运筹学毕业论文-单纯形法
细说单纯形法
细说单纯形法线性规划是运筹学里至关重要的内容,单纯形法又是解决线性规划问题最重要的方法,如果不能深刻地理解单纯形法,对线性规划的学习,甚至是运筹学的学习都将带来严重的负面影响。
但大部分运筹学教材在介绍单纯形法的时候都利用矩阵语言,显得艰涩难懂,这对初学运筹学的人来讲是一个不小的打击,会大大削弱他们学习运筹学的兴趣。
为此,我们需要寻找一种更有效的方法来介绍单纯形法。
(我们默认读者对线性规划模型以及关于线性规划解的基本概念有一定的了解,如果读者不了解,可以参考任意一本运筹学教材学习这些概念)单纯形法大体分三步:(1)找出第一个(初始的)基可行解。
(2)判断这个基可行解是否最优。
(3)如果不是最优,我们将它调整为一个“更好的”基可行解,直至最终求出最优解。
以上三个步骤,我们通过“单纯形表”来完成。
下面我们通过具体的例子来了解单纯形表的构造。
上表包括了线性规划问题中所有关键数据,而且我们可以很方便地找到初始基为:β=(X ,X ,X ),因为系数列向量P 、P 、P 都是不同的单位向量,前面我们介绍过P 、P 、P 线性无关。
β确定的初始基可行解是:X =X =0,X =15,X =5,X =11,相应此解的目标函数值:Z =0。
我们将上表称为初始基β的单纯形表。
通过初始基β的单纯形表,我们找出了初始基可行解,下面的问题是如何判断初始基可行解是否最优解。
我们观察一下Z 行中X 、X 的系数为-5、-4,而X 、X 又是非基变量,取值都为0,这样对于求最小的Z 是很不利的,试想如果将X、X 都变成基变量,即允许X 、X 取值为正,那么Z 势必会减少(增加一个X ,Z 减少5;增加一个X ,Z 减少4),由此我们判断初始基并非最优基,初始基可行解也并非最优解。
我们看到判断当前解是否最优解主要依据非基变量在目标函数中的系数。
但要注意的是基变量的取值是有约束方程决定的,而非基变量取值是我们约定的为0,这种约定是否合理只有在目标函数中不含基变量或者说目标函数中基变量系数为0时才能很明显地表现出来,因此,我们在判断当前基可行解是否最优时一定要保证基变量在目标函数中系数为0。
运筹学单纯形法
运筹学单纯形法
运筹学单纯形法,又称单纯性法,是一种用于求解线性规划问题的数学方法,它在运筹学中发挥着重要作用。
它主要应用于决策及资源分配问题,可以帮助决策者更好地把握资源的优化配置,并寻求最优解。
单纯性法是以线性规划问题作为理论基础,它是将该问题转化为一系列形如Ax=b的线性方程组的运筹学方法。
在这个方程组通过调整方程中的系数和右面常数而变换为形如Cx≤d的不等式形式,而这种不等式系统称为单纯性约束条件。
单纯性法从不等式中寻找一系列基向量,并通过改变基向量来实现改变不等式的求解方程之间的关系,从而求出最优解的问题。
传统的单纯性法分为有界单纯性和无界单纯性两种情形。
无界单纯性以简单费用曲线方法、扩展的简单费用曲线方法和增广次数法三大类。
有界单纯性主要是对对角单纯性和非对角单纯性这两类单纯性系统分别使用不同的方法进行求解。
单纯性求解方法在线性规划问题求解中具有重要应用,它能通过求解线性规划问题中的一系列互不相关的子问题来求出最优解。
使用该方法,可以以最少的成本达到最优的收益,它包括费用最低优化、网络流优化、全格研究和数学优化模型等。
运筹学基础论文
运筹学基础论文——单纯形乘子定理摘要:对偶理论是线性规划在早期发展中的重要成果之一,是线性规划的重要组成部分。
对偶理论深刻揭示了原问题与对偶问题之间深刻的内在联系。
对偶理论充分显示了线性规划理论逻辑的严谨和结构的对称美;对偶问题的对偶解是进行经济分析的重要工具。
正确理解单纯形乘子定理;最优基B是什么,在单纯形表中如何找到;Y*=CB﹣¹在单纯形表中的位置;原问题、对偶问题的最优值,在单纯形表中的确定;理解“对于原问题LP,其对偶问题DP的最优解就是LP最优单纯形表中松弛变量检验数的相反数。
”;CB﹣¹和CB﹣¹b的计算及体现。
关键字:运筹学线性规划单纯形法对偶问题单纯性乘子定理最优值单纯形表1954年美国数学家C.莱姆基提出对偶单纯形法。
单纯形法是从原始问题的一个可行解通过迭代转到另一个可行解,直到检验数满足最优性条件为止。
对偶单纯形法则是从满足对偶可行性条件出发通过迭代逐步搜索原始问题的最优解。
在迭代过程中始终保持基解的对偶可行性,而使不可行性逐步消失。
设原始问题为min{cx|Ax=b,x≥0},则其对偶问题为max{yb|yA≤c}。
当原始问题的一个基解满足最优性条件时,其检验数cBB-1A-c≤0。
即知y=cBB-1(称为单纯形算子)为对偶问题的可行解。
所谓满足对偶可行性,即指其检验数满足最优性条件。
因此在保持对偶可行性的前提下,一当基解成为可行解时,便也就是最优解。
线性规划的对偶问题一、对偶问题的提出生产计划问题:某家具厂生产桌子和椅子,桌子售价50元/个,椅子售价30元/个。
需要木工和油漆工,生产一个桌子需要木工4小时,油漆工2小时,生产一个椅子需要木工3小时,油漆工1小时。
该厂每月可用木工工时120小时,油漆工工时50小时。
问:如何组织生产,使得每月销售收入最大?线性规划模型为(桌、椅数量为变量):12121212max 503043120..250,0z x x x x s t x x x x =++≤⎧⎪+≤⎨⎪≥⎩现考虑一个成本最小化的问题:另一厂商,接到上述生产订单后组织生产,其中的劳动力欲向家具厂雇佣,如何才能使得生产成本(工资)最小?分析: 确定决策变量1y =木工的工资,2y =油漆工的工资得对偶问题规划模型: 12121212min 12050 4250..330 ,0 z y y y y s t y y y y =++≥⎧⎪+≥⎨⎪≥⎩目标函数—使工资支出最小约束方程—向外转让的收入至少要大于自己生产的收入工资的非负约束二、对称形式的对偶问题的矩阵表述:原问题:既定的资源(成本)b 约束下产量X 最大化 m a x ..z CXAX b s t X O=≤⎧⎨≥⎩ 对偶问题:既定的产量C 约束下资源(成本)b 最小化: m i n ..w b YA Y C s t Y O'=''≥⎧⎨≥⎩ 三、对偶原理在经济学厂商理论中的应用:从实物形态研究生产——生产理论;从货币形态研究成本结构——成本理论 在完全竞争市场上,一定成本下产量最大化的投入组合问题互为对偶问题一定产量下成本最小化的投入组合问题1、 一定成本下产量最大化的投入组合问题:max (,)..Q f L K s t C wL rK==+令(,)()Z f L K C wL rK λ=+--,0Z Q w L Lλ∂∂=-=∂∂,0Z Q r K Kλ∂∂=-=∂∂ 得:Q Q w r L K ∂∂=∂∂, 即:L K w r P MP MP == 2、 一定产量下成本最小化的投入组合问题:min ..