降了15%,到了第二季度平均每千克比第一季度又上升了20%,则第三季度初这家养殖场的生猪出栏价格是每千克( )A .(1-15%)(1+20%)a 元B .(1-15%)20%a 元C .(1+15%)(1-20%)a 元D .(1+20%)15%a 元A 解析:A【分析】由题意可知:2019年第一季度出栏价格为2018年底的生猪出栏价格的(1-15%),第二季度平均价格每千克是第一季度的(1+20%),由此列出代数式即可.【详解】第三季度初这家养殖场的生猪出栏价格是每千克(1-15%)(1+20%)a 元.故选:A .【点睛】本题考查列代数式,注意题目蕴含的数量关系,找准关系是解决问题的关键. 3.若2312a b x y +与653a b x y -的和是单项式,则+a b =( ) A .3-B .0C .3D .6C 解析:C【分析】 要使2312a b x y +与653a b x y -的和是单项式,则2312a b x y +与653a b x y -为同类项; 根据同类项的定义:所含字母相同,并且相同字母的指数也分别相等的项叫做同类项,即可得到关于a 、b 的方程组;结合上述提示,解出a 、b 的值便不难计算出a+b 的值.【详解】解:根据题意可得:26{3a b a b +=-=, 解得:3{0a b ==, 所以303a b +=+=,故选:C .【点睛】本题考查了同类项的定义,掌握同类项的定义是解题的关键.4.把有理数a 代入|a +4|﹣10得到a 1,称为第一次操作,再将a 1作为a 的值代入得到a 2,称为第二次操作,…,若a =23,经过第2020次操作后得到的是( )A .﹣7B .﹣1C .5D .11A解析:A【分析】先确定第1次操作,a 1=|23+4|-10=17;第2次操作,a 2=|17+4|-10=11;第3次操作,a 3=|11+4|-10=5;第4次操作,a 4=|5+4|-10=-1;第5次操作,a 5=|-1+4|-10=-7;第6次操作,a 6=|-7+4|-10=-7;…,后面的计算结果没有变化,据此解答即可.【详解】解:第1次操作,a 1=|23+4|-10=17;第2次操作,a 2=|17+4|-10=11;第3次操作,a 3=|11+4|-10=5;第4次操作,a 4=|5+4|-10=-1;第5次操作,a 5=|-1+4|-10=-7;第6次操作,a 6=|-7+4|-10=-7;第7次操作,a 7=|-7+4|-10=-7;…第2020次操作,a 2020=|-7+4|-10=-7.故选:A .【点睛】本题考查了绝对值和探索规律.解题的关键是先计算,再观察结果是按照什么规律变化的.探寻规律要认真观察、仔细思考,善用联想来解决这类问题. 5.下列对代数式1a b-的描述,正确的是( ) A .a 与b 的相反数的差B .a 与b 的差的倒数C .a 与b 的倒数的差D .a 的相反数与b 的差的倒数C解析:C【分析】根据代数式的意义逐项判断即可.【详解】解:A. a 与b 的相反数的差:()a b --,该选项错误;B. a 与b 的差的倒数:1a b-,该选项错误; C. a 与b 的倒数的差:1a b-;该选项正确; D. a 的相反数与b 的差的倒数:1a b --,该选项错误. 故选:C .【点睛】此题主要考查列代数式,注意掌握代数式的意义.6.某文具店三月份销售铅笔100支,四、五两个月销售量连续增长.若月平均增长率为x ,则该文具店五月份销售铅笔的支数是( )A .100(1+x )B .100(1+x )2C .100(1+x 2)D .100(1+2x )B 解析:B【解析】试题分析:设出四、五月份的平均增长率,则四月份的市场需求量是100(1+x ),五月份的产量是100(1+x )2.故答案选B.考点:列代数式.7.已知322x y 和m 2x y -是同类项,则式子4m 24-的值是( )A .21-B .12-C .36D .12B解析:B【分析】根据同类项定义得出m 3=,代入求解即可.【详解】解:∵322x y 和m 2x y -是同类项, ∴m 3=,∴4m 24432412-=⨯-=-,故选B .【点睛】本题考查了对同类项定义的应用,注意:所含字母相同,并且相同字母的指数也分别相等的项,叫同类项,常数也是同类项.8.下列图形都是由同样大小的小圆圈按一定规律所组成的,其中第①个图形中一共有4个小圆圈,第②个图形中一共有10个小圆圈,第③个图形中一共有19个小圆圈,…,按此规律排列,则第⑦个图形中小圆圈的个数为( )A .64B .77C .80D .85D解析:D【分析】 观察图形特点,从中找出规律,小圆圈的个数分别是3+12,6+22,10+32,15+42,…,总结出其规律为()()122n n +++n 2,根据规律求解. 【详解】通过观察,得到小圆圈的个数分别是:第一个图形为:()1222+⨯+12=4, 第二个图形为:()1332+⨯+22=10, 第三个图形为:()1442+⨯+32=19, 第四个图形为:()1552+⨯+42=31, …, 所以第n 个图形为:()()122n n +++n 2, 当n=7时,()()72712+++72=85, 故选D .【点睛】 此题主要考查了学生分析问题、观察总结规律的能力.关键是通过观察分析得出规律. 9.如图,阴影部分的面积为( )A .228ab a π-B .222ab a π-C .22ab a π-D .224ab a π- C解析:C【分析】 本题首先求解矩形面积,继而求解空白部分的圆形面积,最后作差求解阴影面积.【详解】由已知得:矩形面积为2ab ,空白圆形半径为a ,故圆形面积为2a π,则阴影部分的面积为22ab a π-.故选:C .【点睛】本题考查几何图形阴影面积的求法,涉及矩形面积公式以及圆形面积公式运用,求解不规则图形面积时通常利用割补法.10.若关于x ,y 的多项式2237654x y mxy xy -++化简后不含二次项,则m =( ) A .17 B .67 C .-67D .0B 解析:B【分析】将原式合并同类项,可得知二次项系数为6-7m ,令其等于0,即可解决问题.【详解】解:∵原式=()2236754x y m xy +-+, ∵不含二次项,∴6﹣7m =0, 解得m =67. 故选:B .【点睛】 本题考查了多项式的系数,解题的关键是若不含二次项,则二次项系数6-7m=0. 11.古希腊著名的毕达哥拉斯学派把1,3,6,10…这样的数称为“三角形数”,而把1,4,9,16…这样的数称为“正方形数”.从图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.下列等式中,符合这一规律的是( )A .13=3+10B .25=9+16C .36=15+21D .49=18+31C 解析:C【分析】本题考查探究、归纳的数学思想方法.题中明确指出:任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.由于“正方形数”为两个“三角形数”之和,正方形数可以用代数式表示为:(n+1)2,两个三角形数分别表示为12n (n+1)和12(n+1)(n+2),所以由正方形数可以推得n 的值,然后求得三角形数的值.【详解】∵A中13不是“正方形数”;选项B、D中等式右侧并不是两个相邻“三角形数”之和.故选:C.【点睛】此题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.12.代数式21ab-的正确解释是()A.a与b的倒数的差的平方B.a与b的差的平方的倒数C.a的平方与b的差的倒数D.a的平方与b的倒数的差D解析:D【分析】说出代数式的意义,实际上就是把代数式用语言叙述出来.叙述时,要求既要表明运算的顺序,又要说出运算的最终结果.【详解】解:代数式21ab-的正确解释是a的平方与b的倒数的差.故选:D.【点睛】用语言表达代数式的意义,一定要理清代数式中含有的各种运算及其顺序.具体说法没有统一规定,以简明而不引起误会为出发点.13.下列关于多项式21ab a b--的说法中,正确的是()A.该多项式的次数是2 B.该多项式是三次三项式C.该多项式的常数项是1 D.该多项式的二次项系数是1-B解析:B【分析】直接利用多项式的相关定义进而分析得出答案.【详解】A、多项式21ab a b--次数是3,错误;B、该多项式是三次三项式,正确;C、常数项是-1,错误;D、该多项式的二次项系数是1,错误;故选:B.【点睛】此题考查多项式,正确掌握多项式次数与系数的确定方法是解题关键.14.小明乘公共汽车到白鹿原玩,小明上车时,发现车上已有(6a﹣2b)人,车到中途时,有一半人下车,但又上来若干人,这时车上共有(10a﹣6b)人,则中途上车的人数为()A.16a﹣8b B.7a﹣5b C.4a﹣4b D.7a﹣7b B解析:B【分析】根据题意表示出途中下车的人数,再根据车上总人数即可求得中途上车的人数.【详解】由题意可得:(10a ﹣6b )﹣[(6a ﹣2b )﹣(3a ﹣b )]=10a ﹣6b ﹣6a +2b +3a ﹣b=7a ﹣5b .故选B .【点睛】本题考查了整式加减的应用,根据题意正确列出算式是解决问题的关键.15.下列说法错误的是( )A .23-2x y 的系数是32- B .数字0也是单项式 C .-x π是二次单项式D .23xy π的系数是23πC 解析:C【分析】根据单项式的有关定义逐个进行判断即可.【详解】 A. 23-2x y 的系数是32-,故不符合题意; B. 数字0也是单项式 故不符合题意;C. -x π是一次单项式 ,故原选项错误D. 23xy π的系数是23π,故不符合题意. 故选C .【点睛】本题考查对单项式有关定义的应用,能熟记单项式的有关定义是解此题关键.1.将正偶数按照如下规律进行分组排列,依次为(2),(4,6),(8,10,12),(14,16,18,20)…,我们称“4”是第2组第1个数字,“16”是第4组第2个数字,若2020是第m 组第n 个数字,则m +n =_____.65【分析】根据题目中数字的特点可知每组的个数依次增大每组中的数字都是连续的偶数然后即可求出2020是多少组第多少个数从而可以得到mn 的值然后即可得到m+n 的值【详解】解:∵将正偶数按照如下规律进行解析:65【分析】根据题目中数字的特点,可知每组的个数依次增大,每组中的数字都是连续的偶数,然后即可求出2020是多少组第多少个数,从而可以得到m 、n 的值,然后即可得到m +n 的值.【详解】解:∵将正偶数按照如下规律进行分组排列,依次为(2),(4,6),(8,10,12),(14,16,18,20)…,∴第m 组有m 个连续的偶数,∵2020=2×1010,∴2020是第1010个偶数,∵1+2+3+…+44=44(441)2⨯+=990,1+2+3+…+45=45(451)2⨯+=1035, ∴2020是第45组第1010-990=20个数,∴m =45,n =20,∴m +n =65.故答案为:65.【点睛】本题考查探索规律,认真观察所给数据总结出规律是解题的关键. 2.在多项式422315x x x x 中,同类项有_________________;-2x5x 【分析】根据同类项:所含字母相同并且相同字母的指数也相同进行判断即可【详解】解:-2x 与5x 是同类项;故答案为:-2x5x 【分析】本题考查了同类项的知识解题的关键是掌握同类项的定义解析:-2x ,5x【分析】根据同类项:所含字母相同,并且相同字母的指数也相同,进行判断即可.【详解】解: -2x 与5x 是同类项;故答案为:-2x ,5x .【分析】本题考查了同类项的知识,解题的关键是掌握同类项的定义.3.如图,阴影部分的面积用整式表示为_________.x2+3x +6【分析】阴影部分的面积=三个小矩形的面积的和【详解】如图:阴影部分的面积为:x·x+3x+3×2=x2+3x +6故答案为x2+3x +6【点睛】本题考查了列代数式和代数式求值解决这类问题解析:x 2+3x +6【分析】阴影部分的面积=三个小矩形的面积的和.【详解】如图:阴影部分的面积为:x·x+3x+3×2= x2+3x+6.故答案为x2+3x+6【点睛】本题考查了列代数式和代数式求值,解决这类问题首先要从简单图形入手,认清各图形的关系,然后求解.4.某商店经销一种品牌的洗衣机,其中某一型号的洗衣机每台进价为a元,商店将进价提高20%后作为零售价进行销售,一段时间后,商店又以9折优惠价促销,这时该型号洗衣机的零售价为__元.08a【解析】试题分析:根据题意得:a•(1+20)×90=108a;故答案为108a考点:列代数式解析:08a【解析】试题分析:根据题意得:a•(1+20%)×90%=1.08a;故答案为1.08a.考点:列代数式.5.写出一个系数是-2,次数是4的单项式________.答案不唯一例:-2【解析】解:系数为-2次数为4的单项式为:-2x4故答案为-2x4点睛:本题考查了单项式的知识单项式中的数字因数叫做单项式的系数一个单项式中所有字母的指数的和叫做单项式的次数解析:答案不唯一,例:-24x.【解析】解:系数为-2,次数为4的单项式为:-2x4.故答案为-2x4.点睛:本题考查了单项式的知识,单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数.6.将代数式4a2b+3ab2﹣2b3+a3按a的升幂排列的是_____.﹣2b3+3ab2+4a2b+a3【分析】找出a的次数的高低后由低到高排列即可得出答案【详解】可得出﹣2b3+3ab2+4a2b+a3【点睛】本题考查了代数式中的次数熟悉掌握次数的概念和细心是解决本解析:﹣2b3+3ab2+4a2b+a3.【分析】找出a 的次数的高低后,由低到高排列即可得出答案.【详解】可得出﹣2b 3+3ab 2+4a 2b+a 3.【点睛】本题考查了代数式中的次数,熟悉掌握次数的概念和细心是解决本题的关键.7.观察下列各等式中的数字特征:53-58=53×58,92-911=92×911,107-1017=107×1017,…将所发现的规律用含字母a ,b 的等式表示出来是_____.-=×【分析】从大的方面看两个数的差等于两个数的积从小的方面看所有的分子都相同可设两个分母分别为ab 分子用ab 表示即可【详解】观察发现都是两个分数的差等于两个分数的积设第一个分式为则第二个分式的分子 解析:a b -a a b +=a b ×a a b+ 【分析】 从大的方面看,两个数的差等于两个数的积.从小的方面看,所有的分子都相同,可设两个分母分别为a ,b ,分子用a ,b 表示即可.【详解】观察发现,都是两个分数的差等于两个分数的积. 设第一个分式为a b,则第二个分式的分子与第一个分式的分子相同,而分母恰好是a b +,∴用含字母a b ,的等式表示出来是a b -a a b +=a b ×a a b +. 故答案为:a b -a a b +=a b ×a a b+. 【点睛】本题考查了数字类规律的探索,解决此类探究性问题,关键在观察、分析已知数据,寻找它们之间的相互联系,探寻其规律.8.将下列代数式的序号填入相应的横线上. ①223a b ab b ++;②2a b +;③23xy -;④0;⑤3y x -+;⑥2xy a ;⑦223x y +;⑧2x;⑨2x . (1)单项式:_______________;(2)多项式:_______________;(3)整式:_________________;(4)二项式:_______________.③④⑨①②⑤①②③④⑤⑨②⑤【分析】根据单项式多项式整式二项式的定义即可求解【详解】(1)单项式有:③④0⑨;(2)多项式有:①②⑤;(3)整式有:①②③④0⑤⑨;(4)二项式有:②⑤;故答案为:(解析:③④⑨ ①②⑤ ①②③④⑤⑨ ②⑤【分析】根据单项式,多项式,整式,二项式的定义即可求解.【详解】(1)单项式有:③23xy -,④0,⑨2x ; (2)多项式有:①223a b ab b ++,②2a b +,⑤3y x -+; (3)整式有:①223a b ab b ++,②2a b +,③23xy -,④0,⑤3y x -+,⑨2x ; (4)二项式有:②2a b +,⑤3y x -+; 故答案为:(1)③④⑨;(2)①②⑤;(3)①②③④⑤⑨;(4)②⑤【点睛】本题考查了整式,关键是熟练掌握单项式,多项式,整式,二项式的定义.9.若212m m a b -是一个六次单项式,则m 的值是______.2【分析】根据一个单项式中所有字母的指数的和叫做单项式的次数可得2m+m=6再解即可【详解】由题意得解得故答案为:2【点睛】此题主要考查了单项式的次数关键是掌握单项式的相关定义解析:2【分析】根据一个单项式中所有字母的指数的和叫做单项式的次数可得2m+m=6,再解即可.【详解】由题意,得26m m +=,解得2m =.故答案为:2【点睛】此题主要考查了单项式的次数,关键是掌握单项式的相关定义.10.当x =1时,ax +b +1=﹣3,则(a +b ﹣1)(1﹣a ﹣b )的值为_____.-25【分析】由x =1时代数式ax+b+1的值是﹣3求出a+b 的值将所得的值整体代入所求的代数式中进行计算即可得解【详解】解:∵当x =1时ax+b+1的值为﹣3∴a+b+1=﹣3∴a+b =﹣4∴(a解析:-25.【分析】由x =1时,代数式ax +b +1的值是﹣3,求出a +b 的值,将所得的值整体代入所求的代数式中进行计算即可得解.【详解】解:∵当x=1时,ax+b+1的值为﹣3,∴a+b+1=﹣3,∴a+b=﹣4,∴(a+b﹣1)(1﹣a﹣b)=(a+b﹣1)[1﹣(a+b)]=(﹣4﹣1)×(1+4)=﹣25.故答案为:﹣25.【点睛】此题考查整式的化简求值,运用整体代入法是解决问题的关键.11.请根据给出的x,-2,y2组成一个单项式和一个多项式________________-2xy2;-2x+y2;【分析】根据单项式的定义和多项式的定义即可得出答案单项式的定义:数或字母的积组成的式子叫做单项式单独的一个数或字母也是单项式几个单项式的和叫做多项式每个单项式叫做多项式的项解析:-2xy2;-2x+y2;【分析】根据单项式的定义和多项式的定义即可得出答案.单项式的定义:数或字母的积组成的式子叫做单项式,单独的一个数或字母也是单项式.几个单项式的和叫做多项式,每个单项式叫做多项式的项,其中不含字母的项叫做常数项.多项式中次数最高的项的次数叫做多项式的次数.【详解】由x、-2、y2组成一个单项式,这个单项式可以为-2xy2,由x、-2、y2组成一个二项式,这个二次项式可以为-2x+y2.故答案为:-2xy2;-2x+y2;【点睛】此题考查单项式,多项式,解题关键在于掌握其定义.1.老师在黑板上书写了一个正确的演算过程,随后用一张纸挡住了一个二次三项式,形式如下:+3(x﹣1)=x2﹣5x+1.(1)求所挡的二次三项式;(2)若x=﹣2,求所挡的二次三项式的值.解析:(1)x2﹣8x+4;(2)24【分析】(1)根据“已知两个加数的和与其中的一个加数,求另一个加数用减法”,列出代数式并合并即可;(2)把x=-2代入(1)的结果,计算即可.【详解】(1)x2﹣5x+1﹣3(x﹣1)=x2﹣5x+1﹣3x+3=x2﹣8x+4;∴所挡的二次三项式为x 2﹣8x +4.(2)当x =﹣2时,x 2﹣8x +4=(﹣2)2﹣8×(﹣2)+4=4+16+4=24.【点睛】本题考查了整式的加减.根据加数与和的关系,列出求挡住的二次三项式的式子是解决本题的关键.2.用代数式表示:(1)比x 的平方的5倍少2的数;(2)x 的相反数与y 的倒数的和;(3)x 与y 的差的平方;(4)某商品的原价是a 元,提价15%后的价格;(5)有一个三位数,个位数字比十位数字少4,百位数字是个位数字的2倍,设x 表示十位上的数字,用代数式表示这个三位数.解析:(1)5x 2-2;(2)-x +1y ;(3)(x -y )2;(4)(1+15%)a ;(5)200(x -4)+10x +(x -4). 【分析】(1)明确是x 的平方的5倍与2的差;(2)先求出x 的相反数与y 的倒数,然后相加即可;(3)注意是先做差后平方;(4)注意是提价后的价格而非所提的价格;(5)注意正确表示百位,十位,个位上的数.【详解】(1)5x 2-2;(2)-x +1y; (3)(x -y )2;(4)(1+15%)a ;(5)200(x -4)+10x +(x -4) .【点睛】本题考查了列代数式,能够根据运算顺序正确书写,同时注意数位的意义,注意“多,少,积,差”等关键字的把握.3. 1+2+3++100⋯=?经过研究,这个问题的一般性结论是()1123n n n 12+++⋯+=+,其中n 是正整数.现在我们来研究一个类似的问题:()122334n n 1⨯+⨯+⨯+⋯+=?观察下面三个特殊的等式:()1121230123⨯=⨯⨯-⨯⨯()1232341233⨯=⨯⨯-⨯⨯ ()1343452343⨯=⨯⨯-⨯⨯ 将这三个等式的两边相加,可以得到1122334345203⨯+⨯+⨯=⨯⨯⨯=.读完这段材料,请你思考后回答:(1)直接写出下列各式的计算结果:1223341011⨯+⨯+⨯+⋯⨯=① ______()122334n n 1⨯+⨯+⨯+⋯+=② ______(2)探究并计算:()()123234345n n 1n 2⨯⨯+⨯⨯+⨯⨯+⋯+++= ______ (3)请利用(2)的探究结果,直接写出下式的计算结果:123234345101112⨯⨯+⨯⨯+⨯⨯+⋯+⨯⨯= ______ .解析:(1)①440,②()()1n n 1n 23++;(2)()()()1n n 1n 2n 34+++;(3)4290 【分析】(1)①根据阅读材料的结论计算即可;②根据阅读材料的结论进行总结;(2)仿照(1)的计算方法进行归纳即可;(3)代入(2)总结的规律进行计算即可.【详解】解:(1)①1×2+2×3+3×4+…10×11=13×10×11×12=440, ②1×2+2×3+3×4+…+n (n+1)=13n (n+1)(n+2), (2)1×2×3=14(1×2×3×4-0×1×2×3), 2×3×4=14(2×3×4×5-1×2×3×4), 3×4×5=14(3×4×5×6-2×3×4×5), 则1×2×3+2×3×4+3×4×5+…+n (n+1)(n+2)=14n (n+1)(n+2)(n+3); (3)123234345101112⨯⨯+⨯⨯+⨯⨯++⨯⨯ =14×10×11×12×13 =4290.【点睛】本题考查了有理数的混合运算、规律型-数字的变化类,弄清题意,得出一般性的规律是解本题的关键.4.求多项式的值222232424a b ab a b ab --+-,其中1a =-,2b =-. 解析:24a b --,-2.【分析】原式合并同类项后代入字母的值计算即可.【详解】解:原式24a b =--,当1a =-,2b =-时,原式2=-.【点睛】本题考查了整式的化简求值,正确的将原式合并同类项是解决此题的关键.。

