微积分论文
★微积分(论文)
为了证明我不是抄袭,复制黏贴过来。
或者抄袭别人的论文。
本人都用了句号。
数学论文作者:李珍珍微积分请问什么是微积分?你还不懂吗?那就拿着本本和笔笔去学习吧。
啦~数学是研究“数”与“形”的一门学科。
数学也是一种工具。
近代数学的伟大变革是从引进变量开始的,而微积分学的发明正式变量数学的第一个伟大成就,微积分学的出现不仅颠覆了整个数学领域,而且显著地促进了近代科学技术的发展,没有微积分这一项强大的数学工具。
物理学。
天文学。
等领域的近代理论的形成是几乎不可能的。
微积分是由牛顿和莱布尼兹发明的。
微积分学为研究变量提供了一个方法系统。
气基本内容是微分与几分这两种互相关联的运算。
在求物体瞬时速度和曲线切线时。
我们就会运用到微积分。
且都建立在极限概念的基础上。
微分学研究变量的局部性质。
而积分学就处理变量在一定范围内的“求和”∑。
因而是一整体问题。
自然。
局部与整体和对立与联系。
充分体现出微分与几分的相互关系中。
微积分学已经成为经典数学的重要分支。
有一系列的重要学科在他身上萌芽。
如微分方程。
复变函数。
实变函数。
便疯法等。
微积分学的李云与方法。
已经广泛的运用与自然科学。
工程技术和社会学科等多个领域部门。
对微积分学的一定程度的掌握,不仅是对科技工作者的数学训练中的必备要素。
而且也越来越为对经济学家。
工程师和许多社会工作者的基本要求。
要想学好微积分。
必须把基础打好。
极限与连续性函数N维空间1,空间R+ n个实数的有续租(x1,x2,……xn)之全体成为n维欧几里德空间。
记作R+。
R+的元素(x1,x2^xn)称为点。
记作x或大写字母A,B,C等。
R1(上标)就是实直线,也写作R或者(-躺倒的8,+躺倒的8)。
【哎呀。
什么奇葩的坑爹。
那个无穷符号打不出来。
】。
R²就是实平面。
R³就可以解释为通常的空间。
这就好比。
一维是线。
二维是面。
三维是空间。
(2.线性运算。
任意给定的x,y属于Rn(上标),α,β属于R,不妨设x=(x1,x2,x3……,xn),y=(y1,y2,y3……yn),定义αx+βy=(ax1+βy1。
微积分论文
x ㏑x 令u=㏑x
x arctanx(x arcsinxx arccosx)
令u= arctanx (arcsinxarccosx)
e cosax(e sinax) 令u= cosax(sinax)
x e 令u= x
例:求(1)∫ ㏑x (2)∫xarctanxdx
Sinx= cosx= tanx=
②形如∫sinkxdx和∫coskxdx的积分,可直接利用第一类换元积分法进行计算
③若被积函数是关于cosx的奇函数。令t=sinx
④若被积函数是关于sinx的奇函数。令t=cosx
⑤被积函数既是关于cosx的偶函数,又是关于sinx的偶函数。令t=tanx
⑥被积函数是sin xcos x
xaccost三角代换令xasect三角代换令xatant三角代换有理函数的积分一般情况下是把有理函数变形为有理整函数与真分式函数之和的形式把真分式函数化成部分分式函数之和的形式然后利用积分的一些方法将有理函数的积分积出无理函数的积分如果所求积分不能用直接积分法换元法分部积分法求解的话可将无理函数通过一系列的变形化为有理三角函数或有理函数
2.求平面区域的面积
例:求半径为r的圆的面积。
解:以圆点为圆的方程 : x +y =r
则
(3)偶函数的原函数之一为奇函数。
(4)奇函数的全部原函数都为偶函数。
(5)若f(x)是周期为T的周期函数,则f(x)的原函数
=以T为周期的函数+线性函数ax+b
3.定积分的应用
1.求极限
(1)用定义计算某些和式的极限
分割极限—近似代替—求和—取极限
(2)微分法 (化整为零—积零为整)
数学微积分论文范文
数学微积分论文范文微积分是高等数学的一部分知识,关于微积分的论文有哪些?接下来店铺为你整理了数学微积分论文的范文,一起来看看吧。
数学微积分论文范文篇一:初等微积分与中学数学摘要:初等微积分作为高等数学的一部分,属于大学数学内容。
在新课程背景下,几进几出中学课本。
可见初等微积分进入中学是利是弊已见分晓,其重要性不言而喻。
但对很多在岗教师而言,还很陌生,或是理解不透彻。
这样不利于这方面的教学。
我将对初等微积分进入中学数学背景,作用及教学作简单研究.关键词:微积分;背景;作用;函数一、微积分进入高中课本的背景及必要性在数学发展史上,自从牛顿和莱布尼茨创建微积分以来,数学中的很多问题都得以解决。
微积分已成为我们学习数学不可或缺的知识。
其在经济、物理等领域的大量运用也使之成为解决生活实际问题的重要工具。
但牛顿和莱布尼茨创建的微积分为“说不清”的微积分,也就是连他们自己也说不清微积分的理论依据,只是会应用。
这使得很多人学不懂微积分,更不用说让中学生来学习微积分。
柯西和维尔斯特拉斯等建立了严谨的极限理论,巩固了微积分基础,这是第二代微积分,但概念和推理繁琐迂回,对高中生更是听不明白。
近十年来,在大量的数学家如:张景中,陈文立,林群等的不懈努力下,第三代微积分出现了相比前两代说得清楚,对高中生而言,也更容易理解。
这为其完全进入高中课本奠定了基础。
从内容来看,新一轮的课改数学教材在微积分部分增加了定积分的概念及应用(求曲边梯形面积,旋转体体积,以及在物理中的应用),可能考虑到中学生的认知能力,人教版新教材与北师大版在这方面有所不同。
即利用定积分求简单旋转体体积在北师大版教材中出现了,但人教版没有。
从课标和考试大纲(参考2011年高考考试大纲)上看,初等微积分所占比重也是越来越重。
回顾历届高考,微积分相关题型分值越来越高。
但就我个人观点,初等微积分在中学数学中的作用还没有真正全面发挥。
我认为,它是学生中学数学和教师教学的一条线索,它是我们研究中学函数问题的统一方法,也是联系中学与大学数学知识的纽带!二、微积分在中学数学中的作用1.衔接性与后继作用。
毕业论文完整论文【范本模板】
新疆财经大学本科毕业论文题目 : 微分和积分在不等式中的应用学号: 2005101412 学生姓名:阿卜杜瓦哈普·阿卜杜热西提院部:应用数学学院专业:应用数学年级:数学06-2班指导教师姓名职称:阿孜古丽·伊克木(讲师)完成日期:年月日摘要微积分和不等式都是数学中极为重要的内容,本文在回顾了几种常用的证明不等式的初等方法后,利用微分中值定理、泰勒公式、函数的单调性、极(最)值的判定法、定积分的性质等一些微积分知识探讨不等式的证明方法,最后指出了微积分在不等式证明中的具体应用.微积分是数学中的重要组成部分,是研究函数的性质,证明不等式,探求函数的极值、最值,求曲线的斜率和解决一些物理问题的有力工具.微积分的应用为解决数学问题提供了新的思路,新的方法和新的途径,可以说微积分是打开数学知识大门的一把钥匙.微积分在实际生活中的应用非常广泛,在不等式证明中也发挥着巨大的作用。
