2020年中考数学 有关方程和不等式的实际问题(含答案)-

合集下载

中考数学复习攻略 专题6 方程与不等式的实际应用(含答案)

中考数学复习攻略 专题6 方程与不等式的实际应用(含答案)

专题六 方程与不等式的实际应用解决方程与不等式的实际应用题的一般步骤:①认真审题,理解题意,弄清题中的已知量、未知量以及它们之间的关系;②设未知数(合理地选择未知数是解题的关键);③列方程(组)或不等式;④解方程(组)或不等式(注意:解分式方程时必须要有“验根”这一步);⑤检验,对所求结果进行检验,看是否符合题意;⑥作答.解决方程与不等式的实际应用题时,首先要认真审题,从题中找出已知量与未知量之间的关系,然后根据题意列出关系式,进而解决相关问题.在解决问题的过程中要注意方程与不等式的解是否符合题意,涉及函数要检验自变量的取值范围,当题干中出现方案设计问题或最值问题时,往往需要根据题干中的已知条件和函数的增减性来解决方案设计或最值问题.中考重难点突破一次方程(组)的实际应用【例1】(2021·陕西中考)一家商店在销售某种服装(每件的标价相同)时,按这种服装每件标价的8折销售10件的销售额,与按这种服装每件的标价降低30元销售11件的销售额相等.求这种服装每件的标价.【解析】设这种服装每件的标价是x 元,根据“这种服装每件标价的8折销售10件的销售额,与按这种服装每件的标价降低30元销售11件的销售额相等”列出方程,然后解方程即可求解.【解答】解:设这种服装每件的标价是x 元.根据题意,得10×0.8x =11(x -30).解得x =110.答:这种服装每件的标价为110元.1.现有一条长度为359 mm 的铜管料,把它锯成长度分别为39 mm 和29 mm 的两种不同规格的小铜管(要求没有余料).每锯一次损耗1 mm 的铜管料.为了使铜管料损耗最少,应分别锯成39 mm 的小铜管__6__段,29 mm 的小铜管__4__段.2.某中学组织七年级全体学生参加社会实践,若只调配45座客车若干辆,则有15人没有座位;若只调配30座客车,则用车数量将增加3辆,且空出15个座位.(1)该学校七年级总共有多少学生?(2)若同时调配45座和30座两种车型,既保证每人有座,又保证每车不空座,则两种车型各需多少辆?解:(1)设只调配45座客车x 辆,则该学校七年级共有学生(45x +15)人,只调配30座客车需要(x +3)辆.由题意,得30(x +3)-(45x +15)=15.解得x =4.∴45x +15=45×4+15=180+15=195.答:该学校七年级共有学生195人;(2)设需要调配45座客车m 辆,30座客车n 辆,由题意,得45m +30n =195.∴n =13-3m 2. 又∵m ,n 均为正整数,∴⎩⎪⎨⎪⎧m =1,n =5 或⎩⎪⎨⎪⎧m =3,n =2. 答:需调配45座客车1辆,30座客车5辆或调配45座客车3辆,30座客车2辆.分式方程的实际应用【例2】(2021·常州中考)为落实节约用水的政策,某旅游景点进行设施改造,将手拧水龙头全部更换成感应水龙头.已知该景点在设施改造后,平均每天用水量是原来的一半,20 t 水可以比原来多用5天.该景点在设施改造后平均每天用水多少吨?【解析】本题考查了分式方程的应用,读懂题意,找到合适的等量关系是解决问题的关键.设该景点在设施改造后平均每天用水x t ,则在改造前平均每天用水2x t ,根据“20 t 水可以比原来多用5天”列出方程并解答.【解答】解:设该景点在设施改造后平均每天用水x t ,则在改造前平均每天用水2x t.根据题意,得20x -202x=5. 解得x =2.经检验,x =2是原方程的解,且符合题意.答:该景点在设施改造后平均每天用水2 t .3.(2021·徐州中考)某网店开展促销活动,其商品一律按8折销售,促销期间用400元在该网店购得某商品的数量较打折前多出2件.问:该商品打折前每件多少元?解:设该商品打折前每件x 元,则打折后每件0.8x 元.根据题意,得400x +2=4000.8x. 解得x =50.经检验,x =50是原方程的解,且符合题意.答:该商品打折前每件50元.方程与不等式的综合应用【例3】某学校为丰富同学们的课余生活,购买了一批数量相等的象棋和围棋供兴趣小组使用,其中购买象棋用了420元,购买围棋用了756元,已知每副围棋比每副象棋贵8元.(1)求每副围棋和象棋各是多少元?(2)若该校决定再次购买同种围棋和象棋共40副,且再次购买的费用不超过600元,则该校最多可再购买多少副围棋?【解析】(1)设每副围棋x 元,则每副象棋(x -8)元,根据“420元购买象棋数量=756元购买围棋数量”列出方程求解即可;(2)设购买围棋m 副,则购买象棋(40-m )副,根据题意列出不等式求解即可.【解答】解:(1)设每副围棋x 元,则每副象棋(x -8)元.根据题意,得420x -8=756x .解得x =18. 经检验,x =18是原方程的解,且符合题意.∴x -8=10.答:每副围棋18元,每副象棋10元;(2)设该校购买m 副围棋,则购买(40-m )副象棋.根据题意,得18m +10(40-m )≤600.解得m ≤25.∵m 为正整数,∴m 的最大值是25.答:该校最多可再购买25副围棋.4.(2021·玉林中考)某市垃圾处理厂利用焚烧垃圾产生的热能发电.有A ,B 两个焚烧炉,每个焚烧炉每天焚烧垃圾均为100 t ,每焚烧一吨垃圾,A 焚烧炉比B 焚烧炉多发电50度,A ,B 焚烧炉每天共发电55 000度.(1)求焚烧一吨垃圾,A 焚烧炉和B 焚烧炉各发电多少度?(2)若经过改进工艺,与改进工艺之前相比每焚烧一吨垃圾,A 焚烧炉和B 焚烧炉的发电量分别增加a %和2a %,则A ,B 焚烧炉每天共发电至少增加(5+a )%,求a 的最小值.解:(1)设焚烧一吨垃圾,A 焚烧炉发电m 度,B 焚烧炉发电n 度.根据题意,得⎩⎪⎨⎪⎧m -n =50,100(m +n )=55 000. 解得⎩⎪⎨⎪⎧m =300,n =250.答:焚烧一吨垃圾,A 焚烧炉发电300度,B 发焚烧炉发电250度;(2)由题意,得改进工艺后每焚烧一吨垃圾A 焚烧炉发电300(1+a %)度,则B 焚烧炉发电250(1+2a %)度,由题意,得100×300(1+a %)+100×250(1+2a %)≥55 000[1+(5+a )%].整理,得5a ≥55.解得a ≥11.∴a 的最小值为11.一元二次方程的实际应用【例4】(2021·烟台中考)直播购物逐渐走进了人们的生活.某电商在抖音上对一款成本价为40元的小商品进行直播销售,如果按每件60元销售,每天可卖出20件.通过市场调查发现,每件小商品售价每降低5元,日销售量增加10件.(1)若日利润保持不变,商家想尽快销售完该款商品,每件售价应定为多少元?(2)小明的线下实体商店也销售同款小商品,标价为每件62.5元.为提高市场竞争力,促进线下销售,小明决定对该商品实行打折销售,使其销售价格不超过(1)中的售价,则该商品至少需打几折销售?【解析】(1)根据日利润=每件利润×日销售量,可求出售价为60元时的原利润,设售价应定为x 元,则每件的利润为(x -40)元,日销售量为20+10(60-x )5=(140-2x )件,根据日利润=每件利润×日销售量,即可得出关于x 的一元二次方程,解之取其较小值即可得出结论;(2)设该商品需要打a 折销售,根据销售价格不超过50元,列出不等式求解即可.【解答】解:(1)设售价应定为x 元,则每件的利润为(x -40)元,日销售量为20+10(60-x )5=(140-2x )件. 由题意,得(x -40)(140-2x )=(60-40)×20.整理,得x 2-110x +3 000=0.解得x 1=50,x 2=60(舍去).答:每件售价应定为50元;(2)设该商品需要打a 折销售.由题意,得62.5×a 10≤50. 解得a ≤8.答:该商品至少需打8折销售.5.列方程(组)解应用题:某驻村工作队,为带动群众增收致富,巩固脱贫攻坚成效,决定在该村山脚下,围一块面积为600 m 2的矩形试验茶园,便于成功后大面积推广.如图,茶园一面靠墙,墙长35 m ,另外三面用69 m 长的篱笆围成,其中一边开有一扇1 m 宽的门(不包括篱笆).求这个茶园的长和宽.解:设茶园AB 边的长为x m ,则BC 边的长为(69+1-2x ) m .根据题意,得x (69+1-2x )=600.整理,得x 2-35x +300=0.解得x 1=15,x 2=20.当x =15时,70-2x =40>35,不符合题意,舍去;当x =20时,70-2x =30<35,符合题意.答:这个茶园的长和宽分别为30 m ,20 m .6.如图,某城建部门计划在新建的城市广场的一块长方形空地上修建一个面积为1 200 m 2的停车场,将停车场四周余下的空地修建成同样宽的通道,已知整个长方形空地的长为50 m ,宽为40 m.(1)求四周通道的宽度;(2)某建筑公司希望用80万元的承包金额承揽这项工程,城建部门认为金额太高需要降价,经过两次协商,最终以51.2万元达成一致,若两次降价的百分率相同,求每次降价的百分率.解:(1)设四周通道的宽度为x m ,则停车场的长为(50-2x ) m ,宽为(40-2x ) m.由题意,得(50-2x )(40-2x )=1 200.整理,得x 2-45x +200=0.解得x 1=5,x 2=40.当x =5时,40-2x =40-2×5=30,符合题意;当x =40时,40-2x =40-2×40=-40<0,不符合题意,舍去.答:四周通道的宽度为5 m ;(2)设每次降价的百分率为a .由题意,得80(1-a )2=51.2.解得a 1=0.2=20%,a 2=1.8(不合题意,舍去).答:每次降价的百分率为20%.中考专题过关1.(2021·吉林中考)港珠澳大桥是世界上最长的跨海大桥,它由桥梁和隧道两部分组成,桥梁和隧道全长共55 km.其中桥梁长度比隧道长度的9倍少4 km.求港珠澳大桥的桥梁长度和隧道长度.解:设港珠澳大桥隧道长度为x km ,桥梁长度为y km.由题意,得⎩⎪⎨⎪⎧x +y =55,y =9x -4. 解得⎩⎪⎨⎪⎧x =5.9,y =49.1. 答:港珠澳大桥的桥梁长度和隧道长度分别为49.1 km 和5.9 km.2.(2021·郴州中考)“七·一”建党节前夕,某校决定购买A ,B 两种奖品,用于表彰在“童心向党”活动中表现突出的学生.已知A 奖品比B 奖品每件多25元,预算资金为1 700元,其中800元购买A 奖品,其余资金购买B 奖品,且购买B 奖品的数量是A 奖品的3倍.(1)求A ,B 奖品的单价;(2)购买当日,正逢该店搞促销活动,所有商品均按原价八折销售,故学校调整了购买方案:不超过预算资金且购买A 奖品的资金不少于720元,A ,B 两种奖品共100件,求购买A ,B 两种奖品的数量,有哪几种方案?解:(1)设A 奖品的单价为x 元,则B 奖品的单价为(x -25)元.由题意,得800x ×3=1 700-800x -25. 解得x =40.经检验,x =40是原方程的解,且符合题意.∴x -25=15.答:A 奖品的单价为40元,B 奖品的单价为15元;(2)设购买A 奖品的数量为m 件,则购买B 奖品的数量为(100-m )件.由题意,得⎩⎪⎨⎪⎧40×0.8×m ≥720,40×0.8×m +15×0.8×(100-m )≤1 700. 解得22.5≤m ≤25.∵m 为正整数,∴m 的值为23,24,25.∴有三种方案:①购买A 奖品23件,B 奖品77件;②购买A 奖品24件,B 奖品76件;③购买A 奖品25件,B 奖品75件.3.(2021·朝阳中考)某商场以每件20元的价格购进一种商品,规定这种商品每件售价不低于进价,又不高于38元,经市场调查发现:该商品每天的销售量y (件)与每件售价x (元)之间符合一次函数关系,如图所示.(1)求y 与x 之间的函数关系式;(2)该商场销售这种商品要想每天获得600元的利润,每件商品的售价应定为多少元?(3)设商场销售这种商品每天获利w (元),当每件商品的售价定为多少元时,每天销售利润最大?最大利润是多少?解:(1)设y 与x 之间的函数关系式为y =kx +b (k ≠0).由所给函数图象可知,⎩⎪⎨⎪⎧25k +b =70,35k +b =50. 解得⎩⎪⎨⎪⎧k =-2,b =120. ∴y 与x 之间的函数关系式为y =-2x +120(20≤x ≤38);(2)根据题意,得(x -20)(-2x +120)=600.整理,得x 2-80x +1 500=0.解得x =30或x =50(不合题意,舍去).答:每件商品的售价应定为30元;(3)∵y =-2x +120,∴w =(x -20)y=(x -20)(-2x +120)=-2x 2+160x -2 400=-2(x -40)2+800.∵-2<0,20≤x ≤38,∴当x =38时,w 最大=792.∴当每件商品的售价定为38元时,每天销售利润最大,最大利润是792元.。

2020年中考数学考点过关培优训练卷:《方程与不等式应用》(附答案)

2020年中考数学考点过关培优训练卷:《方程与不等式应用》(附答案)

2020年中考数学考点过关培优训练卷:《方程与不等式应用》1.工业园区某机械厂的一个车间主要负责生产螺丝和螺母,该车间有工人44人,其中女生人数比男生人数的2倍少10人,每个工人平均每天可以生产螺丝50个或者螺母120个.(1)该车间有男生、女生各多少人?(2)已知一个螺丝与两个螺母配套,为了使每天生产的螺丝螺母恰好配套,应该分配多少工人负责生产螺丝,多少工人负责生产螺母?解:(1)设该车间有男生x人,则女生人数是(2x﹣10)人,则x+(2x﹣10)=44.解得x=18则2x﹣10=26.答:该车间有男生18人,则女生人数是26人.(2)设应分配y名工人生产螺丝,(44﹣y)名工人生产螺母,由题意得:50(44﹣y)×2=120y,解得:y=20,44﹣y=24答:分配20名工人生产螺丝,24名工人生产螺母.2.用方程解答下列问题(1)一件工作,甲单独做20小时完成,乙单独做12小时完成,现在先由甲单独做4小时,余下的由甲乙一起完成余下的部分需要几小时完成?(2)王强参加了一场3000米的赛跑,他以6米/秒的速度跑了一段路程,又以4米/秒的速度跑完了其余的路程,一共花了10分钟,王强以6米秒的速度跑了多少米?解:设余下的部分需要x小时完成,×4+(+)x=1,解得x=6.答:余下的部分需要6小时完成;(2)解法二:设王强以6米/秒速度跑了x秒,则王强以4米/秒速度跑了(10×60﹣x)秒.根据题意列方程6x+4(10×60﹣x)=3000,去括号得:6x+2400﹣4x=3000.移项得:6x﹣4x=3000﹣2400.合并同类项得:2x=600.化系数为1得:x=300,6x=6×300=1800.答:王强以6米/秒的速度跑了1800米.3.甲骑车从A到B,乙骑车从B到A,甲每小时比乙多走2千米,两人在上午8点同时出发,到上午10点两人还相距36千米,到中午12点两人又相距36千米.求A、B两地的距离.解:设乙的速度为x千米/时,则甲的速度为(x+2)千米/时,由题意,得(10﹣8)(x+x+2)+36=(12﹣8)(x+x+2)﹣36,解得:x=17,∴甲的速度为:17+2=19千米/时.∴A、B两地的距离为:2×(17+19)+36=108千米.答:A、B两地的距离为108千米.4.佳乐家超市元旦期间搞促销活动,活动方案如下表:一次性购物优惠方案不超过200元不给予优惠超过200元,而不超过1000元优惠10%超过1000元其中1000元按8.5折优惠,超过部分按7折优惠小颖在促销活动期间两次购物分别支付了134元和913元.(1)小颖两次购买的物品如果不打折,应支付多少钱?(2)在此活动中,他节省了多少钱?解:(1)①∵134元<200×90%=180元∴小颖不享受优惠;②∵第二次付了913元>1000×85%=850元∴小颖享受优惠,其中1000元按8.5折优惠,超过1000元部分按7折优惠.设小颖第二次所购价值x元的货物,根据题意得85%×1000+(x﹣1000)×70%=913解得x=10901090+134=1224(元)答:小颖两次购买的物品如果不打折,应支付1224元钱;(2)1090﹣913=177(元)答:在此次活动中,他节省了177元钱.5.某中学购买A、B品牌篮球分别花费了2400元、1950元,且购买A品牌篮球数量是购买B品牌篮球数量的2倍,购买一个B品牌篮球比购买一个A品牌篮球多花50元.(1)求购买一个A品牌、一个B品牌的篮球各需多少元?(2)该学校决定再次购进A、B两种品牌篮球共30个,恰逢百货商场对两种品牌篮球的售价进行调整,A品牌篮球售价比第一次购买时提高了10%,B品牌篮球按第一次购买时售价的9折出售,如果这所中学此次购买A、B两种品牌篮球的总费用不超过3200元,那么该学校此次最多可购买多少个B品牌篮球?解:(1)设购买一个A品牌的篮球需x元,则购买一个B品牌的篮球需(x+50)元,由题意得=×2,解得:x=80,经检验x=80是原方程的解,x+50=130.答:购买一个A品牌的篮球需80元,购买一个B品牌的篮球需130元.(2)设此次可购买a个B品牌篮球,则购进A品牌篮球(30﹣a)个,由题意得80×(1+10%)(30﹣a)+130×0.9a≤3200,解得a≤19,∵a是整数,∴a最大等于19,答:该学校此次最多可购买19个B品牌蓝球.6.某商店销售A,B两种商品,每件A商品的售价比B商品少10元.购买5件A商品比购买3件B商品多10元.设每件A商品的售价为x元.(1)每件B商品的售价为(x+10)元(用含x的式子表示);(2)求A,B商品每件的售价各多少元?(3)元旦期间,该商店决定对A,B两种商品进行促销活动,具体办法是:方案一:购买A商品超出15件后,超出部分五折销售,不超出部分不享受任何折扣;B 商品无论多少一律九折.方案二:无论买多少,A,B商品一律八折.若小红打算到该商店购买m件A商品和20件B商品,选择哪种方案购买更实惠(两种优惠方案不能同时享受)?解:(1)每件B商品的售价为(x+10)元;故答案为:(x+10);(2)根据题意得,5x=3(x+10)+10,解得x=20,∴x+10=30;答:A,B商品每件的售价分别为20元,30元;(3)当m≤15时,方案一:20m+30×20×90%=20m+540;当m>15时,方案一:15×20+(m﹣15)×20×50%+30×20×90%=10m+690;方案二:(20m+30×20)×80%=16m+480,当m≤15时,20m+540>16m+480∴应该按方案二购买,选择方案二购买更实惠;当m>15时,10m+690>16m+480时,解得m<35;10m+690<16m+480时,解得m>35;10m+690=16m+480时,解得m=35,∴当m<35时,按方案二购买;当m=35时,两种方案都一样;当m>35时,按方案一购买.7.目前节能灯在城市已基本普及,为响应号召,某商场计划用3800元购进甲,乙两种进价分别为25元和45元的节能灯120只.(1)求甲、乙两种节能灯各进多少只?(2)若商场现只能购进甲种节能灯60只,则按计划剩下的钱最多能购进乙种节能灯多少只?解:(1)设购进甲种节能灯x只,乙种节能灯y只,依题意,得:,解得:.答:购进甲种节能灯80只,乙种节能灯40只.(2)设按计划剩下的钱能购进乙种节能灯y只,由题意,得3800﹣60×25≥45y解得y≤.由于y是正整数,所以y最大值是51.答:按计划剩下的钱最多能购进乙种节能灯51只.8.某车间有22名工人,每人每天可以生产1200个螺钉或2000个螺母.1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套,应安排生产螺钉和螺母的工人各多少名?解:设分配x名工人生产螺母,则(22﹣x)人生产螺钉,由题意得2000x=2×1200(22﹣x),解得:x=12,则22﹣x=10,答:应安排生产螺钉和螺母的工人10名,12名.9.有一项工程,若甲队单独做,恰好在规定日期完成,若乙队单独做要超过规定日期3天完成;现在先由甲、乙两队合做2天后,剩下的工程再由乙队单独做,也刚好在规定日期完成,问规定日期多少天?解:设工作总量为1,规定日期为x天,则若单独做,甲队需x天,乙队需x+3天,根据题意列方程得2(+)+=1,解方程可得x=6,经检验x=6是分式方程的解.答:规定日期是6天.10.某市出租车收费标准如下表所示,根据此收费标准,解决下列问题:行驶路程收费标准不超出3km的部分起步价7元+燃油附加费1元超出3km不超出6km的部分 1.6元/km超出6km的部分 2.4元/km(1)若行驶路程为5km,则打车费用为11.2元;(2)若行驶路程为xkm(x>6),则打车费用为(2.4x﹣1.6)元(用含x的代数式表示);(3)当打车费用为32元时,行驶路程为多少千米?解:(1)支付车费:7+1+(5﹣3)×1.6=11.2(元),故答案为:11.2;(2)7+1+1.6×3+2.4(x﹣6)=8+4.8+2.4x﹣14.4=2.4x﹣1.6(元),故答案为:(2.4x﹣1.6);(3)设当打车费用为32元时,行驶路程为x千米,由题意得:2.4x﹣1.6=32,解得:x=14,∴当打车费用为32元时,行驶路程为14千米.11.某次知识竞赛共有25道选择题,要求选出正确答案,竞赛规则为:选对一道得10分,选错或不选扣5分,如果小明在本次竞赛中的得分不低于180分,那么他至少要选对多少道题?解:设他要选对x道题,根据题意得:10x﹣5(25﹣x)≥180得x≥20,∵x是整数,∴他至少要选对21道题.答:他至少要选对21道题.12.某车间有62个工人,生产甲、乙两种零件,每人每天平均能生产甲种零件12个或乙种零件23个.已知每3个甲种零件和2个乙种零件配成一套,问应分配多少人生产甲种零件,多少人生产乙种零件,才能使每天生产的这两种零件刚好配套?解:设应分配x人生产甲种零件,12x×2=23(62﹣x)×3,解得x=46,62﹣46=16(人).故应分配46人应分配46人生产甲种零件,16人生产乙种零件才能使每天生产的甲种零件和乙种零件刚好配套.13.某超市元月1日搞促销活动,购物不超过200元不给优惠;超过200元,而不超过500元优惠10%,超过500元的,其中500元按9折优惠,超过的部分按8折优惠,某人两次购物分别用了134元、466元.(1)此人两次购物时物品不打折分别值多少钱?(2)在这次活动中他节省了多少钱?(3)若此人将两次购买的物品合起来一次购买是不是更合算?请说明你的理由.解:(1)∵200×90%=180元>134元,∴134元的商品未优惠;∵500×0.9=450元<466元,∴466元的商品享受到了超过500元,而不超过500元的优惠.设其标价x元,则500×0.9+(x﹣500×0.8=466,解得x=520,所以物品不打折时的分别值134元,520元;(2)134+520﹣134﹣466=54,所以省了54元;(3)两次物品合起来一次购买合算.不优惠需要支付134+520=654元,两次合起来一次购买支付500×0.9+(654﹣500)×0.8=573.2元,573.2<134+466<654,所以两次物品合起来一次购买合算.14.数轴是学习有理数的一种重要工具,任何有理数都可以用数轴上的点表示,这样能够运用数形结合的方法解决一些问题.如图,将一条数轴在原点O和点B处各折一下,得到一条“折线数轴”.图中点A表示﹣10,点B表示10,点C表示18,我们称点A和点C在数轴上相距28个长度单位.动点P从点A出发,以2单位/秒的速度沿着“折线数轴”的正方向运动,从点O运动到点B期间速度变为原来的一半,之后立刻恢复原速;同时,动点Q从点C出发,以1单位/秒的速度沿着数轴的负方向运动,从点B运动到点O期间速度变为原来的两倍,之后也立刻恢复原速.当点P到达点C时,两点都停止运动.设运动的时间为t秒.问:(1)t=2秒时,点P在“折线数轴”上所对应的数是﹣6;点P到点Q的距离是22个单位长度;(2)动点P从点A运动至C点需要19秒;(3)P、Q两点相遇时,t=秒;此时相遇点M在“折线数轴”上所对应的数是;(4)如果动点P、O两点在数轴上相距的长度与Q、B两点在数轴上相距的长度相等,直接写出t的值.解:如图所示:(1)设动点P从点A出发,运动2秒后的点对应数为x,∵点P以2单位/秒的速度沿着“折线数轴”的正方向运动,∴AP=2×2=4,又∵x﹣(﹣10)=4,解得:x=﹣6,又∵同时,动点Q从点C出发,以1单位/秒的速度沿着数轴的负方向运动,∴QC=2×1=2,又∵AC=28,AC=AO+OB+BC,∴点P到点Q的距离=28﹣4﹣2=22;故答案为﹣6,22;(2)由图可知:动点P从点A运动至C分成三段,分别为AO、OB、BC,AO段时间为,OB段时间为=10,BC段时间为=4,∴动点P从点A运动至C点需要时间为5+10+4=19(秒),故答案为19秒;(3)设点Q经过8秒后从点B运动到OB段,再经进y秒与点P在OB段相遇,依题意得:3+y+2y=10,解得:y=,∴P、Q两点相遇时经过的时间为8+=(秒),此时相遇点M在“折线数轴”上所对应的数是为3+=;故答案为,;(4)当点P在AO,点Q在BC上运动时,依题意得:10﹣2t=8﹣t,解得:t=2,当点P、Q两点都在OB上运动时,t﹣5=2(t﹣8)解得:t=11,当P在OB上,Q在BC上运动时,8﹣t=t﹣5,解得:t=;当P在BC上,Q在OA上运动时,t﹣8﹣5+10=2(t﹣5﹣10)+10,解得:t=17;即PO=QB时,运动的时间为2秒或秒或11秒或17秒.15.某糕点厂中秋节前要制作一批盒装月饼,每盒中装2块大月饼和4块小月饼.制作1块大月饼要用0.05kg面粉,1块小月饼要用0.02kg面粉.现共有面粉4500kg,问制作两种月饼应各用多少面粉,才能生产最多的盒装月饼?(用一元一次方程解答)解:设用xkg面粉制作大月饼,则利用(4500﹣x)kg制作小月饼,根据题意得出:÷2=÷4,解得:x=2500,则4500﹣2500=2000(kg).答:用2500kg面粉制作大月饼,2000kg制作小月饼,才能生产最多的盒装月饼.16.某开发公司要生产若干件新产品,需要精加工后,才能投放市场,现有红星和巨星两个加工厂都想加工这批产品,已知红星厂单独加工这批产品比巨星厂单独加工这批产品多用20天,红星厂每天可加工16件产品,巨星厂每天可加工24件产品公司每天需付红星厂每天加工费80元,巨星厂每天加工费120元.(1)这个公司要加工多少件新产品?(2)在加工过程中,公司需另派一名工程师每天到厂家进行技术指导,并负担每天5元的午餐补助费,公司制定产品加工方案如下:可由一个厂单独加工完成,也可由两厂合作同时完成,请你帮助公司从所有可供选择的方案中选择一种即省钱,又省时间的加工方案.解:(1)设这个公司要加工x件新产品,由题意得:﹣=20,解得:x=960,答:这个公司要加工960件新产品.(2)①由红星厂单独加工:需要耗时为=60天,需要费用为:60×(5+80)=5100元;②由巨星厂单独加工:需要耗时为=40天,需要费用为:40×(120+5)=5000元;③由两场厂共同加工:需要耗时为=24天,需要费用为:24×(80+120+5)=4920元.所以,由两厂合作同时完成时,既省钱,又省时间.17.2017年12月10日,上海洋山深水港四期码头开始运行,这是目前全球最大规模、自动化程度最高的高科技新型码头.目前,码头配置了100台无人驾驶的自动引导车、轨道吊和桥吊三种智能设备投入使用其中桥吊10台,自动引导车数量至少是轨道吊数量的1.25倍.(1)配置了自动引导车最少多少台?(2)在试运行初期,每台自动引导车每小时的耗电量为2.4千瓦时,投入使用的自动引导车数量是(1)中数量的.后期,投入自动引导车的数量在(1)中数量的基础上增加工2a%;每台自动引导车技术改良后的每小时耗电量有小幅(即少于一半)降低,在原耗电量的基础上下降了a%.而轨道吊和桥吊的耗电量及数量未做任何改变,这样,设备总耗电量每小时增加了152.4千瓦时,求a.解:(1)设配置了自动引导车x台,则配置了轨道吊(100﹣10﹣x)台,依题意,得:x≥1.25(100﹣10﹣x),解得:x≥50.答;配置了自动引导车最少50台.(2)依题意,得:50(1+2a%)×2.4(1﹣a%)﹣50××2.4=152.4,整理,得:a2﹣350a+17400=0,解得:a1=60,a2=290.∵a%<50%,∴a<200,∴a=60.答:a的值为60.18.如图,某城建部门计划在新修的城市广场的一块长方形空地上修建一个面积为1200m2的停车场,将停车场四周余下的空地修建成同样宽的通道,已知长方形空地的长为50m,宽为40m.(1)求通道的宽度;(2)某公司希望用80万元的承包金额承揽修建广场的工程,城建部门认为金额太高需要降价,通过两次协商,最终以51.2万元达成一致,若两次降价的百分率相同,求每次降价的百分率.解:(1)设通道宽度为xm,依题意得(50﹣2x)(40﹣2x)=1200,即x2﹣45x+200=0解得x1=5,x2=40(舍去)答:通道的宽度为5m.(2)设每次降价的百分率为x,依题意得80(1﹣x)2=51.2解得x1=0.2=20%,x2=1.8(舍去)答:每次降价的百分率为20%.19.如图,在Rt△ABC中,∠B=90°,AB=5cm,BC=7cm.点P从点A开始沿AB边向终点B以1cm/s的速度移动,点Q从点B开始沿BC边向终点C以2cm/s的速度移动,当其中一点到达终点时,另一点随之停止.点P,Q分别从点A,B同时出发.(1)求出发多少秒时PQ的长度等于5cm;(2)出发或.秒时,△BPQ中有一个角与∠A相等.解:(1)设出发t秒时PQ的长度等于5cm,PQ=5,则PQ2=25=BP2+BQ2,即25=(5﹣t)2+(2t)2,解得:t=0(舍)或2.故2秒后,PQ的长度为5cm.(2)设出发x秒时,△BPQ中有一个角与∠A相等.∵AB=5cm,BC=7cm∴PB=(5﹣x)cm,BQ=2xcm当∠BPQ=∠A时,又∵∠B=∠B∴△ABC∽△PBQ∴=∴=解得:x=;当∠BQP=∠A时,又∵∠B=∠B∴△ABC∽△QBP∴=∴=解得:x=故答案为:或.20.某服装店用4000元购进一批某品牌的文化衫若干件,很快售完,该店又用6300元钱购进第二批这种文化衫,所进的件数比第一批多40%,每件文化衫的进价比第一批每件文化衫的进价多10元,请解答下列问题:(1)求购进的第一批文化衫的件数;(2)为了取信于顾客,在这两批文化衫的销售中,售价保持了一致.若售完这两批文化衫服装店的总利润不少于4100元钱,那么服装店销售该品牌文化衫每件的最低售价是多少元?解:(1)设第一批购进文化衫x件,根据题意得:+10=,解得:x=50,经检验,x=50是原方程的解,且符合题意.答:第一批购进文化衫50件.(2)第二批购进文化衫(1+40%)×50=70(件).设该服装店销售该品牌文化衫每件的售价为y元,根据题意得:(50+70)y﹣4000﹣6300≥4100,解得:y≥120.答:该服装店销售该品牌文化衫每件最低售价为120元.。