(必考题)七年级数学上册第二单元《整式加减》-解答题专项提高练习(培优)

(必考题)七年级数学上册第二单元《整式加减》-解答题专项提高练习(培优)

一、解答题1.已知多项式﹣3x 2+mx+nx 2﹣x+3的值与x 无关,求(2m ﹣n )2017的值.解析:-1【分析】先把多项式进行合并同类项得(n-3)x 2+(m-1)x+3,由于关于字母x 的二次多项式-3x 2+mx+nx 2-x+3的值与x 无关,即不含x 的项,所以n-3=0,m-1=0,然后解出m 、n ,代入计算(2m-n )2017的值即可.【详解】合并同类项得(n ﹣3)x 2+(m ﹣1)x+3,根据题意得n ﹣3=0,m ﹣1=0,解得m=1,n=3,所以(2m ﹣n )2017=(﹣1)2017=﹣1.【点睛】考查了多项式及相关概念:几个单项式的和叫做多项式,每个单项式叫做多项式的项,其中不含字母的项叫做常数项.多项式中次数最高的项的次数叫做多项式的次数. 2.窗户的形状如图所示(图中长度单位:cm ),其中上部是半圆形,下部是边长相同的四个小正方形. 已知下部小正方形的边长是acm.(1)计算窗户的面积(计算结果保留π).(2)计算窗户的外框的总长(计算结果保留π).(3)安装一种普通合金材料的窗户单价是175元/平方米,当a=50cm 时,请你帮助计算这个窗户安装这种材料的费用(π≈3.14,窗户面积精确到0.1).解析:(1)2214a +a 2π;(2)6a a π+;(3)245. 【分析】 (1)根据图示,窗户的面积等于4个小正方形的面积加上半径是a 的半圆的面积;(2)根据图示,窗户外框的总长就是用3条长度是2acm 的边的长度加上半径是acm 的半圆的长度;(3)根据窗户的总面积,代入求值即可.【详解】解:(1)窗户的面积为:()()222214a a 422a a a cm ππ⎛⎫⨯+=+ ⎪⎝⎭(2)窗户的外框的总长为:()()132a 262a a a cm ππ⨯+⨯=+ (3)当a=50cm ,即:a=0.5m 时, 窗户的总面积为:()2220.540.5128m ππ⎛⎫⨯+=+ ⎪⎝⎭ 取π≈3.14,原式=1+0.3925≈1.4(m 2)安装窗户的费用为:1.4×175=245(元).【点睛】本题考查的知识点是求组合图形的面积与周长,将已知图形分解为所熟悉的简单图形是解此题的关键.3.有这样一道题“求多项式3323323763363101a a b a b a a b a b a -+++--+的值,其中99.01,123.89a b ==-”,有一位同学把99.01a =抄成99.01,123.89a b =-=-抄成123.89b =,结果也正确,为什么?解析:见解析【分析】原式合并同类项得到最简结果为常数1,这个多项式的值与a 、b 的值无关,故a ,b 的值抄错后,答案仍然是1【详解】解:∵3323323763363101a a b a b a a b a b a -+++--+()()()33333227310663311a a a a b a b a b a b =+-+-++-+=;∴这个多项式的值与,a b 的值无关,故,a b 的值抄错后结果也正确.【点睛】此题考查了整式的加减——化简求值,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握运算法则是解本题的关键.4.列出下列代数式:(1)a 、b 两数差的平方;(2)a 、b 两数平方的差;(3)a 、b 两数的和与a 、b 两数的差的积;(4)a 的相反数与b 的平方的和.解析:(1)2()a b -;(2)22a b -;(3)()()a b a b +-;(4)2a b -+【分析】(1)根据题意先列出a ,b 的差,再表示差的平方,即可得出答案;(2)根据题意先表示出a ,b 平方,再列出差,即可得出答案 ;(3)根据题意先表示出a 与b 两数的和以及这两数的差,再列出它们的积,即可得出答案;(4)利用相反数以及平方的定义得出答案.【详解】(1)根据题意可得:2()a b -;(2)根据题意可得:22a b -;(3)根据题意可得:()()a b a b +-;(4)根据题意可得:2a b -+.【点睛】本题考查了列代数式,关键是能够正确运用数学语言,即代数式来表示题意.5.用代数式表示:(1)a 的5倍与b 的平方的差;(2)m 的平方与n 的平方的和;(3)x ,y 两数的平方和减去它们积的2倍.解析:(1)5a -b 2(2)m 2+n 2(3)x 2+y 2-2xy【分析】(1)a 的5倍表示为5a ,b 的平方表示为b 2,然后把它们相减即可;(2)m 与n 平方的和表示为m 2+n 2;(3)x 、y 两数的平方和表示为x 2+y 2,它们积的2倍表示为2xy ,然后把两者相减即可;【详解】解:(1)a 的5倍与b 的平方的差可表示为:5a -b 2;(2)m 的平方与n 的平方的和可表示为:m 2+n 2;(3)x ,y 两数的平方和减去它们积的2倍可表示为:x 2+y 2-2xy .【点睛】本题考查了列代数式:把问题中与数量有关的词语,用含有数字、字母和运算符号的式子表示出来,就是列代数式.列代数式时,要先认真审题,抓住关键词语,仔细辩析词义;分清数量关系;规范地书写.6.用代数式表示:某厂的产量每年增长15%,如果第一年的产量是a ,那么第二年的产量是多少?解析:15a【分析】设第一年的产量为a ,以15%的速度增长,表示在m 的基础上增长a 的15%.【详解】解:根据题意,得设第一年的产量为a ,以15%的速度增长,∴第二年的产量为a (1+15%)=1.15a .【点睛】本题考查了列代数式,解答本题的关键是读懂题意,找到所求的量的等量关系. 7.先化简,再求值:-2x 2-2[3y 2-2(x 2-y 2)+6],其中x =-1,y =-2.解析:2221012x y --,-50.【分析】根据整式的加减及合并同类项先对原式进行化简,得到2221012x y --,再将1,2x y =-=-代入即可求解,需要注意本题中两次遇到去括号,注意符号的改变.【详解】原式=2222223226x y x y ⎡⎤---++⎣⎦=2222264412x y x y --+--=2222246412x x y y -+---=2221012x y --,当1,2x y =-=-时,原式=222(1)10(2)1250⨯--⨯--=-.【点睛】本题主要考查了去括号,整式的加减,合并同类项,乘法的分配律等相关内容,熟练掌握各项计算法则是解决本题的关键,注意去括号中符号的改变原则.8.某学生在写作业时,不慎将一滴墨水滴在了数轴上,如下图所示,而此时他要化简并求代数式()()2222352xy x x xy x xy ⎡⎤-----+⎢⎥⎣⎦的值.结果同学告诉他:x 的值是墨迹遮盖住的最大整数,y 的值是墨迹遮盖住的最小整数.请你帮助这位同学化简并求值.解析:xy ,1-【分析】先把原式进行化简,得到最简代数式,结合x 的值是墨迹遮盖住的最大整数,y 的值是墨迹遮盖住的最小整数,得到x 、y 的值,然后代入计算,即可得到答案.【详解】解:()()2222352xy xx xy x xy ⎡⎤-----+⎢⎥⎣⎦ =22226552xy x x xy x xy ⎡⎤-+--++⎣⎦=22226552xy x x xy x xy -+-+--=xy ; ∵74-<被盖住的数2<, ∴x 的值是墨迹遮盖住的最大整数,∴1x =,∵y 的值是墨迹遮盖住的最小整数,∴1y =-,∴原式=1(1)1⨯-=-.【点睛】本题考查了整式的化简求值,以及利用数轴比较有理数的大小,解题的关键是正确求出x、y的值,以及掌握整式的混合运算.9.国庆期间,广场上设置了一个庆祝国庆70周年的造型(如图所示).造型平面呈轴对称,其正中间为一个半径为b的半圆,摆放花草,其余部分为展板.求:(1)展板的面积是.(用含a,b的代数式表示)(2)若a=0.5米,b=2米,求展板的面积.(3)在(2)的条件下,已知摆放花草部分造价为450元/平方米,展板部分造价为80元/平方米,求制作整个造型的造价(π取3).解析:(1)12ab平方米;(2)12 (平方米);(3)3660元.【分析】(1)利用分割法求解即可.(2)把a,b的值代入(1)中代数式求值即可.(3)分别求出摆放花草部分造价,展板部分造价即可解决问题.【详解】(1)由题意:展板的面积=12a•b (平方米).故答案为:12ab (平方米).(2)当a=0.5米,b=2米时,展板的面积=12×0.5×2=12(平方米).(3)制作整个造型的造价=12×8012π×4×450=3660(元).【点睛】本题考查轴对称图形,矩形的性质,圆的面积等知识,解题的关键是熟练掌握基本知识.10.如图,某市有一块长为(3a+b)米,宽为(2a+b)米的长方形地块,中间是边长为(a+b)米的正方形,规划部门计划将在中间的正方形修建一座雕像,四周的阴影部分进行绿化,(1)绿化的面积是多少平方米?(用含字母a、b的式子表示)(2)求出当a=20,b=12时的绿化面积.解析:(1)(5a2+3ab)平方米;(2)2720平方米【分析】(1)根据割补法,用含有a,b的式子表示出整个长方形的面积,然后用含有a,b的式子表示出中间空白处正方形的面积,然后两者相减,即可求出绿化部分的面积.(2)将a=20,b=12分别代入(1)问中求出的关系式即可解决.【详解】解:(1)(3a+b)(2a+b)﹣(a+b)2=6a2+3ab+2ab+b2﹣(a2+2ab+b2)=6a2+3ab+2ab+b2﹣a2﹣2ab﹣b2=5a2+3ab,答:绿化的面积是(5a2+3ab)平方米;(2)当a=20,b=12时5a2+3ab=5×202+3×20×12=2000+720=2720,答:当a=20,b=12时的绿化面积是2720平方米.【点睛】(1)本题考查了割补法,多项式乘多项式和完全平方式的运算法则,解决本题的关键是正确理解题意,能够熟练掌握多项式乘多项式的运算法则.(2)本题考查了整式的化简求值,解决本题的关键是熟练掌握整式的运算法则和步骤.11.已知多项式2x2+4xy﹣3y2+x2+kxy+5y2,当k为何值时,它与多项式3x2+6xy+2y2是相等的多项式.解析:k=2.【分析】根据两个多项式是相同的多项式,可以直接列等式根据各项前对应系数相等直接列式计算.【详解】解:2x2+4xy﹣3y2+x2+kxy+5y2,=3x2+(4+k)xy+2y2,因为它与多项式3x2+6xy+2y2是相等的多项式,所以4+k=6,解得:k=2.【点睛】本题考查了带系数多项式与已知多项式相等求未知系数,掌握多项式的概念是解决此题的关键.12.历史上的数学巨人欧拉最先把关于x的多项式用记号f(x)的形式来表示,把x等于某数a时的多项式的值用f(a)来表示,例如x=﹣1时,多项式f(x)=x2+3x﹣5的值记为f(﹣1),则f(﹣1)=﹣7.已知f(x)=ax5+bx3+3x+c,且f(0)=﹣1(1)c=_____.(2)若f(1)=2,求a+b的值;(3)若f(2)=9,求f(﹣2)的值.解析:(1)-1;(2)0;(3)-11.【解析】分析:(1)把x=0,代入f(x)=ax5+bx3+3x+c,即可解决问题;(2)把x=1,代入f(x)=ax5+bx3+3x+c,即可解决问题;(3)把x=2,代入f (x )=ax 5+bx 3+3x+c ,利用整体代入的思想即可解决问题;详解:(1)∵f (x )=ax 5+bx 3+3x+c ,且f (0)=-1,∴c=-1,故答案为-1.(2)∵f (1)=2,c=-1∴a+b+3-1=2,∴a+b=0(3)∵f (2)=9,c=-1,∴32a+8b+6-1=9,∴32a+8b=4,∴f (-2)=-32a-8b-6-1=-4-6-1=-11.点睛:本题考查的多项式代数式求值,解题的关键是理解题意,灵活运用所学知识解决问题.13.数a 、b 、c 在数轴上对应的位置如图所示,化简a c c b a b +-++-.解析:0;【分析】由数轴可得a >0>b >c ,并从数轴上可得出a ,b ,c 绝对值的大小,从而可以得出各项式子的正负,去绝对值可得出答案.【详解】解:由数轴得,c b 0a <<<,且c a b >>,a c cb a b +-++-a c cb a b =--+++-0=.【点睛】本题考查了数轴上数的大小,去绝对值,熟悉掌握定义是解决本题的关键.14.