不等式的证明方法很多,灵活地运用微积分的性质及相关定理是解决许多不等式证明问题的关键.本篇论文归纳和总结了一些证明不等式的方法与技巧,利用微积分证明不等式的基本思想和基本方法,提出了运用这些方法和技巧能够使不等式的求解过程更为简单的思路..关键词:微积分;不等式;微分中值定理;泰勒公式;函数的单调性;极(最)值的判定法;目录前言 (1)第一章微积分 (2)§1微积分的发展 (2)§2微积分的概念 (3)第二章不等式 (7)§1不等式的定义和性质 (7)§2常用的证明不等式的方法 (8)第三章微积分在不等式中的应用 (12)§1利用微分证明不等式 (12)§2利用积分证明不等式 (19)结论 (23)参考文献 (24)致谢 (25)前言在高等数学中常常要证明一些不等式.而不等式的证明方法很多,在以往多采用代数或几何方法,现在可借助于微积分的知识,这是普遍应用的一种方法。
微积分在不等式中的应用论文
摘要微积分和不等式都是数学学科中极为重要的内容,其证明通常不太客易。
本文回顾了几种常用的证明不等式的初等方法,利用微分中值定理、函数的单调性、极值(最值)的判定法、函数凸凹性质、泰勒公式、定积分的性质等一些微积分知识探究了不等式的证明方法,本文探讨了如何巧妙利用徽积分中的知识和方法来解决一些不等式的问题。
用微积分证明不等式成立, 基本思路是构造一个辅助函数, 然后利用微积分求出该函数的性质来证明不等式.关键词微积分不等式中值定理函数性质泰勒公式定积分性质1AbstractCalculus mathematics and inequality are extremely important, the proof is not usually easily. This paper reviews several commonly used to prove inequality elementary methods, using the differential mean value theorem, monotone of function, extreme value ( maximum ) decision method, function, convex and concave nature of Taylor formula, the nature of definite integral and some knowledge of calculus of the inequality proof method, this paper discusses how clever use of emblem integral knowledge and the method to solve some of the problems of inequality.Using calculus to prove inequality is established, the basic idea is the construction of an auxiliary function, then make use of infinitesimal calculus to derive the properties of function to prove inequality.Key words calculus inequality theorem function Taylor formulaof definite integral character目录摘要 (I)1 Abstract (II)2 前言 (1)3 微积分 (2)2.1微积分的定义 (2)2.2微积分的发展历史 (3)2.3微积分学的创立的意义 (4)2.4微积分不断深化 (5)4 微积分在不等式中的应用 (6)5 利用微分中值定理证明不等式 (7)6 利用函数的单调性证明不等式 (8)7 利用函数的最值(极值)证明不等式 (9)8 利用函数的凹凸性质证明不等式 (10)9 利用泰勒公式证明不等式 (11)10 利用定积分的性质证明不等式 (12)结论 (13)参考文献 (16)附录 (17)致谢......................................................................................................... 错误!未定义书签。
牛顿与莱布尼兹创立微积分之解析的论文
牛顿与莱布尼兹创立微积分之解析的论文牛顿与莱布尼兹创立微积分之解析的论文摘要:文章主要探讨了牛顿和莱布尼兹所处的时代背景以及他们的哲学思想对其创立广泛地应用于自然科学的各个领域的基本数学工具———微积分的影响。
关键词:牛顿;莱布尼兹;微积分;哲学思想今天,微积分已成为基本的数学工具而被广泛地应用于自然科学的各个领域。
恩格斯说过:“在一切理论成就中,未有象十七世纪下半叶微积分的发明那样被看作人类精神的最高胜利了,如果在某个地方我们看到人类精神的纯粹的和唯一的功绩,那就正是在这里。
”[1](p.244)本文试从牛顿、莱布尼兹创立“被看作人类精神的最高胜利”的微积分的时代背景及哲学思想对其展开剖析。
一、牛顿所处的时代背景及其哲学思想“牛顿(isaa cnewton,1642-1727)1642年生于英格兰。
,1661年,入英国剑桥大学,1665年,伦敦流行鼠疫,牛顿回到乡间,终日思考各种问题,运用他的智慧和数年来获得的知识,发明了流数术(微积分)、万有引力和光的分析。
”[2](p.155) 1665年5月20日,牛顿的手稿中开始有“流数术”的记载。
《流数的介绍》和《用运动解决问题》等论文中介绍了流数(微分)和积分,以及解流数方程的方法与积分表。
wWW..1669年,牛顿在他的朋友中散发了题为《运用无穷多项方程的分析学》的小册子,在这里,牛顿不仅给出了求一个变量对于另一个变量的瞬时变化率的普遍方法,而且证明了面积可以由求变化率的逆过程得到。
因为面积也是用无穷小面积的和来表示从而获得的。
所以牛顿证明了这样的和能由求变化率的逆过程得到(更精确地说,和的极限能够由反微分得到),这个事实就是我们现在所讲的微积分基本定理。
这里“,牛顿使用的是无穷小方法,把变量的无限小增量叫做“瞬”,瞬是无穷小量,是不可分量,或是微元,牛顿通过舍弃“瞬”求得变化率。
微积分论文-3
微积分发展史的认识及应用姓名:张佳佳班级:数学1班学号:120701010027摘要微积分是高等数学中研究函数的微分、积分以及有关概念和应用的数学分支。
它是数学的一个基础学科。
内容主要包括极限、微分学、积分学及其应用。
微分学包括求解导数的运算,是一套关于变化率的理论。
它使得函数、速度、加速度和曲线的斜率等均可用一套通用的符号进行讨论。
积分学,包括求积分的运算,为定义和计算面积、体积等提供一套通用的方法。