(,)C wL rK s t Q f L K =+=用拉格朗日乘数法求解:令((,))Z wL rK Q f L K λ''=+--,0Z Q w L L λ'∂∂'=-=∂∂, Z Q r K K λ'∂∂'=-∂∂,(,)0Z Q f L K λ∂=-='∂ 得:QQw r LK∂∂=∂∂,即:L K w r P MP MP == 四、如何将原问题转化为对偶问题 (一)约束条件为标准形式(见前例)目标函数的最大值max ←→ 目标函数的最小值min 目标函数的价值系数C ←→ 约束方程右端的资源量C ’ 约束系数矩阵A ←→ 约束系数矩阵A ’原问题的n 个变量(≥0)←→ 对偶问题的n 个约束方程 约束条件“AX ≤B ”←→ 对偶问题的约束条件“A !Y ≥C ” (二)约束条件为非标准形式将下列线性规划问题转化为对偶问题12312312323123min 7434262436415..53300,0z x x xx x x x x x s t x x x x x =+--+-≤⎧⎪---≥⎪⎨+=⎪⎪≤≥⎩取值无约束, 1、先化为标准形式,再根据标准形式进行转化:令11x x '=-,222x x x '''=-; 并将等式约束235330x x +=化为两个不等式约束235330x x +≤和235330x x +≥;对于min 问题,统一约束不等式为“≥”,得:1223122312232232231223m i n 7443422624366415..5533055330,,0z x x x x x x x x x x x x s t x x x x x x x x x x ''''=-+--''''--++≥-⎧⎪''''-+-≥⎪⎪'''-+≥⎨⎪'''-+-≥-⎪''''≥⎪⎩, → 1234121234123412341234max 2415303043726554..2655464333,,0w y y y y y y y y y y s t y y y y y y y y y y y =-++--+≤-⎧⎪--+-≤⎪⎪+-+≤-⎨⎪-+-≤-⎪≥⎪⎩,y2、将多余的量还原:第一个约束方程的右边还项原为正数,令11y y '=-,334y y y '=-,并将第三、第四约束方程合并为等式约束,得: 12312123123123max 2415304372654..64330,0w y y y y y y y y s t y y y y y ''=++'--≥⎧⎪''-+=⎪⎨''--+≤-⎪⎪''≤≥⎩取值无约束,y 结论:对于非标准约束的原问题和对偶问题,可得出约束条件和变量如下的对应逻辑关系:五、原问题化为对偶问题的2种求解思路:(一)根据表格中约束条件和变量对应的逻辑关系,直接转换为对偶问题; ——注意,对于min 原问题,应该从表格右列向左列转化(变量转为约束时,不等号相反);对于max 原问题,应该从表格左列向右列转化(变量转为约束时,不等号不变)(二)将约束条件和变量转化为标准形式后,转换过去,具体步骤稍微繁琐,但可靠性高——对于原问题为min ,其约束条件统一化为“C YA ≥'”,含义:资源的转让收入AY 要大于产品的市场价格C 。
运筹学单纯形法
16
三、其他解旳情况 1、无穷多种解 例2 解LP问题:
min Z x1 2 x2 x3 0 x4 0 x5
xx51
1 2c 5 3c
其中c是满足非负性旳任意常数。
21
再由
x1,
x5
旳非负性,知:
x1 x2
1 2c c
0 0
x5 5 3c 0
解出 0 c 5 3
最优解为:
(2c 1, c,0,0,5 3c)T (其中0 c 5 )
3
最优值为:max S 1.
22
2、无最优解旳两种情况:
相应地,将 X 0代入目的函数得 Z ( X 0 ) 0
从数学角度看,若让非基变量 x1, x2 取值从零增长,
6
min Z 2x1 x2 0x3 0x4 0x5
相应旳目旳函数值Z也将随之降低。所以有可能找到一种 新旳基本可行解,使其目旳函数值有所改善。即进行基变
换,换一种与它相邻旳基。再注意到 x1 前旳系数-2比 x2
x3
6 x1 x1
2x2 x2
x4 x5
xi 0
i 1,,5
15 24 5
目前可行基{ x3, x4 , x5 }所相应旳基本可行解
X 0 (0,0,15,24,5)T
(相应可行域旳 o(0,0) )
显然不是最优。 因为从经济意义上讲, x1 0, x2 0
意味着该厂不安排生产,所以没有利润。
2
运筹学单纯形法各个步骤详解
运筹学单纯形法各个步骤详解1. 引言大家好,今天咱们来聊聊一个听起来有点高深莫测,但其实特别有意思的东西——运筹学的单纯形法。
别看它名字复杂,其实它就是解决线性规划问题的绝招,像一把钥匙,打开了优化的宝藏。
想象一下,如果你有一大堆资源,要把它们分配到不同的地方,听起来就像玩拼图一样。
好了,废话不多说,咱们直接进入正题!2. 单纯形法的基本概念2.1 线性规划的起源首先,线性规划是啥?简单来说,它就是在一系列限制条件下,想要最大化或最小化某个目标函数。
这听起来像是在做一场抉择,你得在各种选择中找到最优解。
有点像在超市里,看到一堆零食,犹豫不决,最后只能选那包最爱吃的,既美味又划算。
2.2 单纯形法的基本思路而单纯形法就是解决这个问题的武器。
它的核心思想很简单,跟追求完美一样,咱们要一步步地朝着最优解迈进。
想象你在爬山,每一步都在找那个最容易走的路,直到你站在山顶,俯瞰整个美景,啊,真是太棒了!3. 单纯形法的步骤3.1 初始化那么,怎么开始呢?首先,咱们得把问题转化为标准形式。
这就像把一个繁杂的图案简化成几何图形,让它看起来更清晰。
要把不等式转换为等式,添加松弛变量,这样就可以把问题整理得干干净净。
3.2 构建初始单纯形表接下来,咱们构建初始单纯形表。
这个表就像一本菜单,上面列出了所有可能的选择和它们的成本。
每个变量都有自己的“价格”,而咱们的目标就是尽量少花钱,最大化收益。
想想你逛街时,总是想着要花最少的钱买到最好的东西,嘿,这就是单纯形法的精神!3.3 寻找基变量和入基变量然后,咱们得找出“基变量”和“入基变量”。
基变量就像在舞台上表演的演员,而入基变量就是准备加入的“新人”。
在这个过程中,咱们得判断哪个新人能让整个表演更精彩。
如果找对了,舞台瞬间就能变得熠熠生辉,若是找错了,哎呀,那可就尴尬了。
3.4 更新单纯形表一旦找到了合适的入基变量,咱们就得更新单纯形表。
这一步就像在调味,添加新的元素,让整体味道更加丰富。
(完整word版)运筹学单纯形法
=0
σj=Cj- Zj
2
-1
1
0
0
0
1
S1
0
0
4
-5
1
-3
0
30
30/4
X1
2
1
-1
2
0
1
0
10
10/-1
S3
0
0
2
-3
0
-1
1
10
10/2
Zj
2
-2
4
0
2
0
Z=Z0=0*30+
2*10+0*10
=20
σj=Cj- Zj
0
1
-3
0
-2
0
2
S1
0
0
0
1
1
-1
-2
10
X1
2
1
0
1/2
0
s.t.