如图,将面积为2a 的小正方形和面积为2b 的大正方形放在同一水平面上(0b a >>)(1)用a 、b 表示阴影部分的面积;(2)计算当3a =,5b =时,阴影部分的面积.解析:(1)22111222a ab b ++;(2)492【分析】 (1)阴影部分为两个直角三角形,根据面积公式即可计算得到答案;(2)将3a =,5b =代入求值即可.【详解】(1)()21122a ab b ⨯++, 22111222a ab b =++; (2)当3a =,5b =时, 原式221113355222=⨯+⨯⨯+⨯492=. 【点睛】 此题考察列式计算,根据图形边长正确列式表示图形的面积即可.15.已知多项式-13x 2y m +1+12xy 2-3x 3+6是六次四项式,单项式3x 2n y 2的次数与这个多项式的次数相同,求m 2+n 2的值.解析:13【解析】 试题分析:根据多项式次数的定义,可得2+m+1=6,从而可求出m 的值,根据单项式的次数的定义结合题意可得2n+2=6,求解即可得到n 的值,把m ,n 的值代入到m 2+n 2中,计算即可得到求解.试题根据题意得2+m +1=6,2n +2=6解得:m =3, n =2,所以m 2+n 2=13.点睛:此题考查多项式,解题的关键是弄清多项式的次数是多项式中次数最高的项的次数,还要弄清有几项.16.计算:(1)()()312⨯-+-(2)2235223x x x x -+-+-解析:(1)5-;(2)241x x --【分析】(1)直接根据有理数的混合运算法则即可求解.(2)直接根据整式的加减混合运算法则即可求解.【详解】解:(1)原式(3)(2)=-+-5=-;(2)原式2(32)(51)(23)x x =---+-241x x =--.【点睛】此题主要考查有理数的加减运算和整式的加减运算,熟练掌握运算法则是解题关键. 17.观察下列各式:13+23=1+8=9,而(1+2)2=9,∴13+23=(1+2)2;13+23+33=36,而(1+2+3)2=36,∴13+23+33=(1+2+3)2;13+23+33+43=100,而(1+2+3+4)2=100,∴13+23+33+43=(1+2+3+4)2;∴13+23+33+43+53=(______ )2= ______ .根据以上规律填空:(1)13+23+33+…+n 3=(______ )2=[ ______ ]2.(2)猜想:113+123+133+143+153= ______ .解析:1+2+3+4+5;225;1+2+…+n ;()n n 12+;11375 【解析】分析:观察题中的一系列等式发现,从1开始的连续正整数的立方和等于这几个连续正整数和的平方,根据此规律填空;(1)、根据上述规律填空,然后把1+2+…+n 变为2n 个(n+1)相乘,即可化简;(2)、对所求的式子前面加上1到10的立方和,然后根据上述规律分别求出1到15的立方和与1到10的立方和,求出的两数相减即可求出值.详解:由题意可知:13+23+33+43+53=(1+2+3+4+5)2=225(1)、∵1+2+…+n=(1+n )+[2+(n-1)]+…+[n 2+(n-n 2+1)]=()n n 12+, ∴13+23+33+…+n 3=(1+2+…+n )2=[()n n 12+]2; (2)、113+123+133+143+153=13+23+33+...+153-(13+23+33+ (103)=(1+2+…+15)2-(1+2+…+10)2 =1202-552=11375.点睛:此题要求学生综合运用观察、想象、归纳、推理概括等思维方式,探索问题,获得解题途径.考查了学生善于观察,归纳总结的能力,以及运用总结的结论解决问题的能力.18.计算:7ab-3a 2b 2+7+8ab 2+3a 2b 2-3-7ab .解析:8ab 2+4.【分析】原式合并同类项即可得到结果.【详解】原式=(7﹣7)ab +(﹣3+3)a 2b 2+8ab 2+(7﹣3)=8ab 2+4.【点睛】本题考查了合并同类项得法则.即系数相加作为系数,字母和字母的指数不变. 19.国庆期间,王老师计划组织朋友去晋西北游览两日.经了解,现有甲、乙两家旅行社针对组团两日游的游客报价均为每人500元,且提供的服务完全相同.甲旅行社表示,每人都按八五折收费;乙旅行社表示,若人数不超过20人,每人都按九折收费,超过20人,则超出部分每人按八折收费.假设组团参加甲、乙两家旅行社两日游的人数均为x 人. (1)请列式表示甲、乙两家旅行社收取组团两日游的总费用;(2)若王老师组团参加两日游的人数共有30人,请你通过计算,在甲、乙两家旅行社中,帮助王老师选择收取总费用较少的一家.解析:(1)甲旅行社收取组团两日游的总费用为425x 元;若人数不超过20人时,乙旅行社收取组团两日游的总费用为450x 元;若人数超过20人时,乙旅行社收取组团两日游的总费用为(4001000x +)元;(2)王老师应选择甲旅行社.【分析】(1)根据总费用等于人数乘以打折后的单价,易得甲旅行社的费用=500 x×0.85,对于乙家旅行社的总费用,应分类讨论:当0≤x≤20时,乙旅行社的费用=500 x×0.9;当x >20时,乙旅行社的费用=500×20×0.9+500(x-20)×0.8;(2)把x=30分别代入(1)中对应关系计算甲旅行社的费用和乙旅行社的费用的值,然后比较大小即可.【详解】(1)甲旅行社收取组团两日游的总费用为:5000.85425x x ⨯=元若人数不超过20人时,乙旅行社收取组团两日游的总费用为:5000.9450x x ⨯=元 若人数超过20人时,乙旅行社收取组团两日游的总费用为:()500(20)0.8500200.94001000-⨯+⨯⨯=+x x 元(2)因为王老师组团参加两日游的人数共有30人,所以甲旅行社收取组团两日游的总费用为:4253012750⨯=元乙旅行社收取组团两日游的总费用为40030100013000⨯+=元1275013000<,王老师应选择甲旅行社.【点睛】本题考查了代数式,能根据具体情境列代数式并求代数式的值是关键.20.已知A =2a 2+3ab ﹣2a ﹣1,B =﹣a 2+1223ab + (1)当a =﹣1,b =﹣2时,求4A ﹣(3A ﹣2B )的值;(2)若(1)中式子的值与a 的取值无关,求b 的值.解析:(1)4ab ﹣2a+13;(2)b=12 【分析】(1)将a=﹣1,b=﹣2代入A=2a 2+3ab ﹣2a ﹣1,B=﹣a 2+12ab+23,求出A 、B 的值,再计算4A ﹣(3A ﹣2B )的值即可;(2)把(1)结果变形,根据结果与a 的值无关求出b 的值即可.【详解】(1)4A ﹣(3A ﹣2B )=4A ﹣3A+2B=A+2B ,∵A=2a 2+3ab ﹣2a ﹣1,B=﹣a 2+12ab+23, ∴A+2B=2a 2+3ab ﹣2a ﹣1+2(﹣a 2+12ab+23) =2a 2+3ab ﹣2a ﹣1﹣2a 2+ab+43 =4ab ﹣2a+13; (2)因为4ab ﹣2a+13 =(4b ﹣2)a+13, 又因为4ab ﹣2a+13的值与a 的取值无关, 所以4b ﹣2=0,所以b=12. 【点睛】本题考查了整式的加减、化简求值,熟练掌握运算法则是解答本题的关键.21.小马虎在计算一个多项式减去225a a +-的差时,因一时疏忽忘了对两个多项式用括号括起来,因此减去后面两项没有变号,结果得到的差是231a a +-.()1求这个多项式;()2算出此题的正确的结果.解析:(1)2324a a ++;(2)2 9a a ++.【分析】(1)根据题意可以求得相应的多项式;(2)根据(1)中的结果可以求得正确的结果.【详解】解:(1)由题意可得:这个多项式是:a 2+3a ﹣1+2a 2﹣a +5=3a 2+2a +4,即这个多项式是3a 2+2a +4;(2)由(1)可得:3a 2+2a +4﹣(2a 2+a ﹣5)=3a 2+2a +4﹣2a 2﹣a +5=a 2+a +9即此题的正确的结果是a 2+a +9.【点睛】本题考查了整式的加减,解答本题的关键是明确整式的加减的计算方法,求出相应的多项式.22.已知230x y ++-=,求152423x y xy --+的值. 解析:-24.【分析】首先根据绝对值的非负性求出x ,y ,然后代入代数式求值.【详解】解:∵230x y ++-=,∴x+2=0,y-3=0,∴x=-2,y=3, ∴152423x y xy --+ ()()552342323=-⨯--⨯+⨯-⨯ ()5524=-+-24=-.【点睛】本题考查了代数式求值,利用非负数的和为零得出x 、y 的值是解题关键.23.已知多项式22622452x mxyy xy x 中不含xy 项,求代数式32322125m m m m m m 的值.解析:-14【分析】先合并已知多项式中的同类项,然后根据合并后的式子中不含xy 项即可求出m 的值,再把所求式子合并同类项后代入m 的值计算即可.【详解】解:2222622452=6+42252x mxy y xy x x m xy y x , 由题意,得4-2m =0,所以m =2; 所以32322125m m m m m m =3226m m .当m =2时,原式= 322226 =14-. 【点睛】本题考查了整式的加减,属于基本题型,正确理解题意、熟练掌握合并同类项的法则是解题的关键.24.老师在黑板上书写了一个正确的演算过程,随后用一张纸挡住了一个二次三项式,形式如下:+3(x ﹣1)=x 2﹣5x +1.(1)求所挡的二次三项式;(2)若x =﹣2,求所挡的二次三项式的值.解析:(1)x 2﹣8x +4;(2)24【分析】(1)根据“已知两个加数的和与其中的一个加数,求另一个加数用减法”,列出代数式并合并即可;(2)把x=-2代入(1)的结果,计算即可.【详解】(1)x 2﹣5x +1﹣3(x ﹣1)=x 2﹣5x +1﹣3x +3=x 2﹣8x +4;∴所挡的二次三项式为x 2﹣8x +4.(2)当x =﹣2时,x 2﹣8x +4=(﹣2)2﹣8×(﹣2)+4=4+16+4=24.【点睛】本题考查了整式的加减.根据加数与和的关系,列出求挡住的二次三项式的式子是解决本题的关键.25.先化简,再求值: ()()()()24222x x y x y x y x y -++---,其中2x =-, 12y . 解析:132【解析】试题分析:原式利用平方差公式,完全平方公式,以及单项式乘以多项式法则计算,去括号合并得到最简结果,把x 与y 的值代入计算即可求出值.试题原式222222244442x xy x y x xy y x y =-+--+-=-, 当12,2x y =-=-时,原式174.22=-= 26.我们将不大于2020的正整数随机分为两组.第一组按照升序排列得到121010a a a <<<,第二组按照降序排列得到121010b b b >>>, 求112210101010a b a b a b -+-++-的所有可能值.解析:1020100【分析】 由题意知,对于代数式的任何一项:|a k -b k |(k=1,2,…1010),较大的数一定大于1010,较小的数一定不大于1010,即可得出结论.【详解】解:(1)若a k ≤1010,且b k ≤1010,则a 1<a 2<…<a k ≤1010,1010≥b k >b k+1>…>b 1010,则a 1,a 2,…a k ,b k ,……,b 1010,共1011个数,不大于1010不可能;(2)若a k >1010,且b k >1010,则a 1010>a 1009>…>a k+1>a k >1010及b 1>b 2>…>b k >1010,则b 1,……,b k ,a k ……a 1010共1011个数都大于100,也不可能;∴|a 1-b 1|,……,|a 1010-b 1010|中一个数大于1010,一个数不大于1010,∴|a 1-b 1|+|a 2-b 2|+…+|a 1010-b 1010|=1010×1010=1020100.【点睛】本题考查数字问题,考查学生的计算能力,属于中档题.27.已知22134,2313P x mx y Q x y nx =+-+=-+-, (1)关于,x y 的式子2P Q -的取值与字母x 的取值无关,求式子(3)(3)m n m n +--的值;(2)当0x ≠且0y ≠时,若135333P Q -=恒成立,求,m n 的值。