中考数学《方程与不等式》专题知识训练50题-含答案

中考数学《方程与不等式》专题知识训练50题-含答案

中考数学《方程与不等式》专题知识训练50题含答案(有理数、实数、代数、因式分解、二次根式)一、单选题1.为迎接“六一”儿童节,某儿童品牌玩具专卖店购进了甲、乙两类玩具,其中甲类玩具的进价比乙类玩具的进价每个多5元,经调查:用1000元购进甲类玩具的数量与用750元购进乙类玩具的数量相同.设甲类玩具的进价为x元/个,根据题意可列方程为()A.10007505=-x xB.10007505=-x xC.10007505=+x xD.1000750+5=x x2.不等式组215840xx-≤⎧⎨-<⎩的解集在数轴上表示为()A.B.C.D.3.下列各式,是一元一次不等式的有()①4>1①232x-<4①12x<①4327x y-<-①16x+=A.4个B.3个C.2个D.1个4.小亮解方程组2212x yx y+=⎧⎨-=⎩▲,的解为5xy=⎧⎨=⎩☆,由于不小心滴上了两滴墨水,刚好遮住了两个数▲和①,则这两个数分别为()A.4和- 6B.- 6和4C.- 2和8D.8和– 2 5.方程2x2+6x+5=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.无法判断6.若关于x的一元二次方程220x x a+-=有两个相等的实数根,则a的取值为()A.1a=B.1a=-C.4a=D.4a=-7.3020xx+>⎧⎨-≥⎩不等式组的解集在数轴上表示为()A .B .C .D .8.甲、乙两人生产某种机器零件,甲每小时比乙多生产5个,甲生产120个所用的时间与乙生产90个所用的时间相等.设甲每小时生产x 个零件,根据题意,列出的方程是( ) A .120905x x =+ B .120905x x=- C .120905x x=+ D .120905x x =- 9.电影《长津湖》讲述了一段波澜壮阔的历史,自上映以来,全国票房连创佳绩.据不完全统计,某市第一天票房收入约2亿元,第三天票房收入约达到4亿元,设票房收入每天平均增长率为x ,下面所列方程正确的是( ) A .22(1)4x += B .()2124x +=C .22(1)4x -=D .()22212(1)4x x ++++=10.方程2320x x +-=的根的情况是 ( ) A .有两个不相等的实数根 B .有两个相等的实数根 C .没有实数根D .不能确定有没有实数根11.根据等式的性质,若等式m n =可以变形得到m a n b +=-,则a 、b 应满足的条件是( ) A .互为相反数B .互为倒数C .相等D .0a =,0b ≠12.若223894614M x xy y x y =+++-﹣(x ,y 是实数),则M 的值一定是( )A .0B .负数C .正数D .整数13.一元二次方程x 2﹣ax ﹣2=0,根的情况是( ) A .有两个不相等的实根 B .有两个相等的实数根 C .无法判断D .无实数根14.下列等式变形正确的是( ) A .如果0.58x -=,那么4x =- B .如果x y =,那么22x y -=- C .如果mx my =,那么x y =D .如果x y =,那么x y =15.若关于x 的一元二次方程2(3)410k x x -++=有两个不相等的实数根,则k 的取值范围是( ) A .7k <B .7k <,且3k ≠C .7k ≤,且3k ≠D .7k >16.已知过点(2,﹣3)的直线y=ax+b (a≠0)不经过第一象限,设s=a+2b ,则s 的取值范围是( )A .﹣5≤s≤﹣B .﹣6<s≤﹣C .﹣6≤s≤﹣D .﹣7<s≤﹣17.如图,在平面直角坐标系中,点A 的坐标为(4,3)M 1B ①x 轴于点B .点C 是线段OB 上的点,连接AC ,点P 在线段AC 上且AP =PC ,函数y =kx(x >0)的图象经过点P .当点C 在线段OB 上运动时上k 的取值范围是( )A .0<k ≤3B .3≤k ≤6C .0≤k ≤6D .6≤k ≤1218.已知两个多项式222A x x =++,222B x x =-+,以下结论中正确的个数有( )①若12A B +=,则2x =±;①若2A B ax bx ++-的值与x 的值无关,则2a b +=-; ①若|8||4|12A B A B --+-+=,则12x -≤≤;①若关于y 的方程2(1)2m y A B x -=+-的解为整数,则符合条件的非负整数m 有3个. A .1个B .2个C .3个D .4个19.下列解方程的过程中正确的是( ) A .将2﹣371745x x -+=去分母,得2﹣5(5x ﹣7)=﹣4(x+17)B .由0.150.710.30.02x x--=,得10157032x x --=100 C .40﹣5(3x ﹣7)=2(8x+2)去括号,得40﹣15x ﹣7=16x+4D .﹣25 x=5,得x=﹣252二、填空题20.“x 的4倍与2的和是非负数”用不等式表示为__________________. 21.二元一次方程310x y +=的正整数解共有_________个. 22.已知2x|m|﹣2+3=9是关于x 的一元二次方程,则m=_____.23.已知关于x 的一元二次方程3x 2+4x +m =0有实数根,则m 的取值范围是_______. 24.观察下列一组方程:①20x x -=;①2320x x -+=;①2560x x -+=;①27120x x -+=;…它们的根有一定的规律,都是两个连续的自然数,我们称这类一元二次方程为“连根一元二次方程”,若2560x kx ++=也是“连根一元二次方程”,则k 的值为____________.25.对于实数a 、b ,定义运算“①”如下:a ①b =a 2﹣ab ,例如:5①3=52﹣5×3=10.若(x +2)①(x ﹣3)=25,则x 的值为 ___.26.已知不等式组232(1)1x x x x -<-⎧⎨->-⎩,x 是非负整数,则x 的值是________.27.已知关于x 的一元二次方程250x x m ++=的一个根是2,则m =___________. 28.已知方程2x ﹣a =8的解是x =2,则a =_____.29.高斯符号[]x 首次出现是在数学家高斯(C .F. Gauss )的数学著作《算术研究》一书中,对于任意有理数x ,通常用[]x 表示不超过x 的最大整数,如[]2.92=.给出如下结论:①[]33-=-;①[]2.92-=-;①[]0.90=;①[][]3.1 3.97+=.以上结论中,你认为正确的是_________(填序号). 30.分式方程1233xx x-=---解得______. 31.已知关于x 的方程2x a +=23x a++1的解与方程4x ﹣5=3(x ﹣1)的解相同,则a 的值_____.32.如图,我国古代数学家得出的“赵爽弦图”是由四个全等的直角三角形和一个小正方形密铺构成的大正方形,若小正方形与大正方形的面积之比为1:13,则直角三角形较短的直角边a 与较长的直角边b 的比值为__.33.一套运动装标价200元,按标价的八折销售,则这套运动装的实际售价为________元.34.某商品标价28元,按九折出售,仍可获利20%,则该商品的进价为________元. 35.汛期来临之前,某地要对辖区内的4600米河堤进行加固.施工单位在加固800米后,采用新的加固模式,这样每天加固长度是原来的2倍,结果共用10天便完成了全部任务.请求出施工单位原来每天加固河堤多少米?设原来每天加固河堤x 米,根据题意可得方程_________________.36.某种品牌的笔记本电脑原价为5000元,如果连续两次降价的百分率都为10%,那么两次降价后的价格为_____元.37.有一个两位数,其个位数字比十位数字大 2,且这个两位数大于 20 且小于 30,那么这个两位数是_____.38.已知方程组24x y ax y +⎧⎨+⎩==和278x y x by --⎧⎨+⎩==有相同的解,则ab =_____.39.已知关于x 的方程242x mx +=-的解是正数,则m 的取值范围为______.三、解答题 40.解方程:14211x x x++=-- 41.解下列一元二次方程: (1)22(1)18x -=; (2)22330x x ; (3)2230x x --=; (4)22340x x +-=. 42.解不等式:2123x x -≤-,把解集在数轴上表示出来. 43.(1)解方程组2=57320x y x y -⎧⎨-=⎩;(2)解不等式组21241x xx x >-⎧⎨+<-⎩.44.解方程组:45.某学校准备为“中国传统文化知识竞赛”购买奖品,已知在某商场购买3个甲种奖品和2个乙种奖品需要65元,购买4个甲种奖品和3个乙种奖品需要90元. (1)求甲、乙两种奖品的单价各是多少元;(2)该校计划购买甲、乙两种奖品共60个,且购买奖品的总费用不超过600元.恰逢该商场搞促销,所有商品一律八折销售,求该校在该商场最多能购买多少个甲种奖品. 46.某学习网站针对疫情停课不停学推出了套餐优惠服务:已知购买2个学习账号和1个错题伴印设备需要2700元,购买3个学习账号和2个错题伴印设备需要4800元.(1)求1个学习账号和1个错题伴印设备的单价各是多少元?(2)若某学习小组准备购买账号和错题伴印设备共45个,且要求伴印设备不低于账号数量的23,请问如何购买才能使得总费用最低,最低费用为多少? 47.计算题(1)解不等式组31122(3)5x x x x -⎧+⎪⎨⎪--≥⎩(2)分式化简:2321(2)22a a a a a -++-÷++ 48.已知,关于的方程组3{25x y a x y a-=++= 的解满足.(1)求的取值范围.(2)化简.49.山地自行车越来越受中学生的喜爱,各种品牌相继投放市场,某车行经营的A型车今年每辆销售价比去年降低400元,则今年销售5辆车与去年销售4辆车的销售金额相同.(1)求该车行今年和去年A型车每辆销售价各多少元?(2)该车行今年计划进一批A型车和新款B型车共60辆,且B型车的进货数量不超过A型车数量的两倍.若今年A型车进货价每辆1100元,B型车进货价每辆1600元、销售价每辆2200元.设进A型车a辆,这批车卖完后获得利润W元?应如何进货才能使这批车获得利润最多?参考答案:1.A【分析】设甲类玩具的进价为x元/个,根据用1000元购进甲类玩具的数量与用750元购进乙类玩具的数量相同这个等量关系列出方程即可.【详解】解:设甲类玩具的进价为x元/个,则乙类玩具的进价为(x−5)元/个,由题意得,10007505=-x x,故选A.【点睛】本题考查的是列分式方程解应用题,找到等量关系是解决问题的关键.2.B【分析】分别求出每一个不等式的解集,根据“大于向右,小于向左,包括端点用实心,不包括端点用空心”的原则即可得答案.【详解】解:215840xx-≤⎧⎨-<⎩①②,解不等式2x−1≤5,得:x≤3,解不等式8−4x<0,得:x>2,故不等式组的解集为:2<x≤3,故选:B.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟悉在数轴上表示不等式解集的原则“大于向右,小于向左,包括端点用实心,不包括端点用空心”是解题的关键.3.D【分析】根据一元一次不等式的定义,未知数的次数是1,对各选项分析判断后利用排除法求解.【详解】解:①没有未知数,不是一元一次不等式;①是一元一次不等式;①未知数在分母上,不是一元一次不等式;①含有两个未知数,不是一元一次不等式;①是一元一次方程,不是一元一次不等式.故选D.【点睛】本题主要是对一元一次不等式定义的考查.4.D【分析】根据方程的解的定义,把x=5代入2x−y=12,求得y的值,进而求出▲的值,即可得到答案.【详解】解:①方程组2212x yx y+=⎧⎨-=⎩▲的解为5xy=⎧⎨=⎩☆,①把x=5代入2x−y=12,得:2×5−y=12,解得:y=-2,把x=5,y=-2代入2x+y=▲,得:2×5+(−2)=▲,即:▲=8,①这两个数分别为:8和﹣2.故选D.【点睛】本题主要考查二元一次方程组的解的定义,掌握二元一次方程组的解满足各个方程,是解题的关键.5.C【详解】解:①在方程2x2+6x+5=0中,①=62﹣4×2×5=﹣4<0,①方程2x2+6x+5=0没有实数根,故选C.6.B【分析】根据方程有两个相等的实数根,可推出根的判别式240b ac-=,代入相应的系数即可解得a的取值.【详解】220x x a+-=有两个相等的实数根∴()22410a-⨯⨯-=解得:1a=-故选:B.【点睛】本题主要考查一元二次方程根的判别式,能根据方程有两个相等的实数根推出根的判别式等于零是解题的关键.7.C【分析】解出不等式组,根据解集即可选出正确的数轴.【详解】30 20 xx+>⎧⎨-≥⎩①②解:由①得:x >-3, 由①得:x ≤2故原不等式组得解集为:-3<x ≤2 故选:C【点睛】本题主要考查了一元一次不等式组以及用数轴表示解集,熟练地掌握不等式的性质,正确地解出不等式组,能够正确地在数轴上表示不等式组的解集是解题的关键.注意:“≥、≤”在数轴上表示为实心圆点,“>、<”在数轴上表示为空心圆圈. 8.D【分析】设甲每小时生产x 个零件,根据题意列出分式方程式即可. 【详解】解:设甲每小时生产x 个零件,根据甲生产120个所用的时间与乙生产90个所用的时间相等, 可列方程120905x x =-, 故选D .【点睛】本题考查了分式方程的实际应用,正确列出方程式是本题关键. 9.A【分析】第一天为2亿元,根据增长率为x 得出第二天为2(1+x )亿元,第三天为2(1+x )2亿元,根据“第三天票房收入约达到4亿元”,即可得出关于x 的一元二次方程. 【详解】设平均每天票房的增长率为x , 根据题意得:22(1)4x +=. 故选:A .【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键. 10.A【分析】利用一元二次方程根的判别式进行判断. 【详解】解:方程2320x x +-=中,a=1,b=3,c=-2 ①22=4341(2)170b ac -=-⨯⨯-=> ①方程有两个不相等的实数根. 故选:A .【点睛】本题考查一元二次方程根的判别式,掌握2=40b ac ->方程有两个不相等的实数根,2=4=0b ac -方程有两个相等的实数根,2=4<0b ac -方程无实数根是解题关键. 11.A【分析】根据等式的基本性质得到a b =-,再根据相反数的定义解决此题.【详解】①m n =,①0-=m n ,且m a n b +=-,①a b =-,即0a b +=,①a 与b 互为相反数,故选:A【点睛】本题主要考查等式的基本性质、相反数,熟练掌握等式的基本性质、相反数的定义是解决本题的关键.12.C【分析】先将整式M 进行变形为(x ﹣2)2+(y +3)2+2(x ﹣2y )2+1,然后根据二次方的非负性,即可得出答案.【详解】解:M =3x 2﹣8xy +9y 2﹣4x +6y +14=(x 2﹣4x +4)+(y 2+6y +9)+2(x 2﹣4xy +4y 2)+1=(x ﹣2)2+(y +3)2+2(x ﹣2y )2+1①()220x -≥,()230y +≥,()220x y -≥,①(x ﹣2)2+(y +3)2+2(x ﹣2y )2+1>0,故C 正确.故选:C .【点睛】本题主要考查了配方法的应用和非负数的性质,将整式M 变为(x ﹣2)2+(y +3)2+2(x ﹣2y )2+1,是解题的关键.13.A【详解】:①=(-a )2-4×1×(-2)=a 2+8>0,①方程有两个不相等的实数根.故选A .14.B【分析】分别利用等式的基本性质判断得出即可.【详解】解:A、如果-0.5x=8,那么x=-16,错误;B、如果x=y,那么x-2=y-2,正确;C、如果mx=my,当m=0时,x不一定等于y,错误;D、如果|x|=|y|,那么x=y或x=-y,错误;故选:B.【点睛】此题主要考查了等式的基本性质,熟练掌握性质1、等式两边加减同一个数(或式子)结果仍得等式;性质2、等式两边乘同一个数或除以一个不为零的数,结果仍得等式是解题关键.15.B【分析】利用一元二次方程的定义和判别式的意义得到k-3≠0且Δ=42-4(k-3)×1>0,然后解不等式组即可.【详解】解:根据题意得k-3≠0且Δ=42-4(k-3)×1>0,解得k<7且k≠3.故选:B.【点睛】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与Δ=b2-4ac有如下关系:当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程无实数根.16.B【详解】试题分析:由直线y=ax+b(a≠0)不经过第一象限可得a<0,b≤0,又因直线y=ax+b(a≠0)经过点(2,﹣3),可得2a+b=—3,所以,b=—2a—3,因此 s=a+2b=a+2(—2a—3)=—3a—6,由a<0可得s>—6, s=a+2b=+2b=,由b≤0可得s≤—,所以s的取值范围是﹣6<s≤﹣.故答案选B.考点:一次函数图象与系数的关系.17.B【分析】设C(c,0)(0≤c≤4),过P作PD①x轴于点D,由①PCD①①ACB,用c表示P点坐标,再求得k关于c的解析式,最后由不等式的性质求得k的取值范围.【详解】解:①点A的坐标为(4,3),AB①x轴于点B,①OB=4,AB=3,设C(c,0)(0≤c≤4),过P作PD①x轴于点D,则BC=4-c,PD AB,OC=c,①①PCD①①ACB,①PD CD CPAB CB CA==①AP PC=,①1 342 PD CDc==-①PD=32,122CD c=-①OD=OC+CD=2+12c,①P(2+12c,32),把P(2+12c,32)代入函数kyx=(x>0)中,得k=3+34c,①0≤c≤4,①3≤k≤6,故选:B.【点睛】本题主要考查了反比例函数的图象与性质,相似三角形的性质与判定,不等式的性质,解题关键是求出k关于c的解析式.18.C【分析】代入多项式列方程求解即可判断①;先代入多项式化简,再利用结果与x的值无关得到a、b的值,即可判断①;代入多项式列绝对值方程求解即可判断①;代入多项式,得到41ym=-,根据题意得到符合条件的非负整数m值,即可判断①.【详解】解:222A x x=++,222B x x=-+,①12A B+=,()22222212x x x x∴+++-+=,240x ∴-=,2x ∴=±,①正确;①()()()22222222224A B ax bx x x x x ax bx a x bx ++-=+++-++-=+-+,2A B ax bx ++-的值与x 的值无关,()224a x bx ∴+-+的值与x 的值无关,20a ∴+=,0b -=,2a ∴=-,0b =,2a b ∴+=-,①正确; ① ()2282222848A B x x x x x --=++--+-=-,()2242222444A B x x x x x -+=++--++=+,当1x <-时,()8444128x x x -+-=-,当12x -≤≤时,844412x x -++=,当2x >时,484484x x x -++=-,若|8||4|12A B A B --+-+=,即484412x x -++=,∴当12x -≤≤时,满足条件,①正确;①2(1)2m y A B x -=+-,()14m y ∴-=,41y m ∴=-, ∴若关于y 的方程2(1)2m y A B x -=+-的解为整数,则符合条件的非负整数m 有0、2、3、5,共4个,①错误,故结论中正确的是①①①,故选C .【点睛】本题考查了整式的加减运算,解一元一次方程,解绝对值方程,非负整数的概念,熟练掌握解方程的步骤与方法是解题关键,注意0是非负整数.19.D【详解】试题解析:A. 方程两边同乘以20得,40-5(3x -7)=4(x +17),所以本选项错误;B. 从左边看,方程应用的是分式的性质;从右边看,方程应用的是等式的性质2;故所得方程与原方程不是同解方程, 所以本选项错误;C. 去括号时漏乘常数项,且去括号未变号;所以本选项错误;D.计算正确.故选D.20.4x+2≥0【详解】由题意得,4x+2≥0.故答案为4x+2≥0.21.3【分析】由于二元一次方程x+3y=10中x的系数是1,可先用含y的代数式表示x,然后根据此方程的解是正整数,那么把最小的正整数y=1代入,算出对应的x的值,再把y=2代入,再算出对应的x的值,依此可以求出结果.【详解】解:①x+3y=10,①x=10-3y,①x、y都是正整数,①y=1时,x=7;y=2时,x=4;y=3时,x=1.①二元一次方程x+3y=10的正整数解共有3对.故答案为:3.【点睛】此题考查了解二元一次方程,解题的关键是将一个未知数看做已知数求出另一个未知数.22.±4【分析】根据一元二次方程的定义解答即可.【详解】①2x|m|﹣2+3=9是关于x的一元二次方程,①|m|﹣2=2,解得m=±4.故答案为±4.【点睛】本题考查了一元二次方程的定义,熟知一元二次方程的定义是解决问题的关键.23.43m ≤ 【分析】一元二次方程有实数根,则2=40b ac ∆-≥,建立关于m 的不等式,求出m 的取值范围.【详解】解:①关于x 的一元二次方程3x 2+4x +m =0有实数根,22=44430b ac m ∆-=-⨯≥ ①43m ≤, 故答案为:43m ≤. 【点睛】本题主要考查了一元二次方程根的判别式,解题的关键是明确当一元二次方程有实数根时,2=40b ac ∆-≥.24.15-【分析】设方程的两根分别是1x 和11x +,根据一元二次方程根与系数关系可得()11156x x +=,可得方程的两根,继而根据一元二次方程根与系数关系即可得出k 的值;【详解】设方程的两根分别是1x 和11x +,根据一元二次方程根与系数关系可得:()11156x x +=,解得:17x =,118x +=,①11115x x k ++==-,①15k =-,故答案为:15-【点睛】本题考查解一元二次方程,解题的关键是熟练解一元二次方程的方法以及一元二次方程根与系数关系.25.3【分析】根据新定义运算列出方程,故可求解.【详解】①a ①b =a 2﹣ab ,(x +2)①(x ﹣3)=25,①(x +2)2-(x +2)(x ﹣3)=25,x 2+4x +4-(x 2-x -6)=25x 2+4x +4- x 2+x +6=255x =15x=3故答案为:3.【点睛】此题主要考查新定义运算与解方程,解题的关键是熟知整式的乘法运算与方程的求解.26.2【分析】求出不等式组的解集,确定出非负整数解即可.【详解】解:不等式组整理得:521xx⎧<⎪⎨⎪>⎩,解得:512x<<,由x为非负整数,得到2x=,则x的值为2.故答案为:2.【点睛】此题考查了一元一次不等式组的整数解,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.27.14-【分析】先将x=2代入250x x m++=,然后求解关于m的方程即可.【详解】把2x=代入250x x m++=,得:22100m++=,①14m=-.故答案为:-14.【点睛】本题主要考查了方程的解以及解一元一次方程的解,理解方程的解成为解答本题的关键.28.-4【分析】把x=2代入方程计算即可求出a的值.【详解】解:把x=2代入方程得:4﹣a=8,解得:a=﹣4.故答案为:﹣4.【点睛】本题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.【分析】通过阅读知道[x]有两层意义,一是其值小于x ,二是其值为整数,根据这两点可以得到解答.【详解】解:由题意得:[-3]3≤-,且为整数,所以[-3]= -3,①正确;[-2.9] 2.9≤-,且为整数,所以[-2.9]= -3,①错误;[0.9]0.9≤ ,且为整数,所以[0.9]= 0,①正确;[3.1] 3.1≤ ,且为整数,所以[3.1]= 3;[3.9] 3.9≤ ,且为整数,所以[3.9]= 3,所以[3.1]+[3.9]=6,①错误.故答案为:①①.【点睛】本题考查阅读理解应用能力,在对材料内容进行归纳提取的基础上应用其方法解答是解题关键.30.5x =【分析】根据分式方程的求解步骤进行求解即可;【详解】解:方程两边同时乘以()3x -,得:()123x x =--,去括号、移项得:5x -=-,系数化为1得:5x =,经检验,当5x =时,30x -≠,故5x =是原方程的根,故答案为:5x =.【点睛】本题主要考查分式方程的解法,熟练掌握分式方程的解法是解题的关键. 31.8【分析】先求出第二个方程的解,把x =2代入第一个方程,求出方程的解即可.【详解】解方程4x ﹣5=3(x ﹣1)得:x =2,把x =2代入方程2x a +=23x a ++1中,可得:22a +=43a ++1, 解得:a =8.故答案为8【点睛】本题考查了一元一次方程的解和解一元一次方程,能得出关于a 的方程是解此题的关键.【详解】解:①小正方形与大正方形的面积之比为1:13,①设大正方形的面积是13,①c2=13,①a2+b2=c2=13,①直角三角形的面积是1314-=3,又①直角三角形的面积是12ab=3,①ab=6,①(a+b)2=a2+b2+2ab=c2+2ab=13+2×6=13+12=25,①a+b=5.则a、b是方程x2﹣5x+6=0的两个根,故b=3,a=2,①23ab=.故答案是:2:3.考点:勾股定理证明的应用33.160【详解】一套运动装标价200元,按标价的八折(即原价的80%)销售,则这套运动装的实际售价为200×80%=160元,故答案为:160.34.21【分析】根据题意得到方程28×0.9=(1+20%)x,求解即可.【详解】解:设该商品的进价为x元,依题意得,28×0.9=(1+20%)x解得:x=21故答案是21.【点睛】本题考查了一次方程的实际应用,属于简单题,找到等量关系,建立一元一次方程是解题关键.35.8004600800102x x-+=【详解】本题的等量关系是:加固800米用的时间+加固(4600-800)米用的时间=10. 所以可列方程为:8004600800102x x-+= 36.4050【分析】根据题意可知第一次降价为5000(1-10%)=4500,第二次降价为4500(1-10%)=4050.【详解】解:依题意得:5000(1-10%)2=4050.【点睛】本题考查了一元二次方程的实际应用,属于简单题,熟悉降价率的计算方法是解题关键.37.24【分析】设这个两位数的十位数字为x ,则个位数字为x +2,然后用含x 的代数式表示出这个两位数,根据这个两位数大于20且小于30即可列出关于x 的不等式组,解不等式组求出x 的范围后结合x 为正整数即可确定x 的值,进一步即可求得答案.【详解】解:设这个两位数的十位数字为x ,则个位数字为x +2,那么这个两位数为10x +x +2,根据题意得:20<10x +x +2<30,解得:18281111x <<. ①x 为正整数,①x =2,①10x +x +2=24,则这个两位数是24.故答案为:24.【点睛】本题考查了一元一次不等式组的应用,属于常考题型,正确理解题意、列出不等式组是解题关键.38.-1 【分析】根据方程组24x y ax y +⎧⎨+⎩==和278x y x by --⎧⎨+⎩==有相同的解,所以把2x y +=和27x y --=组成方程组求出 x 、y 的值,再把 x 、y 的值代入其他两个方程 4ax y +=和8x by +=即可求出a 、 b 的值,即可得答案.【详解】解:①方程组24x y ax y +⎧⎨+⎩==和278x y x by --⎧⎨+⎩==有相同的解,①方程组227x y x y +⎧⎨--⎩=①=②的解也是它们的解, ①× 2+①,得:2x +x = 4-7,解得:x =-1,把x = -1代入①,得:-1+y =2,解得:y =3,把x =-1, y =3代入4ax y +=得:-a +3= 4解得:a = -1,把x =-1, y =3代入8x by +=得:-1+3b =8,解得:b =3,①ab =(-1)3=-1,故答案为:-1.【点睛】本题主要考查了二元一次方程组的解及二元一次方程组的解法,做题的关键是熟练的解二元一次方程组.39.8m >-且4m ≠-【分析】先解分式方程用含有m 的代数式表示x ,再根据x >0,且x -2≠0,求出答案即可. 【详解】242x m x +=- 82m x +=因为方程的解是正数,且x -2≠0, 所以802m +>,且8202m +-≠,解得m >-8,且m ≠-4.故答案为:m >-8,且m ≠-4.【点睛】本题主要考查了分式方程的解,注意:解分式方程时要保证分母不能是0. 40.x =-1【分析】去分母解整式方程,再代入最简公分母检验即可.【详解】解:去分母,得x +1-4=2(x -1)去括号,得x -3=2x -2解得x =-1,检验:当x =-1时x -10≠,①原分式方程的解为x =-1.【点睛】此题考查了解分式方程,正确掌握解分式方程的解法是解题的关键.41.(1)14x =,22x =-;(2)方程没有实数解;(3)13x =,21x =-;(4)134x -+=,2x = 【分析】(1)先变形为2(1)9x -=,然后利用直接开平方法解方程;(2)利用判别式的意义判断方程没有实数解;(3)利用因式分解法解方程;(4)利用求根公式法解方程.【详解】解:(1)22(1)18x -=可化为:2(1)9x -=,①13x -=±,①14x =,22x =-;(2)①2(3)423150,所以方程没有实数解;(3)2230x x --=可化为:(3)(1)0x x -+=,①30x -=或10x +=,①13x =,21x =-;(4)①2342(4)41, ①24341222b b ac x a①1x =2x = 【点睛】本题考查了解一元二次方程,熟悉相关解法是解题的关键.42.x≤2【分析】先将不等式左右两边同时扩大6倍,去掉分母;然后在按照解一元一次不等式的步骤进行求解【详解】左右两边同时扩大6倍得:3x≤6-2(x -2)去括号得:3x≤6-2x+4移项得:5x≤10解得:x≤2数轴上表示如下:【点睛】本题考查了解不等式,需要注意,不等式两边同乘除负数时,不等号要变号43.(1)55xy=⎧⎨=⎩;(2)x>1.【分析】(1)利用加减消元法解二元一次方程组即可;(2)先求出每一个不等式的解集,再求出不等式组的解集即可.【详解】解:(1)25 7320x yx y-=⎧⎨-=⎩①②,由①得:y=2x﹣5①,把①代入①得:7x﹣3(2x﹣5)=20,解得:x=5,把x=5代入①得:y=5,方程组的解为55xy=⎧⎨=⎩;(2)21241x xx x>-⎧⎨+<-⎩①②,解不等式①,得:x13 >,解不等式①,得:x>1,不等式组的解集为:x>1.【点睛】本题主要考查了解二元一次方程组和解一元一次不等式组,解题的关键在于能够熟练掌握相关知识进行求解.44.【详解】试题分析:用加减法解方程组,①×2+①求出x=2,代入①可求出y=3,.试题解析:解方程组:解:①×2得:③①+③得:把代入①得: 原方程组的解为考点:解二元一次方程组.45.(1)甲种奖品的单价为15元,乙种奖品的单价为10元(2)学校在商场最多能购买30个甲种奖品【分析】(1)设甲种奖品的单价为x 元,乙种奖品的单价为y 元,根据“购买3个甲种奖品和2个乙种奖品共需65元;购买4个甲种奖品和3个乙种奖品共需90元”,即可得出关于x ,y 的二元一次方程组,解之即可得出结论;(2)设学校在商场可购买m 个甲种奖品,则可购买(60−m )个乙种奖品,根据总价=单价×数量,结合此次购买奖品的费用不超过600元,即可得出关于m 的一元一次不等式,解之取其中的最大值即可得出结论.(1)解:(1)设甲种奖品的单价为x 元,乙种奖品的单价为y 元,依题意得:32654390x y x y ⎧⎨⎩+=+=,解得:1510x y =⎧⎨=⎩, 答:甲种奖品的单价为15元,乙种奖品的单价为10元;(2)解:设学校在商场可购买m 个甲种奖品,则可购买(60−m )个乙种奖品,依题意得:15×0.8m +10×0.8(60−m )≤600,解得:m ≤30,答:学校在商场最多能购买30个甲种奖品.【点睛】本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式.46.(1)1个学习账号和1个错题半印设备的单价各是600元和1500元;(2)购买学习账号27个,伴印设备18个总费用最低,最低费用为43200元【分析】(1)本题有两个相等关系:购买2个学习账号的费用+1个错题伴印设备的费用=2700元,购买3个学习账号的费用+2个错题伴印设备的费用=4800元,据此设未知数列方程组解答即可;(2)设购买学习账号m 个,总费用为W 元,先根据题意列出W 与m 的一次函数关系式,然后由伴印设备不低于账号数量的23可得关于m 的不等式,解不等式即可求出m 的取值范围,再根据一次函数的性质解答即可.【详解】解:(1)设1个学习账号和1个错题伴印设备的单价各是x 元和y 元,依据题意得: 22700324800x y x y +=⎧⎨+=⎩,解得:6001500x y =⎧⎨=⎩, 答:1个学习账号和1个错题伴印设备的单价各是600元和1500元.(2)设购买学习账号m 个,则购买伴印设备()45m -个,总费用为W 元,依据题意得:()60015004590067500W m m m =+-=-+, 由2453m m -≥,解得:27m ≤, 9000-<,∴W 随m 的增大而减小,①当m 取最大值27时,函数值W 最小,最小值为675002430043200-=,答:购买学习账号27个,伴印设备18个总费用最低,最低费用为43200元.【点睛】本题考查了二元一次方程组、一元一次不等式和一次函数的应用,属于常考题型,正确理解题意、熟练掌握上述基本知识是解题的关键.47.(1)2≤x <3;(2)11a a +-. 【分析】(1)分别解得各不等式的解集,再求出两个不等式的公共解集即可.(2)根据分式的混合运算法则进行化简即可.【详解】(1)31122(3)5x x x x -⎧+>⎪⎨⎪--≥⎩由3112x x -+> 得:x <3 由2(3)5x x --≥ 得:x≥2①不等式组的解集为:2≤x <3(2)原式=23(2)(2)2·22(1)a a a a a a -++⎡⎤+⎢⎥++-⎣⎦ =22122(1)a a a a -++- =a+1a-1【点睛】本题考查解不等式,分式的混合运算,熟练掌握不等式的解法及分式的运算法则是解题关键.48.(1)a >2 (2)2【详解】试题分析:(1)解不等式得出用a 表示的x 与y ,然后根据x >y >0得到不等式组,求得不等式组的解集可求得a 的范围;(2)根据绝对值的意义直接由(1)的结论可求得结果.试题解析:解:(1)3{25x y a x y a -=++=①②由①+①得3x=6a+3解得x=2a+1,把x=2a+1代入①可得y=a-2由x >y >0可得2a+1>a-2>0解不等式可得a >-3且a >2所以a 的取值范围为a >2(2)由a >2可知=a-(a-2)=a-a+2=2.考点:二元一次方程组,不等式组,绝对值49.该车行今年A 型车每辆销售价1600元,去年每辆销售价2000元;(2)当进A 型车20辆,B 型车40辆时,这批车获利最大.【详解】试题分析:(1)设今年A 型车每辆售价x 元,则去年售价每辆为y 元,根据题意建立方程组求出其解即可;(2)设今年新进A 型车a 辆,则B 型车(60-a )辆,获利W 元,由条件表示出W 与a 之间的关系式,由a 的取值范围就可以求出W 的最大值.。