微积分是与应用联系着发展起来的,最初牛顿应用微积分学及微分方程为了从万有引力定律导出了行星运动三定律。
此后,微积分学极大的推动了数学的发展,同时也极大的推动了天文学、力学、物理学、化学、生物学、工程学、经济学等自然科学、社会科学及应用科学各个分支中的发展。
并在这些学科中有越来越广泛的应用,特别是计算机的出现更有助于这些应用的不断发展。
关键词微积分;应用;微分;积分;物理,几何引言微积分的产生是数学上的伟大创造。
它从生产技术和理论科学的需要中产生,又反过来广泛影响着生产技术和科学的发展。
如今,微积分已是广大科学工作者以及技术人员不可缺少的工具。
如果将整个数学比作一棵大树,那么初等数学是树的根,名目繁多的数学分支是树枝,而树干的主要部分就是微积分。
微积分堪称是人类智慧最伟大的成就之一。
从17世纪开始,随着社会的进步和生产力的发展,以及如航海、天文、矿山建设等许多课题要解决,数学也开始研究变化着的量,数学进入了“变量数学”时代,即微积分不断完善成为一门学科。
通过研究微积分在物理,经济等方面的具体应用,得到微积分在现实生活中的重要意义,从而能够利用微积分这一数学工具科学地解决问题。
微积分的发展历史表明了人的认识是从生动的直观开始,进而达到抽象思维,也就是从感性认识到理性认识的过程。
人类对客观世界的规律性的认识具有相对性,受到时代的局限。
随着人类认识的深入,认识将一步一步地由低级到高级、不全面到比较全面地发展,人类对自然的探索永远不会有终点。
微积分论文 高等数学论文
微积分论文高等数学论文微积分论文一、引言微积分是研究变化率和累积效应的一种数学分支。
它广泛应用于物理学、工程学、经济学等领域,在科学和工程问题的模型建立及求解中扮演着重要的角色。
本论文旨在深入探讨微积分的基本概念、原理与应用,并通过实例说明微积分在实际问题中的运用。
二、微积分的基本概念1.导数导数是微积分的核心概念之一。
它描述了函数在某一点的变化率。
导数的定义及求导法则是学习微积分的基础,为后续的应用打下了坚实的基础。
2.积分积分是导数的逆运算,可以用于求解曲线下的面积、求解定积分、解决变速运动问题等。
对于不可积函数,可以采用数值积分的方法进行近似计算。
积分的定义及求解方法是微积分的重要内容。
三、微积分的原理1.极限理论极限理论是微积分的基石。
通过极限的概念,可以描述函数在一点的趋近性质,进而定义导数和积分。
极限的计算方法包括极限的四则运算法则、夹逼定理等。
2.微分中值定理微分中值定理是微积分中的重要定理之一。
它描述了函数在某一区间内存在某点,该点的导数等于该区间两端点斜率的平均值。
微分中值定理的应用范围广泛,包括证明函数的性质、求解方程的根等。
3.积分中值定理积分中值定理是微积分中的另一个重要定理。
它描述了函数在某一区间上的平均值等于某个点上的函数值。
积分中值定理在求解定积分、估计误差等方面具有重要作用。
四、微积分的应用1.物理学中的微积分应用微积分在物理学中有广泛的应用。
以牛顿运动定律为例,可以利用微积分的概念、原理和方法,对物体的运动进行建模和分析,预测物体的位置、速度和加速度等。
2.经济学中的微积分应用微积分在经济学中也具有重要的应用价值。
例如,在经济学中,利用微积分可以对供求关系进行分析,求解最优化问题,研究市场均衡等。
3.工程学中的微积分应用工程学是应用微积分最广泛的领域之一。
从电路分析到机械力学,从信号处理到控制系统,微积分都发挥着关键的作用。
例如,在电路分析中,可以通过微积分求解电流、电压和功率等问题。
《微积分》课程的式教学法[论文]
《微积分》课程的探究式教学法摘要在传统的《微积分》课程教学中,教师讲解定理公式,学生被动接受,机械重复计算过程,学习热情和效率都不高。
本文提出应用探究式教学法于《微积分》课程的教学实践,并以“无穷级数”为例,说明探究式教学法,并总结了该方法的优点。
关键词探究式教学法《微积分》无穷级数中图分类号:g623.4 文献标识码:a探究式教学法,是指在教学过程中,教师提出例子和问题,让学生自己通过阅读、观察、实验、思考、讨论、听讲等途径去独立探究,主动发现并掌握相应的原理和结论的一种方法。
探究式教学的指导思想是在教师的指导下,以学生为主体,让学生自觉地、主动地探索,掌握知识和解决问题的方法和步骤,研究客观事物的属性,发现事物发展的起因和事物内部的联系,从中找出规律,形成自己的概念。
在这一过程中,学生不仅获得了知识,而且学习的主体地位、自主能力都得到了加强。
探究式教学法,是相对于传统的课堂教学模式的改革。
传统教学是以教师为主体,教师讲授知识点,学生被动接受,主动性被抑制。
课堂缺少交流,难以做到因材施教。
学生往往会觉得课上枯燥无味,课后疲于应付练习。
探究式教学的先驱杜威认为,科学教育不仅仅是要让学生学习大量的知识,更重要的是要学习科学研究的过程或方法。
因此,有必要让学生从背诵记忆大量的定理公式,完成大量重复练习的学习过程中解放出来,充分调动他们的积极性,以达到更好的教学效果。
1 探究式教学法的实现过程举例在《微积分》课程的教学过程中,笔者尝试应用探究式教学,取得良好的效果。
下面以“无穷级数”为例,介绍探究式教学法的过程。
首先介绍芝诺悖论之一,阿基里斯追乌龟的例子。
听完介绍之后,学生先是觉得很疑惑:从常识和实际情况来看,速度快的阿基里斯一定可以追上速度慢的乌龟;可是在芝诺的论证里面到底哪里不正确?学生的好奇心和兴趣得到激发,就此展开分析和讨论。
不少学生提出“阿基里斯最终能追上乌龟”。
这时,需要引导学生明确“最终”的含义。
大学生微积分论文范文大全
大学生微积分论文范文大全微积分(Calculus)是高等数学中研究函数的微分(Differentiation)、积分(Integration)以及有关概念和应用的数学分支。
它是数学的一个基础学科。
以下是搜集并整理的微积分论文有关内容,希望在阅读之余对大家能有所帮助!大学生微积分论文范文大全微积分是研究客观世界运动现象的一门学科,我们引入极限概念对客观世界运动过程加以描述,用极限方法建立其数量关系并研究其运动结果[1]。
极限理论是微积分学的基础理论,贯穿整个微积分学。
要学好微积分,必须认识和理解极限理论,而把握极限理论的前提,首先要认识极限思想。
极限思想蕴涵着丰富的辩证思想,是变与不变、过程与结果、有限与无限、近似与精确、量变与质变以及否定与肯定的对立统一。
1、极限思想与辩证哲学的联系。
1.1极限思想是变与不变的对立统一。
“变”与“不变”反映了客观事物运动变化与相对静止两种不同状态,不变是相对的,变是绝对的,但它们在一定条件下又可相互转化。
例如,平面内一条曲线C上某一点P的切线斜率为kp。
除P点外曲线上点的斜率k是变量,kp是不变量,曲线上不同的点对应不同的斜率K,斜率k不可能等于kp,k与kp是变与不变的对立关系;同时,它们之间也体现了一种相互联系相互依赖的关系。
当曲线上的点无限接近P点过程中,斜率k无限接近kp,变化的量向不变的量逐渐接近。