七年级数学上册第二单元《整式加减》-选择题专项经典测试卷(培优专题)

七年级数学上册第二单元《整式加减》-选择题专项经典测试卷(培优专题)

一、选择题1.下列各式中,符合代数书写规则的是( )A .273x B .14a ⨯ C .126p - D .2y z ÷ A解析:A 【分析】 根据代数式的书写要求判断各项.【详解】A 、273x 符合代数书写规则,故选项A 正确. B 、应为14a ,故选项B 错误; C 、应为136p -,故选项C 错误; D 、应为2y z,故选项D 错误; 故选:A .【点睛】此题考查代数式,代数式的书写要求:(1)在代数式中出现的乘号,通常简写成“•”或者省略不写;(2)数字与字母相乘时,数字要写在字母的前面;(3)在代数式中出现的除法运算,一般按照分数的写法来写.带分数要写成假分数的形式.2.下列说法错误的是( )A .23-2x y 的系数是32- B .数字0也是单项式 C .-x π是二次单项式D .23xy π的系数是23πC 解析:C【分析】根据单项式的有关定义逐个进行判断即可.【详解】 A. 23-2x y 的系数是32-,故不符合题意; B. 数字0也是单项式 故不符合题意;C. -x π是一次单项式 ,故原选项错误D. 23xy π的系数是23π,故不符合题意.【点睛】本题考查对单项式有关定义的应用,能熟记单项式的有关定义是解此题关键.3.一列数:0,1,2,3,6,7,14,15,30,___,___,___这串数是由小能按照一定规则写下来的,他第一次写下“0,1”,第二次按着写“2,3”,第三次接着写“6,7”第四次接着写“14,15”,就这样一直接着往下写,那么这串数的最后三个数可能是下面的A.31,63,64 B.31,32,33 C.31,62,63 D.31,45,46C解析:C【分析】本题通过观察可知下一组数的第一个数是前一组数的第二个数的两倍,在同一组数中的前后两个数相差1.由此可写出最后的3个数.【详解】解:本题通过观察可知下一组数的第一个数是前一组数的第二个数的两倍,在同一组数中的前后两个数相差1,所以这串数最后的三个数为31,62,63.故选:C.【点睛】本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.4.小明乘公共汽车到白鹿原玩,小明上车时,发现车上已有(6a﹣2b)人,车到中途时,有一半人下车,但又上来若干人,这时车上共有(10a﹣6b)人,则中途上车的人数为()A.16a﹣8b B.7a﹣5b C.4a﹣4b D.7a﹣7b B解析:B【分析】根据题意表示出途中下车的人数,再根据车上总人数即可求得中途上车的人数.【详解】由题意可得:(10a﹣6b)﹣[(6a﹣2b)﹣(3a﹣b)]=10a﹣6b﹣6a+2b+3a﹣b=7a﹣5b.故选B.【点睛】本题考查了整式加减的应用,根据题意正确列出算式是解决问题的关键.5.如图是按照一定规律画出的“树形图”,经观察可以发现:图A2比图A1多出2个“树枝”,图A3比图A2多出4个“树枝”,图A4比图A3多出8个“树枝”……照此规律,图A6比图A2多出“树枝”( )A.32个B.56个C.60个D.64个C【分析】根据所给图形得到后面图形比前面图形多的“树枝”的个数用底数为2的幂表示的形式,代入求值即可.【详解】∵图A 2比图A 1多出2个“树枝”,图A 3比图A 2多出4个“树枝”,图A 4比图A 3多出8个“树枝”,…,∴图形从第2个开始后一个与前一个的差依次是:2, 22,…, 12n -.∴第5个树枝为15+42=31,第6个树枝为:31+52=63,∴第(6)个图比第(2)个图多63−3=60个故答案为C【点睛】此题考查图形的变化类,解题关键在于找出其规律型.6.某养殖场2018年底的生猪出栏价格为每千克a 元,受市场影响,2019年第一季度出栏价格平均每千克上升15%,到了第二季度平均每千克比第一季度又上升了20%,则第三季度初这家养殖场的生猪出栏价格是每千克( )元A .(115%)(120%)a ++B .(115%)20%a +C .(115%)(120%)a +-D .(120%)15%a + A解析:A【分析】由题意可知:2019年第一季度出栏价格为2018年底的生猪出栏价格的(1+15%),第二季度平均价格每千克是第一季度的(1+20%),由此列出代数式即可.【详解】第三季度初这家养殖场的生猪出栏价格是每千克(1+15%)(1+20%)a 元.故选A .【点睛】此题考查列代数式,注意题目蕴含的数量关系,找准关系是解决问题的关键.7.下列说法:①在数轴上表示a -的点一定在原点的左边;②有理数a 的倒数是1a ;③一个数的相反数一定小于或等于这个数;④如果a b >,那么22a b >;⑤235x y 的次数是2;⑥有理数可以分为整数、正分数、负分数和0;⑦27m ba -与2abm 是同类项.其中正确的个数为( )A .1个B .2个C .3个D .4个A解析:A【分析】根据字母可以表示任意数可判断①,根据特殊例子0没有倒数可判断②,根据负数的相反数可判断③,根据特殊例子a=1,b=-2,可判断④,根据单项式次数的定义可判断⑤,根据有理数的分类判断⑥,根据同类项的概念判断⑦.字母可以表示任意数,当a <0时,-a >0,故①错误;0没有倒数,故②错误;负数的相反数是正数,正数大于负数,故③错误;若a=1,b=-2,a b >,但是22a b <,故④错误;235x y 的次数是3,故⑤错误; 0属于整数,故⑥这种分类不正确;27m ba -与2abm 是同类项,⑦正确,故选A.【点睛】本题考查有理数和代数式的相关概念,熟记这类知识点是解题的关键.8.在3a ,x+1,-2,3b -,0.72xy ,2π,314x -中单项式的个数有( ) A .2个B .8个C .4个D .5个C 解析:C【分析】根据单项式的定义逐一判断即可.【详解】3a中,分母含未知数,是分式,不是单项式, x+1是多项式,不是单项式,-2是单项式,3b -是单项式, 0.72xy 是单项式,2π是单项式, 314x -=3144x -,是多项式, ∴单项式有-2、3b -、0.72xy 、2π,共4个, 故选C.【点睛】本题考查单项式的定义,熟练掌握定义是解题关键.9.代数式213x -的含义是( ). A .x 的2倍减去1除以3的商的差B .2倍的x 与1的差除以3的商C .x 与1的差的2倍除以3的商D .x 与1的差除以3的2倍B解析:B【分析】代数式表示分子与分母的商,分子是2倍的x 与1的差,据此即可判断.【详解】 代数式213x -的含义是2倍的x 与1的差除以3的商.故选:B .【点睛】本题考查了代数式,正确理解代数式表示的意义是关键.10.下列关于多项式21ab a b --的说法中,正确的是( )A .该多项式的次数是2B .该多项式是三次三项式C .该多项式的常数项是1D .该多项式的二次项系数是1-B 解析:B【分析】直接利用多项式的相关定义进而分析得出答案.【详解】A 、多项式21ab a b --次数是3,错误;B 、该多项式是三次三项式,正确;C 、常数项是-1,错误;D 、该多项式的二次项系数是1,错误;故选:B .【点睛】此题考查多项式,正确掌握多项式次数与系数的确定方法是解题关键.11.若23,33M N x M x +=-=-,则N =( )A .236x x +-B .23x x -+C .236x x --D .23x x - D 解析:D【分析】根据N=M+N-M 列式即可解决此题.【详解】依题意得,N=M+N-M=222(3)(33)3333x x x x x x ---=--+=-;故选D.【点睛】此题考查的是整式的加减,列式是关键,注意括号的运用.12.若关于x ,y 的多项式2237654x y mxy xy -++化简后不含二次项,则m =()A .17B .67C .-67 D .0B解析:B【分析】将原式合并同类项,可得知二次项系数为6-7m ,令其等于0,即可解决问题.【详解】解:∵原式=()2236754x y m xy +-+, ∵不含二次项,∴6﹣7m =0, 解得m =67. 故选:B .【点睛】 本题考查了多项式的系数,解题的关键是若不含二次项,则二次项系数6-7m=0. 13.若关于x 的多项式6x 2﹣7x +2mx 2+3不含x 的二次项,则m =( )A .2B .﹣2C .3D .﹣3D解析:D【分析】先将多项式合并同类型,由不含x 的二次项可列【详解】6x 2﹣7x+2mx 2+3=(6+2m )x 2﹣7x +3,∵关于x 的多项式6x 2﹣7x +2mx 2+3不含x 的二次项,∴6+2m=0,解得m =﹣3,故选:D .【点睛】此题考查多项式不含项的计算,此类题需先将多项式合并同类型后,由所不含的项得到该项的系数等于0来求值.14.长方形一边长为2a +b ,另一边为a -b ,则长方形周长为( )A .3aB .6a +bC .6aD .10a -b C 解析:C【解析】【分析】根据长方形的周长公式列出算式后化简合并即可.【详解】∵长方形一边长为2a +b ,另一边为a -b ,∴长方形周长为:2(2a +b +a -b )=6a.故选C.【点睛】本题考查了整式的加减的应用,根据长方形的周长公式列出算式是解决问题的关键.15.下面去括号正确的是( )A .2()2y x y y x y +--=+-B .2(35)610a a a a --=-+C .()y x y y x y ---=+-D .222()2x x y x x y +-+=-+ B解析:B【分析】根据去括号法则对四个选项逐一进行分析,要注意括号前面的符号,以选用合适的法则.【详解】A. 2()2y x y y x y +--=--,故错误;B. 2(35)610a a a a --=-+,故正确;C. ()y x y y x y ---=++,故错误;D. 222()22x x y x x y +-+=-+,故错误;故选:B【点睛】本题考查去括号的方法:去括号时,运用乘法的分配律,先把括号前的数字与括号里各项相乘;括号前是“+”,去括号后,括号里的各项都不改变符号;括号前是“一”,去括号后,括号里的各项都改变符号.16.如图,是小刚在电脑中设计的一个电子跳蚤,每跳一次包括上升和下降,即由点A —B —C 为一个完整的动作.按照图中的规律,如果这个电子跳蚤落到9的位置,它需要跳的次数为 ( )A .5次B .6次C .7次D .8次C解析:C【分析】 首先观察图形,得出一个完整的动作过后电子跳骚升高2个格,根据起始点为-5,终点为9,即可得出它需要跳的次数.【详解】解:由图形可得,一个完整的动作过后电子跳骚升高2个格,如果电子跳骚落到9的位置,则需要跳9(5)72--=次. 故选C .此题考查数字的规律变化,关键是仔细观察图形,得出一个完整的动作过后电子跳骚升高2个格,难度一般.17.如图,填在下面各正方形中的4个数之间都有相同的规律,根据此规律,m 的值是( )A .38B .52C .74D .66 C 解析:C【分析】 分析前三个正方形可知,规律为右上和左下两个数的积减左上的数等于右下的数,且左上,左下,右上三个数是相邻的偶数.因此,图中阴影部分的两个数分别是左下是8,右上是10.【详解】解:8×10−6=74,故选:C .【点睛】本题是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.解决本题的难点在于找出阴影部分的数.18.已知132n x y +与4313x y 是同类项,则n 的值是( ) A .2B .3C .4D .5B 解析:B【分析】根据同类项的概念可得关于n 的一元一次方程,求解方程即可得到n 的值.【详解】解:∵132n x y +与4313x y 是同类项, ∴n+1=4,解得,n=3,故选:B.【点睛】本题考查了同类项,解决本题的关键是判断两个项是不是同类项,只要两看,即一看所含有的字母是否相同,二看相同字母的指数是否相同.19.一列数123,,n a a a a ⋅⋅⋅,其中11a =-,2111a a =- ,3211a a =- ,……,111n n a a -=- ,则1232020a a a a ⨯⨯⋅⋅⋅⨯=( ) A .1 B .-1 C .2020 D .2020- A解析:A【分析】首先根据11a =-,可得()21111,1112a a ===---32112,1112a a ===--43111112a a ===---,…,所以这列数是-1、12、2、−1、12、2…,每3个数是一个循环;然后用2020除以3,求出一共有多少个循环,还剩下几个数,从而可得答案.【详解】 解: 11a =-,()21111,1112a a ===--- 32112,1112a a ===-- 43111112a a ===---, 所以这列数是-1、12、2、−1、12、2…,发现这列数每三个循环, 由202036731,÷= 且()1231121,2a a a ⨯⨯=-⨯⨯=- 所以:()()123206732011 1.a a a a =-⨯-⨯⨯⋅⨯=⋅⋅故选A .【点睛】 本题主要考查了探寻数列规律问题,同时考查了有理数的加减乘除乘方的运算,注意观察总结规律,并能正确的应用规律,解答此题的关键是判断出:这列数是-1、12、2、−1、12、2…,每3个数是一个循环. 20.1261年,我国南宋数学家杨辉用图中的三角形解释二项和的乘方规律,比欧洲的相同发现要早三百多年,我们把这个三角形称为“杨辉三角”,请观察图中的数字排列规律,则,,a b c 的值分别为( )1111211464115101051331151161a b c A .1,6,15a b c === B .6,15,20a b c ===C .15,20,15a b c ===D .20,15,6a b c === B 解析:B【分析】由数字排列规律可得:除去每行两端的数字外,每个数字都等于上一行的左右两个数字之和,据此解答即可.【详解】解:根据图形得:除去每行两端的数字外,每个数字都等于上一行的左右两个数字之和, 所以156a =+=,51015,101020b c =+==+=.故选:B .【点睛】本题以“杨辉三角”为载体,主要考查了与整式有关的数字类规律探索,找准规律是关键. 21.如图,阴影部分的面积为( )A .228ab a π-B .222ab a π-C .22ab a π-D .224ab a π- C解析:C【分析】 本题首先求解矩形面积,继而求解空白部分的圆形面积,最后作差求解阴影面积.【详解】由已知得:矩形面积为2ab ,空白圆形半径为a ,故圆形面积为2a π,则阴影部分的面积为22ab a π-.故选:C .【点睛】本题考查几何图形阴影面积的求法,涉及矩形面积公式以及圆形面积公式运用,求解不规则图形面积时通常利用割补法.22.下列图形都是由同样大小的小圆圈按一定规律所组成的,其中第①个图形中一共有4个小圆圈,第②个图形中一共有10个小圆圈,第③个图形中一共有19个小圆圈,…,按此规律排列,则第⑦个图形中小圆圈的个数为( )A.64 B.77 C.80 D.85D解析:D【分析】观察图形特点,从中找出规律,小圆圈的个数分别是3+12,6+22,10+32,15+42,…,总结出其规律为()()122n n+++n2,根据规律求解.【详解】通过观察,得到小圆圈的个数分别是:第一个图形为:()1222+⨯+12=4,第二个图形为:()1332+⨯+22=10,第三个图形为:()1442+⨯+32=19,第四个图形为:()1552+⨯+42=31,…,所以第n个图形为:()()122n n+++n2,当n=7时,()()72712+++72=85,故选D.【点睛】此题主要考查了学生分析问题、观察总结规律的能力.关键是通过观察分析得出规律.23.若 3x m y3 与﹣2x2y n 是同类项,则()A.m=1,n=1 B.m=2,n=3 C.m=﹣2,n=3 D.m=3,n=2B解析:B【分析】根据同类项是字母相同且相同字母的指数也相,可得答案.【详解】33m x y和22nx y﹣是同类项,得m=2,n=3,所以B选项是正确的.【点睛】本题考查了同类项,利用了同类项的定义.24.某文具店三月份销售铅笔100支,四、五两个月销售量连续增长.若月平均增长率为x,则该文具店五月份销售铅笔的支数是()A.100(1+x)B.100(1+x)2C.100(1+x2)D.100(1+2x)B解析:B【解析】试题分析:设出四、五月份的平均增长率,则四月份的市场需求量是100(1+x),五月份的产量是100(1+x)2.故答案选B.考点:列代数式.25.有一组单项式如下:﹣2x,3x2,﹣4x3,5x4……,则第100个单项式是()A.100x100B.﹣100x100C.101x100D.﹣101x100C解析:C【分析】由单项式的系数,字母x的指数与序数的关系求出第100个单项式为101x100.【详解】由﹣2x,3x2,﹣4x3,5x4……得,单项式的系数的绝对值为序数加1,系数的正负为(﹣1)n,字母的指数为n,∴第100个单项式为(﹣1)100(100+1)x100=101x100,故选C.【点睛】本题综合考查单项式的概念,乘方的意义,数字变化规律与序数的关系等相关知识点,重点掌握数字的变化与序数的关系.26.如图,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y与n之间的关系是()A.y=2n+1 B.y=2n+n C.y=2n+1+n D.y=2n+n+1B解析:B【详解】∵观察可知:左边三角形的数字规律为:1,2,…,n,右边三角形的数字规律为:2,22,…,2n,n+,下边三角形的数字规律为:1+2,2+, (2)22∴最后一个三角形中y与n之间的关系式是y=2n+n.故选B.【点睛】考点:规律型:数字的变化类. 27.有一种密码,将英文26个字母,,,,a b c z (不论大小写)依次对应1,2,3,…,26这26个序号(见表格),当明码对应的序号x 为奇数时,密码对应的序号为|25|2x -,当明码对应的序号x 为偶数时,密码对应的序号为122x+,按照此规定,将明码“love ”译成密码是( )A .loveB .rkwuC .sdriD .rewj D解析:D 【分析】明码“love”中每一个字母所代表的数字分别为12,15,22,5,再根据这四个数字的奇偶性,求得其密码. 【详解】l 对应的序号12为偶数,则密码对应的序号为1212182+=,对应r ; o 对应的序号15为奇数,则密码对应的序号为|1525|52-=,对应e ; v 对应的序号22为偶数,则密码对应的序号为2212232+=,对应w ; e 对应的序号5为奇数,则密码对应的序号为|525|102-=,对应j . 由此可得明码“love ”译成密码是rewj . 故选:D . 【点睛】本题考查了绝对值和求代数式的值.解题的关键是明确字母与数字的相互转化,每一个字母代表一个数字,一一对应关系.28.如果,A B 两个整式进行加法运算的结果为3724x x -+-,则,A B 这两个整式不可能是( )A .3251x x +-和3933x x ---B .358x x ++和31212x x -+-C .335x x -++和341x x -+-D .3732x x -+-和2x -- C 解析:C 【分析】由整式的加法运算,把每个选项进行计算,再进行判断,即可得到答案. 【详解】解:A 选项、333251933724x x x x x x +----=-+-,不符合题意; B 选项、333581212724x x x x x x ++-+-=-+-,不符合题意; C 选项、333541x x x x -++-+-=3724x x -++,符合题意; D 选项、337322724x x x x x -+---=-+-,不符合题意. 故选:C . 【点睛】本题考查了整式的加法运算,解题的关键是熟练掌握整式加法的运算法则进行解题. 29.由于受H7N9禽流感的影响,某市城区今年2月份鸡的价格比1月份下降a %,3月份比2月份下降b %,已知1月份鸡的价格为24元/kg .则3月份鸡的价格为( ) A .24(1-a %-b %)元/kg B .24(1-a %)b % 元/kg C .(24-a %-b % )元/kg D .24(1-a %)(1-b %)元/kg D解析:D 【分析】首先求出二月份鸡的价格,再根据三月份比二月份下降b%即可求出三月份鸡的价格. 【详解】∵今年2月份鸡的价格比1月份下降a %,1月份鸡的价格为24元/kg , ∴2月份鸡的价格为24(1-a %)元/kg , ∵3月份比2月份下降b %,∴三月份鸡的价格为24(1-a %)(1-b %)元/kg . 故选:D . 【点睛】本题主要考查了列代数式,解题的关键是掌握每个月份的数量增长关系. 30.下列去括号运算正确的是( ) A .()x y z x y z --+=--- B .()x y z x y z --=--C .()222x x y x x y -+=-+D .()()a b c d a b c d -----=-+++ D 解析:D 【分析】根据去括号法则对四个选项逐一进行分析,要注意括号前面的符号,以选用合适的法则. 【详解】A. ()x y z x y z --+=-+-,故错误;B. ()x y z x y z --=-+,故错误;C. ()222x x y x x y -+=--,故错误;D. ()()a b c d a b c d -----=-+++,正确. 故选:D 【点睛】本题考查去括号的方法:去括号时,运用乘法的分配律,先把括号前的数字与括号里各项相乘,再运用括号前是“+”,去括号后,括号里的各项都不改变符号;括号前是“-”,去括号后,括号里的各项都改变符号.运用这一法则去掉括号.。