广东省深圳市数学中考专题复习专题6 方程不等式的实际应用(中考20题或21题)

广东省深圳市数学中考专题复习专题6 方程不等式的实际应用(中考20题或21题)
答:为了建造此小花园,管理处最少要准备120 000元,此 时小花园四周的宽度是30 队单独施工完成 的天数是乙工程队单独施工完天数的2倍,由甲、乙两工程队合 作20天可完成.
(1)求甲、乙两工程队单独完成此项工程各需要多少天?
解:设乙单独完成此项工程需要x天,则甲单独完成需要2x 天,
答:学校购进甲种口罩400盒,购进乙种口罩600盒.
(2)现已知甲,乙两种口罩的数量分别是20个/盒,25个/盒, 按照教育局要求,学校必须储备足够使用十天的口罩,该校师生 共计800人,每人每天2个口罩,问购买的口罩数量是否能满足教 育局的要求?
解:购买的口罩总数为: 400×20+600×25=23 000(个), 全校师生两周需要的用量为: 800×2×10=16 000(个). ∵23 000>16 000, ∴购买的口罩数量能满足教育局的要求.
根据题意可得:2x0+220x=1,解得:x=30, 经检验x=30是原方程的解. 故x+30=60,
答:甲、乙两工程队单独完成此项工程各需要60天,30天;
(2)若此项工程由甲工程队单独施工,再由甲、乙两工程队合 作施工完成剩下的工程,已知甲工程队每天需付施工费1万元, 乙工程队施工每天需付施工费2.5万元,要使施工费用不超过64 万元,则甲工程队至少要单独施工多少天?
训练 1.(2020秋·福田区校级期中)疫情期间,为保护学生和教师 的健康,某学校用33 000元购进甲、乙两种医用口罩共计1 000 盒,甲,乙两种口罩的售价分别是30元/盒,35元/盒. (1)求甲、乙两种口罩各购进了多少盒?
解:设学校购进甲种口罩x盒,购进乙种口罩y盒, 依题意,得:3x0+x+y=315y0=0033 000,解得:xy==640000.

2020年中考数学专项训练:方程与不等式的实际应用(含答案)

2020年中考数学专项训练:方程与不等式的实际应用(含答案)

提分专练方程与不等式的实际应用|类型1|分配购买问题1.[2019·贵阳]某文具店最近有A,B两款毕业纪念册比较畅销,近两周的销售情况是:第一周A款销售数量是15本,B款销售数量是10本,销售总价是230元;第二周A款销售数量是20本,B款销售数量是10本,销售总价是280元.(1)求A,B两款毕业纪念册的销售单价;(2)若某班准备用不超过529元购买这两种款式的毕业纪念册共60本,求最多能购买多少本A款毕业纪念册.|类型2|打折销售问题2.[2019·靖江外国语学校月考]某商店经销一批小商品,每件商品的成本为8元.据市场分析,销售单价定为10元时,每天能售出200件,现采用提高商品售价,减少销售量的办法增加利润.若销售单价每涨5元,每天的销售量就减少100件.针对这种小商品的销售情况,该商店要保证每天盈利640元,同时又要使顾客得到实惠,那么销售单价应定为多少元?3.[2019·赤峰]某校开展校园艺术节系列活动,派小明到文体超市购买若干个文具袋作为奖品.这种文具袋标价每个10元,请认真阅读结账时老板与小明的对话:图T4-1(1)结合两人的对话内容,求小明原计划购买文具袋多少个?(2)学校决定,再次购买钢笔和签字笔共50支作为补充奖品,两次购买奖品总支出不超过400元.其中钢笔标价每支8元,签字笔标价每支6元,经过沟通,这次老板给予8折优惠,那么小明最多可购买钢笔多少支?4.[2018·连云港]某村在推进美丽乡村活动中,决定建设幸福广场,计划铺设相同大小规格的红色和蓝色地砖.经过调查,获取信息如下:购买数量低于5000块购买数量不低于5000块红色地砖原价销售以八折销售蓝色地砖原价销售以九折销售如果购买红色地砖4000块,蓝色地砖6000块,需付款86000元;如果购买红色地砖10000块,蓝色地砖3500块,需付款99000元.(1)红色地砖与蓝色地砖的单价各是多少元?(2)经过测算,需要购置地砖12000块,其中蓝色地砖的数量不少于红色地砖的一半,并且不超过6000块,如何购买付款最少?请说明理由.|类型3|行程问题5.[2018·襄阳]正在建设的“汉十高铁”竣工通车后,若襄阳至武汉段路程与当前动车行驶的路程相等,约为325千米,且高铁行驶的速度是当前动车行驶速度的2.5倍,则从襄阳到武汉乘坐高铁比动车所用时间少1.5小时.求高铁的速度.|类型4|图形面积问题6.一幅长20 cm、宽12 cm的图案,如图T4-2,其中有一横两竖的彩条,横、竖彩条的宽度比为3∶2.设竖彩条的宽度为x cm,图案中三条彩条所占面积为y cm2.(1)求y与x之间的函数关系式;(2)若图案中三条彩条所占面积是图案面积的2,求横、竖彩条的宽度.5图T4-27.如图T4-3,有一块长20 cm、宽10 cm的长方形铁皮,如果在铁皮的四个角上截去四个相同的小正方形,然后把四边折起来,做成一个底面积为96 cm2的无盖的盒子,求这个盒子的容积.图T4-3|类型5|增长率问题8.[2019·遵义]新能源汽车节能、环保,越来越受消费者喜爱,各种品牌相继投放市场,我国新能源汽车近几年销售量全球第一,2016年销售量为50.7万辆,销量逐年增加,到2018年销量为125.6万辆,设年平均增长率为x,可列方程为()A.50.7(1+x)2=125.6B.125.6(1-x)2=50.7C.50.7(1+2x)=125.6D.50.7(1+x2)=125.6【参考答案】1.解:(1)设A 款毕业纪念册的销售单价为x 元,B 款毕业纪念册的销售单价为y 元,根据题意可得 {15x +10y =230,20x +10y =280,解得{x =10,y =8, 答:A 款毕业纪念册的销售单价为10元,B 款毕业纪念册的销售单价为8元.(2)设能购买a 本A 款毕业纪念册,则购买B 款毕业纪念册(60-a )本,根据题意可得10a +8(60-a )≤529,解得a ≤24.5.则最多能购买24本A 款毕业纪念册.2.解:设销售单价应定为x 元,根据题意,得:(x -8)200-100×x -105=640,整理,得:x 2-28x +192=0,解得:x 1=12,x 2=16,∵要使顾客得到实惠,∴x=12.答:销售单价应定为12元.3.解:(1)设小明原计划购买文具袋x 个,则实际购买了(x +1)个.根据题意,得10(x +1)×0.85=10x -17.解得x=17.答:小明原计划购买文具袋17个.(2)设小明可购买钢笔y 支,则购买签字笔(50-y )支,根据题意,得[8y +6(50-y )]×80%≤400-10×18×0.85.解得y ≤4.375.即y 最大值=4.答:小明最多可购买钢笔4支.4.解:(1)设红色地砖每块a 元,蓝色地砖每块b 元.由题意得{4000a +6000b ×0.9=86000,10000a ×0.8+3500b =99000.解得{a =8,b =10.答:红色地砖每块8元,蓝色地砖每块10元.(2)设购置蓝色地砖x 块,则购置红色地砖(12000-x )块,所需的总费用为y 元.由题意知x ≥12(12000-x ),得x ≥4000,又x ≤6000,所以蓝色地砖块数x 的取值范围为4000≤x ≤6000.当4000≤x<5000时,y=10x +8×0.8(12000-x ),即y=76800+3.6x.所以x=4000时,y 有最小值91200.当5000≤x ≤6000时,y=0.9×10x +8×0.8(12000-x )=2.6x +76800.所以x=5000时,y 有最小值89800.∵89800<91200,所以购买蓝色地砖5000块,红色地砖7000块,付款最少,最少费用为89800元.5.解:设高铁的速度为x 千米/时,则动车的速度为x2.5=0.4x 千米/时. 依题意得,3250.4x −325x =1.5,解得x=325. 经检验,x=325是原方程的根且符合题意,答:高铁的速度为325千米/时.6.解:(1)根据题意可知,横彩条的宽度为32x cm, ∴{x >0,20-2x >0,12-32x >0,解得0<x<8,y=20×32x +2×12·x -2×32x ·x=-3x 2+54x ,即y 与x 之间的函数关系式为y=-3x 2+54x (0<x<8). (2)根据题意,得-3x 2+54x=25×20×12. 整理,得x 2-18x +32=0.解得x 1=2,x 2=16(舍).∴x=2,32x=3. 答:横彩条的宽度为3 cm,竖彩条的宽度为2 cm .7.解:设截取的小正方形的边长为x cm .根据题意,得(20-2x )(10-2x )=96.解得x=13或x=2.∵20-2x>0,10-2x>0,∴x=13舍去,∴x=2.这个盒子的容积是96×2=192(cm 3).答:这个盒子的容积为192 cm 3.8.A [解析]由题意知在2016年50.7万的基础上,每年增长x ,则到2018年为50.7(1+x )2,所以选A .。

2020年中考数学《不等式与不等式组》真题汇编(带答案)

2020年中考数学《不等式与不等式组》真题汇编(带答案)