当无限接近的结果产生质的飞跃时,变量转化为不变量,即“变”而“不变”,这体现了变与不变的统一关系。
1.2极限思想是过程与结果的对立统一。
过程和结果在哲学上是辩证统一的关系,在极限思想中也充分体现了结果与过程的对立统一。
在上例中,当曲线上的点无限接近点P 的变化过程中,k是变化过程,kp是变化结果。
一方面,无论曲线上点多么接近点P,都不能与点P重合,同样曲线上变化点的斜率k 也不等于kp,这体现了过程与结果的对立性;另一方面,随着无限接近过程的进行,斜率k越来越接近kp,二者之间有紧密的联系,无限接近的变化结果使得斜率k转化为kp,这体现了过程与结果的统一性。
微积分论文
微积分微积分的产生是数学上的伟大创造;它从生产技术和理论科学的需要中产生,又反过来广泛影响着生产技术和科学的发展;如今,微积分已是广大科学工作者以及技术人员不可缺少的工具;什么是它是一种,‘无限细分’就是,‘无限求和’就是积分;无限就是极限,极限的思想是微积分的基础,它是用一种运动的思想看待问题;比如,子弹飞出的瞬间速度就是微分的概念,子弹每个瞬间所飞行的路程之和就是积分的概念如果将整个数学比作一棵大树,那么是树的根,名目繁多的数学分支是树枝,而树干的主要部分就是微积分;微积分堪称是人类智慧最伟大的成就之一;从17世纪开始,随着社会的进步和生产力的发展,以及如航海、、矿山建设等许多课题要解决,数学也开始研究变化着的量,数学进入了“变量数学”时代,即微积分不断完善成为一门学科;整个17世纪有数十位科学家为微积分的创立做了开创性的研究,但使微积分成为数学的一个重要分支的还是和;从微积分成为一门学科来说,是在17世纪,但是,微分和积分的思想早在古代就已经产生了;公元前3世纪,古希腊的、家公元前287—前212的着作圆的测量和论球与圆柱中就已含有微积分的萌芽,他在研究解决抛物线下的弓形面积、球和面积、下的面积和旋转的体积的问题中就隐含着近代积分的思想;作为微积分的基础极限理论来说,早在我国的古代就有非常详尽的论述,比如庄周所着的一书中的“天下篇”中,着有“一尺之棰,日取其半,万世不竭”;三国时期的在他的中提出“割之弥细,所失弥少,割之又割以至于不可割,则与圆合体而无所失矣”;他在1615年测量酒桶体积的一书中,就把曲线看成边数无限增大的直线形;圆的面积就是无穷多个三角形面积之和,这些都可视为典型极限思想的佳作;意大利数学家卡瓦列利在1635年出版的连续不可分几何,就把曲线看成无限多条线段不可分量拼成的;这些都为后来的微积分的诞生作了思想准备;17世纪生产力的发展推动了和技术的发展,不但已有的数学成果得到进一步巩固、充实和扩大,而且由于实践的需要,开始研究运动着的物体和变化的量,这样就获得了变量的概念,研究变化着的量的一般性和它们之间的依赖关系;许多着名的数学家、天文学家、物理学家都为解决上述几类问题作了大量的研究工作,如法国的费尔玛、笛卡尔、罗伯瓦、笛沙格;英国的巴罗、瓦里士;德国的开普勒;意大利的卡瓦列利等人都提出许多很有建树的理论;为微积分的创立做出了贡献;到了17世纪下半叶,在前人创造性研究的基础上,英国、家1642-1727是从物理学的角度研究微积分的,他为了解决运动问题,创立了一种和物理概念直接联系的,即牛顿称之为“流”的理论,这实际上就是微积分理论;牛顿的有关“流数术”的主要着作是求曲边形面积、运用无穷多项方程的计算法和流数术和无穷极数;这些概念是力学概念的数学反映;牛顿认为任何运动存在于空间,依赖于时间,因而他把时间作为自变量,把和时间有关的固变量作为流量,不仅这样,他还把——线、角、体,都看作力学位移的结果;因而,一切变量都是流量;牛顿指出,“流数术”基本上包括三类问题;l“已知流量之间的关系,求它们的流数的关系”,这相当于;2已知表示流数之间的关系的方程,求相应的流量间的关系;这相当于积分学,牛顿意义下的不仅包括求原函数,还包括解;3“流数术”应用范围包括计算曲线的极大值、极小值、求曲线的切线和,求曲线长度及计算曲边形面积等;牛顿已完全清楚上述l与2两类问题中运算是互逆的运算,于是建立起微分学和积分学之间的联系;牛顿在1665年5月20目的一份手稿中提到“流数术”,因而有人把这一天作为诞生微积分的标志;牛顿关于微积分的着作很多写于1665-1676年间,但这些着作发表很迟;他完整地提出微积分是一对互逆运算,并且给出换算的公式,就是后来着名的牛顿-莱布尼茨公式;牛顿是那个时代的科学巨人;在他之前,已有了许多积累:哥伦布发现新大陆,哥白尼创立日心说,伽利略出版力学对话,开普勒发现行星运动规律--航海的需要,矿山的开发,火松制造提出了一系列的力学和数学的问题,微积分在这样的条件下诞生是必然的;莱布尼茨使微积分更加简洁和准确而德国数学家莱布尼茨G.W.Leibniz 1646-1716则是从几何方面独立发现了微积分,在牛顿和莱布尼茨之前至少有数十位数学家研究过,他们为微积分的诞生作了开创性贡献;但是池们这些工作是零碎的,不连贯的,缺乏统一性;莱布尼茨创立微积分的途径与方法与牛顿是不同的;莱布尼茨是经过研究曲线的切线和曲线包围的面积,运用分析学方法引进微积分概念、得出运算法则的;牛顿在微积分的应用上更多地结合了,造诣较莱布尼茨高一筹,但莱布尼茨的表达形式采用却又远远优于牛顿一筹,既简洁又准确地揭示出微积分的实质,强有力地促进了的发展;莱布尼茨创造的,正像印度——促进了算术与发展一样,促进了的发展,莱布尼茨是数学史上最杰出的符号创造者之一;如果说牛顿从力学导致“流数术”,那莱布尼茨则是从几何学上考察切线问题得出微分法;牛顿和莱布尼茨建立微积分的出发点是直观的无穷小量,因此这门学科早期也称为无穷小分析,这正是现在数学中分析学这一大分支名称的来源;牛顿研究微积分着重于从运动学来考虑,莱布尼茨却是侧重于几何学来考虑的;牛顿当时采用的微分和积分符号现在不用了,而莱布尼茨所采用的符号现今仍在使用;莱布尼茨比别人更早更明确地认识到,好的符号能大大节省思维劳动,运用符号的技巧是数学成功的关键之一;从始创微积分的时间说牛顿比莱布尼茨大约早10年,但从正式公开发表的时间说牛顿却比莱布尼茨要晚;牛顿系统论述“流数术”的重要着作流数术和无穷极数是1671年写成的,但因1676年伦敦大火殃及印刷厂,致使该书1736年才发表,这比莱布尼茨的论文要晚半个世纪;另外也有书中记载:牛顿于1687年7月,用拉丁文发表了他的巨着自然哲学的数学原理,在此文中提出了微积分的思想;他用“0”表示无限小增量,求出瞬时变化率,后来他把变量X称为流量,X的瞬时变化率称为流数,整个微积分学称为“流数学”,事实上,他们二人是各自独立地建立了微积分;最后还应当指出的是,牛顿的“流数术”,在概念上是不够清晰的,理论上也不够严密,在运算步骤中具有神秘的色彩,还没有形成无穷小及极限概念;牛顿和莱布尼茨的特殊功绩在于,他们站在更高的角度,分析和综合了前人的工作,将前人解决各种具体问题的特殊技