5x1+6x2-4x3-4x4+S1=20
3x1-3x2+2x3+8x4+S2=25
4x1-2x2+x3+3x4+S3=10
x1,x2,x3,x4,S1,S2,S3>=0
迭代次数
基变量
CB
(Ci)
X1
X2
X3
X4
S1
S2
S3
b
比值
bi/aij
6
2
10
8
0
0
0
0
S1
0
5
6
-4
-4
1
0
0
20
运筹学---单纯形法
运筹学---单纯形法单纯形法是一种解线性规划问题的有效算法。
在这个问题中,我们寻找一组决策变量,以便最大化或最小化一个线性目标函数,同时满足一系列线性限制条件。
单纯形法通过暴力搜索可行解并逐步优化目标函数来求解该问题。
单纯形法的主要思想是从一个初始可行解开始,并通过迭代来逐步移动到更优的解。
在每一步迭代中,算法将当前解移动到一个相邻的顶点,直到找到一个优于当前解的顶点。
具体操作包括选择一个非基变量,并将其作为入基变量,同时选择一个基变量并将其作为出基变量。
新的基变量将替换原来的非基变量,并且目标函数的值将被更新。
关键是如何选择入基变量和出基变量。
为此,单纯形法使用一个称为单纯形表的矩阵来跟踪线性规划问题的状态。
单纯形表包含目标函数系数,限制条件系数,决策变量的当前值以及对角线上的单位矩阵。
通过适当地操作这个表,可以确定要移动到哪个相邻顶点,并相应地更新解和目标函数的值。
一般来说,单纯形法需要在指数时间内解决线性规划问题,因为需要遍历所有可能的可行解。
但是,在实际应用中,单纯形法往往比其他算法更快和更有效。
此外,在使用单纯形法时,需要注意陷入无限循环或者找不到一个可行解的可能性。
单纯形法的主要优点是:它是一种简单而直观的求解线性规划问题的方法;它易于实现,并且在许多情况下可以很快地求解问题。
它还可以用于解决大规模问题,包括具有成千上万个变量和限制条件的问题。
在实际应用中,单纯形法经常与其他算法结合使用,例如内点法或分支定界法。
这些方法可以提供更好的性能和结果。
但是,在许多情况下,单纯形法仍然是解决线性规划问题的首选算法。
在总体上,单纯形法是一种强大而灵活的工具,可以帮助研究人员和决策者在面对复杂的决策问题时做出明智的选择,并实现最大的效益。
运筹学 单纯形法的迭代原理讲解
运筹学单纯形法的迭代原理讲解
单纯形法是一种用于解决线性规划问题的常用方法,其基本思想是通过迭代的方式逐步接近最优解。
下面是单纯形法的迭代原理的讲解:
1. 初始解的选择:首先需要选择一个初始解,通常选择的方法是构造一个基可行解,即使所有的约束条件都满足的解。
2. 判断最优性:在每一次迭代中,需要判断当前解是否为最优解。
首先,计算当前解对应的目标函数值。
然后,检查是否存在非基变量的系数大于等于0(对于最小化问题)或者小于等于0(对于最大化问题),如果存在这样的非基变量,则当前解不是最优解;如果不存在这样的非基变量,则当前解是最优解。
3. 生成新解:如果当前解不是最优解,则需要生成新的解。
首先,选择一个非基变量,使得目标函数的值可以通过增加(对于最小化问题)或减少(对于最大化问题)该变量的值来改善。
然后,需要计算这个非基变量能够增加或减少的最大量,称为变量的进步长度。
最后,通过调整基变量的值来生成新的解。
4. 更新目标函数和约束条件:在生成新解之后,需要更新目标函数和约束条件,以便于下一次迭代。
具体操作包括计算新解对应的目标函数值,计算新解对应的约束条件的值,调整目标函数和约束条件的系数。
5. 重复迭代:根据判断最优性的结果,进行下一次迭代。
如果当前解是最优解,
则算法结束;否则,继续进行下一次迭代。
通过不断重复这一迭代过程,直到找到最优解或者确定问题无解为止。
单纯形法的迭代过程一般会在有限次数内结束,并且能够得到最优解。
单纯形法原理
单纯形法原理
单纯形法是线性规划中常用的一种方法,用于求解极值问题。
它的基本思想是通过不断迭代的方式,逐渐接近最优解。
单纯形法的基本步骤如下:
1. 将线性规划问题转化为标准型。
标准型的约束条件为≤,目标函数为最大化,且所有变量的取值范围为非负数。
2. 利用人为变量引入的方法,将标准型问题转化为初始单纯形表。
3. 选择合适的初始基变量,并计算出对应的基变量解。
4. 计算单纯形表中的评价函数。
如果所有评价函数中的系数都为非负数,则当前基变量解为最优解,过程结束。
否则,继续进行下一步。
5. 选择进入变量和离开变量。
进入变量是指取值为负的评价函数系数对应的变量,离开变量是指进入变量在当前基变量解中最先达到0的变量。
6. 迭代计算,通过变换基变量,逐渐接近最优解。
具体的计算方式为将进入变量对应列调整为单位向量,同时更新初始单纯形表中其它列的数值。
7. 重复步骤4至步骤6,直至得到最优解为止。
值得注意的是,单纯形法的执行依赖于初始基变量的选择,不同的初始基变量可能会得到不同的最优解。
因此,在实际应用中,需要通过灵活选择初始基变量来提高求解效果。
(运筹学大作业)单纯性法与对偶单纯性法的比较
对偶单纯形法与单纯形法对比分析1.教学目标:通过对偶单纯形法的学习,加深对对偶问题的理解2.教学内容:1)对偶单纯形法的思想来源 2)对偶单纯形法原理3.教学进程:1)讲述对偶单纯形法解法的来源:所谓对偶单纯形法,就是将单纯形法应用于对偶问题的计算,该方法是由美国数学家C.莱姆基于1954年提出的,它并不是求解对偶问题解的方法,而是利用对偶理论求解原问题的解的方法。
2)为什么要引入对偶单纯形法:单纯形法是解线性规划的主要方法,对偶单纯形法则提高了求解线性规划问题的效率,因为它具有以下优点: (1)初始基解可以是非可行解, 当检验数都为负值时, 就可以进行基的变换, 不需加入人工变量, 从而简化计算; (2)对于变量多于约束条件的线性规划问题,用对偶单纯形法可以减少计算量,在灵敏度分析及求解整数规划的割平面法中,有时适宜用对偶规划单纯形法。
由对偶问题的基本性质可以知道,线性规划的原问题及其对偶问题之间存在一组互补的基解,其中原问题的松弛变量对应对偶问题的变量,对偶问题的剩余变量对应原问题的变量;这些互相对应的变量如果在一个问题的解中是基变量,则在另一问题的解中是非基变量;将这对互补的基解分别代入原问题和对偶问题的目标函数有z=w 。
据此可知,用单纯形法求解线性规划问题时,在得到原问题的一个基可行解的同时,在检验数行得到对偶问题的一个基解,并且将两个解分别代入各自的目标函数时其值相等。
我们知道,单纯形法计算的基本思路是保持原问题为可行解(这时一般其对偶问题为非可行解)的基础上,通过迭代,增大目标函数,当其对偶问题的解也为可行解时,就达到了目标函数的最优值。
那么对偶单纯形法的基本思想可以理解为保持对偶问题为可行解(这时一般原问题为非可行解)的基础上,通过迭代,减小目标函数,当原问题也达到可行解时,即达到了目标函数的最优值。
其实对偶单纯形法本质上就是单纯形法, 只不过在运用时需要将单纯形表旋转一下而已。
运筹学单纯形法例题求解过程
运筹学单纯形法例题求解过程摘要:一、运筹学单纯形法概述二、单纯形法求解步骤1.确定基变量和初始基本可行解2.编制初始单纯形表3.判断基本可行解是否为最优解4.迭代求解最优解三、例题求解过程1.题目描述2.化为标准型3.建立初始单纯形表4.迭代计算四、总结正文:一、运筹学单纯形法概述运筹学单纯形法是一种求解线性规划问题的方法,它的主要思想是通过不断迭代,逐步优化基变量的值,从而求得问题的最优解。
单纯形法可以有效地解决具有如下特点的问题:目标函数线性,约束条件线性,变量非负。
二、单纯形法求解步骤1.确定基变量和初始基本可行解在求解线性规划问题时,首先需要确定基变量,即在约束条件方程组中,选择一部分变量作为基变量,用于表示其他变量。
通过寻找或构造单位矩阵的方法,可以确定基变量,从而求出初始基本可行解。
2.编制初始单纯形表基于初始基本可行解和线性规划模型提供的信息,可以编制初始单纯形表。
单纯形表包含了基变量、非基变量、目标函数系数、约束条件系数和检验数等信息,用于描述问题的基本情况。
3.判断基本可行解是否为最优解通过检验数cj-zj 来判断基本可行解是否为最优解。
如果所有非基变量的检验数cj-zj<0,说明已经达到最优解,计算停止。
如果存在cj-zj>0,但所有cj-zj>0 所在列对应的所有aij<0,说明无最优解,计算停止。
如果至少存在一个cj-zj>0,并且所对应的所有j 列中至少有一个aij>0,说明没有达到最优解,需要继续迭代求解。
4.迭代求解最优解在迭代过程中,首先需要确定换入变量,即选择最大检验数对应的非基变量。
然后,利用特定公式计算出换出变量,即在基变量中选择一个与换入变量对应的变量进行替换。
接着,生成新的单纯形表,将换入变量和换出变量进行置换后,调整新基变量对应的矩阵为单位矩阵。
最后,重新计算检验数和目标函数值,返回第二步,直至找到最优解。