2020年中考数学《不等式与不等式组》专题复习(名师精选全国真题,值得下载练习)一.选择题1.(2019•上海)如果m>n,那么下列结论错误的是()A.m+2>n+2 B.m﹣2>n﹣2 C.2m>2n D.﹣2m>﹣2n2.(2019•永州)若关于x的不等式组有解,则在其解集中,整数的个数不可能是()A.1 B.2 C.3 D.43.(2019•日照)把不等式组的解集在数轴上表示出来,正确的是()A.B.C.D.4.(2019•恩施州)已知关于x的不等式组恰有3个整数解,则a 的取值范围为()A.1<a≤2B.1<a<2 C.1≤a<2 D.1≤a≤25.(2019•云南)若关于x的不等式组的解集是x>a,则a的取值范围是()A.a<2 B.a≤2C.a>2 D.a≥2 6.(2019•绥化)小明去商店购买A、B两种玩具,共用了10元钱,A种玩具每件1元,B种玩具每件2元.若每种玩具至少买一件,且A种玩具的数量多于B种玩具的数量.则小明的购买方案有()A.5种B.4种C.3种D.2种7.(2019•常德)小明网购了一本《好玩的数学》,同学们想知道书的价格,小明让他们猜.甲说:“至少15元.”乙说:“至多12元.”丙说:“至多10元.”小明说:“你们三个人都说错了”.则这本书的价格x(元)所在的范围为()A.10<x<12 B.12<x<15 C.10<x<15 D.11<x<148.(2019•呼和浩特)若不等式﹣1≤2﹣x的解集中x的每一个值,都能使关于x的不等式3(x﹣1)+5>5x+2(m+x)成立,则m的取值范围是()A.m>﹣B.m<﹣C.m<﹣D.m>﹣9.(2019•广元)不等式组的非负整数解的个数是()A.3 B.4 C.5 D.6 10.(2019•无锡)某工厂为了要在规定期限内完成2160个零件的任务,于是安排15名工人每人每天加工a个零件(a为整数),开工若干天后,其中3人外出培训,若剩下的工人每人每天多加工2个零件,则不能按期完成这次任务,由此可知a的值至少为()A.10 B.9 C.8 D.711.(2019•聊城)若不等式组无解,则m的取值范围为()A.m≤2B.m<2 C.m≥2D.m>2 12.(2019•怀化)为了落实精准扶贫政策,某单位针对某山区贫困村的实际情况,特向该村提供优质种羊若干只.在准备配发的过程中发现:公羊刚好每户1只;若每户发放母羊5只,则多出17只母羊,若每户发放母羊7只,则有一户可分得母羊但不足3只.这批种羊共()只.A.55 B.72 C.83 D.89 13.(2019•绵阳)红星商店计划用不超过4200元的资金,购进甲、乙两种单价分别为60元、100元的商品共50件,据市场行情,销售甲、乙商品各一件分别可获利10元、20元,两种商品均售完.若所获利润大于750元,则该店进货方案有()A.3种B.4种C.5种D.6种14.(2019•重庆)某次知识竞赛共有20题,答对一题得10分,答错或不答扣5分,小华得分要超过120分,他至少要答对的题的个数为()A.13 B.14 C.15 D.1615.(2019•德州)不等式组的所有非负整数解的和是()A.10 B.7 C.6 D.016.(2019•台湾)阿慧在店内购买两种蛋糕当伴手礼,如图为蛋糕的价目表.已知阿慧购买10盒蛋糕,花费的金额不超过2500元.若他将蛋糕分给75位同事,每人至少能拿到一个蛋糕,则阿慧花多少元购买蛋糕?()A.2150 B.2250 C.2300 D.2450二.填空题17.关于x的不等式组的解集是2<x<4,则a的值为.18.(2019•铜仁市)如果不等式组的解集是x<a﹣4,则a的取值范围是.19.(2019•大庆)已知x=4是不等式ax﹣3a﹣1<0的解,x=2不是不等式ax ﹣3a﹣1<0的解,则实数a的取值范围是.20.(2019•荆州)对非负实数x“四舍五入”到个位的值记为(x),即当n为非负整数时,若n﹣0.5≤x<n+0.5,则(x)=n.如(1.34)=1,(4.86)=5.若(0.5x﹣1)=6,则实数x的取值范围是.21.(2019•鄂州)若关于x、y的二元一次方程组的解满足x+y≤0,则m的取值范围是.22.(2019•宜宾)若关于x的不等式组有且只有两个整数解,则m 的取值范围是.23.(2019•达州)如图所示,点C位于点A、B之间(不与A、B重合),点C 表示1﹣2x,则x的取值范围是.24.(2019•德州)已知:[x]表示不超过x的最大整数.例:[4.8]=4,[﹣0.8]=﹣1.现定义:{x}=x﹣[x],例:{1.5}=1.5﹣[1.5]=0.5,则{3.9}+{﹣1.8}﹣{1}=.三.解答题25.(2019•济南)解不等式组,并写出它的所有整数解.26.(2019•青海)某市为了提升菜篮子工程质量,计划用大、中型车辆共30辆调拨不超过190吨蔬菜和162吨肉制品补充当地市场.已知一辆大型车可运蔬菜8吨和肉制品5吨;一辆中型车可运蔬菜3吨和肉制品6吨.(1)符合题意的运输方案有几种?请你帮助设计出来;(2)若一辆大型车的运费是900元,一辆中型车的运费为600元,试说明(1)中哪种运输方案费用最低?最低费用是多少元?27.(2019•锦州)某市政部门为了保护生态环境,计划购买A,B两种型号的环保设备.已知购买一套A型设备和三套B型设备共需230万元,购买三套A 型设备和两套B型设备共需340万元.(1)求A型设备和B型设备的单价各是多少万元;(2)根据需要市政部门采购A型和B型设备共50套,预算资金不超过3000万元,问最多可购买A型设备多少套?28.(2019•遵义)某校计划组织240名师生到红色教育基地开展革命传统教育活动.旅游公司有A,B两种客车可供租用,A型客车每辆载客量45人,B型客车每辆载客量30人.若租用4辆A型客车和3辆B型客车共需费用10700元;若租用3辆A型客车和4辆B型客车共需费用10300元.(1)求租用A,B两型客车,每辆费用分别是多少元;(2)为使240名师生有车坐,且租车总费用不超过1万元,你有哪几种租车方案?哪种方案最省钱?29.(2019•赤峰)某校开展校园艺术节系列活动,派小明到文体超市购买若干个文具袋作为奖品.这种文具袋标价每个10元,请认真阅读结账时老板与小明的对话:(1)结合两人的对话内容,求小明原计划购买文具袋多少个?(2)学校决定,再次购买钢笔和签字笔共50支作为补充奖品,两次购买奖品总支出不超过400元.其中钢笔标价每支8元,签字笔标价每支6元,经过沟通,这次老板给予8折优惠,那么小明最多可购买钢笔多少支?30.(2019•孝感)为加快“智慧校园”建设,某市准备为试点学校采购一批A、B 两种型号的一体机.经过市场调查发现,今年每套B型一体机的价格比每套A型一体机的价格多0.6万元,且用960万元恰好能购买500套A型一体机和200套B型一体机.(1)求今年每套A型、B型一体机的价格各是多少万元?(2)该市明年计划采购A型、B型一体机共1100套,考虑物价因素,预计明年每套A型一体机的价格比今年上涨25%,每套B型一体机的价格不变,若购买B型一体机的总费用不低于购买A型一体机的总费用,那么该市明年至少需要投入多少万元才能完成采购计划?参考答案一.选择题1.解:∵m>n,∴﹣2m<﹣2n,故选:D.2.解:解不等式2x﹣6+m<0,得:x<,解不等式4x﹣m>0,得:x>,∵不等式组有解,∴<,解得m<4,如果m=2,则不等式组的解集为<x<2,整数解为x=1,有1个;如果m=0,则不等式组的解集为0<x<3,整数解为x=1,2,有2个;如果m=﹣1,则不等式组的解集为﹣<x<,整数解为x=0,1,2,3,有4个.故选:C.3.解:解不等式①得:x≥﹣3,解不等式②得:x<1,故不等式组的解集为:﹣3≤x<1,在数轴上表示为:故选:C.4.解:解①得:x≥﹣1,解②得:x<a,∵不等式组的整数解有3个,∴不等式组的整数解为﹣1、0、1,则1<a≤2,故选:A.5.解:解关于x的不等式组得∴a≥2故选:D.6.【解答】解:设小明购买了A种玩具x件,则购买的B种玩具为件,根据题意得,,解得,3<x≤8,∵x为整数,也为整数,∴x=4或6或8,∴有3种购买方案.故选:C.7.解:根据题意可得:,可得:12<x<15,∴12<x<15故选:B.8.解:解不等式﹣1≤2﹣x得:x≤,∵不等式﹣1≤2﹣x的解集中x的每一个值,都能使关于x的不等式3(x ﹣1)+5>5x+2(m+x)成立,∴x<,∴>,解得:m<﹣,故选:C.9.解:,解①得:x>﹣2,解②得x≤3,则不等式组的解集为﹣2<x≤3.故非负整数解为0,1,2,3共4个故选:B.10.解:设原计划n天完成,开工x天后3人外出培训,则15an=2160,得到an=144.所以15ax+12(a+2)(n﹣x)<2160.整理,得ax+4an+8n﹣8x<720.∵an=144.∴将其代入化简,得ax+8n﹣8x<144,即ax+8n﹣8x<an,整理,得8(n﹣x)<a(n﹣x).∵n>x,∴n﹣x>0,∴a>8.∴a至少为9.故选:B.11.解:解不等式<﹣1,得:x>8,∵不等式组无解,∴4m≤8,解得m≤2,故选:A.12.解:设该村共有x户,则母羊共有(5x+17)只,由题意知,解得:<x<12,∵x为整数,∴x=11,则这批种羊共有11+5×11+17=83(只),故选:C.13.解:设该店购进甲种商品x件,则购进乙种商品(50﹣x)件,根据题意,得:,解得:20≤x<25,∵x为整数,∴x=20、21、22、23、24,∴该店进货方案有5种,故选:C.14.解:设要答对x道.10x+(﹣5)×(20﹣x)>120,10x﹣100+5x>120,15x>220,解得:x>,根据x必须为整数,故x取最小整数15,即小华参加本次竞赛得分要超过120分,他至少要答对15道题.故选:C.15.解:,解不等式①得:x>﹣2.5,解不等式②得:x≤4,∴不等式组的解集为:﹣2.5<x≤4,∴不等式组的所有非负整数解是:0,1,2,3,4,∴不等式组的所有非负整数解的和是0+1+2+3+4=10,故选:A.16.解:设阿慧购买x盒桂圆蛋糕,则购买(10﹣x)盒金爽蛋糕,依题意有。

2020年中考数学 中考新题型 实际应用型(含解答)-

2020年中考数学    中考新题型   实际应用型(含解答)-

中考新题型 实际应用型命题思路导航近年来,在全国各地的中考试卷中,都有一些密切联系实际的应用型题.强调“学习数学在于应用”这一导向已受到广泛的关注和肯定,为了有效地解答中考应用型题.应当对此进行深入的研究,从近几年的中考“应用问题”来看,始终贯穿着一条主线——将生产、生活实际问题转化为数学问题,数学问题的解答就可能是生产、生活实际问题的解答.一般地应用问题的解答包括三个环节:一是将生产、生活实际问题转化成纯数学问题;二是对数学问题作出解答,得出数学问题的解法;三是检验数学问题作出的解是否符合实际问题.在这三个环节中最关键的环节就是“如何将实际问题转化成数学问题”,我们认为解决这类问题的有效方法之一就是撇开试题中非本质的东西,抓住题目的本质要素,建立数学模型.典型例题解析例1 农作物栽植时在株距相等的条件下,一般选用菱形或正方形两种栽植方式,如图所示,试比较两种栽植方式的优劣.(a ) (b )分析:可以从两种栽植方式的土地利用率,栽植密度,采光面积分析比较,并将问题转化为几何量的计算.解:(1)土地利用率设AB =BC =CD =DA =a ,A ′B ′=B ′C ′=C ′D ′=D ′A ′=a ,∴ S 菱形=2S △ABC =2·243a =223a ,S 正方形=a 2, ∴ 正方形菱形S S =23≈0.866. 即菱形种植方式的占地面积小,只占正方形种植方式的86.6%.(2)栽植密度显然:AD =23AB ≈0.866A ′B ′. 即正方形种植方式的7行,可改菱形种植方式的8行,大面积栽植时每行达数百棵,假设为300棵.正方形栽植方式的700行,可改为菱形栽植800行,即多栽植300×100=30000棵.(3)采光面积作物生长中叶子的截面大体面圆形,充分长大后相邻两圆外切,因而阴影部分有面积减少,作物采光面积增大.图(a )中阴影部分的面积S 1为:S 1=2·21a ·23a -π22⎪⎭⎫ ⎝⎛a =24π23a ⎪⎪⎭⎫ ⎝⎛-. 图(b )中阴影部分面积S 2为:S 2=a 2-π22⎪⎭⎫ ⎝⎛a =24π1a ⎪⎭⎫ ⎝⎛- ∴ 12S S =224π234π1a a ⎪⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=π32π4--≈2.56, 即菱形种植方式作物采光面积比正方形种植方式作物采光面积大得多.综上所述,菱形种植方式较好.剖析:我国国土资源十分珍贵,特别是温室大棚寸土寸金,因此研究作物栽培方式具有现实意义,从而培养学生环保意识.例2 为了巩固1998年抗洪抢险的胜利成果,进一步增强长江大堤的防洪能力,经专家测算,长江某段堤坝(断面为如图所示的ABCD )的水坡面还需加宽1米,沿背水面由原来的坡度1︰1改建成坡度为1︰3,即∠EFG =30°,已知坝高10米,堤长1000米(参考数据2=1.41,3=1.73)(1)求坝底增加的宽度(如图中AF 的长);(2)若某工程队平均每天完成4500立方米的筑坝任务,问该工程队完成这一次任务至多要多少天?分析:该题以抗洪抢险为背景,立意于环境保护,科教兴国,是一道解直角三角形,梯形和工程问题的综合应用题,解答时应熟悉坡度概念,需要空间观念,会进行直角三角形、梯形中的有关计算从而求出所需土方数.解:(1)由DH ︰AH =1︰1,DH =10,得AH =10,故AB =AH -GH =9.又由Rt △EFG 中,FG =EG ·cot30°=103;得AF =FG -AG =(103-9)米.(2)S 梯形AFED =21(AF +DE )×EG =21×(103-9+1)×10 =5(103-8)得V =5·(103-8)×1000=(500003-40000)(m 3),则所需天数为:V ÷4500≈11(天),所以至多需要11天.例3 某工厂现有甲种原料360千克,乙种原料290千克,计划利用这两种原料生产A 、B 两种产品50件.生产一件A 产品需要甲种原料9千克,乙种原料3千克,可获利润700元;生产一件B 产品,需要甲种原料4千克,乙种原料10千克,可获利润1200元.(1)按要求安排A 、B 两种产品的生产件数,有哪几种方案,请你设计出来.(2)设生产A 、B 两种产品获总利润为y 元,其中一种的生产件数为x ,试写出y 与x 之间的函数关系,并利用函数的性质说明(1)中哪种生产方案获总利润最大?最大利润是多少?分析:设安排生产A 种产品x 件,则生产B 种产品(50-x )件.安排生产方案的建模条件是:甲种原料用料不超过360千克,乙种原料用料不超过290千克,所以生产方案满足的数学模型是 ()⎩⎨⎧≤-+≤-+290)50(1033605049x x x x 而获得利润是由函数y =700x +1200(50-x )所决定的,问题转化为上述函数在闭区间内的最值问题.解:(1)解不等式组:()⎩⎨⎧≤-+≤-+290)50(1033605049x x x x 解得30≤x ≤32.∵ x 为整数.∴ x 只取30,31,32.∵ A 、B 两种生产方案有三种:生产A 产品30件,B 产品20件;或者生产A 产品31件,B 种产品19件;或者生产A 产品32件,B 产品18件.(2)在每种确定的生产方案下所获利最大利润为y =700x +1200(50-x )=-500x +60000.因y 随x 的增大而减小,因此当x =30时,y 取得最大值,此时y =-500×30+60000=45000(元).剖析:此题涉及利润、生产、决策等市场经济方面的应用题,富有时代气息,既考查了学生的构建函数、不等式数学模型解决实际问题的能力,也增强了学生的经济意识和决策意识.例4 我国为了缩小个人收入差异,采取了征缴个人所得税政策,某地规定:月收入不超过100元的不纳税;月收入超过1100元就必须纳税,纳税标准为:超过1100元的部分不多于500元的按超过部分5%纳税;超过1100元的部分多于500元而不多于2000元的,超过的500元按5%比例,超过部分中的其余部分按10%的比例纳税.若某人六月份缴纳个人所得税为85元.问此人六月份的收入为多少元.分析:由500×5%=25,500×55+(200-50)×10%=175,25<85<175,故知此人收入超过1100元部分多于500元而不多于2000元,设此人六月份收入为x 元,于是可得方程:500×5%+(x -1100-500)×10%=85,解得x =2200(元);所以此人六月份的收入为2200元.剖析:本题涉及收入与纳税,着重考查学生运用一元一次方程解决实际问题的能力,增强依法纳税意识.例5 (吉林省)某初一学生在做作业时,不慎将墨水瓶打翻,使一道作业题只看到如下字样:“甲、乙两地相距40千米,摩托车的速度为45千米/时,运货汽车的速度为35千米/时,?”(涂黑部分表示被墨水覆盖的若干文字)请将这道作业题补充完整,并列方程解答.解:下面仅给出一例供评分时对照参考.补充部分:若两车分别从两地同时开出,相向而行,经几小时两车相遇?解:经x 小时两车相遇.依题可得45x +35x =40,∴ x =21. 答:经半小时两车相遇.剖析:此题有多种解法.本文只给出一种解法,这种问题以及前面涉及的自编题均属于命题方式上为“开放题“,其解法、结论均不惟一.例6 (山西省)某市场计划投入一笔资金采购一批紧俏商品,经过市场调查发现,如果月初出售,可获利15%,并可用本和利再投资其他商品,到月末又可获利10%;如果月末出售可获利30%,但要付出仓储费用700元,请问根据商场的资金状况,如何购销获利较多?解:设商场投资x 元,在月初出售,到月末可获利y 1元;在月末出售可获利y 2元. 根据题意,得y 1=15%+10%(x +15%x )=0.265x ,y 2=30%x -700=0.3x -700.(1)当y 1=y 2时,0.265x =0.3x -700,x =20000;(2)当y 1<y 2时,0.265x <0.3x -700,x <20000;(3)当y 1>y 2时,0.265x >0.3x -700,x >20000.答:当商场投资为20000元时,两种销售方式获利相同;当商场投资超过20000元时,第二种销售方式获利多;当商场投资不足20000元时,第一种销售方式获利较多.剖析:此类属于探索型试题,此类试题通过转换情景,让考生站在决策的高度解决问题,综合考查了学生运用所学知识综合解题的能力.例7 (1)据《北京日报》2000年5月16日报道:北京市人均水资源占有量只有300立方米,仅是全国人均占有量的81,世界人均占有量的321.问:全国人均水资源占有量有多少立方米?世界人均水资源占有量是多少立方米?(2)北京市一年漏掉的水,相当于新建一个自来水厂,据不完全统计,全市至少有6×105个水龙头、2×105个抽水马桶漏水,如果一个关不紧的水龙头,一个月能漏掉a 立方米水;一个漏水马桶,一个月漏掉b 立方米水,那么一个月造成的水流失量至少是多少立方米?(用含a 、b 的代数式表示)(3)水源透支令人担忧,节约迫在眉睫,针对居民用水浪费现象,北京市将制定居民用水标准,规定三口之家楼房每月标准用水量,超标部分加价收费,假设不超标部分每立方米水费1.3元,超标部分每立方米水费2.9元,某住楼房的三口之家某月用水12立方米,交消费22元,请你通过列方程求出北京市规定三口之家楼房每月标准用水量为多少立方米.解:(1)300÷81=2400,300÷321=9600. 答:全国人均水资源占有量是2400立方米,世界人均水资源占有量是9600立方米. (2)一个月造成的流失量至少为(6×105a +2×105b )立方米.(3)设北京市规定三口之家楼房每月标准用水为x 立方米,依题意,得1.3x +2.9(12-x )=22,解这个方程,得x =8.答:北京市规定三口之家楼房每月标准用水量为8立方米.剖析:此类阅读理解试题结合社会上的一些热点或考生所熟悉的生活设置问题的场景,编拟新颖,使试题密切贴近生活,突出了时代感,此类问题通常伴有大量的阅读理解,因此解这种问题的关键在于认真审题,准确理解,将身边的生活问题转化成数学问题.中考真题演练1.(武汉市)今年入夏以来,湖北部分地区旱情严重,为缓解甲、乙两地旱情,某水库计划向甲、乙两地送水,甲地需水量为180万立方米,乙地需水量为120万立方米,现已两次送水:往甲地送水3天,乙地送水2天,共送水48万立方米;往甲地送水2天,乙地送水3天,共送水81万立方米.问:完成往甲地、乙地送水任务还各需多少天?2.(吉林省)一年期定期储蓄年利率为2.25%,所得利息要交纳20%的利息税,例如:存入一年期100元,到期储户纳税后所得利息的计算公式为:税后利息=100×2.25%-100×2.25%×20%=100×2.25%(1-20%).已知某储户有一笔一年期定期储蓄到期纳税后得利息450元,问该储户存入多少本金?3.(云南省)在直径为AB 的平面内,.划出一块三角形区域.使三角形一边为AB ,顶点C 在半圆上,其他两边分别为6和8,现要建造一个内接于△ABC 的矩形水池DEFN ,其中,DE 在AB 上,如图的设计方案是使AC =8,BC =6,(1)求△ABC 中AB 上的高h ;(2)设DN =x ,当x 取何值时,水池DEFN 的面积最大?(3)实际施工时,发现在AB 上距B 点1.85的M 处有一棵大树,问:这棵大树是否位于最大矩形水池的边上?如果在,为保护大树,请设计出另一种方案,使内接于满足条件的三角形中欲建的最大矩形水池能避开大树.4.(宁夏回族自治区)列方程解应用题:(1)某同学勤工俭学挣的100元钱,按活期存入银行,如果月息是0.15%,数月后本金与利息的和为100.9元,那么该同学的钱在银行存了几个月?(2)王老师把500元钱按一年定期存入银行,到期后,取出了300元捐给了灾区,剩下的200元和应得利息又全部按一年期存入,由于利息下调,第二次的年利率是第一年存款年利率的53,这样到期后可得利息15元,求第一次存款的年利率(144=12).5.(连云港市)有一座抛物线形拱桥,正常水位在桥下面宽度为20米,拱顶距离水面4米.(1)在如图所示的直角坐标系中,求出该抛物线的解析式;(2)在正常水位的基础上,当水位上升h (米)时,桥下水面的宽度为d (米),试求出将d 表示为h 的函数解析式;(3)设正常水位时桥下的水深为2米,为保证过往船只顺利航行,桥下水面的宽度不得小于18米,求水深超过多少米时就分影响过往船只在桥下顺利航行6.(北京市东城区)商场出售的A 型冰箱每台令售价2190元,每日耗电量为1千瓦·时,而B 型节能冰箱每台售价虽比A 型冰箱高出10%,但每日耗电量却为0.55千瓦·时,现将A 型冰箱打折出售(打一折后的售价为原价的101),问商场至少打几折,消费者购买才合算(按使用期为10年.每年365天,每千瓦·时电0.40元计算)?7.(沈阳市)某县位于沙漠边缘地带,治理沙漠、绿化家乡是全县人民的共同愿望.到1998年底,全县沙漠的绿化率已达30%,此后,政府计划在近几年内,每年将当年年初未绿化的沙漠面积的m%栽上树进行绿化,到2000年底,全县沙漠的绿化率已达43.3%,求m 值.已被绿化的沙漠总面积注:沙漠的绿化率=被绿化的部分)原有沙漠总面积(含已8.(安徽省)目前,包括长江与黄河等七大流域在内,全国水土流失面积达到367万平方千米,其中长江与黄河流域的水土流失总面积占全国的32.4%,而长江流域的水土流失问题更为严重,它的水土流失面积比黄河流域的水土流失面积还要多29万平方千米,问长江流域的水土流失面积是多少?(结果保留整数)9.(福州市)如图为某地的等高线示意图,图中a、b、c为等高线,海拔最低的一条为60米,等高距为10米,结合地理知识写出等高线a为________米,b为_________米,c 为_________米.10.(安徽省)我们知道,溶液的酸碱度由pH确定.当pH>7时,溶液呈碱性,当pH<7时,溶液呈酸性.若将给定的HCL溶液加水稀释,那么在下列图象中,能反映HCL溶液的pH与所加水的体积(v)的变化关系的是()A B C D11.(四川省)某种商品进价为a元,商店将价格提高30%作零售价销售.在销售旺季过后,商店又以8折(即售价的80%)的价格开展促销活动.这时一件该商品的售价为()(A)a元(B)0.8a元(C)1.04a元(D)0.92a元12.(新疆乌鲁木齐)今年世界杯足球赛的积分方法如下:赢一场得3分,平一场得1分,输了一场得0分.某小组四个队进行单循环赛后,其中一队积7分.若该队赢了x场,平了y场,则(x,y)是()(A)(1,4)(B)(2,1)(C)(0,7)(D)(3,1)13.(安微省)据报载,我省人均耕地已从1951年的2.93亩减少到1999年的1.02亩,平均每年约减少0.04亩.若不采取措施,继续按此速度减下去,若干年后我省将无地可耕.无地可耕的情况最早会发生在()(A)2022年(B)2023年(C)2024年(D)2025年14.(北京市东城区)某音乐厅五月初决定在暑假期间举办学生专场音乐会,入场券分为团体票和零售票,其中团体票占总票数的32.若提前购票,则给予不同程度的优惠.在五月份内,团体票每张12元,共售出团体票数的52;零售票每张16元,共售出零售票数的一半.如果在六月份内,团体票按每张16元出售,并计划在六月份内售出全部余票,那么零售票应按每张多少元定价才能使这两个月的票款收入持平?15.(北京市西城区)在北京市“危旧房改造”中,小强一家搬进了回龙观小区.这个小区冬季用家庭燃气炉取暖.为了估算冬季取暖第一个月使用天燃气的开支情况,从11月15日起,小强连续八天每天晚上记录了天燃气表显示的读数,如下表[注:天燃气表上先后两次显示的读数之差就是这段时间内使用天燃气的数量(单位:米3)]:小强的妈妈11月15日买了一张面值600元的天燃气使用卡,已知每立方米天燃气1.70元,请你估算这张卡够小强家用一个月(按30天计算)吗?为什么?16.(河北省)某商店经销一种销售成本为每千克40元的水产品.据市场分析,若按每千克50元销售,一个月能售出500千克;销售单价每涨1元,月销售量就减少10千克.针对这种水产品的销售情况,请解答以下问题:(1)当销售单价定为每千克55元时,计算月销售量和月销售利润;(2)设销售单价为每千克x 元,月销售利润为y 元,求y 与x 的函数关系式(不必写出x 的取值范围);(3)商店想在月销售成本不超过10000元的情况下,使得月销售利润达到8000元,销售单价应定为多少?17.(沈阳市)某书店老板去批发市场购买某种图书.第一次购书用100元,按该书定价2.8元出售,并很快售完.由于该书畅销,第二次购书时,每本的批发价已比第一次高0.5元,用去了150元,所购书数量比第一次多10本.当这批书售出54时,出现滞销,便以定价的5折售完剩余的图书.试问该老板第二次售书是赔钱了,还是赚钱了(不考虑其他因素)?若赔线,赔多少?若赚钱,赚多少?18.(哈尔滨市)哈市移动通讯公司开设了两种通讯业务:“全球通”使用者先缴50元月基础费,然后每通话1分钟,再付电话费0.4元.“神州行”不缴月基础费,每通话1分钟,付话费0.6元(这里均指市内通话).若一个月内通话x 分钟,两种通讯方式的费用分别为1y 元和2y 元.(1)1y 、2y 与x 之间的函数关系式;(2)一个月内通话多少分钟,两种通讯方式的费用相同?(3)若某人预计一个月内使用话费200元,则应选择哪种通讯方式较合算? 19.(山东省)如图,是凸透镜成像的光路图,已知AB ⊥l ,l B A ⊥'',EO ⊥l ,它们的垂足分别是A 、A '、O ;BE ∥l ,f f OF O F AF ,211===为凸透镜的焦距.利用数学知识证明B A ''=AB .20.(山东省)如图表示近5年来某市的财政收入情况.图中x轴上1,2,…,5依次表示第1年,第2年,…,第5年,即1997年,1998年,…,2001年.可以看出,图中的折线近似于抛物线的一部分.(1)请你求出过A、C、D三点的二次函数的解析式;(2)分别求出当x=2和x=5时(1)中的二次函数的函数值;并分别与B、E两点的纵坐标相比较;(3)利用(1)中的二次函数的解析式预测今年该市的财政收入.21.(江西省)有一个只允许单向通过的窄道口,通常情况下,每分钟可以通过9人.一天,王老师到达道口时,发现由于拥挤,每分钟只能3人通过道口,此时,自己前面还有36个人等待通过(假定先到的先过,王老师过道口的时间忽略不计),通过道口后,还需7分钟到达学校.(1)此时,若绕道而行,要15分钟到达学校.从节省时间考虑,王老师应选择绕道去学校,还是选择通过拥挤的道口去学校?(2)若在王老师等人维持下,几分钟后,秩序恢复正常(维持秩序期间,每分钟仍有3人通过道口),结果王老师比拥挤的情况下提前了6分钟通过道口,问维持秩序的时间是多少?22.(长沙市)某商场经营一批进价为2元一件的小商品,在市场营销中发现此商品的日销售单价xx 3 5 9 11y 18 14 6 2(1)在直角坐标系中①根据表中提供的数据描出实数对(x,y)的对应点;②猜测并确定日销售量y件与日销售单价x元之间的函数关系式,并画出图象.(2)设经营此商品的日销售利润(不考虑其他因素)为 P元,根据日销售规律:①试求日销售利润P元与日销售单价x元之间的函数关系式,并求出日销售单价x为多少元时,才能获得最大日销售利润.试问日销售利润P是否存在最小值?若有,试求出,若无,请说明理由;②在直角坐标系中,画出日销售利润P元与日销售单价x元之间的函数图象的简图,观察图象,写出x与P的取值范围.参考答案1.设完成往甲地送水任务还需x 天,完成往乙地送水任务还需y 天.根据题意得:⎪⎪⎩⎪⎪⎨⎧=⋅++⋅+=⋅++⋅+813512025180842512035180y x y x ,整理得:⎪⎪⎩⎪⎪⎨⎧=+++=+++95405407520545y x y x解之是⎩⎨⎧==35y x ,经检验⎩⎨⎧==35y x 是原方程组的解.答:完成往甲地送水任务还需5天,完成往乙地送水任务还需3天.2.设存入x 元本金,根据题意,得:2.25%(1-20%)x =450. 解之得x =25000(元). 3.(1)∵ C 点是半圆周上的点,∴ ∠ACB =90°,从而知△ABC 是直角三角形, ∴ AB =22BC AC +=10,∵ 10h =48, ∴ h =4.8;(2)设NF =y ,∵ △CNF ∽△CAB ,∴ 108.48.4yx =-, ∴ y =10-1225x ,∴ S 矩形DEFN =1225x 2+10x (0<x <4.8)∴ 当x =⎪⎭⎫ ⎝⎛-1225210x =2.4时,S 矩形DEFN 的值最大,即此时水池DEFN 的面积最大.(3)在现设计方案中,欲判断大树是否位于水池边上,需求EB 的值. ∵ 当水池DEFN 的面积最大时,DN =2.4,∴ 此时F 是BC 的中点,在Rt △FEB 中,EF =2.4,BF =3.∴ EB =22EF BF -=24.29-=1.8∵ BM =1.85,∴ BM >EB ,从而在现设计方案中有BM >EB ,知大树必位于欲修建的水池边上,故应重新设计施工方案.∵ 当x =2.4时,DE =5,∴ AD =AB -(DE +BE )=3.2由圆的对称性知满足题设条件的另外设计方案是将最大面积的水池建成使AC =6,图略(注,不要求作图) 4.(1)设该同学的钱在银行存了x 个月.根据题意,得100+100×0.15%·x =100.9,解这个方程,得x =6. 答:略,(2)设第一次存款的年利率为x根据题意得[500(1+x )-300]·x 53=15, 整理,得20x 2+8x -1=0 解得x =101=10%,x =-105(不符合题意舍去) 答:第一次存款的年利率为10%. 5.(1)设抛物线的解析式为y =ax 2,在正常水位时,B 点坐标为B (10,-4),将它代入解析式得:-4=a ·102,∴ a =-251, ∴ 解析式为y =-251 x 2. (2)水位上升h (米)时,D 点的纵坐标为-(4-h ).设D 点横坐标为x (x >0),则-(4-h )=-251x 2, 解得x =5h -4, ∴ d =2h =10h -4,(3)当桥下水面宽度为18米时,得18=10h -4,2581=4-h , h =4-2581=2519=0.76. ∴ 桥下水深超过2.76米时就影响过往船只在桥下顺利航行. 6.设商场将A 型冰箱打x 折出售,消费者购买才合算. 依题意,有2190×10x+365×10×1×0.4≤2190×(1+10%)+365×10×0.55×0.4 2190×⎪⎭⎫⎝⎛-1.110x ≤365×10×0.4×(0.55-1)解这个不等式得x ≤8,答:商场应将A 型冰箱至少打八折出售,消费者购买才合算. 7.依题意:(1-30%)(1-m%)=(1-43.3%) 整理,得(-m%)2=0.81,1-m%=±0.9,m 1=10,m 2=190,m 2=190不合题意,舍去,所以m =10. 答:m 的值为10.8.设长江流域的水土流失面积为x 万平方千米,根据题意得 x +(x -29)=367×32.4%,解得x ≈74.答:长江流域的水土流失面积约是74万平方千米. 9.60,8010.C 11.C 12.B 13.D14.设总票数为a 张,六月份零售票应按每张x 元定价. 五月份:团体票售出数为,523253a a =⨯票款收入为a a 524325312=⨯⨯(元); 零售票售出票数为a a 613121=⨯,票款收入为a a 386116=⨯(元).六月份:团体票所剩票数为a a 1543252=⨯,可收入a a 156415416=⨯(元); 零售票所剩票数为a a 613121=⨯,可收入ax x a 6161=⨯(元).依题意,得ax a a a 61156438524+=+.解这个方程,得x =19.2答:六月份零售票应按每张19.2元定价.15.小强家这一周平均每天用天燃气10立方米.由此估计小强家冬季取暖第一个月使用天燃气约为300立方米. ∵ 1.7×300=510<600,∴ 估计这张卡够小强家用一个月. 16.(1)当销售单价定为每千克55元时,月销售量为:500―(55―50)×10=450(千克), 所以月销售利润为:(55-40)×450=6750(元).(2)当销售单价为每千克x 元时,月销售量为:[500―(x ―50)×10]千克, 而每千克的销售利润是:(x ―40)元, 所以月销售利润为:y =(x ―40)[500―(x ―50)×10]=(x ―40)(1000-10x )=-10x 2+1400x -40000(元),∴ y 与x 的函数解析式y =-10x 2+1400x -40000. (3)要使月销售利润达到8000元,即y =8000, ∴ -10x 2+1400x -40000=8000,即:x 2-140x +4800=0,解得x 1=60,x 2=80.当销售单价定为每千克60元时,月销售量为: 500―(60―50)×10=400(千克), 月销售成本为:40×400=16000(元);当销售单价定为每千克80元时,月销售量为: 500―(80―50)×10=200(千克) 月销售成本为:40×200=8000(元);由于8000<10000<16000,而月销售成本不能超过10000元, 所以销售单位应定为每千克80元.17.解法一:设第二次购书x 本,则第一次购书(x -10)本.由题意,得xx 1502110100=+-, 整理得x 2-110x+3000=0,解得x 1=50,x 2=60. 经检验,x 1=50,x 2=60都是原方程的根.当x =50时,每本书的批发价为150÷50=3(元),高于书的定价,不合题意,舍去.当x =60时,每本书的批发价为150÷60=2.5(元),低于书的定价,符合题意.因此第二次购书60本.⎪⎭⎫ ⎝⎛⨯⨯+⨯⨯218.2608.25460-150=151.2-150=1.2(元)答:该老板第二次售书赚了1.2元钱.解法二:设第一次购书的批发价为x 元,则第二次的批发价为(x +0.5)(元).由题意,得5.015010100+=+x x , 整理得2x 2-9x +10=0,解得x 1=2.5,x 2=2. 经检验,x 1=2.5,x 2=2都是原方程的根.当x =2.5时,第二次的批发价为2.5+0.5=3(元)高于书的定价,不舍题意,舍去.当x =2时,第二次的批发价为2+0.5=2.5(元)低于书的定价,符合题意. 因此第二次购书:150÷(2+0.5)x +60(本).以下解法同解法一.解法三:设第一次购书x 本,则第二次购书(x +10)本.由题意,得1015021100+=+x x , 整理得x 2-90 x +2000=0,解得x 1=40,x 2=50. 经检验,x 1=40,x 2=50都是原方程的根.当x =40每本书的批发价为100÷40=2.5(元), 第二次的批发价为2.5+0.5=3(元),高于书的定价,不合题意,舍去. 当x =50时,每本书的比发价为100÷50=2(元),第二次的比发价为2.0+0.5=2.5(元)低于书的定价,符合题意.因此第一次购书本.第二次购书50+10=60(本).以下解法同解法一.18.y 1=50+0.4x (x ≥0的整数).y 2=0.6x (x ≥0的整数). (2)若两种通讯费用相同,则50+0.4x =0.6.∴ x =250. 答:一个月内通话250分钟,两种移动通讯费用相同. (3)当y 1=200时,即200=50+0.4x ,则x =375(分). 当y 2=200时,即200=0.6x 则x =33331(分). ∴ “全球通”可通话375分钟,“神州行”可通话33331分钟. 答:选择“全球通”较合算. 19.∵ AB ⊥l ,EO ⊥l ,∴ AB ∥EO ,又∵ BE ∥l ,∴ 四边形AOEB 是矩形.∵ AF 1=F 1O =OF 2=f , ∴ BE =AO =2f , ∴ O F 2=21BE ,即BE OF 2=21.∵E B O O ''2=BE OF 2=21,即B 'O =BO , 又∠B 'O A '=∠BOA ,∴ Rt △B 'O A '≌Rt △BOA , ∴ A 'B '=AB .20.(1)设所求二次函数的解析式为y =ax 2+bx +c ,得⎪⎩⎪⎨⎧=++=++=++54168.3396.2c b a c b a c b a ,解这个方程组,得a =0.2,b =-0.2,c =2.6,因此,所求二次函数的解析式为:y =0.2x 2-0.2x +2.6.(*)(2)由(*)式,当x =2时,y =3,此时所求函数值与B 点纵坐标的误差为0(亿元). 当x =5时,y =6.6,此时所求函数值与E 点纵坐标的误差为0.3(亿元)(3)把x =6代入(*)式,得y =8.6,所以预测2002年该市的财政收入约为8.6亿元.21.(1)∵ 7336+=19>15, ∴ 王老师应选择绕道而行去学校. (2)设维持秩序时间为t .则⎪⎭⎫ ⎝⎛-+-9336336t t =6,解之得t =3(分). 答:维持好秩序的时间是3分钟.22.(1)①准确描出四点位置②猜测它是(3,18),(5,14)代入上式求得k =-2,b =24则有y =-2x+24时,(9,6),(11,2)代入知同样满足∴ 所求是y =-2x+24由实际意义知所求y =-2x+24(*) (0≤x <12和y =0(x ≥12)画出图象(2)①因为销售利润=售出价-进货价, 则P =xy -2y将(1)中(*)式代入,则P =y (x -2)=(24―2x )(x ―2)=-2x 2+28x -48=―2(x ―7)2+50. 当x =7时,日销售利润获得最大值为50元.又当x >12时,即销售单价大于是2元时,此时无人购买,所以此时利润P =0(x ≥12)由实际意义知,当销售价x =0,即亏本卖出此时利润P =-48,即为最小值.②根据实际意义,有:0≤x<2时亏本卖出当x=2或x=12时利润P=0,当x>12时,即高价卖出无人购买P=0 故作出图象,知:x≥0,-48≤P≤50。