人教版七年级上册数学第二章整式的加减培优测试

人教版七年级上册数学第二章整式的加减培优测试

人教版七年级上册数学第二章整式的加减培优测试一、选择题1.在多项式﹣3x3﹣5x2y2+xy 中,次数最高的项的系数为()A. 3B. 5C. ﹣5D. 12.下列代数式中,不是单项式的是()A. aB. ﹣1C. ﹣D.3.在式子a,2x2+y,,﹣5,3m﹣3n中,多项式的个数是()A. 4个B. 3个C. 2个D. 1个4.下列各组中的两个项,不属于同类项的是()A. 2x2y与﹣yx2B. 与n2mC. a2b与5a2bD. 1与﹣325.在代数式a2+1,﹣3,x2﹣2x,π,中,是整式的有()A. 2个B. 3个C. 4个D. 5个6.下列运算正确的是()A. ﹣5xy﹣5xy=0B. 2m3+3m3=5m6C. 3a2b﹣3ba2=0D. 3a2﹣a2=37.下列说法正确的是()A. ﹣的系数是﹣2B. 4不是单项式C. 的系数是D. πr2的次数是38.如图,两个三角形的面积分别是7 和3,对应阴影部分的面积分别是m、n,则m﹣n 等于()A. 4B. 3C. 2D. 不能确定9.下列各式合并同类项结果正确的是()A. 3x2﹣x2=3B. 3x2+5x3=8x3C. 3a2﹣a2=aD. 3a2﹣a2=2a210.下列说法中正确的个数是()(1)﹣a表示负数;(2)多项式﹣3a2b+7a2b2﹣2ab+l的次数是3;(3)单项式﹣的系数为﹣2;(4)一个有理数不是整数就是分数A. 0个B. 1个C. 2个D. 3个二、填空题11.多项式x3﹣6x2y2﹣1是_____次_____项式.12.单项式﹣2x m y4与单项式4x2y n是同类项,则m+n的值是_____.13.化简﹣2b﹣2(a﹣b)的结果是_____.14.如果单项式的字母因数是a3b2c,且a=1,b=2,c=3时,这个单项式的值为4,则这个单项式为_____.15.长方形一边长等于2a+3b,另一边比它大a﹣b,则长方形的周长为_____.16.已知多项式9x4+4x2﹣2与3x n﹣1是同次多项式,则n=_____.17.若mx2y4+nx2y4=0,且mnxy≠0,则=_____.三、解答题18.化简下列各式:(1)3(2ab﹣b)﹣2(ab﹣b);(2)1﹣3(x﹣y2)+(﹣x+y2).19.计算:(1)m2+2m+2m2﹣3m;(2)先化简,再求值:(ab﹣3a2)﹣[5ab﹣2(2a2﹣ab)],其中a=﹣2,b=1.20.合并同类项:(1)3m2﹣5m2﹣m2(2)(5p﹣3q)﹣3(p2﹣2q)21.已知:A=2x2+ax﹣5y+b,B=bx2﹣x﹣y﹣3.(1)求3A﹣(4A﹣2B)的值;(2)当x取任意数值,A﹣2B的值是一个定值时,求(a+A)﹣(2b+B)的值.22.按要求求值(1)化简求值:(4a2﹣2a﹣6)﹣2(2a2﹣2a﹣5)其中a=﹣1.(2)若化简(2mx2﹣x+3)﹣(3x2﹣x﹣4)的结果与x的取值无关,求m的值.23.老师在黑板上书写了一个正确的演算过程,随后用一张纸挡住了一个二次三项式,形式如下:+3(x﹣1)=x2﹣5x+1.(1)求所挡的二次三项式;(2)若x=﹣2,求所挡的二次三项式的值.24.已知A=3a2b﹣2ab2+abc,小明同学错将“2A﹣B“看成”2A+B“,算得结果为4a2b﹣3ab2+4abc.(1)计算B的表达式;(2)求出2A﹣B的结果;(3)小强同学说(2)中的结果的大小与c的取值无关,对吗?若a=,b=,求(2)中式子的值.。