三、例题求解过程假设有一个线性规划问题,目标函数为MINfx1x2Mx4Mx6,约束条件为:3x1 + 4x2 ≤ 122x1 + 3x2 ≤ 10x1, x2 ≥ 0首先,将约束条件化为标准型:3x1 + 4x2 + s1 = 122x1 + 3x2 + s2 = 10x1, x2 ≥ 0然后,建立初始单纯形表:| 基变量| 非基变量| 目标函数系数| 约束条件系数| 检验数| ---------------------------------------------------------------------行1 | x1 | s1 | -3 | -4 | -12 |行2 | x2 | s2 | -4 | -3 | -10 |行3 | x1 | x2 | 0 | 0 | 0 | 行4 | s1 | x2 | 0 | 3 | 0 | 行5 | s2 | x1 | 0 | 2 | 0 | 根据初始单纯形表,可以得到初始基本可行解为:x1 = 0, x2 = 0接下来,判断基本可行解是否为最优解:c1 = -12, c2 = -10, c3 = 0, c4 = 0, c5 = 0由于c3、c4 和c5 都小于等于0,所以基本可行解不是最优解,需要继续迭代求解。
单纯形法的综述及其应用-文献综述
毕业论文文献综述数学与应用数学单纯形法的综述及其应用一、 前言部分(说明写作的目的,介绍有关概念、综述范围,扼要说明有关主题争论焦点)1.写作目的本文主要在于介绍单纯形法的历史背景,基本计算方法,改进的计算方法,以及单纯形法的应用.目的在于对单纯形法的历史背景,计算方法等进行综述,并总结单纯形法在生活各个领域的应用,单纯形法是求解线性规划问题很有效的方法,通过对单纯形法的进一步了解,最后提出一实际问题利用单纯法进行分析求解.2.有关概念LP 问题的一般形式[1]()1122. Max min n n ob Z c x c x c x =+++L()()()1111221121122222112212..: ,,,0 n n n n m m mn n m n a x a x a x b a x a x a x b s t a x a x a x b x x x +++≤≥⎧⎪+++≤≥⎪⎪⎨⎪+++≤≥⎪⎪≥⎩L L LL L 线性规划问题的标准型为[2]()()()11221111221121122222m112212min a a s.t.a 01,2,,,,,n n n n n n m mn n m j n S c x c x c x S x a x a x b x a x a x b x a x a x b x j n x x x =+++⎧+++=⎪+++=⎪⎪⎨⎪+++=⎪⎪≥=⎩L L L L L L 为目标函数(1)为决策变量 其矩阵形式为min s.t.0S CXAX b X ==⎧⎨≥⎩(2)其中,()12,,,n C c c c =L ,决策向量()()1212,,,,,,,T T n m X x x x b b b b ==L L .A 为约束条件中的系数矩阵, 即111212122212n n m m mm a a a a a a A a a a ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦L L M M M M L 本文除了介绍线性规划问题的一般形式、标准形式和矩阵形式以外还列举了一些定义. 定义1[3]:设矩阵A 的秩为m ,矩阵B 是A 中的一个m 阶满秩子方阵,则B 为一个基矩阵.矩阵A 中剩余元素组成的子阵为N ,即[]A BN =.把x 的分量相应地分成两部分,记成B x 和N x ,B x 的分量与B 的列对应,称为基变量;N x 的分量与N 中的列对应,称为非基变量.在约束Ax b =中令所有的非基变量取值为零时,得到解10B N x B b x x -⎡⎤⎡⎤==⎢⎥⎢⎥⎣⎦⎣⎦,称为相应于B 的基本解.定义2[3]:基本解得基变量都取非负值时,即满足10B x B b -=≥的基本解为基本可行解.定义3[4]:满足式(1)各约束条件的解()12,,,T n X x x x =L 称为可行解.全部可行解的集合称为可行域.目标函数1min n j j j Z c x ==∑达到最大值的可行解称为最优解.定义4[4]:设A 为约束方程组1(1,...,)n ij j i j a x b i m ===∑的m n ⨯阶系数矩阵,设(n m >),其秩为m ,B 为矩阵A 中的一个m m ⨯阶的满秩子矩阵,称B 为线性规划问题的一个基.不失一般性,设11111...(,...,)...m m m mm a a B a a αα⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦M M B 中每一个向量(1,..,)j j m α=称为基向量;与基向量j α对应的变量j x 称为基变量.基变量以外的的变量称为非基变量.定义5[4]:在约束方程组1(1,...,)n ijj i j a x b i m ===∑中,令所有非基变量12...0m m n x x x ++====.此时约束方程组有唯一解()12,,,TB m X x x x =L .将此解加上非基变量取0的值,有()12,,,,0, 0m X x x x =L ,称X 为线性规划问题的基本解.基本解总数不超过m n C 个.3.综述范围通常,求解LP 模型时,常用基本单纯形方法、大M 法、两阶段法等,所以在文献[5-8]具体介绍了求解线性规划的单纯形法的一些计算方法.根据对模型中是否存在单位基矩阵、存在怎么样的基矩阵等特征的判断来选择方法或判断解的存在与否等情况.这就是说,在求解线性规划的单纯形法中,初始基(矩阵)的确定是一个基本问题.通常使用大M 法和两阶段法,通过人工构造,人为地在系数矩阵中形成一个单位矩阵作为初始基,再进行单纯形法的迭代[9].由于越来越多的领域借助于线性规划来做出最优决策,完善线性规划理论及其有效解法已成为重要研究课题.单纯形法作为求解线性规划问题较实用而有效的算法已在实际中得到广泛应用.本文在文献[10-11]简述关于单纯形算法的讨论、优化设计与实现,分析了单纯形算法的主要特点.最后本文例举一些单纯形法在实际问题应用例子来说明单纯形法是处理运筹学模型的一种重要方法.4.主题的争论各种资源的最优配置已成为当今节约型社会的研究热点.它广泛应用于国防、科技、工业、农业、交通运输、环境工程、教育、经济及社会科学等领域,是指在一定的人力、物力、财力等资源条件下,如何合理利用这些资源完成最多任务或得到最大效益的方法.线性规划的资源最优配置是研究在一组线性约束之下,目标线性函数的最小值或最大值问题[3].Dantzig 在1947年提出了求解线性规划问题的单纯形算法.单纯形算法是寻找最优基本可行解的一种行之有效的算法[12].二、主体部分(阐明有关主题的历史背景、现状和发展方向,以及对这些问题的评述)(一)历史背景单纯形法是求解线性规划问题的通用方法.它是是美国数学家G.B.丹齐克于1947年首先提出来的.它的理论根据是:线性规划问题的可行域是n维向量空间Rn中的多面凸集,其最优值如果存在必在该凸集的某顶点处达到.顶点所对应的可行解称为基本可行解.单纯形法的基本思想是:先找出一个基本可行解,对它进行鉴别,看是否是最优解;若不是,则按照一定法则转换到另一改进的基本可行解,再鉴别;若仍不是,则再转换,按此重复进行.因基本可行解的个数有限,故经有限次转换必能得出问题的最优解.如果问题无最优解也可用此法判别.(二)现状1.基本定理下面主要介绍一下在单纯形法的综述及其应用中所涉及的一些基本定理.定理1[3]:若式(1)存在有界最优解,则必从基本可行解中得到.定理2[9]:若矩阵A经过有限次初等行(列)变换变换成矩阵B则,A的行(列)向量组与B的行(列)向量组等价,而A的任意k个列(行)向量与B中对应的k个列(行)向量有相同的线性相关性.定理3[4]:若线性规划问题存在可行解,则问题的可行域为凸集.定理4[4]:线性规划问题的基本可行解X对应线性规划问题可行域的顶点.定理5[4]:若线性规划问题有最优解,一定存在一个基本可行解是最有解.2.单纯形法的计算(1)计算步骤单纯形表X列依次标明各方程的基变量;BB C 是基变量相应的价值系数,它们是与基变量相对应的;b 列是约束方程组右端的常数;j c 行是基变量的价值系数;i θ列的数字是在确定换入变量后,按θ规则计算后填入;最后一行称为检验数行,对应各非基变量i x 的检验数是,1,1,2,...,m j i i j i c c a j n =-=∑.