中考数学《方程与不等式》专题知识训练50题(含答案)

中考数学《方程与不等式》专题知识训练50题(含答案)

中考数学《方程与不等式》专题知识训练50题含答案 (有理数、实数、代数、因式分解、二次根式)一、单选题1.下列是二元一次方程的是( )A .B .C .D .2.不等式510x -≤的解集为( ) A .2x ≤B .2x ≤-C .2x ≥D .x≥-23.定义a b ab a b *=++,若535x *=,则x 的值是( ) A .4B .5C .6D .74.已知m n <,则下列不等式一定成立的是( ) A .20202020m n ->- B .20202020m n< C .20202020m n +>+D .20202020m n >5.把方程(+(2x-1)2=0化为一元二次方程的一般形式是( ) A .5x 2-4x-4=0B .x 2-5=0C .5x 2-2x+1=0D .5x 2-4x+6=06.用配方法解下列方程时,配方正确的是( ) A .方程x 2﹣6x ﹣5=0,可化为(x ﹣3)2=4 B .方程y 2﹣2y ﹣2015=0,可化为(y ﹣1)2=2015 C .方程a 2+8a+9=0,可化为(a+4)2=25 D .方程2x 2﹣6x ﹣7=0,可化为2323()24x -=7.已知关于x 的方程(k ﹣1)x 2﹣(k ﹣1)x +14=0有两个相等的实数根,则k 的值为( )A .1B .2C .1或2D .-1或-28.由a ﹥b 得到an 2﹥bn 2成立的条件是( ) A .n ﹥0B .n <0C .n ≠0D .n 是任意实数9.关于x 的一元二次方程(m ﹣2)2x 2+(2m+1)x+1=0有两个不相等的实数根,则m 的取值范围是( )A .m <34B .m >34且m≠2C .m≤34D .m≥34且m≠210.“a 是正数”用不等式表示为( ) A .a ≤0B .a ≥0C .a <0D .a >011.一元一次方程2152236x x -+-=,去分母后变形正确的是( ) A .42522x x --+= B .42522x x ---= C .425212x x --+= D .425212x x ---=12.不等式组30{30x x +>-≥的解集是( ) A .3x >-B .3x ≥C .33x -<≤D .3x ≤13.不等式组372291x x +≥⎧⎨-<⎩的非负整数解的个数是( )A .4B .5C .6D .714.下列方程中,是一元一次方程的是( ) A .3x+2y=0B .4x=1C .21x - =1 D .3x ﹣5=3x+215.取一张长与宽之比为5:2的长方形纸板,剪去四个边长为5cm 的小正方形(如图).并用它做一个无盖的长方体形状的包装盒,要使包装盒的容积为3200cm (纸板的厚度略去不计).这张长方形纸板的长为多少厘米?( )A .24cmB .30cmC .32cmD .36cm16.一元二次方程2920x -=的一个根可能在( ) A .4,5之间B .6,7之间C .7,8之间D .9,10之间17.已知关于 x 的不等式组255332x x x t x +⎧->-⎪⎪⎨+⎪-<⎪⎩ 恰有5个整数解,则t 的取值范围是( ) A .﹣6<t <112-B .1162t -≤<-C .1162t -<≤-D .1162t -≤<-18.为满足消费者需要,红星厂一月份生产手提电脑200台,计划二、三月份共生产2500台,设二、三月份每月的平均增长率为x ,根据题意列出的方程是( )A .20021x +()=2500 B .200(1+x )+20021x +()=2500 C .20021x ()-=2500 D .200+200(1+x )+20021x +()=250019.若关于x 的一元二次方程ax 2+bx +5=0(a≠0)的一个解是x =1,则2014-a -b 的值是( ) A .2019B .2009C .2014D .201620.下列判断正确的是( ) A .若a b =,则33a b -=- B .若22 a b =,则a b = C .若b da c=,则b d = D .若a b =,则ac bc =二、填空题21.如果:□+□+△=14,□+□+△+△+△=30,则□=______.22.已知二元一次方程24x y -=,用含x 的代数式表示y 为_______.23.若23x y =⎧⎨=⎩是关于,x y 的二元一次方程1ax by -=的解,则463a b -+=_________.24.上海玩具厂2008年1月份生产玩具3000个,后来生产效率逐月提高,3月份生产玩具3630个,设平均每月增长率为x ,则可列方程________. 25.方程233x k x x=---无解,那么k 的值为________. 26.一元二次方程x(x-1)=2(1-x)的一般形式是________.27.已知4311237a b a b +=⎧⎨+=⎩,则a b +=__________.28.某单位在两个月内将开支从25万元降到16万元,如果每月降低开支的百分率均为(01)<<x x ,那么这个x 的值是________.29.一个不透明的袋子中装有6个红球和若干个黑球,这些球除了颜色外都相同,从袋子中随机摸出一个球是红球的概率为25,则袋子中有________个黑球.30.等腰三角形的一边长为4,另两边的长是关于x 的方程212=0x x k -+的两个实数根,则该等腰三角形的周长是______.31.若2|8|()0x y x y +++-=,则2x y +=_____________.32.某种商品的进价为320元,为了吸引顾客,按标价的八折出售,这时仍可盈利至少25%,则这种商品的标价最少是__________元.33.某公司2010年12月份的利润为160万元,要使2012年12月份的利润达到250万元,则平均每年增长的百分率是_________.34.已知x 2+y 2+10=2x +6y ,则x 21+21y 的值为_______35.解不等式组5323142x x x ①②+≥⎧⎪⎨-<⎪⎩,并把解表示在数轴上.36.小明要从甲地到乙地,两地相距1.8千米,已知他步行的平均速度为90米/分,跑步的平均速度为210米/分,若他要在不超过15分钟的时间内从甲地到达乙地,至少需要跑步多少分钟?设他需要跑步x 分钟,则列出的不等式为________.37.某气象台发现:在一段时间里有10天下了雨,且这10天中下雨有如下规律:如果早晨下雨,那么晚上是晴天;如果晚上下雨,那么早晨是晴天.已知这段时间里有9天晚上是晴天,7天早晨是晴天,则这段时间有______天.38.若(a+6)x+y |a|﹣5=1是关于x 、y 的二元一次方程,则a 的值是______.39.轮船先顺水航行46千米再逆水航行34千米所用的时间,恰好与它在静水中航行80千米所用的时间相等,水流速度是3千米/小时,则轮船在静水中的速度是______________千米/小时.三、解答题40.(1)解方程组:4103235x y x y +=⎧⎨-=⎩;(2)解不等式组:()2151422x x ->-⎧⎪⎨+<⎪⎩. 41.解方程:5278x x +=+. 42.解方程:43.解不等式(组):(1)解不等式:()5522x x -<+.(2)解不等式组241342163x x x x -<-⎧⎪⎨--≤⎪⎩①②,并在数轴上表示该不等式组的解集.44.某超市采购某种商品1000件,将这种商品按采购价提高30%作为标价出售,当售完700件后,刚好是“双11”,商家决定,把余下的300件按标价出售的8.8折出售,最后这批商品共盈利12660元.问这种商品每件采购价多少元?45.计算:(1)202211(1)|4|()2--+-+ (2)解方程:2420x x --=. 46.解下列不等式组和不等式组:(1)34225x y x y +=⎧⎨-=⎩ (2)()32421152x x x x ⎧--≥⎪⎨-+>⎪⎩47.(1(3223⎛⎫+ ⎪⎝⎭;(2)解方程组:32(21)7214322x y y x x -+=-⎧⎪⎨+++=⎪⎩.48.解下列不等式,并将解集在数轴上表示出来. (1)()()52121x x +>-- (2)3136x x ->- 49.(1)解不等式组()32421132x x x x ⎧--≥⎪⎨-->⎪⎩并把它的解集在数轴上表示出来.(2)解方程31133x x x=--- .参考答案:1.B【详解】试题分析:含有两个未知数,并且所含未知项都为1次方的整式方程就叫做二元一次方程.A 、是一元一次方程,C 、是分式方程,D 、是二元二次方程,故错误;B 、符合二元一次方程的定义,本选项正确. 考点:二元一次方程的定义点评:本题属于基础应用题,只需学生熟练掌握二元一次方程的定义,即可完成. 2.D【分析】根据一元一次不等式的解法,即可得到答案. 【详解】解:∵5x 10-≤, ∵x 2≥- 故选择:D.【点睛】本题考查了一元一次不等式的解法,解题的关键是掌握一元一次不等式的解法. 3.B【分析】先根据题意理解“*”所表示的运算法则,然后根据此运算法则将535x *=化为5535x x ++=,解出即可.【详解】由题意得:535x *=,可化为:5535x x ++=, 移项合并得:5355x x +=-, 系数化为1得:5x =. 故选:B .【点睛】本题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,求出解. 4.B【分析】根据不等式的性质的内容逐个判断即可. 【详解】解:A .∵m <n ,∵m-2020<n-2020,故本选项不符合题意; B .∵m <n , ∵20202020m n<,故本选项符合题意; C .∵m <n ,∵m+2020<n+2020,故本选项不符合题意; D .∵m <n ,∵2020m <2020n ,故本题选项不符合题意; 故选:B .【点睛】本题考查了不等式的性质,能熟记不等式的性质的内容是解此题的关键. 5.A【详解】试题分析:((+(2x-1)2=0即x 2-2+4x 2-4x+1=0,移项合并同类项可得5x 2-4x-4=0,故答案选A . 考点:一元二次方程的一般形式. 6.D【详解】试题分析:选项A ,由原方程得到:方程x 2﹣6x+32=5+32,可化为(x ﹣3)2=14,故本选项错误;选项B ,由原方程得到:方程y 2﹣2y+12=2015+12,可化为(y ﹣1)2=2016,故本选项错误;选项C ,由原方程得到:方程a 2+8a+42=﹣9+42,可化为(a+4)2=7,故本选项错误;选项D ,由原方程得到:方程x 2﹣3x+(32)2=72+(32)2,可化为2323()24x -=,故本选项正确;故选D .考点:解一元二次方程-配方法. 7.B【分析】根据方程有两个相等的根,可知它是一元二次方程且判别式的值为零,进而即可求解.【详解】∵关于x 的方程(k ﹣1)x 2﹣(k ﹣1)x +14=0有两个相等的实数根,∵k ﹣1≠0且[]21(1)4(1)04k k ----⨯=, ∵k=2. 故选B .【点睛】本题主要考查一元二次方程的判别式,熟练掌握一元二次方程的判别式与根的关系,是解题的关键. 8.C【分析】根据不等式的基本性质:不等式两边乘以同一个正数,不等号的方向不变可知,由a >b 得到an 2>bn 2的条件是n 2>0,由此得出n 的取值范围.【详解】解:∵由a >b 可得到an 2>bn 2, ∵n 2>0, 又∵n 2≥0, ∵n ≠0 故选:C .【点睛】本题主要考查了不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变. 9.B【详解】∵关于x 的一元二次方程(m ﹣2)2x 2+(2m+1)x+1=0有两个不相等的实数根, ∵∵=b 2﹣4ac >0,即(2m+1)2﹣4×(m ﹣2)2×1>0, 解这个不等式得,m >34, 又∵二次项系数是(m ﹣2)2, ∵m≠2,故M 得取值范围是m >34且m≠2. 故选B . 10.D【分析】正数即“>0”可得答案.【详解】解:“a 是正数”用不等式表示为a >0, 故选:D .【点睛】本题考查了由实际问题抽象出一元一次不等式,读懂题意,抓住关键词语,弄清运算的先后顺序和不等关系,才能把文字语言的不等关系转化为用数学符号表示的不等式. 11.D【分析】由去分母的运算法则进行化简,即可得到答案. 【详解】解:∵2152236x x -+-=, 去分母化简,得:425212x x ---=; 故选:D .【点睛】本题考查了解一元一次方程的方法,解题的关键是掌握解一元一次方程的方法.12.B【详解】试题分析:由∵得:x >﹣3, 由∵得:x≥3,∵不等式组的解集是x≥3. 故选B .考点:解一元一次不等式组. 13.B【分析】先求出不等式组的解集,再求出不等式组的非负整数解,即可得出答案.【详解】解:37202912x x +≥⎧⎨-<⎩①② ∵解不等式∵得:53x -解不等式∵得:x <5, ∵不等式组的解集为553x -< ∵不等式组的非负整数解为0,1,2,3,4,共5个, 故选:B .【点睛】本题考查了解一元一次不等式组和一元一次不等式组的整数解,能求出不等式组的解集是解此题的关键. 14.B【详解】只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程.它的一般形式是ax+b=0(a ,b 是常数且a≠0).根据一元一次方程的定义可得,只有选项B 符合要求,故选B. 15.B【分析】设这张长方形纸板的长为5x 厘米,宽为2x 厘米,根据包装盒的容积为3200cm ,得5(510)(210)200x x --=,解方程即可.【详解】设这张长方形纸板的长为5x 厘米,宽为2x 厘米, 根据题意,得5(510)(210)200x x --=, 解方程,得11x =(不合题意,舍去),26x =, ∵这张长方形纸板的长为30厘米. 故选:B .【点睛】本题考查了一元二次方程的应用,根据题意正确表示出长方体的底面积是解题的关键. 16.D【分析】用直接开平方法求解.然后估计方程根的取值范围.【详解】解:移项得x 2=92,开方得x 1x 2根的取值范围进行判断:∵9<10, 故选D .【点睛】本题不仅考查了一元二次方程的解法,还考查了对无理数的估算能力,对同学们有较高要求. 17.C【分析】本题首先求解不等式组的公共解集,继而按照整数解要求求解本题. 【详解】∵2553x x +->-, ∵20x <; ∵32x t x +->, ∵32x t >-;∵不等式组的解集是:2032t x <<-. ∵不等式组恰有5个整数解,∵这5个整数解只能为 15,16,17,18,19,故有143215t ≤-<, 求解得:1162t -<≤-. 故选:C .【点睛】本题考查含参不等式组的求解,解题关键在于求解不等式时需将参数当做常量进行运算,其次注意运算仔细即可. 18.B【详解】由题意可得, 200(1+x)+200(1+x) ²=2500, 故选B. 19.A【分析】已知x=1是一元二次方程的一个实数根,可将其代入该方程中,即可求出a+b 的值.【详解】∵一元二次方程为ax 2+bx+5=0(a≠0)的解是x=1,∵a+b+5=0,即a+b=-5,∵2014-a-b=2014-(a+b )=2014-(-5)=2019,故选A .【点睛】此题主要考查了方程解的定义,所谓方程的解,即能够使方程左右两边相等的未知数的值.20.D【分析】根据等式的性质解答判断即可.【详解】解:A.若a =b ,两边同时减3,得a −3=b −3,故不正确,此选项不合题意;B.由22 a b =,得a b =或a b =-,故不正确,此选项不合题意;C.若b d a c=,则bc =ad ,故不正确,此选项不合题意; D.若a =b ,则ac =bc ,故正确,此选项符合题意;故选:D .【点睛】此题考查的是等式的性质,等式两边加同一个数(或式子)结果仍得等式;等式两边乘同一个数或除以一个不为零的数,结果仍得等式.21.3【分析】本题可以将抽象的图形用未知数x 与y 来表示,那么问题就转化成求两个二元一次方程的解集.【详解】设□为x ,△为y则□+□+△=2x+y=14,□+□+△+△+△=2x+3y =30即2142330x y x y +=⎧⎨+=⎩①② 用∵-∵得:216y =,8y =把8y =代入∵得:2814x +=,3x =,即□=3故答案为3【点睛】本题解题关键,把题干的两个图形看成两个未知数,用所学的二元一次方程组的求解方式求解.22.122y x =- 【分析】先移项,再把y 的系数化为1即可.【详解】解:移项得,24y x ,将y 的系数化为1得,122y x =-. 故答案为 122y x =-. 【点睛】本题主要考查二元一次方程的变形,熟知等式的基本性质是解答此题的关键. 23.5【分析】把23x y =⎧⎨=⎩代入1ax by -=中得出231a b -=,将231a b -=代入得出46a b -的值求解即可.【详解】解:将23x y =⎧⎨=⎩代入1ax by -=得:231a b -=, ∵()462232a b a b -=-=,故4635a b -+=.故答案为:5.【点睛】本题考查解二元一次方程组的解,掌握把方程组的解代入二元一次方程是解题关键.24.23000(1)3630x +=【分析】设平均每月增长率为x ,则二月份生产玩具的数量为3000(1+x )个,三月份生产玩具的数量为3000(1+x )2个,根据题意找出等量关系:三月份生产玩具的数量是3630个,据此等量关系列出方程即可.【详解】设平均每月增长率为x ,依题意得:该方程为:3000(1+x ) 2 =3630.故答案为:23000(1)x + =3630.【点睛】本题主要考查了由实际问题抽象出一元二次方程,读懂题意,找出合适的等量关系列出方程是解题关键.25.3【分析】先将分式方程转化为整式方程,根据分式方程无解,可得3x =,进而求得k 的值. 【详解】解:233x k x x=---, 2(3)x x k =-+,26x x k =-+,6x k =-,方程无解,3x ∴=,63k ∴-=,3k ∴=,故答案为:3.【点睛】本题考查了解分式方程,掌握分式方程的计算是解题的关键.26.x 2+x-2=0【分析】对方程进行去括号、移项、合并同类项,将方程化为20ax bx c ++=的形式即可.【详解】解:(1)2(1)x x x -=-2220x x x --+=220x x +-=故答案为220x x +-=【点睛】本题考查一元二次方程的一般形式,难度较低,熟练掌握去括号、移项、合并同类项以及一元二次方程的一般形式20ax bx c ++=是解题关键.27.3【分析】利用两个方程相加求解即可.【详解】解:4311237a b a b +=⎧⎨+=⎩①②, ∵+∵,得6a +6b =18,∵6(a +b )=18,a +b =3,故答案为:3.【点睛】本题主要考查了解二元一次方程组,解二元一次方程组的基本解法有加减消元法和代入消元法.28.20%【分析】利用降低后的开支=原开支×(1-降低率)2,即可得出关于x 的一元二次方程,解之取其符合题意的值即可得出结论.【详解】解:依题意得:25(1-x )2=16,解得:x 1=0.2=20%,x 2=1.8(不合题意,舍去).故答案为:20%.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.29.9【分析】设有x 个黑球,根据概率=符合条件的情况数目与全部情况的总数之比列出方程求解即可.【详解】解:设有x 个黑球,由题意,得6265x =+ 解得x =9,经检验,x =9是原方程的解.故答案为9.【点睛】本题考查了概率的求法及分式方程的应用.如果一个事件有n 种情况,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=m n. 30.16【分析】分为两种情况:∵腰长为4,∵底边为4,分别求出即可.【详解】解:分为两种情况:情况一:当腰为4时,则另一腰4是方程212=0x x k -+的一个解,代入4到方程中,求得=32k ,此时方程的两个解为4和8,对应的三边长为4、4、8,不能构成三角形,故舍去;情况二:当底边为4时,此时方程212=0x x k -+有两个相等的实数根,∵∵=12²-4k =0,解得k =36,此时方程的两个解为6和6,对应的三边长为6、6、4,能构成三角形,此时三角形周长为16,故答案为:16.【点睛】本题考查了一元二次方程的解及解法,等腰三角形的性质等知识点,注意要分类讨论,不要漏解.31.12-【分析】根据2|8|()0x y x y +++-=可得x 与y 的值,然后计算2x y +即可解答.【详解】解:∵2|8|()0x y x y +++-=,∵800x y x y ++=⎧⎨-=⎩, 解得:44x y =-⎧⎨=-⎩, ∵()242412x y +=-+⨯-=-;故答案为:12-.【点睛】本题考查了非负数的性质,熟练掌握是解题的关键.32.500【详解】设商品的标价为x 元,则0.8x=320(1+25%),解得:x=500.故答案:500.33.25%【详解】试题分析:设每年的增长率是X ,则有()()22225516012501164x x ⎛⎫+=⇒+== ⎪⎝⎭ 1 1.25x +=,25%x =考点:二次函数的综合题点评:在解题时要能灵运用二次函数的图象和性质求出二次函数的解析式,利用数形结合思想解题是本题的关键.34.64【详解】∵x 2+y 2+10=2x +6y ,∵x 2+y 2+10-2x -6y =0,∵(x -1)2+(y -3)2=0,∵(x -1)2≥0,(y -3)2≥0,∵x -1=0,y -3=0,解得:x =1,y =3;∵x 21+21y =121+21×3=63+1=64,故答案为:64.35.﹣1≤x <3【详解】试题分析:分别解不等式,找出解集的公共部分即可. 试题解析:5323142x x x ①②+≥⎧⎪⎨-<⎪⎩, 由∵解得1x ≥-;由∵解得3x ;< 所以,原不等式组的解集为1 3.x把不等式组的解集在数轴上表示为:.36.()21090151800x x +-≥【分析】根据跑步的路程加上步行的路程大于等于两地距离列不等式即可.【详解】解:根据题意列不等式为:()21090151800x x +-≥故答案为:()21090151800x x +-≥.【点睛】本题考查的知识点是一元一次不等式的实际应用,找出题目中的等量关系是解此题的关键.37.13【详解】分析:根据题意设有x 天早晨下雨,这一段时间有y 天;有9天下雨,即早上下雨或晚上下雨都可称之为当天下雨,∵总天数-早晨下雨=早晨晴天;∵总天数-晚上下雨=晚上晴天;列方程组解出即可.详解:设有x 天早晨下雨,这一段时间有y 天,根据题意得:7(10)9y x y x -=⎧⎨--=⎩①②, ∵+∵得:2y =26,y =13.所以一共有13天;故答案为13.点睛:考查二元一次方程组的应用,解题的关键是找出题目中的等量关系列出方程组. 38.6【分析】依据二元一次方程的定义可得到a+6≠0,|a|-5=1,从而可确定出a 的值.【详解】解:∵(a+6)x+y |a|﹣5=1是关于x 、y 的二元一次方程,∵a+6≠0,|a|-5=1.解得:a=6.故答案为6.【点睛】本题主要考查的是二元一次方程的定义,掌握二元一次方程的定义是解题的关键.39.20【分析】关键描述语为:“顺水航行46千米再逆水航行34千米所用的时间,恰好与它在静水中航行80千米所用的时间相等”;本题的等量关系为:逆水航行46千米用的时间+顺水航行34千米所用的时间=静水航行时80千米所用的时间.【详解】设船在静水中的速度是x 千米/时. 则:3446x 3x 3+-+ =80x . 解得:x=20.经检验,x=20是原方程的解.【点睛】本题考查的是分式方程的应用,正确列出方程是解题的关键.40.(1)510x y =⎧⎨=-⎩;(2)20x -<<. 【分析】(1)利用加减消元法解方程组;(2)先分别解两个不等式,然后根据大于小的小于大的取中间确定不等式组的解集.【详解】(1)解:∵2⨯得:8220x y +=∵,∵+∵得: 1155x =,解得:x=5,把x=5代入∵得:y=-10 ,所以,方程组的解为:510x y =⎧⎨=-⎩ ; (2) 解:由∵得: 2x >-,由∵得: 0x <,所以,不等式组的解为:20x -<<.故答案为(1)5{10x y ==- ;(2)20x -<< .【点睛】本题考查解一元一次不等式组:求解出两个不等式的解集,然后按照“同大取大,同小取小,大于小的小于大的取中间,小于小的大于大的无解”确定不等式组的解集.同时考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.41.3x =-【分析】先移项,再合并同类项,最后把系数化为“1”,即可得到答案.【详解】解:5278x x +=+,移项得:5782x x -=-,整理得:26x -=,解得:3x =-.【点睛】本题考查的是一元一次方程的解法,掌握“解一元一次方程的步骤与方法”是解本题的关键.42.原方程无解【详解】试题分析:先去分母,变为整式方程,解后进行检验即可试题解析:去分母:2(3x-1)+3x=1x=检验:当x=时,9x-3=0所以:x=是原方程的增根,原方程无解考点:解分式方程43.(1)3x <(2)23x -≤<,见解析【分析】(1)去括号、移项、合并同类项、系数化为1可得;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【详解】(1)解:去括号得:5x -5<4+2x ,移项、合并得:3x <9,系数化为1得:x <3;(2)解:解∵得:x <3,解∵得:x ≥-2,则不等式组的解集为-2≤x <3,将不等式组的解集表示在数轴上如下:.【点睛】本题考查的是解一元一次不等式和解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.44.这种商品每件采购价是50元.【分析】根据“利润=(售价-进价)×销售量”,将打折前、打折后两种情况的盈利相加等于总盈利,列方程求解即可.【详解】解:设此商品单价是x 元,则有:()()8.8130%700130%3001266010x x x x ⎡⎤⎡⎤+-⨯++-⨯=⎣⎦⎢⎥⎣⎦化简,整理后得:2100.14430012660x x +⨯=解得:50x =答:这种商品每件采购价是50元.【点睛】本题考查了一元一次方程解决实际问题,解题关键是根据题意找到等量关系,并正确列出方程.45.(1)4;(2)1222x x ==【分析】(1)按照乘方运算,绝对值,负整数指数幂,立方根分别计算即可; (2)用配方法解一元二次方程即可.(1)202211(1)|4|()2--+-+ 1423=++-4=;(2)2420x x --=,2446x x ∴-+=,2(2)6x ∴-=,2x ∴-=,∴1222x x ==【点睛】本题考查了实数的运算及一元二次方程的解法,解决本题的关键是熟练掌握用配方法解一元二次方程.46.(1)21x y =⎧⎨=-⎩;(2)7<-x 【分析】(1)根据代入消元法解二元一次方程组即可;(2)先分别解每一个不等式,再求出公共部分即可.【详解】解:(1)34225x y x y +=⎧⎨-=⎩①② 由∵得:25y x =-∵将∵代入∵得:()34252x x +-=,解得:2x =将2x =代入∵得:1y =-∵21x y =⎧⎨=-⎩(2)()32421152x x x x ⎧--≥⎪⎨-+>⎪⎩①② 由∵得:1x ≤由∵得:()()22151x x ->+,解得:7<-x∵不等式组的解集为:7<-x【点睛】本题考查解二元一次方程组以及解一元一次不等式组,掌握代入消元法解二元一次方程组以及不等式组的求解方法是解题关键.47.(1)7;(2)12x y =⎧⎨=⎩. 【分析】(1)首先计算乘方、开方,然后从左向右依次计算,求出算式的值是多少即可. (2)应用加减消元法,求出方程组的解是多少即可.【详解】解:(1(03223⎛⎫--+ ⎪⎝⎭(81=-+81=+7=-.(2)32(21)712143222x y y x x -+=-⎧⎪⎨+++=⎪⎩()() 解:由(1),得345x y -=-(3)由(2),得1x y -+=(4)343+⨯()(),得2y =(5),把(5)代人(4),得1x =∵方程组的解为12x y =⎧⎨=⎩. 【点睛】此题主要考查了实数的运算,以及解二元一次方程组的方法,要熟练掌握,注意代入消元法和加减消元法的应用.48.(1)x >-1,数轴见解析;(2)x>3,数轴见解析【分析】(1)先去括号,再移项、合并得到7x≥-7,然后把x 的系数化为1即可; (2)根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得.【详解】解:(1)去括号得5x+10>1-2x+2,移项得5x+2x >1+2-10,合并得7x >-7,系数化为1得x >-1;用数轴表示为:;(2)去分母,得:2x>6-(x-3),去括号,得:2x>6-x+3,移项,得:2x+x>6+3,合并同类项,得:3x>9,系数化为1,得:x>3.【点睛】此题考查解一元一次不等式,以及在数轴上表示不等式的解集,熟练掌握运算法则是解题的关键.49.(1),不等式组的解集是﹣1<x≤1,数轴表示见解析;(2)x=﹣1.【详解】试题分析:(1)分别求出不等式组中两不等式的解集,找出两解集的公共部分确定出不等式组的解集,表示在数轴上即可;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.试题解析:(1)()32421132x x x x ⎧--≥⎪⎨-->⎪⎩①②, 解不等式∵ ,得x≤1,解不等式∵,得x >﹣1,则不等式组的解集是﹣1<x≤1;(2)方程两边同乘x ﹣3得:3x=(x ﹣3)+1,解得:x=﹣1,检验:当x=﹣1时,x﹣3≠0,所以x=﹣1是原方程的解.。