《2.2整式的加减》培优同步练习人教版七年级数学上册

《2.2整式的加减》培优同步练习人教版七年级数学上册

(基础版)2021年人教版七年级数学上册《2.2整式的加减》培优同步练习一.选择题(共12小题)1.计算7x﹣3x的结果是()A.4x B.4C.﹣4x D.﹣42.如果3ab2m﹣1与9ab m+2是同类项,那么m等于()A.3B.1C.﹣1D.03.若单项式a m﹣1b2与a2b n是同类项,则n m的值是()A.3B.6C.8D.94.下列运算正确的是()A.a+a2=a3B.4a2﹣2a2=2a2C.3a﹣a=2D.﹣2(a﹣2)=﹣2a﹣45.下列各组单项式中,不是同类项的是()A.﹣a2与2a2B.23与32C.2ab2与2a2b D.﹣mn与2nm 6.将﹣(2x2﹣3x)去括号得()A.﹣2x2﹣3x B.﹣2x2+3x C.2x2﹣3x D.2x2+3x7.下列各式的计算结果正确的是()A.2x+3y=5xy B.5x﹣3x=2xC.7y2﹣5y2=2D.9a2b﹣4ab2=5a2b8.下列各式中运算正确的是()A.3a2b﹣4ba2=﹣a2b B.a2+a2=a4C.6a﹣5a=1D.3a2+2a3=5a59.下列运算结果正确的是()A.2x+3y=5xy B.7a2b﹣4ab2=3a2bC.x﹣(3y﹣2)=x﹣3y﹣2D.﹣2(x+y)=﹣2x﹣2y10.如果单项式3x a+3y2与单项式﹣4xy b﹣1的和还是单项式,那么a b的值是()A.﹣6B.﹣8C.8D.﹣2711.把式子(a﹣b)﹣(﹣a+1)去括号正确的是()A.a+b﹣a﹣1B.a﹣b+a﹣1C.a﹣b﹣a+1D.a+b+a+112.下列说法正确的是()A.3x2、﹣xt、0、m四个式子中有三个是单项式B.单项式2πxy的系数是2C.式子+7x2是三次二项式D.﹣x2y3和6y3x2是同类项二.填空题(共7小题)13.若﹣3x2y与2yx m是同类项,则m的值是.14.若3x m﹣1y与﹣5x2y n+3是同类项,则(m+2n)2021=.15.如果单项式2x m﹣1y2与﹣3x2y n+1是同类项,那么m+n=.16.计算2x2﹣3x2+x2的结果等于.17.已知a﹣b=2,ab=﹣1,则3a﹣3(ab+b)的值是.18.已知a2﹣ab=11,b2﹣ab=8,则代数式3a2﹣3b2的值为.19.用括号把多项式4a2﹣4a﹣b2+2b分成两组,使其中所有二次项相结合,所有一次项相结合,两个括号之间用“﹣”连接,其结果为.三.解答题(共7小题)20.计算:(1)3(a+b)﹣(3a﹣2b);(2)xy2﹣[x+(6y+2xy2)﹣3x].21.(1)计算:﹣22÷(﹣1)2﹣×[4﹣(﹣5)2];(2)先化简,再求值:2(a2b+3ab2)﹣3(a2b﹣1)﹣2ab2﹣2,其中a=﹣2,b=.22.A、B、C、D四个车站的位置如图所示,A、B两站之间的距离AB=a﹣b,B、C两站之间的距离BC=2a﹣b,B、D两站之间的距离BD=a﹣2b﹣1.若A、C两站之间的距离AC=90km,求C、D两站之间的距离CD.23.先化简,再求值:2(xy+5x2y)﹣3(3xy2﹣xy)﹣xy2,其中x,y满足x=﹣1,y=﹣.24.已知单项式5x m+5y m与单项式4y2n﹣2x m+n+1的和仍为单项式,求m2﹣n的值.25.已知A=a﹣2ab+b2,B=a+2ab+b2.(1)求(B﹣A)的值;(2)若3A﹣2B的值与a的取值无关,求b的值.26.对于一个四位正整数n,如果n满足:它的千位数字、百位数字、十位数字之和与个位数字的差等于12,那称这个数为“满月数”.例如:n1=9456,∵9+4+5﹣6=12,∴9456是“满月数”;n2=2021,∵2+0+2﹣1=3≠12,∴2021不是“满月数”.(1)判断3764,2858是否为“满月数”?请说明理由.(2)若“满月数”m=1000a+100b+10c+202(4≤a≤8,1≤b≤9,1≤c≤5且a,b,c 均为整数),s是m截掉其十位数字和个位数字后的一个两位数,t是m截掉其千位数字和百位数字后的一个两位数,若s与t的和能被7整除,求m的值.(基础版)2021年人教版七年级数学上册《2.2整式的加减》培优同步练习参考答案与试题解析一.选择题(共12小题)1.计算7x﹣3x的结果是()A.4x B.4C.﹣4x D.﹣4【分析】合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变,据此计算即可.【解答】解:7x﹣3x=(7﹣3)x=4x.故选:A.【点评】本题考查了合并同类项,熟记合并同类项法则是解答本题的关键.2.如果3ab2m﹣1与9ab m+2是同类项,那么m等于()A.3B.1C.﹣1D.0【分析】所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.【解答】解:根据题意得:2m﹣1=m+2,∴2m﹣m=2+1,∴m=3.故选:A.【点评】本题考查了同类项的定义,根据b的指数相同列出方程是解题的关键.3.若单项式a m﹣1b2与a2b n是同类项,则n m的值是()A.3B.6C.8D.9【分析】所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.【解答】解:根据题意得:m﹣1=2,n=2,所以m=3,所以n m=23=8.故选:C.【点评】本题主要考查了同类项的定义,根据相同字母的指数相等列出方程是解题的关键.4.下列运算正确的是()A.a+a2=a3B.4a2﹣2a2=2a2C.3a﹣a=2D.﹣2(a﹣2)=﹣2a﹣4【分析】直接利用整式的加减运算法则计算得出答案.【解答】解:A、a+a2=a3,不是同类项,无法合并,故此选项错误;B、4a2﹣2a2=2a2,正确;C、3a﹣a=2,不是同类项,无法合并,故此选项错误;D、(﹣2(a﹣2)=﹣2a+4,故此选项错误;故选:B.【点评】此题主要考查了整式的加减运算,正确合并同类项是解题关键.5.下列各组单项式中,不是同类项的是()A.﹣a2与2a2B.23与32C.2ab2与2a2b D.﹣mn与2nm 【分析】所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.根据同类项的定义即可判断.【解答】解:A.同类项与系数无关,是同类项,不符合题意;B.所有的数字都是同类项,是同类项,不符合题意;C.a的指数,左边是1,右边是2;b的指数,左边是2,右边是1,不是同类项,符合题意;D.同类项与字母的顺序无关.故选:C.【点评】本题考查了同类项的定义,牢记定义是解题的关键,注意同类项只看字母的指数,不看数字的指数.6.将﹣(2x2﹣3x)去括号得()A.﹣2x2﹣3x B.﹣2x2+3x C.2x2﹣3x D.2x2+3x【分析】根据去括号的法则:同号取正,异号取负,即可得到结果.【解答】解:﹣(2x2﹣3x)=﹣2x2+3x.故选:B.【点评】本题考查去括号与添括号,注意符号是解决本题的关键.7.下列各式的计算结果正确的是()A.2x+3y=5xy B.5x﹣3x=2xC.7y2﹣5y2=2D.9a2b﹣4ab2=5a2b【分析】合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变,据此逐一判断即可.【解答】解:A.2x与3y不是同类项,所以不能合并,故本选项不合题意;B.5x﹣3x=2x,故本选项符合题意;C.7y2﹣5y2=2y2,故本选项不合题意;D.9a2b与﹣4ab2不是同类项,所以不能合并,故本选项不合题意;故选:B.【点评】本题考查了合并同类项,熟练掌握合并同类项法则是解答本题的关键.8.下列各式中运算正确的是()A.3a2b﹣4ba2=﹣a2b B.a2+a2=a4C.6a﹣5a=1D.3a2+2a3=5a5【分析】合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变,据此判断即可.【解答】解:A、3a2b﹣4ba2=﹣a2b,故本选项符合题意;B、a2+a2=2a2,故本选项不符合题意;C、6a﹣5a=a,故本选项不符合题意;D、3a2与2a3不是同类项,所以不能合并,故本选项不符合题意;故选:A.【点评】本题考查了合并同类项,熟练掌握合并同类项法则是解答本题的关键.9.下列运算结果正确的是()A.2x+3y=5xy B.7a2b﹣4ab2=3a2bC.x﹣(3y﹣2)=x﹣3y﹣2D.﹣2(x+y)=﹣2x﹣2y【分析】根据合并同类项法则和去括号法则解答.【解答】解:A、2x与3y不是同类项,不能合并,不符合题意.B、7a2b与4ab2=不是同类项,不能合并,不符合题意.C、x﹣(3y﹣2)=x﹣3y+2,不符合题意.D、原式=﹣2x﹣2y,符合题意.故选:D.【点评】本题主要考查了合并同类项和去括号,去括号时,运用乘法的分配律,先把括号前的数字与括号里各项相乘,再运用括号前是“+”,去括号后,括号里的各项都不改变符号;括号前是“﹣”,去括号后,括号里的各项都改变符号.10.如果单项式3x a+3y2与单项式﹣4xy b﹣1的和还是单项式,那么a b的值是()A.﹣6B.﹣8C.8D.﹣27【分析】先根据题意判断出单项式3x a+3y2与单项式﹣4xy b﹣1是同类项,从而依据同类项概念得出a、b的值,继而代入计算可得.【解答】解:∵单项式3x a+3y2与单项式﹣4xy b﹣1的和还是单项式,∴单项式3x a+3y2与单项式﹣4xy b﹣1是同类项,则a+3=1,2=b﹣1,解得a=﹣2,b=3,∴a b=(﹣2)3=﹣8,故选:B.【点评】本题主要考查了同类项的定义,解题的关键是掌握同类项的概念:所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.11.把式子(a﹣b)﹣(﹣a+1)去括号正确的是()A.a+b﹣a﹣1B.a﹣b+a﹣1C.a﹣b﹣a+1D.a+b+a+1【分析】根据去括号的法则判断即可.去括号法则:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.【解答】解:(a﹣b)﹣(﹣a+1)=a﹣b+a﹣1.故选:B.【点评】此题考查去括号与添括号,解答本题的关键是熟记去括号的法则.12.下列说法正确的是()A.3x2、﹣xt、0、m四个式子中有三个是单项式B.单项式2πxy的系数是2C.式子+7x2是三次二项式D.﹣x2y3和6y3x2是同类项【分析】利用单项式,同类项及多项式的定义求解即可.【解答】解:A、3x2、﹣xt、0、m四个式子中有四个是单项式,故本选项错误,B、单项式2πxy的系数是2π,故本选项错误,C、式子+7x2y是分式,故本选项错误,D、﹣x2y3和6y3x2是同类项,故本选项正确.故选:D.【点评】本题考查同类项的定义,同类项定义中的两个“相同”:相同字母的指数相同,是一道基础题,比较容易解答.二.填空题(共7小题)13.若﹣3x2y与2yx m是同类项,则m的值是2.【分析】所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.【解答】解:因为﹣3x2y与2yx m是同类项,所以x的指数要相等,所以m=2.故答案为:2.【点评】本题考查了同类项的定义,牢记定义是解题的关键,同类项与字母的顺序没有关系.14.若3x m﹣1y与﹣5x2y n+3是同类项,则(m+2n)2021=﹣1.【分析】所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.根据同类项的定义求出m,n的值,再代入求值即可.【解答】解:根据题意得:m﹣1=2,n+3=1,解得:m=3,n=﹣2,所以,原式=[3+2×(﹣2)]2021=(﹣1)2021=﹣1.故答案为:﹣1.【点评】本题考查了同类项的定义,根据同类项的定义列出方程是解题的关键.15.如果单项式2x m﹣1y2与﹣3x2y n+1是同类项,那么m+n=4.【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程m﹣1=2,n+1=2,求出n,m的值,再代入代数式计算即可.【解答】解:根据题意得:m﹣1=2,n+1=2.解得:m=3,n=1.则m+n=3+1=4,故答案是:4.【点评】本题考查同类项的定义,正确根据同类项的定义得到关于m,n的方程组是解题的关键.16.计算2x2﹣3x2+x2的结果等于0.【分析】合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变,据此计算即可.【解答】解:2x2﹣3x2+x2=(2﹣3+1)x2=0.故答案为:0.【点评】本题考查了合并同类项,熟练掌握合并同类项法则是解答本题的关键.17.已知a﹣b=2,ab=﹣1,则3a﹣3(ab+b)的值是9.【分析】把代数式3a﹣3(ab+b)变形为(a﹣b)﹣3ab,根据已知条件即可得出答案.【解答】解:3a﹣3(ab+b)=3a﹣3ab﹣3b=3(a﹣b)﹣3ab,把a﹣b=2,ab=﹣1代入上式,原式=3×2﹣3×(﹣1)=9.故答案为:9.【点评】本题主要考查了整式的加减﹣化简求值,熟练掌握整式的加减运算法则进行计算是解决本题的关键.18.已知a2﹣ab=11,b2﹣ab=8,则代数式3a2﹣3b2的值为9.【分析】直接结合已知变形得出a2﹣b2=3,再代入原式求出答案.【解答】解:∵a2﹣ab=11,b2﹣ab=8,∴a2﹣ab﹣(b2﹣ab)=11﹣8,则a2﹣b2=3,则代数式3a2﹣3b2=3(a2﹣b2)=3×3=9.故答案为:9.【点评】此题主要考查了整式的加减,正确将已知变形是解题关键.19.用括号把多项式4a2﹣4a﹣b2+2b分成两组,使其中所有二次项相结合,所有一次项相结合,两个括号之间用“﹣”连接,其结果为(4a2﹣b2)﹣(4a﹣2b).【分析】根据题意,列出式子,然后用平方差公式和提公因式法因式分解即可【解答】解:根据题意得:原式=(4a2﹣b2)﹣(4a﹣2b).故答案为:(4a2﹣b2)﹣(4a﹣2b).【点评】本题考查了添括号,熟练掌握法则是解题的关键.三.解答题(共7小题)20.计算:(1)3(a+b)﹣(3a﹣2b);(2)xy2﹣[x+(6y+2xy2)﹣3x].【分析】(1)根据去括号法则即可求出答案.(2)根据整式的运算法则即可求出答案.【解答】解:(1)原式=3a+3b﹣3a+2b=5b.(2)原式=xy2﹣(x+3y+xy2﹣3x)=xy2﹣(3y+xy2﹣2x)=xy2﹣3y﹣xy2+2x=2x﹣3y.【点评】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.21.(1)计算:﹣22÷(﹣1)2﹣×[4﹣(﹣5)2];(2)先化简,再求值:2(a2b+3ab2)﹣3(a2b﹣1)﹣2ab2﹣2,其中a=﹣2,b=.【分析】(1)根据有理数的乘方、乘除以及加减进行计算即可;(2)原式去括号合并得到最简结果,把a与b的值代入计算即可求出值.【解答】解:(1)原式=﹣4÷1﹣×(4﹣25)=﹣4﹣×(﹣21)=﹣4﹣(﹣7)=3;(2)原式=2a2b+6ab2﹣3a2b+3﹣2ab2﹣2=﹣a2b+4ab2+1,当a=﹣2,b=时,原式=﹣(﹣2)2×+4×(﹣2)×()2+1=﹣2﹣2+1=﹣3.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.22.A、B、C、D四个车站的位置如图所示,A、B两站之间的距离AB=a﹣b,B、C两站之间的距离BC=2a﹣b,B、D两站之间的距离BD=a﹣2b﹣1.若A、C两站之间的距离AC=90km,求C、D两站之间的距离CD.【分析】根据两点间的距离列出CD的代数式进行解答即可.【解答】解:CD=(a﹣2b﹣1)﹣(2a﹣b)=a﹣b﹣1,∵3a﹣2b=90,∴a﹣b=45,∴CD=45﹣1=44(km).故C、D两站之间的距离CD是44km.【点评】本题考查了整式的加减,代数式,解决此类题目的关键是根据题意列出CD的代数式.23.先化简,再求值:2(xy+5x2y)﹣3(3xy2﹣xy)﹣xy2,其中x,y满足x=﹣1,y=﹣.【分析】先去括号,合并同类项,代入计算即可.【解答】解:原式=2xy+10x2y﹣9xy2+3xy﹣xy2=10x2y﹣10xy2+5xy,当x=﹣1,y=﹣时,原式=10×(﹣1)2×(﹣)﹣10×(﹣1)×(﹣)2+5×(﹣1)×(﹣)=﹣5﹣(﹣)+=﹣5++=0.【点评】本题考查了整式的加减,准确去括号前带有数字的括号是解题的关键.24.已知单项式5x m+5y m与单项式4y2n﹣2x m+n+1的和仍为单项式,求m2﹣n的值.【分析】这两个单项式可以合并,说明它们是同类项,根据同类项的定义即可求出m,n 的值,最后代入求值即可.【解答】解:根据题意得:,解得:,∴m2﹣n=62﹣4=36﹣4=32.答:m2﹣n的值为32.【点评】本题考查了同类项的定义,根据同类项的定义列出方程组是解题的关键.25.已知A=a﹣2ab+b2,B=a+2ab+b2.(1)求(B﹣A)的值;(2)若3A﹣2B的值与a的取值无关,求b的值.【分析】(1)将A=a﹣2ab+b2,B=a+2ab+b2代入(B﹣A)化简即可;(2)将A=a﹣2ab+b2,B=a+2ab+b2代入3A﹣2B化简,提出关于a的一次项系数,令其为零,即可求出b.【解答】解:(1)∵A=a﹣2ab+b2,B=a+2ab+b2∴×(a+2ab+b2﹣a+2ab﹣b2)=×4ab=ab;(2)∵A=a﹣2ab+b2,B=a+2ab+b2∴3A﹣2B=3(a﹣2ab+b2)﹣2(a+2ab+b2)=3a﹣6ab+3b2﹣2a﹣4ab﹣2b2=a﹣10ab+b2=(1﹣10b)a+b2,∵3A﹣2B的值与a的取值无关∴1﹣10b=0,即b=.【点评】本题考查了整式的加减运算和多项式的有关概念,第二题的关键是将a的一次项系数提出.26.对于一个四位正整数n,如果n满足:它的千位数字、百位数字、十位数字之和与个位数字的差等于12,那称这个数为“满月数”.例如:n1=9456,∵9+4+5﹣6=12,∴9456是“满月数”;n2=2021,∵2+0+2﹣1=3≠12,∴2021不是“满月数”.(1)判断3764,2858是否为“满月数”?请说明理由.(2)若“满月数”m=1000a+100b+10c+202(4≤a≤8,1≤b≤9,1≤c≤5且a,b,c 均为整数),s是m截掉其十位数字和个位数字后的一个两位数,t是m截掉其千位数字和百位数字后的一个两位数,若s与t的和能被7整除,求m的值.【分析】(1)读懂“满月数”的意思,再根据定义代入3764和2858进行验证(2)m是一个四位数,s、t分别是两位数,都是可以用字母a、b、c表示,这样就可以用a、b、c表示s和t.再根据m是满月数,化简得到a+c=12﹣b.最后s和t的和能被7整除,再代入求出值.【解答】解:(1)∵3+7+6﹣4=12,2+8+5﹣8=7,∴3764是满月数,2858不是满月数.(2)∵m=1000a+100b+10c+202=1000a+100(b+2)+10c+2,∴s=10a+b+2,t=10c+2,∴s+t=10a+10c+b+2+2=10(a+c)+b+4.∵m为“满月数”,∴a+(b+2)+c﹣2=12,∴a+c=12﹣b,∴10(a+c)+b+4=124﹣9b.∵124﹣9b能被7整除,且1≤b≤9,∴b=6,∴a+c=6.∵4≤a≤8,1≤c≤5,∴当a=4时,c=2,m=4×1000+100×(2+6)+10×2+2=4822;当a=5时,c=1,m=5×1000+100(2+6)+10×1+2=5812.答:3764是满月数,2858不是满月数;m的值为4822或5812.【点评】此题主要考查了学生的阅读理解能力,根据题目给的新定义去求解,而找到字母之间的关系,用代入消元和整体法消元是解题的关键.。

【教师卷】初中七年级数学上册第二章《整式的加减》基础卷(课后培优)(1)

【教师卷】初中七年级数学上册第二章《整式的加减》基础卷(课后培优)(1)