巧,统一为两类普通的算法――微分与积分,并发现了微分和积分互为逆运算,建立了所谓的微积分基本定理现今称为牛顿――莱布尼茨公式,从而完成了微积分发明中最关键的一步,并为其深入发展和广泛应用铺平了道路;由于受当时历史条件的限制,牛顿和莱布尼茨建立的微积分的理论基础还不十分牢靠,有些概念比较模糊,因此引发了长期关于微积分的逻辑基础的争论和探讨;经过18、19世纪一大批数学家的努力,特别是在法国数学家柯西首先成功地建立了极限理论之后,以极限的观点定义了微积分的基本概念,并简洁而严格地证定理即牛顿―莱布尼茨公式,才给微积分建立了一个基本严格的完整体系;微积分学的创立,极大地推动了数学的发展,过去很多初等数学束手无策的问题,运用微积分,往往迎刃而解,显示出微积分学的非凡威力;前面已经提到,一门科学的创立决不是某一个人的业绩,他必定是经过多少人的努力后,在积累了大量成果的基础上,最后由某个人或几个人总结完成的;微积分也是这样;不幸的是,由于人们在欣赏微积分的宏伟功效之余,在提出谁是这门学科的创立者的时候,竟然引起了一场悍然大波,造成了欧洲大陆的数学家和英国数学家的长期对立;英国数学在一个时期里闭关锁国,囿于民族偏见,过于拘泥在牛顿的“流数术”中停步不前,因而数学发展整整落后了一百年;其实,牛顿和莱布尼茨分别是自己独立研究,在大体上相近的时间里先后完成的;比较特殊的是牛顿创立微积分要比莱布尼词早10年左右,但是整是公开发表微积分这一理论,莱布尼茨却要比牛顿发表早三年;他们的研究各有长处,也都各有短处;那时候,由于民族偏见,关于发明优先权的争论竟从1699年始延续了一百多年;应该指出,这是和历史上任何一项重大理论的完成都要经历一段时间一样,牛顿和莱布尼茨的工作也都是很不完善的;他们在无穷和无穷小量这个问题上,其说不一,十分含糊;牛顿的无穷小量,有时候是零,有时候不是零而是有限的小量;莱布尼茨的也不能自圆其说;这些基础方面的缺陷,最终导致了第二次数学危机的产生;直到19世纪初,法国科学学院的科学家以柯西为首,对微积分的理论进行了认真研究,建立了极限理论,后来又经过德国数学家维尔斯特拉斯进一步的严格化,使极限理论成为了微积分的坚定基础;才使微积分进一步的发展开来;任何新兴的、具有无量前途的科学成就都吸引着广大的科学工作者;在微积分的历史上也闪烁着这样的一些明星:瑞士的雅科布·贝努利和他的兄弟约翰·贝努利、欧拉、法国的拉格朗日、……欧氏几何也好,上古和中世纪的代数学也好,都是一种常量数学,微积分才是真正的变量数学,是数学中的大革命;微积分是高等数学的主要分支,不只是局限在解决力学中的变速问题,它驰骋在近代和现代科学技术园地里,建立了数不清的丰功伟绩;不幸的是牛顿和莱布尼茨各自创立了微积分之后,历史上发生了优先权的争论,从而使数学家分为两派,欧洲大陆数学家两派,欧洲大陆的数学家,尤其是瑞士数学家雅科布贝努利1654~1705和约翰贝努利1667~1748兄弟支持莱布尼茨,而英国数学家扞卫牛顿,两派争吵激烈,甚至尖锐到互相敌对、嘲笑;牛顿死后,经过调查核实,事实上,他们各自独立地创立了微积分;这件事的结果致使英国和欧洲大陆的数学家停止了思想交流,使英国人在数学上落后了一百多年,因为牛顿在自然哲学的数学原理中使用的是几何方法,英国人差不多在一百多年中照旧使用几何工具,而大陆的数学家继续使用莱布尼茨的分析方法,并使微积分更加完善,在这100年中英国甚至连大陆通用的微积分都不认识;实际上,牛顿在微积分方面的研究虽早于莱布尼兹,但莱布尼兹成果的发表则早于牛顿;虽然如此,科学家对待科学谨慎和刻苦的精神还是值得我们学习的啊;莱布尼兹在1684年10月发表的教师学报上的论文,“一种求极大极小的奇妙类型的计算”,在数学史上被认为是最早发表的微积分文献;牛顿在1687年出版的自然哲学的数学原理的第一版和第二版也写道:“十年前在我和最杰出的几何学家G、W莱布尼兹的通信中,我表明我已经知道确定极大值和极小值的方法、作切线的方法以及类似的方法,但我在交换的信件中隐瞒了这方法,……这位最卓越的科学家在回信中写道,他也发现了一种同样的方法;他并诉述了他的方法,它与我的方法几乎没有什么不同,除了他的措词和符号而外;”因此,后来人们公认牛顿和莱布尼兹是各自独立地创建微积分的;牛顿从物理学出发,运用集合方法研究微积分,其应用上更多地结合了运动学,造诣高于莱布尼兹;莱布尼兹则从几何问题出发,运用分析学方法引进微积分概念、得出运算法则,其数学的严密性与系统性是牛顿所不及的;莱布尼兹认识到好的数学符号能节省思维劳动,运用符号的技巧是数学成功的关键之一;因此,他发明了一套适用的符号系统,如,引入dx表示x的微分,∫表示积分,dnx表示n 阶微分等等;这些符号进一步促进了微积分学的发展;1713年,莱布尼兹发表了微积分的历史和起源一文,总结了自己创立微积分学的思路,说明了自己成就的独立性;莱布尼兹在数学方面的成就是巨大的,他的研究及成果渗透到高等数学的许多领域;他的一系列重要数学理论的提出,为后来的数学理论奠定了基础; 莱布尼兹曾讨论过负数和复数的性质,得出复数的对数并不存在,共扼复数的和是实数的结论;在后来的研究中,莱布尼兹证明了自己结论是正确的;他还对线性方程组进行研究,对消元法从理论上进行了探讨,并首先引入了行列式的概念,提出行列式的某些理论;此外,莱布尼兹还创立了符号逻辑学的基本概念,发明了能够进行加、减、乘、除及开方运算的计算机和二进制,为计算机的现代发展奠定了坚实的基础;。
大学数学微积分论文(专业推荐范文10篇)7700字
大学数学微积分论文(专业推荐范文10篇)7700字大学数学微积分包括极限、微分学、积分学及其应用,也包括求导数的运算,是一套关于变化率的理论。
本篇文章就向大家介绍几篇大学数学微积分论文,希望大家通过以下论文,跟大家一起探讨这个课题。
大学数学微积分论文专业推荐10篇之第一篇:浅析微积分在大学数学学习和生活中的应用摘要:经济社会的发展和科技的进步,计算机应用领域的扩大,也不断拓展了微积分的应用范围。
微积在大学数学学习和生活中很常见,应用广泛。
本文主要针对微积分在大学数学学习和生活中的应用进行了分析。
关键词:微积分;大学数学;学习生活;应用;数学作为一项重要的工具,在社会长期发展中发挥着重要的作用,尤其是在其他学科知识的学习、日常生活的应用等方面,数学工具不可或缺。
在大学中,微积分属于大学数学的一个分支,其研究对象是函数的微分、积分及其他内容。
微积分是很多在校大学生的必修课程,同时,在生活中也有广泛的应用空间。
研究微积分,具有重要的现实意义。
1. 大学教学中微积分的应用大学教育的过程中,很多专业知识的学习中都需要运用到微积分,可以说,大学教学中微积分的应用十分广泛,尤其是数学教学和学习,微积分是高等数学研究的一个分支,且在具体的学习中有重要的指导意义。
具体应用分析如下。
1.1 数学建模。
数学建模主要用于把一个抽象的生活问题用具体的数学模型做简化和假设,在此基础上,运算得出一个相对合理的对应方案。