现在把单纯性法的的计算步骤归纳如下: 第一步 对于一个已知的可行基12B ,,...,)j j jn p p p =(,写出B 对应的典式以及B 对应的基可行解(0)x ,(0)110200(,,...,)T B m x B b b b b -==第二步 检查检验数,如果所有检验数 0j λ≤ (j=1,2,…,n )则(0)x 便是最优解,计算结束,否则转下一步.第三步 如果有检验数0r λ>,而112(,,...,)0T r r r mr B p b b b -=≤,则问题无最优解,计算结束,否则转下一步.第四步 如果有检验数0r λ>,且12(,,...,)T r r mr b b b 中有正数,则取r x 为进基变量(若有多个正检验数,可任选一个,一般来说选取最大的检验数有利于提高迭代效率),并求最小比值00min i s ir srb b b b ⎧⎫=⎨⎬⎩⎭ 由此来确定js x 为离基变量(若上述最小比值同时在几个比值上达到,则选取其中下标最小的变量为离基变量),然后用r P 代换js p 得新基B ,再接下一步.第五步 求出新基B 的典式(计算或直接通过初等行变换来实现)以及B 对应的基可行解,1(1B 10200B (,,...,)Tm x b b b b -==) 然后,以B 取代B ,(1)x 取代(0)x ,返回第二步[13].(2)单纯形法的进一步讨论人工变量:大M 法和两阶段法为了解线性规划问题 min .0CX s t AX b X ⎧⎨=≥⎩ 需要一个初始基可行解,为此常常借助于大M 法或两阶段法. 大M 法:在一个线性规划问题的约束条件中加入人工变量后,要求人工变量对目标函数取值不受影响,为此假定人工变量在目标函数中的系数为(-M )(M 为任意大的正数),这样目标函数要实现最大化时,必须把人工变量从基变量换出.否则目标函数不可能实现最大化.在许多线性规划问题中,引进松弛变量化成标准形式后,约束条件方程组的系数矩阵并不含m 阶单位矩阵,这样就给单纯形解法的换基迭代带来了困难,为了很快找到第一个可行基,在利用单纯形法求解时,首先要在线性规划问题中引入人工变量,把问题变为约束方程组的系数矩阵中含有单位阵,用以作为人造基,然后再按照单纯形法进行换基迭代,求得最优解或判定无最优解.这种方法就称为两阶段法.第一阶段:不考虑原问题是否存在基可行解;给原线性规划问题加入人工变量,并构造仅含人工变量的目标函数和要求实现最小化.如11111122111211222222m112212min 0...0a a s.t.a ,,...,0n n m nn n n n n n m mn n n m m n m x x x x x a x a x x b x a x a x x b x a x a x x b x x x ω++++++=+++++++++=⎧⎪++++=⎪⎪⎨⎪++++=⎪≥⎪⎩L L L LL 然后用单纯形法求解上述模型,若得到0ω=,这说明原问题存在基可行解,可以进行第二段计算.否则原问题无可行解,应停止计算.第二阶段:将第一阶段计算得到的最终表,除去人工变量.将目标函数行的系数,换原问题的目标函数系数,作为第二阶段计算的初始表.大M 法与两阶段法都是从寻求线性规划问题的一个初始可行基引入的.从形式上看,它们是两种不同的方法,但在本质上是一致.3.单纯形法的算法(1)改进单纯形算法通常使用大M 法和两阶段法,通过人工构造,人为地在系数矩阵中形成一个单位矩阵作为初始基,再进行单纯形法的迭代.这样,往往无意中扰乱了思想主线,增加了计算量.特别对于人工计算显得运算操作繁杂而偏离了主体,在理解和教学中常常带来不便.通过对单纯形法求解法的实质的分析和认识,提出了基于矩阵初等变换初始可行基的获得方法,进而得到基于单纯形法的求解线性规划模型的直接方法使单纯法的运用简单明白.利用这种确定初始可行基的方法求解线性规划问题时,首先,对线性规划模型()2的系数增广矩阵进行上述的初等行变换而得到r r ⨯阶的初始可行基()r m ≤,接着,将所得初始可行基安排入单纯形表,然后,进行单纯形表的表上作业程序.这样做的优点不仅在于可以给出初始可行基()r m =,而且可以方便地发现不独立的约束()r m <,并将其提前剔除,以减少单纯形法的计算量.具体步骤为:步骤 1 对增广矩阵B 施行一系列的初等行变换,并始终保持可行性(即:b 列非负),直到B 中含有单位矩阵;这里需要注意的是当变换到可以使某一行元素全部为0时,说明约束方程组不独立,B 可以降维为()()11m n -⨯+,那么,所得到的单位矩阵也就是()()11m n -⨯+阶的,并非一定要得到B 的m m ⨯阶的单位矩阵作为基.步骤 2 将步骤1的结果安排到一个单纯形表中,并以B 中的单位矩阵的列所相应的变量为基变量而得到初始单纯形表;步骤 3 在步骤2的所得的单纯形表上按照通常的单纯形表上作用法进行求解.需要说明的是,在步骤1中完全可以不用第一类初等行变换(交换任两行的位置),而只用第二、三类初等行变换就可以实现.该方法的优势在于思想清晰,方法简明,计算量减小.有了初始可行基,就可从这个可行基相应的基本可行解出发进行换基迭代,从而,求得目标函数的最优解或判断其无最优解[9].(2)计算机算法利用数学计算工具来解决单纯形法中计算的难题,其应用价值和推广价值是可观的,不仅可以提高计算速度,而且可以大大提高计算的准确性.求解思路:首先把它变为如下(左式) 标准形式:11221111221121122222m112212max a a s.t.a ,,...,2n n n n n n m mn n m n Z c x c x c x x a x a x b x a x a x b x a x a x b x x x =++++++=⎧⎪+++=⎪⎪⎨⎪+++=⎪≥⎪⎩L L L L L 1231112131121222322123...0.........n n n m m m mn m c c c c a a a a b p a a a a b a a a a b ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦M M 然后对p 进行标准化, 记[]123...T i i i i mi a a a a a =,如果i a 是只有一个分量为1 的单位向量,那么把p 第一行中的i c 通过矩阵变换, 变成0, 标准化完成..标准化的目的是将第一行中的系数12,,...,n c c c 变为检验数, 其中非基变量系数均为0,基变量的系数则未必为0.接着对p 进行变换, 首先在p 矩阵的第一行第1到第n 个分量中找出一个最大数,如果这个最大数不大于0 ,则不用进行再次迭代,直接得到最终变换矩阵g .反之,用k 记下最大数所对应的列..然后进行判断: 如果p 的第k 列的第2 至第m 个数全都小于或等于0 ,那么此线性规划问题无界,迭代结束.反之, 用p 的最后一列的第2 至第m 个分量分别除以第k 列对应的数,如果碰到除数小于或等于0 则跳过. 在所得结果中找出最小的那个数,用j 记下该数所对应的行.于是得到主元素(,)p j k 接下来是对第j 行进行行变换,将P( j , k) 变为1.然后对其他行进行行变换,使p 矩阵的第k 列的其他分量都变为0 , 于是第一轮变换结束.接下来回到变换过程的开始,重复迭代过程至到跳出迭代过程为止,最后对结果矩阵进行智能分析. 其中需要人工进行的步聚是构造计算矩阵p 和分析迭代结果两步, 以使求解过程比较简便且可靠性高[14].4.单纯形法的应用一个经济、管理问题凡满足一下条件时,才能建立线性规划的模型.(1)要求解问题的目标函数能用数值指标来反映,且为线性函数:(2)存在多种方案及有关数据:(3)要求达到的目的是在一定约束条件下实现的,这些约束条件可用线性等式或不等式来描述.一般满同时足上面几个条件的实际生活中的难解问题都可以用线性规划问题来解决.所以越来越多的领域借助于线性规划来做出最优的决策.单纯形法在实际中的应用最常使用于资源的配置.人力、时间和物质资源的优化配置问题是制定企业生产计划时考虑的重要问题,线性规划模型可以考虑各类资源的变动对其造成的影响并寻求最佳方案.在企业生产和经济管理等领域中,人们常会遇到这样的问题,如何从一切可能的方案中选择最好、最优的方案,在数学上把这类问题称为最优化问题.如何解决这类问题,在当今商品经济的环境下,是一个关系到国计民生的重要问题.线性规划是理论和方法都比较成熟,并具有广泛应用价值的一个运筹学分支.如果一个问题的限制条件可以写成某些决策变量的线性方程组或线性不等式组,目标可以写成决策变量的线性函数,那么这个问题的数学模型就是线性规划问题.线性规划法是研究如何将有限的人力、物力、设备、资金等资源进行最优计划和分配的理论方法.