1.若8m x y 与36n x y 的和是单项式,则()3m n +的平方根为( ).A .4B .8C .±4D .±8D解析:D【分析】根据单项式的定义可得8m x y 和36n x y 是同类项,因此可得参数m 、n ,代入计算即可. 【详解】解:由8mx y 与36n x y 的和是单项式,得 3,1m n ==.()()333164m n +=+=,64的平方根为8±. 故选D .【点睛】本题主要考查单项式的定义,关键在于识别同类项,根据同类项计算参数.2.由于受H7N9禽流感的影响,某市城区今年2月份鸡的价格比1月份下降a %,3月份比2月份下降b %,已知1月份鸡的价格为24元/kg .则3月份鸡的价格为( ) A .24(1-a %-b %)元/kgB .24(1-a %)b % 元/kgC .(24-a %-b % )元/kgD .24(1-a %)(1-b %)元/kg D解析:D【分析】首先求出二月份鸡的价格,再根据三月份比二月份下降b%即可求出三月份鸡的价格.【详解】∵今年2月份鸡的价格比1月份下降a %,1月份鸡的价格为24元/kg ,∴2月份鸡的价格为24(1-a %)元/kg ,∵3月份比2月份下降b %,∴三月份鸡的价格为24(1-a %)(1-b %)元/kg .故选:D .【点睛】本题主要考查了列代数式,解题的关键是掌握每个月份的数量增长关系.3.与(-b)-(-a)相等的式子是( )A .(+b)-(-a)B .(-b)+aC .(-b)+(-a)D .(-b)-(+a)B 解析:B【分析】将各选项去括号,然后与所给代数式比较即可﹒【详解】解: (-b)-(-a)=-b+aA. (+b)-(-a)=b+a ;B. (-b)+a=-b+a ;C. (-b)+(-a)=-b-a ;D. (-b)-(+a)=-b-a ;故与(-b)-(-a)相等的式子是:(-b)+a ﹒故选:B ﹒【点睛】本题考查了去括号的知识,熟练去括号的法则是解题关键﹒4.某公司今年2月份的利润为x 万元,3月份比2月份减少8%,4月份比3月份增加了10%,则该公司4月份的利润为(单位:万元)( )A .(x ﹣8%)(x+10%)B .(x ﹣8%+10%)C .(1﹣8%+10%)xD .(1﹣8%)(1+10%)x D解析:D【分析】首先利用减小率的意义表示出3月份的利润,然后利用增长率的意义表示出4月份的利润.【详解】解:由题意得3月份的产值为(1﹣8%)x ,4月份的产值为(1﹣8%)(1+10%)x . 故选:D .【点睛】本题考查了列代数式,正确理解增长率以及下降率的定义是关键. 5.下列对代数式1a b-的描述,正确的是( ) A .a 与b 的相反数的差B .a 与b 的差的倒数C .a 与b 的倒数的差D .a 的相反数与b 的差的倒数C解析:C【分析】根据代数式的意义逐项判断即可.【详解】解:A. a 与b 的相反数的差:()a b --,该选项错误;B. a 与b 的差的倒数:1a b-,该选项错误; C. a 与b 的倒数的差:1a b-;该选项正确; D. a 的相反数与b 的差的倒数:1a b --,该选项错误. 故选:C .【点睛】此题主要考查列代数式,注意掌握代数式的意义.6.已知一个多项式与3x 2+9x 的和等于5x 2+4x ﹣1,则这个多项式是( )A .2x 2﹣5x ﹣1B .﹣2x 2+5x+1C .8x 2﹣5x+1D .8x 2+13x ﹣1A 解析:A【分析】根据由题意可得被减式为5x 2+4x-1,减式为3x 2+9x ,求出差值即是答案.【详解】由题意得:5x 2+4x−1−(3x 2+9x),=5x 2+4x−1−3x 2−9x ,=2x 2−5x−1.故答案选A.【点睛】本题考查了整式的加减,解题的关键是熟练的掌握整式的加减运算.7.已知322x y 和m 2x y -是同类项,则式子4m 24-的值是( )A .21-B .12-C .36D .12B解析:B【分析】根据同类项定义得出m 3=,代入求解即可.【详解】解:∵322x y 和m 2x y -是同类项, ∴m 3=,∴4m 24432412-=⨯-=-,故选B .【点睛】本题考查了对同类项定义的应用,注意:所含字母相同,并且相同字母的指数也分别相等的项,叫同类项,常数也是同类项.8.观察下列单项式:223344191920202,2,2,2,,2,2,x x x x x x ---,则第n 个单项式是( )A .2n n xB .(1)2n n n x -C .2n n x -D .1(1)2n n n x +- B 解析:B【分析】要看各单项式的系数和次数与该项的序号之间的变化规律.本题中,奇数项符号为负,偶数项符号为正,数字变化规律是(-1)n 2n ,字母变化规律是x n .【详解】因为第一个单项式是1112(1)2x x -=-⨯;第二个单项式是222222(1)2x x =-⨯;第三个单项式是333332(1)2x x -=-⨯,…,所以第n 个单项式是(1)2n n n x -.故选:B .【点睛】本题考查了单项式的系数和次数的规律探索,确定单项式的系数和次数时,把一个单项式改写成数字因数和字母因式的积,是找准单项式的系数和次数的关键.分别找出单项式的系数和次数的规律也是解决此类问题的关键.9.下列式子:222,32,,4,,,22ab x yz ab c a b xy y m x π+---,其中是多项式的有( ) A .2个B .3个C .4个D .5个A 解析:A【分析】几个单项式的和叫做多项式,结合各式进行判断即可.【详解】 22a b ,3,2ab ,4,m -都是单项式; 2x yz x+分母含有字母,不是整式,不是多项式; 根据多项式的定义,232ab c xy y π--,是多项式,共有2个.故选:A .【点睛】本题考查了多项式,解答本题的关键是理解多项式的定义.注意:几个单项式的和叫做多项式.10.如图,a ,b 在数轴上的位置如图所示:,那么||||a b a b -++的结果是( )A .2b -B .2bC .2a -D .2a A解析:A【分析】根据数轴上点的位置判断出绝对值里边式子的正负,原式利用绝对值的代数意义化简,计算即可得到结果.【详解】解:根据题意得:b <a <0,且|a |<|b |,∴a -b >0,a +b <0,∴原式=a -b -a -b =-2b .故选:A .【点睛】此题主要考查了数轴以及绝对值,熟练掌握绝对值的性质是解本题的关键.11.已知整数1234,,,a a a a ……满足下列条件:12132430,1,2,3a a a a a a a ==-+=-+=-+……,依次类推,则2019a 的值为( ) A .2018B .2018-C .1009-D .1009C 解析:C【分析】根据条件求出前几个数的值,再分n 是奇数时,结果等于-12(n-1),n 是偶数时,结果等于-2n ,然后把n 的值代入进行计算即可得解. 【详解】解: 123450|01|1|12|1|13|2|24|2a a a a a ==-+=-=--+=-=--+=-=--+=-678|25|3|36|3|37|4a a a =--+=-=-+=-=--+=-⋯⋯∴201920181009a a ==-,故选择C【点睛】本题考查了数字变化规律,根据所求出的数,观察出n 为奇数与偶数时的结果的变化规律是解题的关键.12.下列各式中,去括号正确的是( )A .2(1)21x y x y +-=+-B .2(1)22x y x y --=++C .2(1)22x y x y --=-+D .2(1)22x y x y --=-- C解析:C【分析】各式去括号得到结果,即可作出判断.【详解】解:2(1)22x y x y +-=+-,故A 错误; 2(1)22x y x y --=-+,故B,D 错误,C 正确.故选:C .【点睛】此题考查了去括号与添括号,熟练掌握去括号法则是解本题的关键.13.下列说法正确的是( )A .0不是单项式B .25R π的系数是5C .322a 是5次单项式D .多项式2ax +的次数是2D解析:D【分析】根据整式的相关概念可得答案.【详解】A 、0是单项式,故A 错误;B 、25R π的系数是5π,故B 错误;C 、322a 是2次单项式,故C 错误;D 、多项式2ax +的次数是2,故D 正确.故选:D .【点睛】 本题考查单项式的系数,单项式中的数字因数叫做这个单项式的系数,单项式中,所有字母的指数和叫做这个单项式的次数,也考查了多项式的次数.14.在3a ,x+1,-2,3b -,0.72xy ,2π,314x -中单项式的个数有( ) A .2个B .8个C .4个D .5个C 解析:C【分析】根据单项式的定义逐一判断即可.【详解】3a中,分母含未知数,是分式,不是单项式, x+1是多项式,不是单项式,-2是单项式,3b -是单项式, 0.72xy 是单项式,2π是单项式, 314x -=3144x -,是多项式, ∴单项式有-2、3b -、0.72xy 、2π,共4个, 故选C.【点睛】本题考查单项式的定义,熟练掌握定义是解题关键.15.多项式33x y xy +-是( )A .三次三项式B .四次二项式C .三次二项式D .四次三项式D解析:D【分析】 根据多项式的项及次数的定义确定题目中的多项式的项和次数就可以了.【详解】解:由题意,得该多项式有3项,最高项的次数为4,该多项式为:四次三项式.故选:D .【点睛】本题考查了多项式,正确把握多项式的次数与系数确定方法是解题的关1.当k =_________________时,多项式()221325x k xy y xy +----中不含xy 项.3【分析】先合并同类项然后使xy 的项的系数为0即可得出答案【详解】解:=∵多项式不含xy 项∴k-3=0解得:k=3故答案为:3【点睛】本题考查了多项式的知识属于基础题解答本题的关键是掌握合并同类项的解析:3【分析】先合并同类项,然后使xy 的项的系数为0,即可得出答案.【详解】解:()221325x k xy y xy +----=()22335x k xy y +---, ∵多项式不含xy 项,∴k-3=0,解得:k=3.故答案为:3.【点睛】本题考查了多项式的知识,属于基础题,解答本题的关键是掌握合并同类项的法则. 2.如图,阴影部分的面积用整式表示为_________.x2+3x +6【分析】阴影部分的面积=三个小矩形的面积的和【详解】如图:阴影部分的面积为:x·x+3x+3×2=x2+3x +6故答案为x2+3x +6【点睛】本题考查了列代数式和代数式求值解决这类问题解析:x 2+3x +6【分析】阴影部分的面积=三个小矩形的面积的和.【详解】如图:阴影部分的面积为:x·x+3x+3×2= x2+3x+6.故答案为x2+3x+6【点睛】本题考查了列代数式和代数式求值,解决这类问题首先要从简单图形入手,认清各图形的关系,然后求解.3.有一列数:12,1,54,75,…,依照此规律,则第n个数表示为____.【分析】根据分母是从2开始连续的自然数分子是从1开始连续的奇数解答即可【详解】这列数可以写为因此分母为从2开始的连续正整数分子为从1开始的奇数故第n个数为故答案为:【点睛】本题考查了数字的变化规律找解析:211nn-+.【分析】根据分母是从2开始连续的自然数,分子是从1开始连续的奇数解答即可.【详解】这列数可以写为12,33,54,75,因此,分母为从2开始的连续正整数,分子为从1开始的奇数,故第n个数为211nn-+.故答案为:211nn-+.【点睛】本题考查了数字的变化规律,找出分子分母的联系,得出运算规律是解决问题的关键.4.将一个正方形纸片剪成如图中的四个小正方形,用同样的方法,每个小正方形又被剪成四个更小的正方形,这样连续5次后共得到______个小正方形.1024【分析】先写出前3次分割得到的正方形的个数找到规律即可得出答案【详解】由图可知分割1次得到正方形的个数为4;分割2次得到正方形的个数为个;分割3次得到正方形的个数为个;…以此类推分割5次得到解析:1024【分析】先写出前3次分割得到的正方形的个数,找到规律即可得出答案.【详解】由图可知分割1次得到正方形的个数为4;分割2次得到正方形的个数为216=4个;分割3次得到正方形的个数为364=4个;…以此类推,分割5次得到正方形的个数为:54=1024个,故答案为:1024.【点睛】本题考查了图形规律题,仔细观察图形找到规律是解题的关键.5.观察下列各等式中的数字特征:53-58=53×58,92-911=92×911,107-1017=107×1017,…将所发现的规律用含字母a ,b 的等式表示出来是_____.-=×【分析】从大的方面看两个数的差等于两个数的积从小的方面看所有的分子都相同可设两个分母分别为ab 分子用ab 表示即可【详解】观察发现都是两个分数的差等于两个分数的积设第一个分式为则第二个分式的分子 解析:a b -a a b +=a b ×a a b+ 【分析】从大的方面看,两个数的差等于两个数的积.从小的方面看,所有的分子都相同,可设两个分母分别为a ,b ,分子用a ,b 表示即可.【详解】观察发现,都是两个分数的差等于两个分数的积. 设第一个分式为a b,则第二个分式的分子与第一个分式的分子相同,而分母恰好是a b +,∴用含字母a b ,的等式表示出来是a b -a a b +=a b ×a a b +. 故答案为:a b -a a b +=a b ×a a b+. 【点睛】本题考查了数字类规律的探索,解决此类探究性问题,关键在观察、分析已知数据,寻找它们之间的相互联系,探寻其规律.6.观察下列式子:1×3+1=22;7×9+1=82;25×27+1=262;79×81+1=802;…可猜想第2 019个式子为__________.(32019-2)×32019+1=(32019-1)2【分析】观察等式两边的数的特点用n 表示其规律代入n =2016即可求解【详解】解:观察发现第n 个等式可以表示为:(3n-2)×3n +1=(3n-解析:(32 019-2)×32019+1=(32 019-1)2【分析】观察等式两边的数的特点,用n 表示其规律,代入n =2016即可求解.【详解】解:观察发现,第n 个等式可以表示为:(3n -2)×3n +1=(3n -1)2,当n =2019时,(32019-2)×32019+1=(32019-1)2,故答案为:(32019-2)×32019+1=(32019-1)2.【点睛】此题主要考查数的规律探索,观察发现等式中的每一个数与序数n 之间的关系是解题的关键.7.如图,在整式化简过程中,第②步依据的是_______.(填运算律)化简:()22253ab ab a b ab +--+ 解:()22253a b ab a b ab +--+22253a b ab a b ab =++-①22253a b a b ab ab =++-②()222(53)a b a b ab ab =++-③232a b ab =+.④加法交换律【分析】直接利用整式的加减运算法则进而得出答案【详解】解:原式=2a2b+5ab+a2b-3ab=2a2b+a2b+5ab-3ab=(2a2b+a2b )+(5ab-3ab )=3a2b+2a解析:加法交换律【分析】直接利用整式的加减运算法则进而得出答案.【详解】解:原式=2a 2b+5ab+a 2b-3ab=2a 2b+a 2b+5ab-3ab=(2a 2b+a 2b )+(5ab-3ab )=3a 2b+2ab .第②步依据是:加法交换律.故答案为:加法交换律.【点睛】此题主要考查了整式的加减运算,正确掌握相关运算法则是解题关键.8.一列数a 1,a 2,a 3…满足条件a 1=12,a n =111n a --(n ≥2,且n 为整数),则a 2019=_____.-1【分析】依次计算出a2a3a4a5a6观察发现3次一个循环所以a2019=a3【详解】a1=a2==2a3==﹣1a4=a5==2a6==﹣1…观察发现3次一个循环∴2019÷3=673∴a20解析:-1【分析】依次计算出a 2,a 3,a 4,a 5,a 6,观察发现3次一个循环,所以a 2019=a 3.【详解】a 1=12,a 2=111-2 =2,a 3=11-2 =﹣1,a 4=11=1--12(),a 5=111-2=2,a 6=11-2=﹣1… 观察发现,3次一个循环,∴2019÷3=673,∴a 2019=a 3=﹣1,故答案为﹣1.【点睛】本题考查了数字的规律变化,要求学生通过观察数字,分析、归纳并发现其中的规律,并应用规律解决问题是解题的关键.9.已知|a|=-a ,bb =-1,|c|=c ,化简 |a+b| + |a-c| - |b-c| = _________.-2a 【分析】由已知可以判断出ab 及c 的正负进而确定出a+ba-c 与b-c 的正负利用绝对值的代数意义化简即可得到结果【详解】解:∵|a|=-a=-1|c|=c ∴∴则|a+b|+|a-c|-|b-c| 解析:-2a【分析】由已知可以判断出a, b 及c 的正负,进而确定出a+b ,a-c 与b-c 的正负,利用绝对值的代数意义化简,即可得到结果.【详解】解:∵|a|=-a ,bb=-1,|c|=c∴00, 0,a b c ≤<≥,∴000,a b a c b c +<-≤-<,,则|a+b| + |a-c| - |b-c| =-+2a b a c b c a --+-=- .故答案为: -2a.【点睛】此题考查了整式的加减, 涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握法则是解本题的关键.10.已知5a b -=,3c d +=,则()()b c a d +--的值等于______.-2【分析】把原式去括号转化为含有(a-b)和(c+d)的式子然后代入求值即可【详解】故答案为:-2【点睛】本题考查了整式的化简求值把原式转化为含有(a-b)和(c+d)的式子是解决此题的关键解析:-2【分析】把原式去括号转化为含有(a -b )和(c +d )的式子,然后代入求值即可.【详解】()()()()532b c a d b c a d b a c d +--=+-+=-++=-+=-.故答案为:-2.【点睛】本题考查了整式的化简求值,把原式转化为含有(a -b )和(c +d )的式子是解决此题的关键. 11.多项式234324x x x -+-按x 的降幂排列为______.【分析】先分清多项式的各项然后按多项式降幂排列的定义排列【详解】多项式的各项是3x2−2x3−4x4按x 降幂排列为故答案为:【点睛】本题考查了多项式我们把一个多项式的各项按照某个字母的指数从大到小或解析:432432x x x -++-【分析】先分清多项式的各项,然后按多项式降幂排列的定义排列.【详解】多项式234324x x x -+-的各项是3x 2,−2,x 3,−4x 4,按x 降幂排列为432432x x x -++-.故答案为:432432x x x -++-.【点睛】本题考查了多项式.我们把一个多项式的各项按照某个字母的指数从大到小或从小到大的顺序排列,称为按这个字母的降幂或升幂排列.要注意,在排列多项式各项时,要保持其原有的符号.1.先化简,再求值(1)()223421332a a a a -+-+-,其中23a =-(2)()()22352542m mn mn m -+--+,其中22m mn -=解析:(1)原式=23362a a --+;256;(2)原式()2111m mn =-+;23. 【分析】(1)根据整式的运算法则,先将整式进行化简,再将字母的值代入计算求值即可.(2)根据整式的运算法则,去括号合并同类项,将整式化成最简,然后将字母的值代入计算即可.【详解】解(1)原式=22333-4233222a a a a ⨯-⨯++-=22363332a a a a --++-=23362a a --+ 将23a =-代入得:222336332⎛⎫⎛⎫-⨯--⨯-+ ⎪ ⎪⎝⎭⎝⎭=256; (2)原式=()()2222352542351084m mn mn m m mn mn m -+--+=+-+-- ()2111m mn =-+将22m mn -=代入得:11×2+1=23【点睛】本题考查了整式的化简求值,解决本题的挂件是正确理解题意,熟练掌握整式的运算法则,将整式正确进行化简.2.小丽暑假期间参加社会实践活动,从某批发市场以批发价每个m 元的价格购进100个手机充电宝,然后每个加价n 元到市场出售.(1)求售出100个手机充电宝的总售价为多少元(结果用含m ,n 的式子表示)? (2)由于开学临近,小丽在成功售出60个充电宝后,决定将剩余充电宝按售价8折出售,并很快全部售完.①她的总销售额是多少元?②相比不采取降价销售,她将比实际销售多盈利多少元(结果用含m 、n 的式子表示)? ③若m=2n ,小丽实际销售完这批充电宝的利润率为 (利润率=利润÷进价×100%) 解析:(1)售出100个手机充电宝的总售价为:100(m+n )元;(2)①实际总销售额为:92(m+n )元;②实际盈利为92n ﹣8m 元;③38%.【分析】(1)先求出每个充电宝的售价,再乘以100,即可得出答案;(2)①先算出60个按售价出售的充电宝的销售额,再计算剩下40个按售价8折出售的充电宝的销售额,相加即可得出答案;②计算100个按售价出售的充电宝的销售额,跟①求出来的销售额比较,即可得出答案;③将m=2n 代入实际利润92n-8m 中,再根据利润率=利润÷进价×100%,即可得出答案.【详解】解:(1)∵每个充电宝的售价为:m+n 元,∴售出100个手机充电宝的总售价为:100(m+n )元.(2)①实际总销售额为:60(m+n )+40×0.8(m+n )=92(m+n )元,②实际盈利为92(m+n )﹣100m=92n ﹣8m 元,∵100n ﹣(92n ﹣8m )=8(m+n ),∴相比不采取降价销售,他将比实际销售多盈利8(m+n )元.③当m=2n 时,张明实际销售完这批充电宝的利润为92n ﹣8m=38m 元, 利润率为38100m m×100%=38%. 故答案为38%.【点睛】 本题考查的是列代数式,解题的关键是要看懂题目意思,理清字母之间的数量关系. 3. 1+2+3++100⋯=?经过研究,这个问题的一般性结论是()1123n n n 12+++⋯+=+,其中n 是正整数.现在我们来研究一个类似的问题:()122334n n 1⨯+⨯+⨯+⋯+=?观察下面三个特殊的等式:()1121230123⨯=⨯⨯-⨯⨯ ()1232341233⨯=⨯⨯-⨯⨯ ()1343452343⨯=⨯⨯-⨯⨯ 将这三个等式的两边相加,可以得到1122334345203⨯+⨯+⨯=⨯⨯⨯=.读完这段材料,请你思考后回答:(1)直接写出下列各式的计算结果:1223341011⨯+⨯+⨯+⋯⨯=① ______()122334n n 1⨯+⨯+⨯+⋯+=② ______(2)探究并计算:()()123234345n n 1n 2⨯⨯+⨯⨯+⨯⨯+⋯+++= ______ (3)请利用(2)的探究结果,直接写出下式的计算结果:123234345101112⨯⨯+⨯⨯+⨯⨯+⋯+⨯⨯= ______ .解析:(1)①440,②()()1n n 1n 23++;(2)()()()1n n 1n 2n 34+++;(3)4290 【分析】(1)①根据阅读材料的结论计算即可;②根据阅读材料的结论进行总结;(2)仿照(1)的计算方法进行归纳即可;(3)代入(2)总结的规律进行计算即可.【详解】解:(1)①1×2+2×3+3×4+…10×11=13×10×11×12=440,②1×2+2×3+3×4+…+n (n+1)=13n (n+1)(n+2), (2)1×2×3=14(1×2×3×4-0×1×2×3), 2×3×4=14(2×3×4×5-1×2×3×4), 3×4×5=14(3×4×5×6-2×3×4×5), 则1×2×3+2×3×4+3×4×5+…+n (n+1)(n+2)=14n (n+1)(n+2)(n+3); (3)123234345101112⨯⨯+⨯⨯+⨯⨯++⨯⨯ =14×10×11×12×13 =4290.【点睛】 本题考查了有理数的混合运算、规律型-数字的变化类,弄清题意,得出一般性的规律是解本题的关键.4.单项式233x y π-的系数是______,次数是______.佳佳认为此单项式的系数是3-,次数为6,请问佳佳的答案正确吗?如果不正确,请说明错误的理由,并且把正确的答案写出来.解析:23π-,4.佳佳的答案不正确,此题错将π当成是未知数,因而加上了“π的次数”.正确的答案为系数是23π-,次数是4.【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.【详解】佳佳的答案不正确,此题错将π当成是未知数,因而加上了“π的次数”.故正确的答案为系数是23π-,次数是4.【点睛】考查了单项式,解答此题关键是构造单项式的系数和次数,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.。