数学建模在现实生活中具有较强的实际意义。
在传统的数学应用中,人们运用微积分建构了多个数学模型,并且为科学研究做出了很大的贡献。
历史上将数学模型运用到科学研究的典型例子,牛顿借助自己研究的微积分,提出万有引力定律,这些典型的现实性案例,都证明了微积分在数学建模中的重要作用。
1.2 等式证明中的微积分使用。
在变量关系的研究过程中,会涉及到有关等式作证明的问题,可以利用微积分无线分割的思想,在处理数学问题的过程中,以简御繁,其次,微积分中的值订立、函数的增减性、极值的判定等,都在在等式的证明中有重要的作用,在具体的运用中,能简化等式,降低了普通方法证明等式时的技巧性和高难度性,因此,微积分的使用让等式证明更加简化和简单。
微积分在经济学中应用论文
微积分在经济学中的应用【摘要】随着数学突飞猛进的发展,数学领域成绩的不断刷新,作为数学的基础的微积分思想也随之发展,其应用范围已超出数学领域,与经济学相结合,被广泛运用于经济的各个领域。
微积分与经济的密切性体现在多个方面,比如,经济的最优化理论、复利计算、数学模型的建立,这些都为经济发展以及掌握经济发展的内在规律提供了现实依据。
【关键词】微积分最优化宏观经济极限理论【中图分类号】 g40-05 【文献标识码】 a【文章编号】 1006-5962(2012)08(b)-0012-011 数学与经济的关系数学是经济学理论研究的理想工具,精确而严密的理论研究离不开数学。
数学与经济学二者紧密联系,相互促进,共同发展。
借助数学模型研究经济学,至少有三个优势:清晰,深入,严密。
具体分析就是:第一,前提假定用数学语言描述既清晰明了又精炼,省去了分析文字所耗费的时间与精力;第二,逻辑推理严密、精确,可以防止漏洞和错误;第三,可利用已有的数学定理或数学模型推导出新的结果或者结论,排除一切干扰,得出更为深入的仅凭直觉不易甚至无法得出的结论,挖掘现象之间更深层次的本质联系。
运用数学模型讨论经济问题,可以不走或少走弯路,将讨论集中到前提假设、论证过程及模型原理问题上来,从而避免了许多无谓的争执,减少在时间与精力上的消耗,也可在深层次上发现似乎不相关的结构之间的关联。
此外,运用数学和统计方法做经济学的实证研究可以把实证分析建立在理论基础上,并从系统的数据中定量地检验理论假说和估计参数的数值。
这就可以减少经验性分析中的表面化和偶然性,从而得出定量性结论,并分别确定它在统计和经济意义下的显著程度、作用的大小。
2 微积分在经济学中的应用2.1 微积分最优化理论在经济学中的应用最优化问题是经济管理活动的重点内容,是各类企业在实现资源最优化配置与盈利的有效手段,各种最优化问题也是微积分最关心的内容之一。
拿企业来说,企业最关心的问题当然是盈利。
论文模版(一篇关于微分方程的论文)
本科生毕业设计 (论文)题目:论积分因子的存在条件及其求法教学单位 _计算机科学与技术学院姓名 ___ 彭倩___学号___ 200531105002年级 _____2005级_________专业 _ 数学与应用数学指导教师 ___ 宋荣荣职称 _____ 讲师___ _____2009 年 5 月 7 日摘要在常微分方程理论的形成过程中, 求解常微分方程曾出现过许多方法, 如分离变量法、变量替换法、常数变易法以及积分因子法等等. 其中尤以积分因子法出现的最晚, 而作用也最大.积分因子法的实质是把常微分方程转化为恰当方程, 由于恰当方程的通解很容易得出, 这样我们也就能很容易求得常微分方程的解.因此用积分因子法解常微分方程的关键是找到积分因子.本文首先介绍了二元微分方程的恰当方程的定义, 然后在二元非恰当方程的条件下引出积分因子的定义和存在条件. 通过探讨积分因子的存在条件,本文得到了几种求常微分方程积分因子的基本求法:观察法、公式法、分组法和几种特殊类型方程积分因子的求法. 并对各种积分因子求法作了详细论证.然后根据二元原函数存在条件及积分因子的求法来推导三元原函数存在条件及积分因子的求解方法.关键词:常微分方程;积分因子;恰当方程;三元原函数.AbstractTheory of ordinary differential equations in the formation process, the solution of ordinary differential equations there have been many methods, such as separation of variables, variable substitution method, constant variation, and so integral factor method. Especially integral factor method appears the latest, The biggest role. integral factor method is the essence of ordinary differential equations into appropriate, as the appropriate general solution of the equation is easy to draw, so we can easily obtain the solution of ordinary differential equations. therefore integral factor method the key to solution of ordinary differential equations is to find the integrating factor.In this paper, the dual differential equations first introduced the definition of the appropriate equation, and then in the dual non-appropriate conditions equation integrating factor leads to the definition and conditions for the existence of. By exploring the conditions for the existence of the integrating factor, this paper has been seeking several ordinary differential equations integral factor of the basic method: To observe the law, the formula law, sub-law and several special types of integral equation method factor. and a variety of integral factor a detailed appraisal method. and then the original function in accordance with the conditions for the existence of binary and integral factor of the law is derived for three conditions for the existence of the original function and the integral factor method.Key words: ordinary differential equations; integral factor; proper equation; Ternary primitive function.