中考数学《方程与不等式》专题训练50题含参考答案

中考数学《方程与不等式》专题训练50题含参考答案

中考数学《方程与不等式》专题知识训练50题含答案 (有理数、实数、代数、因式分解、二次根式)一、单选题1.方程()223x x =-化为一般形式后二次项系数、一次项系数和常数项分别为( )A .1、2、-3B .1、2、-6C .1、-2、6D .1、2、6【答案】C【分析】首先将方程()223x x =-化为一般形式: 2260x x -+=,然后根据此一般形式,即可求得答案.【详解】解:方程()223x x =-化成一般形式是2260x x -+=,∴二次项系数为1,一次项系数为-2,常数项为6.所以C 选项是正确的.【点睛】此题考查了一元二次方程的一般形式.注意一元二次方程的一般形式是:ax 2+bx+c=0(a,b,c 是常数且a≠0),其中a,b,c 分别叫二次项系数,一次项系数,常数项. 2.已知一个二次函数图象经过11(5,)P y -,22(1,)P y -,33P (1,y ),44(5,)P y 四点,若324y y y <<,则1y ,2y ,3y ,4y 的最值情况是( )A .1y 最小,4y 最大B .3y 最小,1y 最大C .3y 最小,4y 最大D .无法确定【答案】B【分析】设出抛物线的解析式,再把四点的坐标代入,解不等式后确定字母的取值范围,即可判断大小关系,从而知道哪个最小,哪个最大.【详解】解:∵一条抛物线过11(5,)P y -,22(1,)P y -,33P (1,y ),44(5,)P y 四点, 设抛物线的解析式为2y ax bx c =++(a≠0), ∵1255y a b c =-+, 2y a b c =-+,3y a b c =++,4255y a b c =++,∵324y y y <<, ∵a +b+c <a-b+c , ∵b <0,∵255a b c -+>255a b c ++, ∵14y y >,∵3y 最小,1y 最大. 故选B.【点睛】此题考查了二次函数的最值问题,涉及到解不等式,解不等式后确定字母的取值范围是解题关键.3.不等式组410,27x x +>⎧⎨<⎩正整数解的个数有( )A .2个B .3个C .4个D .5个4.下列不等式组中,无解的是( )A .1313x x -<⎧⎨+<⎩B .1313x x ->⎧⎨+>⎩C .1313x x -<⎧⎨+>⎩D .1313x x ->⎧⎨+<⎩【答案】D【分析】根据不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到,即可得出答案. 【详解】解:不等式组整理为: A 、42x x ⎧⎨⎩<<,解集为:2x <; B 、42x x >⎧⎨>⎩,解集为:>4x ; C 、42x x ⎧⎨>⎩<,解集为:24x <<; D 、42x x >⎧⎨⎩<,无解; 故选:D .【点睛】本题主要考查了一元一次不等式解集的求法,熟记求不等式组解集的方法是解题的关键.5.甲队修路120m 比乙队修路210m 所用天数少1天,已知甲队比乙队每天少修40%,设甲队每天修路m x .依题意,下面所列方程正确的是( ) A .12021010.4x x x+=- B .12021010.4x x x-=- C .120210(10.4)1x x -=+ D .120210(10.4)1x x-+=6.已知n 是方程2210x x --=的一个根,则2367n n --=( ) A .10- B .7-C .6-D .4-【答案】D【分析】把n 代入方程得到2210n n --=,再根据所求的代数式的特点即可求解. 【详解】把n 代入方程得到2210n n --=,故221n n -= ∵2367n n --=3(22n n -)-7=3-7=-4, 故选D.【点睛】此题主要考查一元二次方程的解,解题的关键是熟知一元二次方程的解的定义.7.不等式2x﹣1<3的解集在数轴上表示为()A.B.C.D.【答案】D【分析】先解出一元一次不等式的解集,再根据不等式解集的表示方法做出判断即可.【详解】解:由2x﹣1<3得:x<2,则不等式2x﹣1<3的解集在数轴上表示为,故选:D.【点睛】本题考查解一元一次不等式、在数轴上表示不等式的解集,熟练掌握在数轴上表示不等式的解集的方法是解答的关键.8.若点P(2m-4,2-3m)在第三象限,则实数m的取值范围是()A.223m-<<B.23m<C.223m<<D.223m-<<9.已知关x、y的方程组5331x y ax y a+=+⎧⎨-=-⎩给出下列结论:∵20x y =⎧⎨=⎩是方程组的解;∵无论a 取何值,x 、y 的值都不可能互为相反数; ∵当1a =时,方程组的解也是方程1x y a +=+的一组解; ∵x 、y 都为自然数的解有3对. 其中正确的个数为( ) A .1个 B .2个 C .3个 D .4个10.一元二次方程2230x x ++=的根的情况是( ) A .有两个不相等的实数根 B .有两个相等的实数根 C .无实数根 D .无法确定【答案】C【分析】根据方程的系数结合根的判别式即可得出80∆=-<,由此即可得出结论. 【详解】解:∵在方程2230x x ++=中,2241380∆=-⨯⨯=-<, ∵该方程无解. 故选:C .【点睛】本题考查了一元二次方程根的判别式,牢记Δ0<时方程无解是解题的关键. 11.近日,教育部正式印发《义务教育课程方案》,将劳动从原来的综合实践活动课程中完全独立出来,并在今年9月份开学开始正式施行.某学校组织八年级同学到劳动教育基地参加实践活动,某小组的任务是平整土地2300m .开始的半小时,由于操作不熟练,只平整完230m .学校要求完成全部任务的时间不超过3小时,若他们在剩余时间内每小时平整土地2m x ,则x 满足的不等关系为( ) A .()3030.5300x +-≤ B .300300.53x --≤ C .()3030.5300x +-≥ D .0.5300303x +-≥【答案】C【分析】设他们在剩余时间内每小时平整土地x m 2,根据学校要求完成全部任务的时间不超过3小时得出不等式解答即可.【详解】解:设他们在剩余时间内每小时平整土地x m 2, 根据题意可得:()3030.5300x +-≥, 故选:C .【点睛】本题考查了由实际问题抽象出一元一次不等式,找准等量关系,正确列出一元一次不等式是解题的关键.12.如图,AB 与CD 相交于点E ,点F 在线段BC 上,且AC //EF //DB .若BE =5,BF =3,AE =BC ,则EBAE的值为( )A .23B .12C .35D .25//EF AC ∴BF BE CF AE =解得92x =92CF ∴=13.若0a b <<,则下列各式中不一定...成立的是( ) A .33a b +<+ B .88a b ->- C .11a b> D .22ac bc <14.若关于x 的一元二次方程(k -1)x 2+4x +1=0有两个不相等的实数根,则k 的取值范围是( ) A .k <5 B .k <5,且k ≠1 C .k ≤5,且k ≠1 D .k >5【答案】B【详解】∵关于x 的一元二次方程方程()21410k x x -++=有两个不相等的实数根,∵10Δ0k-≠⎧⎨>⎩,即()2104410kk-≠⎧⎨-->⎩,解得:k<5且k≠1.故选:B.15.若关于x、y的二元一次方程组的解满足x+y<2,则a的取值范围是()A.a>2B.a<2C.a>4D.a<4【答案】D【详解】将方程组中两方程相加,表示出x+y,代入x+y<2中,即可求出a的范围.解:,(1)+(2)得:4x+4y=a+4,即x+y=,∵x+y=<2,∵a<4.故选D16.已知二次函数,且,,则一定有()A.B.C.D.≤0【答案】A【详解】试题分析:∵二次函数中,∵当x=-1时,y=a-b+c>0且∵a<0∵抛物线开口向下且穿过x轴∵抛物线与x轴肯定有两个交点即∵=故选A考点:1.抛物线的值;2.根的判别式17.下列不等式中,是一元一次不等式的是( ) A .20x< B .x 2-5<0 C .3x >2y D .2x -1≥0 【答案】D【详解】A 选项中不等式的左边不是整式,故A 中的不等式不是一元一次不等式;B 选项中未知数的次数是2,故B 中的不等式也不是一元一次不等式;C 选项中含有两个未知数,故C 中的不等式也不是一元一次不等式;只有D 中的不等式符合条件.18.若关于x 、y 的二元一次方程组2133x y m x y -=+⎧⎨+=⎩的解满足0x y +>,则m 的取值范围为( ) A .2m >- B .m>2C .3m >D .2m <-【答案】A【分析】首先解关于x 和y 的方程组,利用m 表示出x +y ,代入x +y >0即可得到关于m 的不等式,求得m 的范围.【详解】解:2133x y m x y -+⎧⎨+⎩=①=②∵+∵得2x +2y =2m +4, 则x +y =m +2, 根据题意得m +2>0, 解得m >-2. 故选:A .【点睛】本题考查的是解二元一次方程组和解一元一次不等式,解答此题的关键是把m 当作已知数表示出x +y 的值,再得到关于m 的不等式. 19.若关于x 的方程322133x mx x x---=---无解,则m 的值为( ) A .1 B .3C .1或53D .53【答案】C【分析】分式方程去分母转化为整式方程,由分式方程无解的意义,计算即可求出m 的值.20.甲在集市上先买了3只羊,平均每只a 元,稍后又买了2只,平均每只羊b 元,后来他以每只2a b+ 元的价格把羊全卖给了乙,结果甲发现赚了钱,赚钱的原因是( ) A .a b = B .a b >C .a b <D .与a b 、大小无关二、填空题21.电影《长津湖》首映当日票房已经达到2.06亿元,2天后当日票房达到4.38亿元,设平均每天票房的增长率为x ,则可列方程为________________. 【答案】2.06(1+x )2=4.38【分析】设平均每天票房的增长率为x ,根据当日票房已经达到2.06亿元,2天后当日票房达到4.38亿元,即可得出关于x 的一元二次方程,此题得解.【详解】解:设平均每天票房的增长率为x ,根据题意得:2.06(1+x )2=4.38.故答案为:2.06(1+x )2=4.38.【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.22.若关于x 的方程()1320k k xx ----=是一元二次方程,则k =______.23.关于x 的方程(a ﹣1)21ax ++x ﹣3=0是一元二次方程,则a =_____. 【答案】-1【分析】直接利用一元二次方程的定义得出a 2+1=2且a ﹣1≠0,进而得出答案.【详解】解:∵关于x 的方程(a ﹣1)x 21a++x ﹣3=0是一元二次方程,∵a 2+1=2且a ﹣1≠0,解得:a =﹣1.故答案为:﹣1.【点睛】此题考查的是求一元二次方程中的参数问题,掌握一元二次方程的定义是解决此题的关键.24.已知1x =是方程220x mx +=的根,则m =______.25.某校将若干间宿舍分配给八年级(1)班女生住宿,已知该班女生少于35人,若每个房间住5人,则剩下5人没处住;若每个房间住8人,则空一间房,且有一间住不满.那么该班有____________名女生.26.不等式2x+1>3x-2的非负整数解是______.【答案】0,1,2【分析】先求出不等式2x+1>3x-2的解集,再求其非负整数解【详解】移项得,2+1>3x-2x,合并同类项得,3>x,故其非负整数解为:0,1,2【点睛】解答此题不仅要明确不等式的解法,还要知道非负整数的定义.27.关于x 的方程ax 2-3x -6=0是一元二次方程,则a 满足的条件是________. 【答案】a≠0【分析】直接利用一元二次方程的定义分析得出答案. 【详解】解:∵关于x 的方程ax 2-3x -6=0是一元二次方程,∵a 满足的条件是a≠0.故答案为:a≠0.【点睛】此题主要考查了一元二次方程的定义,正确把握相关定义是解题关键. 28.已知关于x 的一元二次方程21(2)04mx m x m --+=有两个不相等的实数根,则m 的取值范围是_______. 【分析】由题意可得21244404m m m m ,即可求解.【详解】解:关于x 的一元二次方程21(2)04mx m x m --+=∴21244404m m m m ,104m1m <且0m ≠故答案是:1m <且0m ≠.【点睛】本题考查了一元二次方程20(ax bx c ++=29.已知关于x 的方程250mx mx ++=有两个相等的实数根,则m 的值是____________.【答案】20【分析】根据一元二次方程根与判别式的关系求解即可.【详解】解:∵关于x 的方程250mx mx ++=有两个相等的实数根,∵2450m m ∆=-⨯=且0m ≠,解得:20m =.故答案为:20.【点睛】本题考查一元二次方程根的判别式、解一元二次方程,解答关键是熟练掌握一元二次方程()200ax bx c a ++=≠根的情况与根的判别式24b ac ∆=-的关系:当0∆>时,方程有两个不相等的实数根;当Δ0=时,方程有两个相等的实数根;当Δ0<时,方程没有实数根.30.一辆匀速行驶的汽车在 10:30 距离A 地50千米,要在12:00之前驶过A 地,车速v (单位:km/h)应满足的条件 是___________.(请列一元一次不等式)31.关于x 的一元二次方程(m ﹣1)x 2﹣x ﹣2=0有两个不等的实数根,则m 的取值范围是_____________ 20{18(m m -≠=+-解得:m>78故答案为m>【点睛】本题考查了根的判别式,牢记题的关键.32.若二元一次方程组232x y m x y m+=+⎧⎨+=⎩的解x 、y 的值恰好是一个等腰三角形两边的长,且这个等腰三角形的周长为7,则m 的值为______.【答案】2【分析】解二元一次方程组,分三种情况考虑,根据周长为7得关于m 的方程,求得m ,根据构成三角形的条件判断即可.【详解】232x y m x y m +=+⎧⎨+=⎩①②33.2x2﹣x﹣1=0的二次项系数是_____,一次项系数是_______,常数项是_____.解:根据一元二次方程的定义得:2x2﹣x﹣1=0的二次项系数是2,一次项系数是﹣,常数项是﹣1.34.甲、乙两个搬运工搬运某种货物.已知乙比甲每小时多搬运600kg,甲搬运5000kg 所用的时间与乙搬运8000kg 所用的时间相等.设甲每小时搬运xkg 货物,则可列方程为_____.35.某厂工业废气年排放量为450万立方米,为了改善上海市的大气环境质量,决定分二期投入治理,使废气的年排放量减少到288万立方米,如果每期治理中废气减少的百分率相同,每期减少的百分率是________________. 【答案】20%;【分析】等量关系为:450×(1-减少的百分率)2=288,把相关数值代入计算即可.【详解】设每期减少的百分率为x ,根据题意得:450×(1-x )2=288,解得:x 1=1.8(舍去),x 2=0.2解得x=20%.所以,每期减少的百分率是20%.故答案为20%.【点睛】考查一元二次方程的应用;求平均变化率的方法为:若设变化前的量为a ,变化后的量为b ,平均变化率为x ,则经过两次变化后的数量关系为a (1±x )236.若关于x 、y 的方程组ax by c mx ny d +=⎧⎨+=⎩的解为12x y =⎧⎨=⎩,则方程组()()133133a x by c m x ny d ⎧--=⎪⎨--=⎪⎩的解是__________.【答案】42x y =⎧⎨=-⎩ 【分析】将方程组的解代入方程组得到22a b c m n d +=⎧⎨+=⎩,等式两边同时乘以3得到363363a b c m n d +=⎧⎨+=⎩,与方程组()()133133a x by c m x ny d ⎧--=⎪⎨--=⎪⎩对比系数得到()1336x y ⎧-=⎨-=⎩,从而得到方程组的解.【详解】∵方程组ax by cmx ny d+=⎧⎨+=⎩的解为12xy=⎧⎨=⎩∵22a b c m n d+=⎧⎨+=⎩∵363 363 a b c m n d+=⎧⎨+=⎩∵()()133133 a x by c m x ny d ⎧--=⎪⎨--=⎪⎩得()13 36 xy⎧-=⎨-=⎩∵42 xy=⎧⎨=-⎩故答案为:42 xy=⎧⎨=-⎩【点睛】本题考查方程组的性质,解题的关键是熟练掌握方程组的相关知识.37.在下边的展开图中,分别填上数字1,2,3,4,5,6,使得折叠成正方体后,相对面上的数字之和相等,则a=_____,b=________.【答案】62【详解】试题分析:根据正方体的展开图的特点,1与a相对,5与b相对,3与4相对,因为3+4=7,所以1+a=7,5+b=7,解得:a = 6,b = 2.故答案为6;2.考点:正方体的展开图.38.关于x的不等式3x-2m<x-m的正整数解为1、2、3,则m取值范围是______.39.若 21x y =⎧⎨=⎩是方程()2121x m y nx y ⎧+-=⎨+=⎩的解,则(m+n )2016的值是________. 【答案】1【详解】由题意得:()412211m n ⎧+-=⎨+=⎩,解得:10m n =-⎧⎨=⎩ , 所以(m+n )2016=1,故答案为1.三、解答题40.解方程()2331842y y y y ++--=-. 【答案】11y =,21y =-.【分析】先把方程整理成一般形式,再利用直接开平方法求解即可.【详解】解:去分母,得:()()()2382341y y y y +-=+--,即26982644y y y y y ++-=+-+,整理得:y 2=1,∵y =±1,即11y =,21y =-.【点睛】本题考查了一元二次方程的解法,属于基础题型,熟练掌握解一元二次方程的方法是关键.41.解下列分式方程:(1)542332x x x +=-- (2)32x x --+1=32x- 【答案】(1)1x =;(2)1x =.【分析】(1)先去分母,把分式方程化为整式方程,再解整式方程并检验; (2)先去分母,把分式方程化为整式方程,再解整式方程并检验.【详解】解:(1)去分母,得54(23)x x -=-,去括号,得5812x x -=-,移项,得77x -=-,解得 1.x =检验:x =1时,230.x -≠∵原分式方程的解为 1.x =(2)方程两边同乘()2x - ,得3(2)3x x -+-=-,解得x =1检验:x =1时,20.x -≠∵x =1是原分式方程的解. 【点睛】本题考查的是分式方程的解法,解分式方程的一般步骤:去分母,去括号,移项,合并同类项,把系数化为1,并检验.422倍,求改造后的正方形绿地的边长是多少米?43.解下列分式方程(1)11322x x x-+=--; (2)225124x x x ++=--- 【答案】(1)原方程无解2x=0是增根,原方程无解.)4,约去分母,得4),44.甲、乙两地间铁路长2400千米,经技术改造后,列车实现了提速.提速后比提速前速度增加20千米/时,列车从甲地到乙地行驶时间减少4小时.已知列车在现有条件下安全行驶的速度不超过140千米/时.请你用学过的数学知识说明这条铁路在现有条件下是否还可以再次提速?【答案】可以再次提速【详解】试题分析:首先设提速后列车的速度为x千米/时,然后根据题意列出分式方程,从而求出方程的解,将解与140进行比较大小,从而得出答案.试题解析:设提速后列车的速度为x千米/时,根据题意可得:解得:,=-100(舍去)经检验:x=120是原方程的解且符合题意∵120<140∵仍可以再次提速考点:分式方程的应用45.解不等式:(1)2(1)3(1)2x x -<+-,并把解集在数轴上表示出来.(2)解不等式:213x -≥324x +﹣1,并写出其非负整数解. 【答案】(1)3x >-,见解析(2)x ≤2;非负整数解有0,1,2【分析】(1)按去括号,移项、合并同类项,系数化1的步骤求解,再把解集用数轴表示出来即可;(2)按去分母,去括号,移项、合并同类项,系数化1的步骤求解,再写出解集中非负整数即可.(1)解:去括号,得:22332x x -<+-移项、合并同类项,得:3x -<系数化1得:3x >-这个不等式的解集在数轴上表示如图:(2)解:去分母得,4(2x ﹣1)≥3(3x +2)﹣12,去括号得,8x ﹣4≥9x +6﹣12,移项得,8x ﹣9x ≥6﹣12+4,合并同类项得,﹣x ≥﹣2,系数化为1得,x ≤2.非负整数解有0,1,2.【点睛】本题考查解不等式,用数轴表示不等式的解集,熟练掌握解不等式的一般步骤是解是题的关键.46.某工厂有甲、乙两台机器加工同一种零件,已知一小时甲加工的零件数与一小时乙加工的零件数的和为36个,甲加工80个零件与乙加工100个零件的所用时间相等.求甲、乙两台机器每小时分别加工零件多少个?47.解方程1132x x +-=﹣1. 【答案】x =11.【分析】方程去分母,去括号,移项合并,把x 系数化为1,即可求出解.【详解】方程两边同时乘以6得:2(x +1)=3(x ﹣1)﹣6,去括号得:2x +2=3x ﹣3﹣6,移项得:2x ﹣3x =﹣3﹣6﹣2,合并同类项得:﹣x =﹣11,系数化为1得:x =11.【点睛】此题主要考查学生对解一元一次方程的理解和掌握,此题难度不大,属于基础题.48.解方程:(1)()3242--=-x x (2)1311510---=x x 【答案】(1)2x =;(2)11x =-.【分析】(1)方程去括号,移项合并,把x 系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x 系数化为1,即可求出解.【详解】(1)()3242--=-x x ,去括号得:3642x x -+=-,移项合并得:2x -=-,解得:2x =;49.解方程:(1)312x x=+;(2)11322xx x-=---.【答案】(1)x=﹣3;(2)无解.【详解】试题分析:(1)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解;(2)分式方程变形后,去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.试题解析:解:(1)去分母得:3x+6=x,解得:x=﹣3,经检验x=﹣3是分式方程的解;(2)去分母得:1=x﹣1﹣3x+6,解得:x=2,经检验x=2是增根,分式方程无解.考点:解分式方程.。