线性规划是企业生产过程中决策制定的理论依据,决策的合理与否直接影响到企业的经济效益,文献[15]介绍了线性规划理论,阐述了线性规划函数中各要素以及各变量的变化对分析造成的影响,通过单纯形法案例进行了计算,针对大型、复杂的模型,需要选择更为有效的手段来进行计算.能源紧缺是人类社会面临的重要问题.现代城市轨道交通系统通过轨道上方的直流接触网供电,因电动车组往往牵引功率巨大,需消耗大量电能,因此,有效利用牵引能源至关重要.单列车牵引策略优化对于节约牵引能耗具有极其重要意义.在文献[16-17]讨论了单纯形优化算法在城市轨道交通列车惰行点搜索方面的应用,列车运行因受多重因素影响,确定必要的惰行起点在实际情况的约束下并不容易.通过分析列车站内运行惰行点搜索特点、约束条件及寻解空间等.详细介绍了二维空间中单纯形法寻找合适列车惰行点的实现过程.借助于单列车仿真系统的帮助,通过问题的寻优结果分析,研究了这种启发式搜索方法在确定惰行点方面的可行性和性能表现.借助于单纯形法在城市勒道交通列车站问运行惰行点搜索方面的应用,在综合考虑运行时间和能量消耗不同要求的情况下,应用该搜索方法得到的惰行点可以为优化列车运行提供满意解.启发式的搜索方法,通过较低的迭代次数,为列车运行的惰行点搜索提供了解决方案.然而,在站间运行时,首先要关注两站之间的距离有没有足够的空间容纳多个惰行点,从而合理选择惰行点数量.从应用角度看,根据整条线路的总运行时间搜索多个站点间的惰行点,会使搜索更复杂.这将在今后进一步研究[16].三、总结部分(将全文主题进行扼要总结,提出自己的见解并对进一步的发展方向做出预测)线性规划是运筹学的一个重要分支,早在20世纪30年代末,前苏联著名的数学家康托洛维奇就提出了线性规划的数学模型,越来越来受到人们的重视.而后于1947 年由美国数学家G. B. Duntzg提出一般线性规划问题的求解方法——单纯形法,它是线性规划问题的通用解法.从而使得线性规划的应用领域更加的广泛.线性规划这一学科也因此开始形成并迅速地发展起来.单纯形方法与经典分析的方法很不相同,它利用了矩阵的初等变换,通过部分枚举的方法来寻求线性规划问题的最优基可行解,从而求得值.由于这种方法运算简单又有规则,且适用性广泛.所以它的应用迅速得到发展,根据它而编制的程序已在一些计算机上开发实现.值得指出的是,尽管单纯形法避开了经典极值问题常用的微分法,但是单纯形法的最优性条件仍可用微分法导出[18].四、参考文献(根据文中参阅和引用的先后次序按序编排)[1]田学民.利用单纯形法解线性规划问题的机理[J].中国科技论文在线,2010.[2]贺学海.单纯形法解决LP问题的研究[J].沈阳师范大学报(自然科学版).2010,28(1):14-16.[3]王东雷.基于单纯算法的优化设计与实现[J].安徽农业科学.2007,35(36):11727-11728.[4]蔡海涛等.运筹学[M].湖南长沙.国防科技大学出版社.2003.[5]张毅.谈两阶段法与大M法的统一处理方法[J].陕西理工学院学报(自然科学版).2009,25(2):85-86.[6]白岩.线性规划中两阶段法德简便计算法[J].长春师范学院学报自然科学版).2005,24(5):1-3.[7]Hamdy A.Taha.运筹学(英文版) [M].北京:人民邮电出版社.2007.[8]拉塞尔C.沃克.数学规划导论(英文版)[M].北京.机械工业出版社.2005.[9]申卯兴,许进.求解线性规划的单纯形法的直接方法[J].华东科技大学.2007,43(30):94-96.[10]高引民,杜晓马.关于单纯形算法的讨论[J].太原机械学院学报.1994,15(1):70-75.[11]陈英霞,朱维钧.关于单纯形算法的两点思考[J].怀化学院学报.2008,11(11):26-27.[12]王东雷,张耀中.一种改进的单纯算法实现及其应用[J].安徽农业科学.2007,35(35):11601-11602.[13]张干宗.线性规划[M].武汉.武汉大学出版社.2004.[14]毕春丽,曾强,王荣文.线性规划问题中单纯形法的计算机求解[J].焦作工学院学报(自然科学版).2002,21(6):472-474.[15]王树祥,武新霞,卜少利.线性规划在企业生产计划中的应用及模型的建立和求解[J].中国电力教育.2007,21:195-197.[16]赵亚辉,朱琴跃.基于单纯形法的城轨列车惰行点搜索[J].同济大学(自然科学版).2010,38(1):81-85.[17]赵亚辉,谢维达.单纯形法在城轨列车惰行点搜索中的应用[J].同济大学(自然科学版).2009,45(14):217-220.[18]毛东明,许风.单纯形法最优性条件的经典证明[J].辽东学刊(自然科学版).1994, 3:12-14.。
管理运筹学,用单纯形法求解以下线性规划问题
管理运筹学,用单纯形法求解以下线性规划问题管理运筹学是处理决策问题的重要科学,不仅根据不同目标和条件制定策略,而且可以更有效地识别和解决问题。
有些决策问题往往是非线性复杂性,涉及多个因素和变量之间的复杂关系,因此,以线性规划模型的形式来处理这些问题被认为是最有效的方法之一。
但是,线性规划模型的求解可能会非常困难,尤其是规模较大的问题。
而单纯形法作为其中一种有效的求解方法,其有效性和灵活性,使其在管理运筹学的研究中具有重要的意义。
单纯形法是指将原始线性规划问题转换为单纯形问题,然后利用相应的单纯形算法求解该问题,以求解线性规划问题。
单纯形法最早由威廉伯恩斯特(William B.Von Neumann)提出,它是利用单纯形理论把原始线性规划问题转化为单纯形问题,然后求解单纯形问题,得到原始线性规划问题的最优解。
单纯形算法的基本步骤包括:首先,根据原始线性规划问题的约束条件,构造单纯形方程组;其次,可以以此单纯形方程组为基础,进行单纯形法的迭代;最后,根据迭代的结果来求解原始的线性规划问题。
单纯形法在管理运筹学中的应用非常广泛,它不仅可以用来求解比较复杂的线性规划问题,而且可以用来解决某些约束条件下的非线性规划问题,从而解决管理运筹学中的相关问题。
另外,单纯形法还可以在企业资源规划(ERP)等管理运筹学领域的应用中发挥重要作用。
在实际应用中,单纯形法有其优缺点。
优点主要有以下几点:首先,它是一种有效的求解线性规划问题的方法,可以用来解决比较复杂的问题;其次,求解步骤简单,可以在较短的时间里求得最优解;最后,它适用性强,也可以用来解决某些约束条件下的非线性规划问题。
然而,单纯形法也有一些缺点,比如具有结构性特征,可能不能求解一些复杂的问题;另外,在求解比较大的问题时,运算负荷较大,效率较低。
总之,单纯形法是一种求解线性规划问题的有效方法,在管理运筹学中,它具有重要的意义和应用价值,它可以有效地解决复杂的线性规划问题,也能够解决某些特定条件下的非线性规划问题。
线性规划中的单纯形法求解问题
线性规划中的单纯形法求解问题线性规划是运筹学中的一个重要分支,它的应用范围非常广泛,包括经济、工程、网络、交通等领域。
在实际问题中,我们通常会需要求解一个线性规划问题,而单纯形法是解决线性规划问题的一种常用方法。
1. 线性规划线性规划是一类优化问题,通常在最小化或最大化某个线性函数的同时,满足一组线性约束条件。
一个线性规划问题可以表示为:$$\begin{array}{lll}\textrm{min/max} & c^Tx & \\ \textrm{s.t.} & Ax &\leq b \\ & x &\geq 0\end{array}$$其中,$c$ 是一个 $n$ 维列向量,$A$ 是一个 $m\times n$ 的矩阵,$b$ 是一个 $m$ 维列向量,$x$ 是一个 $n$ 维列向量,代表问题的决策变量。
我们称 $Ax\leq b$ 是问题的约束条件,称 $x\geq0$ 是问题的非负性条件。
线性规划问题的求解可以分为两种基本方法,分别为单纯形法和内点法。
其中,单纯形法是一种经典的方法,应用广泛,是大多数线性规划软件的基础算法之一。
2. 单纯形法基本思想单纯形法的基本思想是通过对问题中的决策变量进行调整,使得目标函数值不断减小(最小化问题)或增大(最大化问题),并且在满足约束条件的前提下,最终找到最优解。
单纯形法的具体步骤如下:步骤1:初始化。
我们从一组基本解开始,即 $m$ 个基本变量和 $n-m$ 个非基本变量构成的向量 $x$。
在最初的阶段,我们需要选择一组基变量,并计算出它们的取值。
这个基变量集合构成了问题的起始基。
步骤2:检查最优性。
首先,我们需要对当前解进行检验,判断它是否为最优解。
如果是最优解,则停止算法;否则,进行下一步。
步骤3:选择进入变量。
我们需要选择一个非基变量,使得将它加入到基变量集合后,目标函数值有最大的增长量。
如果这个增长量为负数,则问题无界。
《管理运筹学》求解线性规划的单纯形法
– 基变量在目标函数中的系数为0
– 非基变量在目标函数中的系数<=0.