目录第一章绪论 (5)1.1课题背景及目的 (5)1.2国内外研究状况和相关领域中已有的成果 (5)1.3研究方法、论文构成及研究内容 (6)1.3.1研究方法 (6)1.3.2 论文研究内容 (6)第二章二元微分方程积分因子的定义及其存在条件 (7)2.1 积分因子的定义 (7)2.2积分因子存在条件 (8)2.3积分因子的几种解法 (9)2.3.1 观察法 (9)2.3.2 公式法 (9)2.3.3 分组法 (12)2.3.4 几种特殊类型方程积分因子的求法 (13)第三章三元微分方程积分因子的存在条件及解法 (14)3.1三元原函数存在条件 (14)3.2 三元微分方程积分因子存在的条件 (15)3.3 三元微分方程积分因子的解法 (16)结论 (20)参考文献 (21)致谢 (21)第一章绪论1.1课题背景及目的微分方程差不多是和微积分同时产生的,苏格兰数学家耐普尔创立对数的时候,就讨论过微分方程的近似解. 牛顿在建立微积分的同时,对简单的微分方程用级数来求解. 后来瑞士数学家雅各布·贝努利、欧拉、法国数学家克雷洛、达朗贝尔、拉格朗日等人又不断地研究和丰富了微分方程的理论.常微分方程的形成与发展是和力学、天文学、物理学,以及其他科学技术的发展密切相关的. 数学的其他分支的新发展,如复变函数、李群、组合拓扑学等,都对常微分方程的发展产生了深刻的影响,当前计算机的发展更是为常微分方程的应用及理论研究提供了非常有力的工具.微分方程可以精确地表述事物变化所遵循的基本规律. 随着微分方程的理论的逐步完善,只要列出相应的微分方程并找到解方程的方法, 微分方程也就成了最有生命力的数学分支. 事实上,大部分的常微分方程求不出十分精确的解,而只能得到近似解. 当然,这个近似解的精确程度是比较高的.现在,常微分方程在很多学科领域内有着重要的应用,自动控制、各种电子学装置的设计、弹道的计算、飞机和导弹飞行的稳定性的研究、化学反应过程稳定性的研究等. 这些问题都可以化为求常微分方程的解,或者化为研究解的性质的问题. 应该说,应用常微分方程理论已经取得了很大的成就. 解常微分方程大致有分离变量法、变量替换法、常数变易法以及积分因子法等等,其中,积分因子法尤为重要,本论文主要讨论积分因子存在条件及其解法,通过积分因子使常微分方程化为全微分方程形式来求解.1.2 国内外研究状况和相关领域中已有的成果积分因子的概念是由瑞士大数学家欧拉提出来的,而且他还确定了可采用积分因子的微分方程类型,证明了凡是可用分离变量求解的微分方程都可以用积分因子求解,但反之不然.随着微分方程理论的不断深入研究,积分因子的应用越来越广. 经过许多人的研究证明:不仅仅是可用分离变量求解的微分方程可以用积分因子法求解,甚至只要微分方程的解存在,都可以采用积分因子法求解. 只是有些方程求积分因子比求方程的解本身更为复杂.目前国内的伍军、刘许成、阎淑芳等人对积分因子的求法作了详细的研究,并取得了许多重大的成果. 尽管目前还没有找到求积分因子的普通解法,但已在相当大的范围内,给出了一些微分方程的存在某些特殊类型积分因子的求法。
微积分论文:简述微积分发展史
微积分论文:简述微积分发展史一、微积分学的创立微积分作为一门学科,是在十七世纪产生的。
它的主要内容包括两部分:微分学和积分学。
然而早在古代微分和积分的思想就已经产生了。
公元前三世纪,古希腊的阿基米德在研究解决抛物弓形的面积、球和球冠面积、旋转双曲体的体积等问题中,就隐含着近代积分学的思想。
作为微分学基础的极限理论来说,早在古代就有了比较清楚的论述。
如我国的庄周所著的《庄子》一书的“天下篇”中,记有“一尺之棰,日取其半,万世不竭”。
这些都是朴素的极限概念。
到了十七世纪,人们因面临着有许多科学问题需要解决,如研究运动的时候直接出现的,也就是求即时速度的问题;求曲线的切线的问题等,这些问题也就成了促使微积分产生的因素。
十七世纪的许多著名的数学家都为解决上述几类问题作了大量的研究工作。
十七世纪下半叶,在前人工作的基础上,英国大科学家牛顿和德国数学家莱布尼茨分别在自己的国度里独自研究和完成了微积分的创立工作。
在创立微积分方面,莱布尼茨与牛顿功绩相当。
这两位数学家在微积分学领域中的卓越贡献概括起来就是:他们总结出处理各种有关问题的一般方法,认识到求积问题与切线问题互逆的特征,并揭示出微分学与积分学之间的本质联系。
两人各自建立了微积分学基本定理,并给出微积分的概念、法则、公式及其符号。
有了这些理论知识作为前提为以后的微积分学的进一步发展奠定了坚实而重要的基础。
微积分学的创立,极大地推动了数学的发展,过去很多初等数学束手无策的问题,运用微积分,往往迎刃而解,显示出微积分学的非凡威力。
可以说微积分学的诞生是数学发展的一个里程碑式的事件。
二、微积分诞生的重要意义微积分诞生之前,人类基本上还处在农耕文明时期。
微积分学是继解析几何产生后的又一个伟大的数学创造。
微积分为创立许多新的学科提供了源泉。
微积分的建立是人类头脑最伟大的创造之一,是人类理性思维的结晶。
它给出一整套的科学方法,开创了科学的新纪元,并因此加强与加深了数学的作用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
“微积分”课程论文首页
微积分中的导数思想与应用
蔡淑铭
摘要:微积分在天文、力学、数学、化学、生物学、物理学、工程学和社会科学等领域都有什么样重要的作用,微积分的基本原理和思想在我们的日常生活中、学习、工作中也经常用到。
一、导数在经济学中的应用导数反映函数的自变量在变化过程中,相应的函数值变化的快慢程度——变化率。
如果在函数y- f(x)在某一点x_0处可导的前提下,若函数y-f(x)在某区间内每一点处都可导,则称y=f(x)在该区间内可导,记y=f'(x)为y=f(x) 在该区间内的可导函数(简称导数)。
关键词:流数术、可导、变化
1.导数的概念