七年级上册整式的加减培优训练

七年级上册整式的加减培优训练

七年级数学上册----整式的加减培优训练一、选择题(每小题3分,共30分)1.下列各组中的两项是同类项的是 ( )(A )ab 与 abc . (B )35-与3x -. (C )y x 25与 x y 23. (D )xy 2-与.yx 5-2.下列运算中正确的是 ( )(A )ab b a 532=+;(B )532532a a a =+; (C )06622=-ab b a ; (D )022=-ba ab .3.若m xy 2-与331y x n 是同类项,则 ( ) (A )1,1==n m ; (B )3,1==n m . (C )1,3==n m ; (D )3,3==n m .4.下列运算中,正确的是 ( )(A )c b a c b a 25)2(5-+=+-. (B )c b a c b a 25)2(5+-=+-.(C )c b a c b a 25)2(5++=+-. (D )c b a c b a 25)2(5--=+-. 5.)]([c b a ---去括号应得 ( )(A )c b a -+-; (B )c b a +--; (C )c b a ---; (D )c b a ++-.6.不改变ab a b b a ++--2223的值,把二次项放在前面有“+”号的括号里,一次项放在前面有“-”号的括号里,下列各式正确的是 ( )(A ))()23(22a b ab b a +-+++. (B ))()23(22a b ab b a -----+.(C ))()23(22a b ab b a --+-+. (D ))()23(22a b ab b a --+++.7.两个5次多项式相加,结果一定是 ( )(A )5次多项式. (B )10次多项式. (C )不超过5次的多项式.(D )无法确定.8.化简)2()2()2(++---x x x 的结果等于 ( )(A )63-x (B )2-x (C )23-x (D )3-x9.一个长方形的一边长是b a 32+,另一边的长是b a +,则这个长方形的周长是 ( )(A )b a 1612+; (B )b a 86+. (C )b a 83+; (D )b a 46+.10.下列等式成立的是 ( )(A )13)13(--=--m m . (B )123)12(3+-=--x x x x .(C )b a b a -=-5)(5. (D )y x y x 47)4(7+-=+-二、填空题(每小题3分,共30分)1、单项式2512R π-的系数是___________ ,次数是______________。

第二章整式加减培优训练人教版七年级数学上册

第二章整式加减培优训练人教版七年级数学上册

人教版七年级上整式加减培优训练一.选择题1.代数式1x , 2x +y , 13a 2b , x y π-, 54yx , 0.5 中整式的个数( )A .3个B .4个C .5个D .6个2.下列说法中正确的是( )A .不是单项式B .﹣23xy 的系数是﹣2,次数是5C .﹣3ab 2和b 2a 是同类项D .多项式﹣x 7y +4x 5﹣2的次数是7,项数是33.下列代数式中,互为同类项的是( )A .22a b -与23abB .2218x y 与2292x y +C .()n a b +与()3a b +D .2xy -与2y x4.下列各式可以写成a b c -+-的形式的是( )A .()()a b c -----B .()()a b c ---+-C .()()a b c -+-++D .()()a b c --++-5.下列各式中运算正确的是A .B .C .D .6.按如图所示的程序计算,若开始输入的值为x =3,则最后输出的结果是()A .156B .231C .6D .217.若A =x 2﹣2xy ,B =xy +y 2,则A ﹣2B 为( )A .3x 2﹣2y 2﹣5xyB .x 2﹣2y 2﹣3xyC .﹣5xy ﹣2y 2D .3x 2+2y 28.长方形的周长为8,其中一边为-a -2,则邻边边长为( ) ()22234a b ba a b -=-224a a a +=651a a -=235325a a a +=A.6-aB.10-aC.6+aD.12-2a9.有理数a ,b 在数轴上的位置如图所示,则|a +b|-2|a -b|化简后为( )A.b -3aB.-2a -bC.2a +bD.-a -b10.把四张形状大小完全相同的小长方形卡片(如图①)不重叠地放在一个底面为长方形(长为m ,宽为n )的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示,则图②中两块阴影部分的周长和是( )A .4mB .4nC .2(m +n )D .4(m -n )二.填空题11.单项式222310x y z -⨯的次数是______.13.计算:3a a -=_____________.14.多项式A 减去21x x -+的差是2x ,则A =____16.形如d cb a 的式子叫做二阶行列式,它的运算法则为d cb a =ad -bc ,依此法则计算4132-的结果为____,若x x -123=2,则_____=x . 三.解答题17.化简:(1)22213725x x x x +-+-+; (2)224(6)3(2)x xy x xy -+-+18.已知()20||3213x m n y mn -+++-=(1)用含m ,n 的式子表示x ,y ;(2)若2x y +的值与m 的取值无关,求2x y +的值;(3)若4x y +=,求582m mn ++与24m mn n -++差的值.19.(1)先化简,再求值:()()2222523625x y xy y x -++-,其中13x =,12y =-; (2)设2345A a ab =++,22B a ab =-.当a ,b 互为倒数时,求3A B -的值.20.(1)如图:化简|b ﹣a |+|a +c |﹣|a +b +c |.(2)已知:ax 2+2xy ﹣y ﹣3x 2+bxy +x 是关于x ,y 的多项式,如果该多项式不含二次项,求代数式3ab 2﹣{2a 2b +[4ab 2﹣(6a 2b ﹣9a 2)]}﹣(﹣a 2b ﹣3a 2)的值.21.小明为一个矩形娱乐场所提供了如下的设计方案,其中半圆形了休息区和矩形游泳区以外都是绿地。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级上册整式的加减培优训练题
一、选择题(每小题3分,共30分)
1.下列各组中的两项是同类项的是 ( )
(A )ab 与 abc . (B )35-与3x -.
(C )y x 25与 x y 23. (D )xy 2-与.yx 5-
2.下列运算中正确的是 ( )
(A )ab b a 532=+; (B )532532a a a =+;
(C )06622=-ab b a ; (D )022=-ba ab .
3.若m xy 2-和33
1y x n 是同类项,则 ( ) (A )1,1==n m ; (B )3,1==n m . (C )1,3==n m ; (D )3,3==n m .
4.下列运算中,正确的是 ( )
(A )c b a c b a 25)2(5-+=+-. (B )c b a c b a 25)2(5+-=+-.
(C )c b a c b a 25)2(5++=+-. (D )c b a c b a 25)2(5--=+-.
5.)]([c b a ---去括号应得 ( )
(A )c b a -+-; (B )c b a +--; (C )c b a ---; (D )c b a ++-.
6.不改变ab a b b a ++--2223的值,把二次项放在前面有“+”号的括号里,一次项放在前面有“-”号的括号里,下列各式正确的是 ( )
(A ))()23(22a b ab b a +-+++. (B ))()23(2
2a b ab b a -----+.
(C ))()23(22a b ab b a --+-+. (D ))()23(22a b ab b a --+++.
7.两个5次多项式相加,结果一定是 ( )
(A )5次多项式. (B )10次多项式.
(C )不超过5次的多项式. (D )无法确定.
8.化简)2()2()2(++---x x x 的结果等于 ( )
(A )63-x (B )2-x (C )23-x (D )3-x
9.一个长方形的一边长是b a 32+,另一边的长是b a +,则这个长方形的周长是 ( )
(A )b a 1612+; (B )b a 86+. (C )b a 83+; (D )b a 46+.
10.下列等式成立的是 ( )
(A )13)13(--=--m m . (B )123)12(3+-=--x x x x .
(C )b a b a -=-5)(5. (D )y x y x 47)4(7+-=+-
二、填空题(每小题3分,共30分)
1、单项式25
12R π-的系数是___________ ,次数是______________。

2、多项式2532+-x x 是________次_________项式,常数项是___________。

3、若m y x 35和219y x n +-是同类项,则m=_________,n=___________。

4、一个三位数,十位数字为x ,个位数字比十位数字少3,百位数字是个位数字
的3倍,则这个三位数可表示为 .
5、与多项式22357b ab a --的和是22743b ab a +-的多项式是______________。

6、代数式2x +3y 的值是-4,则3+6x+9y 的值是 。

7、.当k=______时,多项式22x -7kxy+23y +7xy+5y 中不含xy 项.
8、长方形的一边长为a 3,另一边比它小b a -,则其周长为______________。

9、去括号:-{-[-(1-a)-(1-b)]}=______________。

10、观察下列一串单项式的特点:xy ,y x 22- ,y x 34 ,y x 48- ,y x 516 ,… 按此规律写出第9个单项式是. ______________。

三、计算下列各题(每小题5分,共10分)
1、2222(2)3(2)4(32)ab a a ab a ab --+---
2、()()
22234x y xy x y xy x y +---
四、先化简后求值(每小题6分,共12分)
1、()()222234,1,1x y xy x y xy x y x y +---==-其中
2、5x-{2y-3x+[5x-2(y-2x)+3y]},其中x=11,26
y -=-.
五、(每小题6分,共18分)
1、一个四边形的周长是48厘米,已知第一条边长2a 厘米,第二条边的2倍比
第一条边长4厘米,第三条边等于第一、二两条边的和,写出表示第四条边长的整式.
2、某同学做一道数学题,误将求“A-B ”看成求“A+B ”, 结果求出的答案是3x 2
-2x+5.
已知A=4x2-3x-6,请正确求出A-B.
3、有理数a、b、c在数轴上对应点为A、B、C,其位置如图所示, 试去掉绝对值符号并合并同类项: │c│-│c+b│+│a-c│+│b+a│.。

相关文档
最新文档