2020年中考数学专题复习卷:不等式与不等式组(含解析)

2020年中考数学专题复习卷:不等式与不等式组(含解析)

不等式与不等式组一、选择题1.下列式子一定成立的是( ) A.若ac 2=bc 2,则a=b B.若ac>bc,则a>bC.若a>b,则ac 2>bc 2D.若a<b,则a(c 2+1)<b(c 2+1)2.已知实数a ,b ,若a >b ,则下列结论错误的是( ) A. a-7>b-7 B. 6+a >b+6 C.D. -3a >-3b 3.不等式3x ﹣1≥x+3的解集是( )A. x≤4B. x≥4C. x≤2D. x≥2 4.不等式2x >3﹣x 的解集是( )A. x >3B. x <3C. x >1D. x <15.设a ,b 是常数,不等式>0的解集为x < ,则关于x 的不等式bx ﹣a <0的解集是( )A. x >B. x <﹣C. x >﹣D. x < 6.下列某不等式组的解集在数轴上表示如图所示,则该不等式组是( )A. B.C.D.7.下列各数中,为不等式组解的是()A. -1 B. 0C. 2D. 48.不等式﹣x+2≥0的解集在数轴上表示正确的是()A. B.C. D.9.不等式组的最小整数解是()A. 1B. 2C. 3D. 410.不等式0≤ax+5≤4的整数解是1,2,3,4,则a的取值范围是()A. B. a≤C. ≤a<﹣1 D. a≥11.不等式组有3个整数解,则的取值范围是()A. B.C. D.12.关于x的不等式组的解集为,那么m的取值范围为()A. B.C.D.二、填空题13.函数中自变量x的取值范围为________.14.不等式3x+1>2x﹣1的解集为________.15.不等式组的解集为________.16.把一筐梨分给几个学生,若每人4个,则剩下3个;若每人6个,则最后一个同学最多分得3个,求学生人数和梨的个数.设有z个学生,依题意可列不等式组为________17.在实数范围内规定新运算“△”,其规则是:a△b=2a-b.已知不等式x△k≥1的解集表示在数轴上如图所示,则k的值是________18.当x________时,代数式1- 的值不大于代数式的值.19.若关于x,y的方程组的解满足x>y,则p的取值范围是________20.不等式组的所有整数解的和为________21.已知﹣1<b<0,0<a<1,则代数式a﹣b、a+b、a+b2、a2+b中值最大的是________.22.对于满足0≤p≤4的一切实数,不等式x2+px>4x+p﹣3恒成立,则实数x的取值范围是________三、解答题23.解不等式组,并把它的解集在数轴上表示出来.24.解不等式组并写出它的所有非负整数解.25.已知一艘轮船上装有100吨货物,轮船到达目的地后开始卸货,设平均卸货速度为v(单位:吨/小时),卸完这批货物所需的时间为t(单位:小时)。

2020年九年级中考数学专题专练--综合应用题(含答案)

2020年九年级中考数学专题专练--综合应用题(含答案)

知识像烛光,能照亮一个人,也能照亮无数的人。

--培根中考数学专题综合应用题——方程+不等式+函数模型1.为落实“绿水青山就是金山银山”的发展理念,某市政府部门招标一工程队负责在山下修建一座水库的土方施工任务.该工程队有A,B 两种型号的挖掘机,已知3 台A 型和5 台B 型挖掘机同时施工一小时挖土165 立方米;4 台A 型和7 台B 型挖掘机同时施工一小时挖土225 立方米.每台A 型挖掘机一小时的施工费用为300 元,每台B 型挖掘机一小时的施工费用为180 元.(1)分别求每台A 型,B 型挖掘机一小时挖土多少立方米?(2)若不同数量的A型和B 型挖掘机共12 台同时施工4 小时,至少完成1080 立方米的挖土量,且总费用不超过12 960 元.问施工时有哪几种调配方案,并指出哪种调配方案的施工费用最低,最低费用是多少元?2.快递公司为提高快递分拣的速度,决定购买机器人代替人工分拣.已知购买甲型机器人1 台,乙型机器人2 台,共需14 万元;购买甲型机器人2 台,乙型机器人3 台,共需24 万元.(1)求甲、乙两种型号的机器人每台的价格各是多少万元;(2)已知甲型和乙型机器人每台每小时分拣快递分别是1 200 件和1 000 件,该公司计划购买这两种型号的机器人共8 台,总费用不超过41 万元,并且使这8 台机器人每小时分拣快递件数总和不少于8 300 件,则该公司有哪几种购买方案?哪个方案费用最低,最低费用是多少万元?3.文美书店决定用不多于20 000 元购进甲、乙两种图书共1 200 本进行销售.甲、乙两种图书的进价分别为每本20 元、14 元,甲种图书每本的售价是乙种图书每本售价的1.4 倍,若用1 680 元在文美书店可购买甲种图书的本数比用1 400 元购买乙种图书的本数少10 本.(1)甲、乙两种图书的售价分别为每本多少元?(2)书店为了让利读者,决定甲种图书售价每本降低3 元,乙种图书售价每本降低2 元,问书店应如何进货才能获得最大利润?(购进的两种图书全部销售完)4.某网店销售甲、乙两种羽毛球,已知甲种羽毛球每筒的售价比乙种羽毛球多15元,王老师从该网店购买了2 筒甲种羽毛球和3 筒乙种羽毛球,其花费255 元.(1)该网店甲、乙两种羽毛球每筒的售价各是多少元?(2)根据消费者需求,该网店决定用不超过8 780 元购进甲、乙两种羽毛球共200 筒,且甲种羽毛球的数量大于乙种羽毛球数量的35,已知甲种羽毛球每筒的进价为50 元,乙种羽毛球每筒的进价为40 元.①若设购进甲种羽毛球m 筒,则该网店有哪几种进货方案?②若所购进羽毛球均可全部售出,请求出网店所获利润W(元)与甲种羽毛球进货量m(筒)之间的函数关系式,并说明当m 为何值时所获利润最大?最大利润是多少?5.经过一年多的精准帮扶,小明家的网络商店(简称网店)将红枣、小米等优质特产迅速销往全国.小明家网店中红枣和小米这两种商品的相关信息如下表:根据上表提供的信息,解答下列问题:(1)已知今年前五个月,小明家网店销售上表中规格的红枣和小米共3000 kg,获得利润4.2 万元,求这前五个月小明家网店销售这种规格的红枣多少袋;(2)根据之前的销售情况,估计今年6 月到10 月这后五个月,小明家网店还能销售上表中规格的红枣和小米共2 000 kg,其中,这种规格的红枣的销,销售这种售量不低于600 kg.假设这后五个月,销售这种规格的红枣为x(kg)规格的红枣和小米获得的总利润为y(元),求出y 与x 之间的函数关系式,并求这后五个月,小明家网店销售这种规格的红枣和小米至少获得总利润多少元.综合应用题——方程+不等式模型6.“绿水青山就是金山银山”.为保护生态环境,A,B 两村准备各自清理所属区域养鱼网箱和捕鱼网箱,每村参加清理的人数及总开支如下表:(1)若两村清理同类渔具的人均支出费用一样,求清理养鱼网箱和捕鱼网箱的人均支出费用各是多少元;(2)在人均支出费用不变的情况下,为节约开支,两村准备抽调40 人共同清理养鱼网箱和捕鱼网箱,要使总支出不超过102 000 元,且清理养鱼网箱人数小于清理捕鱼网箱人数,则有哪几种分配清理人员方案?7.为提高市民的环保意识,倡导“节能减排,绿色出行”,某市计划在城区投放一批“共享单车”,这批单车分为A,B 两种不同款型,其中A 型车单价400 元,B 型车单价320 元.(1)今年年初,“共享单车”试点投放在某市中心城区正式启动.投放A,B 两种款型的单车共100 辆,总价值36 800 元.试问本次试点投放的A 型车与B 型车各多少辆?(2)试点投放活动得到了广大市民的认可,该市决定将此项公益活动在整个城区全面铺开.按照试点投放中A,B 两车型的数量比进行投放,且投资总价值不低于184 万元.请问城区10 万人口平均每100 人至少享有A 型车与B 型车各多少辆?8.某游泳馆每年夏季推出两种游泳付费方式.方式一:先购买会员证,每张会员证100 元,只限本人当年使用,凭证游泳每次再付费5 元;方式二:不购买会员证,每次游泳付费9 元.设小明计划今年夏季游泳次数为x(x 为正整数).(3)根据题意,填写下表:(4)若小明计划今年夏季游泳的总费用为270 元,选择哪种付费方式,他游泳的次数比较多?(5)当x>20 时,小明选择哪种付费方式更合算?并说明理由.9.小明同学三次到某超市购买A,B 两种商品,其中仅有一次是有折扣的.购买数量及消费金额如下表:解答下列问题:(3)第次购买有折扣;(4)求A,B 两种商品的原价;(5)若购买A,B 两种商品的折扣数相同,求折扣数;(6)小明同学再次购买A,B 两种商品共10 件,在(3)中折扣数的前提下,消费金额不超过200 元,求至少购买A 商品多少件.10.在美丽乡村建设中,某县通过政府投入进行村级道路硬化和道路拓宽改造.(1)原计划今年1 至5 月,村级道路硬化和道路拓宽的里程数共50 千米,其中道路硬化的里程数至少是道路拓宽的里程数的 4 倍,那么,原计划今年1 至5 月,道路硬化的里程数至少是多少千米?(2)到今年5 月底,道路硬化和道路拓宽的里程数刚好按原计划完成,且道路硬化的里程数正好是原计划的最小值.2017 年通过政府投入780 万元进行村级道路硬化和道路拓宽的里程数共45 千米,每千米的道路硬化和道路拓宽的经费之比为1:2,且里程数之比为2:1.为加快美丽乡村建设,政府决定加大投入.经测算:从今年6 月起至年底,如果政府投入经费在2017 年的基础上增加10a%(a>0),并全部用于道路硬化和道路拓宽,而每千米道路硬化、道路拓宽的费用也在2017 年的基础上分别增加a%,5a%,那么道路硬化和道路拓宽的里程数将会在今年1 至5 月的基础上分别增加5a%,8a%,求a 的值.图象类应用题11.某市制米厂接到加工大米任务,要求5 天内加工完220 吨大米,制米厂安排甲、乙两车间共同完成加工任务,乙车间加工中途停工一段时间维修设备,然后改变加工效率继续加工,直到与甲车间同时完成加工任务为止.设甲、乙两车间各自加工大米数量y(吨)与甲车间加工时间x(天)之间的关系如图1 所示;未加工大米w(吨)与甲加工时间x(天)之间的关系如图2 所示,请结合图象回答下列问题:(1)甲车间每天加工大米吨,a= ;(2)求乙车间维修设备后,乙车间加工大米数量y(吨)与x(天)之间函数关系式;(3)若55 吨大米恰好装满一节车厢,那么加工多长时间装满第一节车厢?再加工多长时间恰好装满第二节车厢?12.某班级同学从学校出发去扎龙自然保护区研学旅行,一部分乘坐大客车先出发,余下的几人20 min 后乘坐小轿车沿同一路线出行.大客车中途停车等候,小轿车赶上来之后,大客车以出发时速度的10继续行驶,小轿车保持原速度7不变.小轿车司机因路线不熟错过了景点入口,在驶过景点入口6 km 时,原路提速返回,恰好与大客车同时到达景点入口.两车距学校的路程s(单位:km)和行驶时间t(单位:min)之间的函数关系如图所示:请结合图象解决下面问题:(3)学校到景点的路程为km,大客车途中停留了min,a= ;(4)在小轿车司机驶过景点入口时,大客车离景点入口还有多远?(5)小轿车司机到达景点入口时发现本路段限速80 km/h,请你帮助小轿车司机计算折返时是否超速?(6)若大客车一直以出发时的速度行驶,中途不再停车,那么小轿车折返后到达景点入口,需等待分钟,大客车才能到达景点入口.13.小明从家出发,沿一条直道跑步,经过一段时间原路返回,刚好在第16 min 回到家中.设小明出发第t min 时的速度为v m/min,离家的距离为s m.v 与t 之间的函数关系如图所.示(图中的空心圈表示不包含这一点)(6)小明出发第2 min 时离家的距离为m;(7)当2<t≤5 时,求s 与t 之间的函数表达式;(8)画出s 与t 之间的函数图象.14.某校机器人兴趣小组在如图1 所示的矩形场地上开展训练.机器人从点A 出发,在矩形ABCD 边上沿着A→B→C→D 的方向匀速移动,到达点D 时停止移动.已知机器人的速度为1 个单位长度/s,移动至拐角处调整方向需要1 s(即在B,C 处拐弯时分别用时1 s).设机器人所用时间为t(s)时,其所在位置用点P 表示,P 到对角线BD 的距离(即垂线段PQ 的长)为d 个单位长度,其中d 与t 的函数图象如图2 所示.(7)求AB,BC 的长;(8)如图2,点M,N 分别在线段EF,GH 上,线段MN 平行于横轴,M,N 的横坐标分别为t1,t2,设机器人用了t1(s)到达点P1 处,用了t2(s)到达点P2 .若CP1+CP2=7,求t1,t2 的值.处(见图1)15.随着新农村的建设和旧城的改造,我们的家园越来越美丽,小明家附近广场中央新修了个圆形喷水池,在水池中心竖直安装了一根高为2 米的喷水管,它喷出的抛物线形水柱在与池中心的水平距离为1 米处达到最高,水柱落地处离池中心3 米.(1)请你建立适当的平面直角坐标系,并求出水柱抛物线的函数解析式;(2)求出水柱的最大高度是多少?16.某游乐园有一个直径为16 米的圆形喷水池,喷水池的周边有一圈喷水头,喷出的水柱为抛物线,在距水池中心3 米处达到最高,高度为5 米,且各方向喷出的水柱恰好在喷水池中心的装饰物处汇合.如图所示,以水平方向为x 轴,喷水池中心为原点建立直角坐标系.(1)求水柱所在抛物线(第一象限部分)的函数表达式;(2)王师傅在喷水池内维修设备期间,喷水管意外喷水,为了不被淋湿,身高1.8 米的王师傅站.立.时必须在离水池中心多少米以内?(3)经检修评估,游乐园决定对喷水设施做如下设计改进:在喷出水柱的形状不变的前提下,把水池的直径扩大到32 米,各方向喷出的水柱仍在喷水池中心保留的原装饰物(高度不变)处汇合,请探究扩建改造后喷水池水柱的最大高度.⎩函数类应用题17.我市某乡镇在“精准扶贫”活动中销售一农产品,经分析发现月销售量 y (万⎧x + 4(1≤ x ≤ 8,x 为整数)件)与月份 x (月)的关系为: y = ⎨−x + 20(9 ≤ x ≤12 ,x品的利润 z (元)与月份 x (月)的关系如下表:,每件产 为整数)(1)请你根据表格求出每件产品利润 z (元)与月份 x (月)的关系式; (2)若月利润 w (万元)=当月销售量 y (万件)×当月每件产品的利润 z (元),求月利润 w (万元)与月份 x (月)的关系式;(3)当 x 为何值时,月利润 w 有最大值,最大值为多少?18.为了美化环境,建设宜居成都,我市准备在一个广场上种植甲、乙两种花卉.经市场调查,甲种花卉的种植费用y(元)与种植面积x(m2)之间的函数关系如图所示,乙种花卉的种植费用为每平方米100 元.(1)直接写出当0≤x≤300 和x>300 时,y 与x 的函数关系式;(2)广场上甲、乙两种花卉的种植面积共1 200 m2,若甲种花卉的种植面积不少于200 m2,且不超过乙种花卉种植面积的2 倍,那么应该怎样分配甲、乙两种花卉的种植面积才能使种植总费用最少?最少总费用为多少元?19.某厂按用户的月需求量x(件)完成一种产品的生产,其中x>0.每件的售价为18 万元,每件的成本y(万元)是基础价与浮动价的和,其中基础价保持不变,浮动价与月需求量x(件)成反比.经市场调研发现,月需求量x 与月份n(n 为整数,1≤n≤12)符合关系式x=2n2-2kn+9(k+3)(k 为常数),且得到了表中的数据:(1)求y 与x 满足的关系式,请说明一件产品的利润能否是12 万元;(2)求k,并推断是否存在某个月既无盈利也不亏损;(3)在这一年12 个月中,若第m 个月和第(m+1)个月的利润相差最大,求m.20.某广告公司设计一幅周长为16 米的矩形广告牌,广告设计费为每平方米2 000元,设矩形一边长为x,面积为S 平方米.(1)求S 与x 之间的函数关系式,并写出自变量x 的取值范围;(2)设计费能达到24 000 元吗?为什么?(3)当x 是多少米时,设计费最多?最多是多少元?21.某公司投入研发费用80 万元(80 万元只计入第一年成本),成功研发出一种产品.公司按订单生产(产量=销售量),第一年该产品正式投产后,生产成本为6 元/件.此产品年销售量y(万/件)与售价x(元/件)之间满足函数关系式y=-x+26.(1)求这种产品第一年的利润W1(万/元)与售价x(元/件)满足的函数关系式;(2)该产品第一年的利润为20 万元,那么该产品第一年的售价是多少?(3)第二年,该公司将第一年的利润20 万元(20 万元只计入第二年成本)再次投入研发,使产品的生产成本降为5 元/件.为保持市场占有率,公司规定第二年产品售价不超过第一年的售价,另外受产能限制,销售量无法超过12 万件.请计算该公司第二年的利润W2 至少为多少万元.22.某市计划在十二年内通过公租房建设,解决低收入人群的住房问题.已知前7 年,每年竣工投入使用的公租房面积y(单位:百万平方米)与时间x(第x 年)的关系构成一次函数(1≤x≤7 且x 为整数),且第一和第三年竣工投(1)已知第6 年竣工投入使用的公租房面积可解决20 万人的住房问题,如果人均住房面积,最后一年要比第6 年提高20%,那么最后一年竣工投入使用的公租房面积可解决多少万人的住房问题?(2)受物价上涨等因素的影响,已知这12 年中,每年竣工投入使用的公租房的租金各不相同,且第一年,一年38 元/m2,第二年,一年40 元/m2,第三年,一年42 元/m2,第四年,一年44 元/m2……以此类推.分析说明每平方米的年租金和时间能否构成函数,如果能,直接写出函数解析式;(3)在(2)的条件下,假设每年的公租房当年全部出租完,写出这12 年中每年竣工投入使用的公租房的年租金W 关于时间x 的函数解析式,并求出W 的最大值(单位:亿元).如果在W 取得最大值的这一年,老张租用了58 m2 的房子,计算老张这一年应交付的租金.23.如图,公交车行驶在笔直的公路上,这条路上有A,B,C,D 四个站点,每相邻两站之间的距离为5 千米,从A 站开往D 站的车称为上行车,从D 站开往A 站的车称为下行车.第一班上行车、下行车分别从A 站、D 站同时发车,相向而行,且以后上行车、下行车每隔10 分钟分别在A,D 站同时发一班车,乘客只能到站点上、下车(上、下车的时间忽略不计),上行车、下行车的速度均为30 千米/小时.(1)问第一班上行车到B 站、第一班下行车到C 站分别用时多少?(2)若第一班上行车行驶时间为t 小时,第一班上行车与第一班下行车之间的距离为s 千米,求s 与t 的函数关系式;,刚好遇(3)一乘客前往A 站办事,他在B,C 两站间的P 处(不含B,C 站)到上行车,BP=x 千米,此时,接到通知,必须在35 分钟内赶到,他可选择走到B 站或走到C 站乘下行车前往A 站.若乘客的步行速度是5 千米/ 小时,求x 满足的条件.第一部分参考答案:1、2、3、4、5、第二部分参考答案:1、2、3、4、5、第三部分参考答案:1、2、3、4、5、6、第四部分参考答案:1、2、3、4、5、6、7、。