(注意:目标函数形式 z = 2x1 + 3x2)
– 若目标函数为方程形式:
检验数
z - 2x1 - 3x2=0,则需非基变量的系数>=0
求解线性规划的单纯形法
Q3:如何找下一个相邻的基本可行解
• 迭代步骤1:确定移动的方向
确定进基变量
例:z = 2x1 + 3x2 – 选择 x1 ?Z的增长率=2 – 选择 x2 ?Z的增长率=3 – 3>2,选择x2!
• 进基变量的选择:
检验数的 绝对值哦
~~~
– 选择非基变量的系数最大的!
求解线性规划的单纯形法
Q3:如何找下一个相邻的基本可行解
• 迭代步骤2:确定在何处停下 – 增加x2 的值, x1 =0
• 选择单元阵作为初始基:
1 1 1 0
A 1
2
0
1
(a1
,
a2
,
a3
,
a4
)
1 0
B
0
1
(a3
,
a4
)
令非基变量 x1= x2 = 0得:X0 = ( 0,0,3,4)T
求解线性规划的单纯形法
Q2:最优性检验
• 非最优:增加非基变量的值,可以使 得目标函数Z值增加
x1,
x2,
x3,
=1 +x4 =2 x4 ≥0
然后确定初始基本可行解
X0 = (0, 0, 1, 2)T z0 = 0
最优性检验:一切σj ≥ 0 ?
当前解 X0 非优; 须由X0 转化为另一个基本可行解 X1。 思路:让X0 中的一个非基变量进基,去替换原来的一个基变量(离基)。
运筹学单纯形法
解:本例中,A
1 2
2 1
1 0
10,A 中的2阶可逆子阵有
1
B 1
0
10,其相应的基向量为P3
,
P 4
,
基变量为x
3
,
x
,X
4
1
x 3 ; x 4
1
B 2
2
21,
其相应的基向量为P 1
,
P 2
,
基变量为x
1
,
x
2
,
X
2
x 1 。 x 2
a21
a22
a2n
am1
am2
amn
的秩为m,用Pj表示A中第j列的列向量,即
由此,矩阵A可表示为A=[P1 P2 … Pn]
(2)基矩阵与基变量
基矩阵(基):设A是m×n阶约束系数矩阵(m≤n),秩 为m。 A=( P1,P2,…,Pn ),则A中m阶可逆子阵 B=( P1,P2,…,Pm )为线性规划的一个基。其余部 分称为非基矩阵,记为N
3. 寻找更好的基可行解(基变换)
由于基可行解与基对应,即寻找一个新的基可行
解,相当于从上一个基B0变换为下一个新的基B1,因
此,本步骤也称为基变换。
进基
基变换的原则
改善:z 可行:B
b
z
0
变换的方法:( P ,, P ,, P ,, P )
出基
进基 保证“改善” 令 0对应的P 进基;
二、单纯形法的步骤
单纯形法是一 种迭代的算法,它 的思想是在可行域 的角点——基本可 行解中寻优。由于 角点是有限个(为 什么?),因此, 算法经有限步可终 止。
运筹学单纯形法讲解
运筹学单纯形法讲解一、单纯形法基本概念在运筹学中,单纯形法是一种在给定点搜索可行解集合的一种技术。
设有m个点x、 y、 z分布在两点P、 Q,它们是相互独立的,这样的点组成了单纯形。
单纯形是可以用于求解最优化问题的一种简单的对象,因而又称为对象或对象群。
由单纯形求出的最优解就叫做单纯形的最优解。
在实际应用中,一般用来求最优解的都是单纯形。
二、单纯形法适用条件和范围在运筹学中,单纯形法常用于求解线性规划、非线性规划和整数规划等,还可以求解网络的流量、质量等。
但当运输问题用单纯形法求解时,解不存在,无最优解,也无单纯形。
非线性规划只能得到对象最优解。
三、单纯形法具体步骤和算法介绍1、明确问题的目标。
2、计算出所有解,按确定的先后顺序排列。
3、计算出各解在横坐标上的相对位置,即计算每个解在左右方向上的距离,再根据此距离大小,取其中的最小值作为该点的最优解。
四、单纯形法的误差和精度1、明确问题的目标。
一般在最优化问题中,用最小值对准目标是最理想的,但是在实际工程应用中,人们往往要求越多越好,甚至有时只要求几个较小的值。
但要注意所得结果的可靠性和正确性,也要尽可能减少计算过程中的误差。
2、计算出所有解,按确定的先后顺序排列。
首先,找出最优解,再在这个最优解附近寻找另外的比最优解更好的最优解,直到所有点都达到满意的精度。
这种方法称为“穷举法”。
穷举法通常用于没有更好的方法时,常用于工程实际中。
3、计算出各解在横坐标上的相对位置,即计算每个解在左右方向上的距离,再根据此距离大小,取其中的最小值作为该点的最优解。
4、单纯形法的误差:由于人们认识上的错误或操作不当造成的,如排除法的计算次数与数据采集次数之比,以及采样值的平均数与真值之比,与取值的个数有关,与取值的精度也有关,必须合理确定取值范围。
5、单纯形法的精度:根据问题的规模,计算数据量和计算次数,反复调整取值点,改进计算方法,从而得到尽可能高的精度。
单纯形法的精度可达0.01或0.05。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 算法分析
1.1单纯形算法
1.1.1单纯形法的基本思路
利用求线性规划问题基本可行解(极点)的方法求解较大规模的问题是不可行的。
有选择地取基本可行解,即从可行域的一个极点出发,沿着可行域的边界移动到另一个相邻的极点,要求新极点的目标函数值不比原目标函数值差。
在线性规划的可行域中先找出一个可行解,检验它是否为最优解,如果是最优解,计算停止;如果不是最优解,那么可以判断线性规划无有限最优解,或者根据一定步骤得出使目标函数值接近最优值的另一个基本可行解。
由于基本可行解的个数有限,所以总可以通过有限次迭代,得到线性规划的最优基本可行解或判定线性规划无有限最优解。
1.1.2单纯形法的基本步骤描述
第1步:求初始基可行解,列出初始单纯形表。
对非标准型的线性规划问题首先要化成标准形式。
由于总可以设法使约束方程的系数矩阵中包含一个单位矩阵()12,,,m P P P ,
以此作为基求出问题的一个初始基可行解。
为检验一个基可行解是否最优,需要将其目标函数值与相邻基可行解的目标函数值进行比较。
为了书写规和便于计算,对单纯形法的计算设计了一种专门表格,称为单纯形表(见表1-1)。
迭代计算中每找出一个新的基可行解时,就重画一单纯形表。
含初始基可行解的单纯形表称初始单纯形表,含最优解的单纯形表称最终单纯形表。
第2步:最优性检验。
表1-1单纯形表
如表中所有检验数c j -z j ≦0,且基变量中不含有人工变量时,表中的基可行解即为最优解,计算结束。
当表中存在c j -z j >0时,如有P j ≦0,则问题为无界解,计算结束;否则转下一步。
第3步:从一个基可行解转换到相邻的目标函数值更大的基可行解,列出新的单纯形表。
1.确定换入基的变量。