导数(Derivative)是微积分中的重要基础概念。
当函数y=f(x)的自变量X 在一点x
上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx的
比值在Δx趋于0时的极限a如果存在,a即为在x
0处的导数,记作f'(x
)或
df/dx(x
)。
导数是函数的局部性质。
一个函数在某一点的导数描述了这个函数在这一点附近的变化率。
如果函数的自变量和取值都是实数的话,函数在某一点的导数就是该函数所代表的曲线在这一点上的切线斜率。
导数的本质是通过极限的概念对函数进行局部的线性逼近。
例如在运动学中,物体的位移对于时间的导数就是物体的瞬时速度。
不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。
若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。
然而,可导的函数一定连续;不连续的函数一定不可导。
对于可导的函数f(x),x↦f'(x)也是一个函数,称作f的导函数。
寻找已知的函数在某点的导数或其导函数的过程称为求导。
实质上,求导就是一个求极限的过程,导数的四则运算法则也来源于极限的四则运算法则。
反之,已知导函数也可以倒过来求原来的函数,即不定积分。
微积分基本定理说明了求原函数与积分是等价的。
求导和积分是一对互逆的操作,它们都是微积分学中最为基础的概念。
2.导数的历史沿革
2.1起源
大约在1629年,法国数学家费马研究了作曲线的切线和求函数极值的方法;1637年左右,他写一篇手稿《求最大值与最小值的方法》。
在作切线时,他构造了差分f(A+E)-f(A),发现的因子E就是我们所说的导数f'(A)。
2.2发展
17世纪生产力的发展推动了自然科学和技术的发展,在前人创造性研究的基础上,大数学家牛顿、莱布尼茨等从不同的角度开始系统地研究微积分。
牛顿的微积分理论被称为“流数术”,他称变量为流量,称变量的变化率为流数,相当于我们所说的导数。
牛顿的有关“流数术”的主要著作是《求曲边形面积》、《运用无穷多项方程的计算法》和《流数术和无穷级数》,流数理论的实质概括为:他的重点在于一个变量的函数而不在于多变量的方程;在于自变量的变化与函数的变化的比的构成;最在于决定这个比当变化趋于零时的极限。
2.3成熟
1750年达朗贝尔在为法国科学家院出版的《百科全书》第四版写的“微分”条目中提出了关于导数的一种观点,可以用现代符号简单表示:
{dy/dx)=lim(oy/ox).
1823年,柯西在他的《无穷小分析概论》中定义导数:如果函数y=f(x)在变量x的两个给定的界限之间保持连续,并且我们为这样的变量指定一个包含在这两个不同界限之间的值,那么是使变量得到一个无穷小增量。
19世纪60年代以后,魏尔斯特拉斯创造了ε-δ语言,对微积分中出现的各种类型的极限重加表达。
导数的定义也就获得了今天常见的形式。
微积分学理论基础,大体可以分为两个部分。
一个是实无限理论,即无限是一个具体的东西,一种真实的存在;另一种是潜无限,指一种意识形态上的过程,比如无限接近。
就数学历史来看,两种理论都有一定的道理。
其中实无限用了150年,后来极限论就是现在所使用的。
光是电磁波还是粒子是一个物理学长期争论的问题,后来由波粒二象性来统一。
微积分无论是用现代极限论还是150年前的理论,都不是最好的方法。
3.导数在流数术中的应用
导数的广泛应用为我们解决函数问题提供了有力的工具,用导数可以解决函
数中的最值问题、不等式问题,还可以与解析几何联系在一起,可以在知识的网络交汇处设计问题。
微积分它是一种数学思想,无限细分就是微分无限求和就是积分。
无限就是极限,极限的思想是微积分的基础。
它是用一种运动的思想看待问题。
比如子弹飞出枪膛的瞬间速度就是微分的概念。
子弹每个瞬间所飞行的路程之和就是积分的概念。
如果将整个数学比作一二大叔,那么初等数学是树的根。
名目繁多的数学分支是树枝,而树干的主要部分就是微积分。
微积分堪称是人类智慧最伟大的成就之一。
从17世纪开始,随着社会的进步和生产力的发展以及如航海、天文、矿山建设等许多课题要解决。
数学也开始研究变化着的量,数学进入了变量数学时代——即微分不断完善成为一门学科。
整个17世纪有数十位科学家为微积分的创立做了开创性的研究,但使微积分成为数学的一个重要分支还是牛顿和莱布尼茨。
从微积分成为一门学科来说是17世纪,但是微分和积分的思想早在古代就已经产生额。
公元前3世纪,古希腊的数学家、理学家阿基米德公元前287-公元前212的著作《圆的测量》和《论球与圆柱》中就已含有微积分的萌芽。
他在研究解决抛物线下的弓形面积、球和球冠面积、螺线下的面积和旋转双曲线的体积的问题中就隐含着近代积分的思想。
作为微积分的基础极限理论来说,早在我国的古代就有非常详尽的论述,比如庄周所著的《庄子》一书中的天下篇中著有一尺之锤,日取其半,万世不竭。
三国时期的刘徽在他的割圆术中提出割之弥细所失弥少,割之以至于不可割,则与圆合体而无所失矣。
他在1615年《测量酒桶体积的新科学》一书中就把曲线看成无限增大的直线形。
圆的面积就是无穷多个三角形面积之和,这些都可视为典型极限思想的佳作。
意大利数学家卡瓦列利在1635年出版的《连续不可分几何》就把曲线看成无限多条线段不可分量拼成的。
这些都为后来的微积分诞生作了思想准备。
17世纪生产力的发展推动了自然科学和技术的发展,不但已有的数学成果
得到进一步巩固、充实和扩大。
而且由于实践的需要,开始研究运动着的物体和变化的量,这样就获得了变量的概念研究变化着的量的一般性和它们之间的依赖关系。
到了17世纪后半叶在前人创造性研究的基础上,英国大数学家、物理学家艾克萨牛顿是从物理学的角度研究微积分的。
他为了解决运动问题创立了一种和物理概念直接联系的数学理论,即牛顿称之为流数术的理论。
这实际上就是微积分理论。
牛顿的有关流数术的主要著作是《求曲边型面积》、《运用无穷多项方程的计算法》和《流数术和无穷极数》。
这些概念是力学概念的数学反映。
牛顿
认为任何运动存在于空间,依赖于时间。
因而他把时间作为自变量,把和时间有关的固变量作为流量。
不仅这样,他还把几何图形——线、角、体都看作力学位移的结果。
因而一切变量都是流量。
牛顿指出流数术基本上包括三类问题。
1.已知流量之间的关系,求它们的流数的关系,这相当于微分学。
2.已知表示流数之间的关系的方程,求响应的流量间的关系。
着相当于积分学牛顿意义下的积分法不仅包括求原函数,还包括解微分方程。
3.流数术应用范围包括计算曲线的极大值、极小值、求曲线的切线和曲率求曲线长度及计算曲变形面积等。
牛顿已经完全清楚上述1与2两类问题中运算是互逆运算,于是建立起微分学和积分学之间的联系。
牛顿在1665年5月20日的一分手稿中提到流数术,因而有人把这一天作为诞生微积分的标志。