只要有检验数δj >0,对应的变量x j 就可作为进基的变量,当有一个以上检验数大于零时,一般从中找出最大一个δk ,其对应的变量x k 作为进基变量。
2.确定出基的变量。
min |0i r ik
ik
rk
b b a a a θ⎧⎫⎪=>=⎨⎬⎪⎭⎩确定x r 是出基变量,a rk 为主元。
3.用进基变量x k 替换出基变量x r ,得到一个新的基()111,
,,,,
,r k r m P P P P P -+。
对应这个基可以找出一个新的基可行解,并相应地可以画出一个新的单纯形表(表1-2)。
(1) 把第r 行乘以rk
a 1
之后的结果填入新表的第r 行;对于r i ≠行,把第r 行乘以⎪⎭
⎫ ⎝
⎛-rk ik
a a 之后与原表中第
i 行;在B x 列中的r 行位置填入k x ,其余行不变;在B
c
列中用k c 代替r 行原来的值,其余的行与原表中相同。
(2) 然后用j x 的价值系数j c 减去B c 列的各元素与j x 列各对应元素的乘积,把计算结果填入j x 列的最后一行,得到检验数j δ,计算并填入Z '-的值(以零减去B c 列各元素与b 列各元素的乘积)[1]。
第4步:重复上述过程,就可以得到最优解或判断出无有限最优解。
表1-2初始单纯形表
1.1.3单纯形算法求解线性规划的例
在实践中,根据实际问题的要求,常常可以建立线性规划问题的数学模型。
下面这个例,就是一个用单纯形算法求解的线性规划的例。
美佳公司计划制造甲,乙两种家电产品。
但因财力、物力等原因,资源有限,已知制造一个家电产品分别占用的设备A ,B 的台时、调试时间、调试工序及每天可用于这两种家电的能力、各售出一件的获利情况,如表1-3所示。
问该公司应制造两种家电各多少件,使获取的利润为最大。
,,,,5
24261552Max 5432152
14
213
22
1≥=++=++=++=x x x x x x x x x x x x x s.t
x x Z 表1-3 产品有关数据表
解:根据题意构建下列线性规划模型:
目标函数 约束条件
用单纯形法求解线性规划问题,标准化后得:
取初始基本可行解()I p p p x x x x x ======54354321,,,5,24,15,0(单位矩阵)。
初始化单纯形表并计算的过程如表1-4所示。
在最优单纯形表中,非基变量54,x x 的检验数均为负数,于是得到最优解
T
x ⎪
⎭⎫ ⎝⎛=0,0,215,23,27*
,最优目标值
218*=Z 元(表中-17/2为-Z 的值)。
为了能够更清晰地看清单纯形算法的解题思路以及单纯形算法表格计算过程中表格各量的关系,把例中的3次迭代计算过程重述如下:
第一次迭代:
取初始可行基()543,,p p p ,那么543,,x x x 为基变量,21,x x 为非基变量。
将基变量
,524261552Max
21212122
1>≤+≤+≤+=x x x x x x x s.t.
x x Z
和目标函数用非基变量表示:
第二次迭代:
当前的可行基()531,,p p p ,那么531,,x x x 为基变量,42,x x 为非基变量。
将基变量和目标函数用非基变量表示:
4252
3421426
16415156
162431
318x x x x x x x x x x Z +-
=-=--=-+= 第三次迭代:
当前的可行基()321,,p p p ,那么321,,x x x 为基变量,54,x x 为非基变量。
将基变量和目标函数用非基变量表示:
5
4
35
4
25
4
154215452
1523
4123
2
1412
72141217x x x x x x x x x x x Z +-=
-+=
+-=
-
-
=
在目标函数542
1
41217x x Z --=
中,非基变量54,x x 的检验数不是正数,于是得到最
优解T
x ⎪
⎭⎫
⎝⎛=0,0,215,23,27*,最优目标值
218*=Z 。
2
152142
32
152********x x x x x x x x x
x Z --=--=-=+=
表1-4 单纯形表表格计算过程
在最优单纯形表中,非基变量
5
4,x x 的检验数均为负数,于是得到最优解
T
x ⎪⎭⎫
⎝⎛=0,0,215,23,27*
,最优目标值218
*=Z 元(表中-17/2为-Z 的值)。
1.2大M 单纯形算法
1.2.1大M单纯形算法的基本思想
一般线性规划问题的系数矩阵中不含单位矩阵,这时没有明显的基本可行解,常常采用引入非负人工变量的方法来求得初始基本可行解,一般采用大M单纯形算法。
大M法也称为惩罚法,主要做法是取M>0为一个任意大的正数,在原问题的目标函数中加入-M乘以每一个人工变量。
首先根据不等式符号添加正的或负的松弛变量,查找加入的松弛变量是否构成单位矩阵,构成单位矩阵则计算方法和单纯形算法一样;若是尚未构成单位矩阵,则添加的人工变量与松弛变量构成一个单位矩阵后进行计算。
松弛变量在目标函数中的系数为0,而人工变量的系数则为-M,此处-M 是强加于人工变量的一种惩罚,其目的是为了强制人工变量由变量转换为非基变量,使之恢复原问题或者说与原问题等价。
M在计算时,可看作一个任意大的正数,非严格的说法,仅为便于在检验数含M时判断值的正负,但M并不是无穷大,理论上可以证明,M只要取到某个数值以上就可以。
1.2.2大M单纯计算法的基本步骤描述
1.添加松弛变量,看松弛变量的系数是否构成单位矩阵,若尚未构成单位矩阵则加入人工变量,迫使人工变量的系数和松弛变量的系数构成单位矩阵。
这也是添加人工变量的目的。
2.加入松弛变量和人工变量后就完成了标准化线性规划模型。
3.计算标准化后的线性规划模型的方法是应用单纯形算法,所以大M单纯形算法的迭代计算方法和单纯形算法的计算方法相同。
4.大M单纯形算法中含有人工变量系数“-M”,加入人工变量的目的是构成单位矩阵,应用单纯形算法迭代计算,但是不能改变原问题,因此让每个人工变量乘以“-M”,就能够保证标准化后的线性规划模型与原问题等价。
5.“-M”作为字符不能参与计算,然而M作为一个任意大的正数,一般在教学中所要解决的线性规划模型规模并不太大,因此取值M=10000参与计算。
计算过程中的所有“M”都有10000代替。
参考文献
[1] 吴祈宗.运筹学(第2版)[M].机械工业
[2] 胡运权.运筹学教程(第二版).清华大学
[3] 胡运权.运筹学导论(第8版).清华大学
[4] 单东林,晓菲,然.锋利的Jquery.人民邮电
[5] 大藤幹,半场方人.HTML&CSS&JavaScript语法辞典.中国青年
[6] 石磊.关于运筹学课程教学改革的几点思考.教育学院学报,2010年2期
[7] 唐开元,王华.浅析运筹学与计算机技术的结合.才智,2009年06期。