中考数学《方程与不等式》专题训练50题含答案

中考数学《方程与不等式》专题训练50题含答案

中考数学《方程与不等式》专题知识训练50题含答案 (有理数、实数、代数、因式分解、二次根式)一、单选题1.关于x ,y 的方程组24x my x y +=⎧⎨+=⎩的解是1x y =⎧⎨=⎩■,其中y 的值被■盖住了,但不影响求出m 的值,则m 的值是( ) A .12B .12-C .13D .13-2.已知关于x 的方程290x a +-=的解是x =-2,则a 的值是( ) A .5 B .-5C .12D .13【答案】D【分析】把方程的解2x =-代入方程290x a +-=可得到关于a 的方程,解关于a 的方程即可.【详解】解:∵2x =-是方程290x a +-=的解, ∵2(2)90a ⨯-+-=. 解得:13a =. 故选:D .【点睛】本题考查了一元一次方程的解的应用,正确得到新的方程是解题关键. 3.已知关于x 的方程(2x -m )(mx +1)=(3x +1)(mx -1)有一个根是0,则它的另一个根和m 的值分别是( ) A .3和1 B .2和3C .3和4D .4和1【答案】A【分析】先根据方程有一根为0,代入方程求出m 的值,然后把m 的值代入方程解一元二次方程即可.【详解】解:关于x 的方程(2x -m )(mx +1)=(3x +1)(mx -1)有一个根是0, ∵-m =-1, ∵m =1,把m =1代入方程得()()()()211311x x x x -+=+-, 整理得:230x x -=, 因式分解得()30x x -=, 解得x x 1203,,∵另一个为3x =,m =1, 故选A .【点睛】本题考查方程的解,与解一元二次方程,掌握解方程的解概念,与一元二次方程的解法是关键.4.已知关于x 的一元二次方程:220x x m -+=有两个不相等的实数根,则m 的取值范围是( ) A .1m > B .1m < C .m>2 D .2m <【答案】B【分析】由方程有两个不相等的实数根,利用根的判别式可得出关于m 的一元一次不等式,解之即可得出结论.【详解】解:∵方程220x x m -+=有两个不相等的实数根, ∵()2240m ∆=-->, 解得:1m <, 故选:B .【点睛】本题考查了根的判别式,牢记“当方程有两个不相等的实数根时,0∆>”是解题的关键.5.甲乙两工程队共同参与一项筑路工程,规定x 天内完成任务.甲队单独完成这项工程比规定时间多用10天,乙队单独完成这项工程比规定时间多用40天,甲、乙两队合作,可比规定时间提前14天完成任务,依题意列方程为( ) A .111104014x x x +=--+B .111104014x x x +=++- C .111104014x x x -=++- D .111104014x x x +=-+-6.若(a ﹣b )•(a ﹣b )3•(a ﹣b )m =(a ﹣b )11,则m 的值为( ) A .4 B .5C .6D .7【答案】D【分析】先根据同底数幂的乘法法则把左侧化简,然后列出关于m 的方程求解即可. 【详解】∵(a ﹣b )•(a ﹣b )3•(a ﹣b )m =(a ﹣b )11, ∵(a ﹣b )m +4=(a ﹣b )11, ∵ m +4=11, 解得:m =7, 故选:D .【点睛】本题考查了同底数幂的乘法,以及一元一次方程的解法,根据题意列出一元一次方程是解答本题的关键.7.若m 是关于x 的方程2420x nx m ++=的根()0m ≠,则4m n +的值为( ) A .-1 B .1C .-2D .2【答案】C【分析】根据一元二次方程的根的定义代入即可求解,一元二次方程的解(根)的意义:能使一元二次方程左右两边相等的未知数的值称为一元二次方程的解.【详解】m 是关于x 的方程2420x nx m ++=的根()0m ≠, ∴2420m mn m ++=,0m ≠,420m n ∴++=,即42m n +=-, 故选C .【点睛】本题考查了一元二次方程的根的定义,将方程的解代入求解是解题的关键. 8.方程3214x y +=在自然数范围内的解共有_____个 A .1 B .2C .3D .4【答案】C【分析】根据二元一次方程3x+2y=14,可知在自然数范围内的解有哪几组,从而可以解答本题.【详解】解:二元一次方程3x+2y=14在自然数范围内的解是:24x y =⎧⎨=⎩,41x y =⎧⎨=⎩,7x y =⎧⎨=⎩, 即二元一次方程3x+2y=14在自然数范围内的解的个数是3个. 故选C .【点睛】本题考查二元一次方程的解,解题的关键是明确什么是自然数,可以根据题意找到二元一次方程3x+2y=14在自然数范围内的解有哪几组.9.从正方形的铁片上,截去2cm 宽的一个长方形,余下的面积是248cm ,则原来的正方形铁片的面积是( ) A .281cm B .264cmC .254cmD .252cm【答案】B【分析】可设正方形的边长是x cm ,根据余下的面积是248cm ,余下的图形是一个矩形,矩形的长是正方形的边长,宽是x -2,根据矩形的面积公式即可列出方程求解. 【详解】解:设正方形的边长是x cm , 根据题意得()248x x -=, 解得16x =-(舍去),28x =, ∵原正方形铁片的面积是8×8=64cm². 故选B .【点睛】本题考查了一元二次方程的应用,找到等量关系准确的列出方程是解决问题的关键,解题过程中要注意根据实际意义进行值的取舍.10.已知x =3t +1,y =2t -1,用含x 的式子表示y ,其结果是( ) A .13x y -= B .12y x += C .253x y -=D .213x y --=11.方程247236x x ---=-去分母得( ) A .22(24)(7)x x --=-- B .122(24)7x x --=-- C .12(24)(7)x x --=-- D .122(24)(7)x x --=--122247,x x 从而可得答案.122247,x x【点睛】本题考查的是解一元一次方程的步骤,去分母,掌握12.下列方程一定是一元二次方程的是( )A .3x 2+2x﹣1=0B .5x 2﹣6y ﹣3=0C .ax 2﹣x +2=0D .3x 2﹣2x ﹣1=0【答案】D【详解】解:A 、是分式方程,故A 错误; B 、是二元二次方程,故B 错误; C 、a =0时,是一元一次方程,故C 错误; D 、是一元二次方程,故D 正确; 故选:D .【点睛】本题考查一元二次方程的识别,熟知一元二次方程的定义是解题的关键. 13.一元二次方程()371x x x +=-化为一般形式为( ) A .2470x x --= B .2270x x --=C .2470x x -+=D .2270x x -+=【答案】A【分析】根据一元二次方程的一般形式判断即可. 【详解】解:∵()371x x x +=-, ∵237x x x +-=, ∵2370x x x ---=, ∵2470x x --=,一元二次方程()371x x x +=-化为一般形式为:2470x x --=,故A 正确. 故选:A .【点睛】本题考查了一元二次方程的一般形式,熟练掌握一元二次方程的一般形式是解题的关键.14.不等式364x x -+≤-的解集在数轴上表示正确的是( ) A . B .C .D .【答案】A【分析】首先移项、合并同类项、未知数系数化1解不等式,再在数轴上表示解集即可.【详解】解:364x x -+≤-346x x -+≤-22-≤-x1x ≥,在数轴上表示为:,故选:A .【点睛】此题主要考查了解一元一次不等式,关键是掌握解不等式的步骤:∵去分母;∵去括号;∵移项;∵合并同类项;∵化系数为1.15.随着生产技术的进步,某制药厂生产成本逐年下降.两年前生产一吨药的成本是5000元,现在生产一吨药的成本是4050元.设生产成本的年平均下降率为x ,下面所列方程正确的是( ) A .()2500014050x += B .()2405015000x += C .()2500014050x -= D .()2405015000x -=【答案】C【分析】根据题意找到对应的等量关系:2年前的生产成本×(1-下降率)²=现在的生产成本,把相关的数据带入计算即可.【详解】设这种药品的成本的年平均下降率为x ,根据题意得:()25000-x =40501 故选:C.【点睛】本题考查一元二次方程的应用,解题的关键是能从题意中找到对应的等量关系.16.将二次三项式267x x ++进行配方,正确的结果应为( ) A .2(3)2x ++ B .2(3)2x -+ C .2(3)2x +- D .2(3)2x --【答案】C【分析】x 2+6x+7中x 2+6x+9即是(x+3)2,因而x 2+6x+7=(x+3)2-2 【详解】解:∵x 2+6x+7=x 2+6x+9-9+7, x 2+6x+7=(x+3)2-2. 故选C .【点睛】此题考查了配方法,解题时要注意常数项的确定方法,若二次项系数为1,则二次项与一次项再加上一次项系数的一半的平方即构成完全平方式,若二次项系数不为1,则可提取二次项系数,将其化为1. 17.已知2x =是关于x 的方程()112a x a x +=+的解,则a 的值是( )A.15B.25C.35D.4518.若一元二次方程式241211470x x+-=的两根为a、b,且a b>,则3a b+之值为何?()A.22B.28C.34D.4019.若关于x的一元二次方程kx2﹣2x﹣1=0有两个实数根,则k的取值范围是()A.k≠0B.k≥﹣1C.k≥﹣1且k≠0D.k>﹣1且k≠0【答案】C【分析】根据二元一次方程的根的判别式列出不等式进行求解即可.【详解】解:∵关于x的一元二次方程kx2﹣2x﹣1=0有两个实数根,∵0k 0∆⎧⎨≠⎩,即4400k k +⎧⎨≠⎩,解得:k ≥﹣1且k ≠0. 故答案为C .【点睛】本题考查了一元二次方程根的判别式,解题的关键在于:∵当∵=0时,方程有两个相等的实数根;∵当∵>0时,方程有两个不相等的实数根;∵当∵<0时,方程没有实数根. 20.若关于x 的方程244x ax x =+--有增根,则a 的值为( ) A .-4 B .2 C .0 D .4二、填空题21.不等式﹣3x >6的解是_______. 【答案】x <﹣2【分析】系数化为1并根据不等式的性质:∵不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变;∵不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;∵不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变,进行解答即可.【详解】解:系数化为1得:x <﹣2, 故答案是:x <﹣2.【点睛】本题主要考查不等式的性质,根据不等式的性质转换不等式的符号是解题的关键.22.方程2150b ax x -+=是关于x 的一元一次方程,则2a b +=____________. 【答案】2【详解】根据一元一次方程的定义可知x 的次数为1, 则ax 2=0且b-1=1,即a=0且b=2, 则2a+b=2×0+2=2. 故答案为2.23.某种商品原价每件40元,经两次降价,现售价每件32.4元,则该种商品平均每次降价的百分率是______. 【答案】10%【分析】设降价百分率为x ,根据售价从原来每件40元经两次降价后降至每件32.4元,可列方程求解.【详解】解:设降价百分率为x , 列方程:40(1﹣x )2=32.4.解得x 1=0.1,x 2=1.9(不合题意舍去). 故答案为:10%.【点睛】本题主要考查一元二次方程的实际应用,找准等量关系,根据题意列出方程是解题的关键.24.某驻村工作队,为带动群众增收致富,巩固脱贫攻坚成效,决定在该村山脚下,围一块面积为2600m 的矩形试验茶园,便于成功后大面积推广.如图所示,茶园一面靠墙,墙长35m ,另外三面用69m 长的篱笆围成,其中一边开有一扇1m 宽的门(不包括篱笆).则这个茶园的AB 的长为_________.【答案】20m【分析】设茶园垂直于墙的一边长AB 为m x 时,则另一边BC 的长度为691)m (2x +-,根据茶园的面积为2600m ,列出方程并解答即可.【详解】解:设茶园垂直于墙的一边长AB 为m x 时,则另一边BC 的长度为691)m (2x +-,根据题意,得:()6912600x x +-=,整理,得:2353000x x -+=,解得115x =,220x =,当15x =时,70240>35x -=,不符合题意舍去;当=20x 时,70230x -=,符合题意,故这个茶园的AB 为20m .故答案为:20m .【点睛】本题考查了一元二次方程的应用,根据数量关系列出方程是解题的关键. 25.甲、乙二人分别从相距20km 的A ,B 两地出发,相向而行.下图是小华绘制的甲、乙二人运动两次的情形,设甲的速度是x km/h ,乙的速度是y km/h ,根据题意所列的方程组是______,1.5x y +=______.【答案】 ()20.52201120x y x y ⎧++=⎨++=⎩11 【分析】设甲的速度是x km/h ,乙的速度是y km/h ,根据路程=速度×时间结合两次运动的情形,即可得出关于x ,y 的二元一次方程组,两式相加即可得解.【详解】解:设甲的速度是x km/h ,乙的速度是y km/h ,依题意,得:()20.52201120x y x y ⎧++=⎨++=⎩, 两式相加得:1.511x y +=,故答案为:()20.52201120x y x y ⎧++=⎨++=⎩,11. 【点睛】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.26.关于x 的方程(m +5)x 2﹣2mx ﹣4=0是一个一元二次方程,那么m 的取值范围是___. 【答案】m ≠﹣5【分析】根据一元二次方程的定义:只含有一个未知数,且未知数的最高次数为2的整式方程是一元二次方程,其中二次项系数不为0,可得m 的取值范围.【详解】解:因为(m +5)x 2﹣2mx ﹣4=0是关于x 的一元二次方程,所以m +5≠0,解得:m ≠﹣5,故答案为:m ≠﹣5.【点睛】本题考查了一元二次方程的定义,一元二次方程的一般形式是:ax 2+bx +c =0(a ,b ,c 是常数且a ≠0),特别要注意a ≠0的条件.这是在做题过程中容易忽视的知识点.27.对于x ,y 定义一种新运算“* ”,xy ax by =+,其中a ,b 是常数,等式右边是通常的加法和乘法运算.已知3515*=,4728*=,则11*的值为______. 【答案】11- 【分析】根据3515*=,4728*=列出二元一次方程组35154728a b a b +=⎧⎨+=⎩①②,求得a 、b ,再根据新运算的定义求解即可.【详解】解:根据题中的新定义化简得:35154728a b a b +=⎧⎨+=⎩①②, ∵4⨯-∵3⨯得:24b -=-,解得:24b =,把24b =代入∵得:35a =-,则1111a b *=+=-.故答案为:11-.【点睛】此题主要考查了二元一次方程组的求解,理解题意列出二元一次方程组和加减法解二元一次方程组是解决此题的关键.28.若213111x M N x x x -=+-+-则M =_______ ,N =_______ .∵31M N N M +=-⎧⎨-=⎩, 解得:21M N =-⎧⎨=-⎩. 故答案为:-2,-1.【点睛】本题考查分式的混合运算,解二元一次方程组.掌握分式的混合运算法则是解题关键.29.若2m +1 的值同时大于 3m -2和 m+2的值,且m 为整数,则 3m -5 =____. 【答案】1【分析】先根据题意列出不等式组求出m ,再求出代数式的值.【详解】依题意得2132212m m m m +-⎧⎨++⎩>> 解得31m m ⎧⎨⎩<> ∵m 为整数,∵m=2∵3m -5=6-5=1故答案为:1.【点睛】此题主要考查不等式组的应用,解题的关键是根据题意求出m 的值.30.不等式组11327x x x -≥+⎧⎨-<⎩的解集是______. 【答案】20x -<≤【分析】先分别求出两个不等式的解集,再找出解集的公共部分即可.【详解】解:11327x x x -≥+⎧⎨-<⎩①② 解不等式∵得,0x ≤,解不等式∵得,2x >-,则原不等式组的解集为:20x -<≤.故答案为:20x -<≤.【点睛】本题考查了解不等式组,要掌握解不等式组的步骤和方法是解题的关键. 31.如图,一块长为m a 宽为m b 的长方形土地的周长为16m ,面积为215m .现将该长方形土地的长、宽都增加2m ,则扩建后的长方形土地的面积是____________.【答案】35m 2【分析】根据题意列出关于a ,b 的方程,用含有a 的式子表示b ,可得关于a 的一元二次方程,求出a ,b 的值,即可得出答案.【详解】根据题意,得2()1615a b ab +=⎧⎨=⎩①②, 由∵得8b a =-∵,将∵代入∵,得(8)15a a -=,即28150a a -+=, 解得5a =或3a =(舍),将5a =代入∵,得3b =.长和宽都增加2m ,得7m ,5m ,所以扩建后的长方形土地的面积是7×5=35(cm 2).故答案为:35 cm 2.【点睛】本题主要考查了一元二次方程的应用,确定等量关系是解题的关键. 32.熊大、熊二发现光头强在距离它们300米处伐木,熊二便匀速跑过去阻止,2分钟后熊大以熊二1.2倍速度跑过去,结果它们同时到达,如果设熊二的速度为x 米/分钟,那么可列方程为_________________.【点睛】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.33.已知A ∠是ABC 的一个内角,并且方程24sin 102A x x -+=1,则A ∠=______.【答案】90︒##90度 sin 12A x +=)1sin 102A +=, 34.已知355x y a b +-和7332y x a b -是同类项,则x +y 的值是______. 【详解】-35.已知2x =是不等式ax-3a+2≥0的解,且1x =不是这个不等式的解,那么a 的取值范围是__________.【答案】12a <≤【分析】根据x=2是不等式ax-3a+2≥0的解,且x=1不是这个不等式的解,列出不等式,求出解集,即可解答.【详解】解:∵x=2是不等式ax-3a+2≥0的解,∵2-a≥0,解得:a≤2,∵x=1不是这个不等式的解,∵1-a<0,解得:a>1,∵1<a≤2,故答案为:1≤a≤2.【点睛】本题考查了解一元一次不等式,不等式的解集,解决本题的关键是求不等式的解集.36.规定11a ba b⊕=+,若232(1)(1)1xx xx++⊕-=-,则x的值是_____.37.阅读下面计算113⨯+135⨯+157⨯+…+1911⨯的过程,然后填空.解:∵113⨯=12(11-13),135⨯=12(13-15),…,1911⨯=12(19-111),∴113⨯+135⨯+157⨯+…+1911⨯=12(11-13)+12(13-15)+12(15-17)+…+12(19-111)=12(11-13+13-15+15-17+…+19-111)=12(11-111)=5 11.以上方法为裂项求和法,请参考以上做法完成:(1)124⨯+146⨯=______;(2)当113⨯+135⨯+157⨯+ (x)613时,最后一项x=______.38.现代互联网技术的广泛应用,催生了快递行业的高速发展.据调查,某家小型快递公司的分拣工小李和小江,在分拣同一类物件时,小李分拣120个物件所用的时间与小江分拣90个物件所用的时间相同,已知小李每小时比小江多分拣20个物件.若设小江每小时分拣x个物件,则可列方程方程为________.39.已知点C、D是线段AB上两点(不与端点A、B重合),点A、B、C、D四点组成的所有线段的长度都是正整数,且总和为29,则线段AB的长度为__________________ .【答案】8或9【分析】根据题意画出图形,可得图中共有线段6条,分别为AC、CD、DB,AD、BC、AB,然后根据所有线段的和为29可得关于AB、CD的等式,继而根据所有线段的长都是正整数以及AB>CD利用二元一次方程的解的概念进行求解即可.【详解】如图,图中共有线段6条,分别为AC、CD、DB,AD、BC、AB,由题意得:AC+CD+DB+AD+BC+AB=29,∵AC+CD+DB=AB,AD=AC+CD,BC=CD+DB,∵3AB+CD=29,又∵所有线段的长度都是正整数,AB>CD ,∵AB=8,CD=5或AB=9,CD=2,即AB的长度为8或9,故答案为:8或9.【点睛】本题考查了线段的和差,二元一次方程的正整数解等知识,正确画出图形,熟练掌握和灵活运用相关知识是解题的关键.三、解答题40.解不等式组()101432x x ->⎧⎪⎨+<⎪⎩.41.某商场某型号的计算机2018年销售量为2880台,2020年受疫情影响,年销售量下降为2000台,求销售量的年平均下降率.(结果保留整数)42.解不等式组:102132x x x -≤⎧⎪⎨+-<⎪⎩①②,并把解集在数轴上表示出来.【答案】21x -<≤,见解析【分析】先分别解两个不等式 ,在数轴上标出解集,然后写出解集即可.【详解】解:解不等式∵得,1x ≤,解不等式∵得,2x >-,在数轴上分别表示这两个不等式的解集如图∵不等式组的解集为:21x -<≤.【点睛】本题考查不等式组的解集,准确掌握解集的求法是解题的关键. 43.已知:23231A x xy y =++-,2B x xy =-.(1)计算:3A B -;(2)若()()25A B A B +-+的值与y 的取值无关,求x 的值.44.x 的一元二次方程()2420x m x m +++=.(1)求证:方程总有两个不相等的实数根;(2)若1x 、2x 是方程的两个实根,且212124x x x x m m ++=-,求m 的值.)证明:(m ∆=+方程总有两个不相等的实数根;)解:根据题意得12x x +=12x x ++(4m ∴-+解得=1m 即m 的值为【点睛】本题考查了根与系数的关系:若45.(1)解方程:11322x x x-+=-- (2)解不等式组:1,2263 2.x x x x ⎧+≥⎪⎨⎪++⎩> 【答案】(1)无解;(2)24x -<【分析】(1)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解;(2)分别求出不等式组中两不等式的解集,找出两解集的公共部分即可.【详解】解:(1)去分母得:13(2)1x x +-=-,解得:2x =,检验:把2x =代入得:20x -=,2x ∴=是增根,分式方程无解;12632x x +>+①2x -,4x <,不等式组的解集为24x <.【点睛】此题考查了解分式方程,以及解一元一次不等式组,解题的关键是熟练掌握各自的解法.46.用配方法解方程:212302x x --= 2210=-【分析】根据配方法解一元二次方程即可47.解方程:35136x x -=-. 48.新冠疫情期间,某医药器材经销商计划同时购进一批甲、乙两种型号的口罩,若购进2箱甲型口罩和1箱乙型口罩,共需要资金840元;若购进3箱甲型口罩和2箱乙型口罩,共需要资金1380元.(1)求甲、乙型号口罩每箱的进价为多少元?(2)该医药器材经销商计划购进甲、乙两种型号的口罩用于销售,预计用不多于5520元且不少于5280元的资金购进这两种型号口罩共20箱,请问有几种进货方案?并写出具体的进货方案;(3)若甲型口罩的售价为每箱450元,乙型口罩的售价为每箱420元.为了促销,无论采取哪种进货方案,公司决定每售出一箱乙型口罩,返还顾客现金a 元,而甲型口罩售价不变,要使(2)中所有方案获利相同,直接写出a 的值. 【答案】(1)甲、乙型号口罩每箱的进价分别为300元,240元(2)有五种进货方案,分别是:方案一:购进甲型口罩8箱,则购进乙型口罩12箱;方案二:购进甲型口罩9箱,则购进乙型口罩11箱;方案三:购进甲型口罩10箱,则购进乙型口罩10箱;方案四:购进甲型口罩11箱,则购进乙型口罩9箱方案五:购进甲型口罩12箱,则购进乙型口罩8箱(3)a =30【分析】(1)设甲型号口罩每箱进价为m 元,乙型号口罩每箱进价为n 元,根据题意建立方程组求解就可以求出答案;(2)设购进甲型口罩x 箱,则购进乙型口罩(20-x )箱,由题意建立不等式组,求出其解就可以得出结论;(3)由题意得出w =(a -30)x + 3600- 20a ,根据“(2)中所有方案获利相同”知w 与a 的取值无关,据此解答可得.(1)设甲、乙型号口罩每箱的进价分别为m 元,n 元,由题意得:2840321380m n m n +=⎧⎨+=⎩解得:300240m n =⎧⎨=⎩ 答:甲、乙型号口罩每箱的进价分别为300元,240元(2)设购进甲型口罩x 箱,则购进乙型口罩(20-x )箱,由题意得:300240(20)5520300240(20)5280x x x x +-≤⎧⎨+-≥⎩解得:812x ≤≤x 非负整数∴x =8或9或10或11或12∵有五种进货方案,分别是:方案一:购进甲型口罩8箱,则购进乙型口罩12箱方案二:购进甲型口罩9箱,则购进乙型口罩11箱方案三:购进甲型口罩10箱,则购进乙型口罩10箱方案四:购进甲型口罩11箱,则购进乙型口罩9箱方案五:购进甲型口罩12箱,则购进乙型口罩8箱(3)设获得的总利润为ww =(450- 300)x +(420-240-a )(20-x )=150x +(180-a )(20-x )= 150x + 20(180-a ) -(180-a )x=(150-180+a )x + 3600-20a=(a -30)x + 3600- 20a要使(2)中所有方案获利相同∵a -30=0即a =30∵当a =30时,(2)中所有方案获利相同即w =3600-20×30=3600-600= 3000(元)【点睛】本题考查了二元一次方程组的应用,一元一次不等式组的应用,整式的加减无关类型,根据题意列出方程组,不等式组,代数式是解题的关键.49.解二元一次方程(1)3728x y x y -=⎧⎨+=⎩; (2)()()3212158y x x y ⎧-=+⎪⎨-=-⎪⎩.。

2020年福建中考数学复习题型二 方程、不等式与函数的实际应用

2020年福建中考数学复习题型二 方程、不等式与函数的实际应用

题型二方程、不等式与函数的实际应用类型一分配类问题(含最值)针对演练1.(2019赤峰)某校开展校园艺术节系列活动,派小明到文体超市购买若干个文具袋作为奖品,这种文具袋标价每个10元,请认真阅读结账时老板与小明的对话:第1题图(1)结合两人的对话内容,求小明原计划购买文具袋多少个?(2)学校决定,再次购买钢笔和签字笔共50支作为补充奖品,两次购买奖品总支出不超过400元,其中钢笔标价每支8元,签字笔标价每支6元,经过沟通,这次老板给予8折优惠,那么小明最多可购买钢笔多少支?2.某驻村扶贫小组为解决当地贫困问题,带领大家致富.经过调查研究,他们决定利用当地盛产的甲、乙两种原料开发A,B两种商品.为科学决策,他们试生产A,B两种商品共100千克进行深入研究.已知现有甲种原料293千克,乙种原料314千克.生产1千克A商品,1千克B商品所需要的甲,乙两种原料及生产成本如下表所示:设生产A种商品x千克,生产A,B两种商品共100千克的总成本为y元,根据上述信息,解答下列问题:(1)求y与x的函数解析式(也称关系式),并直接写出x的取值范围;(2)x取何值时,总成本y最小?3.(2019福建黑白卷)某工厂生产一种产品,该产品根据质量划分为10个等级(第10等级最高),第1等级的产品每天能生产95件,每件产品可获利润6元,已知每提高一个等级,每件利润可增加2元,但每天产量减少5件,且工厂每天只能生产同一等级的产品.设生产第x等级的产品每天的产量为y件.(1)求y关于x的函数关系式;(2)该工厂当天生产产品等级为多少时,可使获得的利润最大,最大利润为多少元?4.(2019云南)某驻村扶贫小组实施产业扶贫,帮助贫困农户进行西瓜种植和销售.已知西瓜的成本为6元/千克,规定销售单价不低于成本,又不高于成本的两倍.经过市场调查发现,某天西瓜的销售量y(千克)与销售单价x(元/千克)的函数关系如下图所示:(1)求y与x的函数解析式(也称关系式);(2)求这一天销售西瓜获得的利润W的最大值.第4题图5. (2019龙岩5月质检)小宝大学毕业后回家乡进行园艺创业,第一期培植盆景与花卉各50盆,售后进行统计得知:盆景的平均每盆利润是160元,花卉的平均每盆利润是20元.调研发现:①盆景每增加1盆,盆景的平均每盆利润减少2元;每减少1盆,盆景的平均每盆利润增加2元;②花卉的平均每盆利润始终不变.小宝计划第二期培植盆景与花卉共100盆,设培植的盆景比第一期增加x盆,第二期盆景与花卉售完后的利润分别为W1,W2(单位:元).(1)用含x的代数式分别表示W1,W2;(2)当x取何值时,第二期培植的盆景与花卉售完后获得的总利润W最大?最大总利润是多少?类型二阶梯收费问题针对演练1.(2019呼和浩特)滴滴快车是一种便捷的出行工具,计价规则如下表:小王与小张各自乘坐滴滴快车,在同一地点约见,已知到达约见地点时他们的实际行车里程分别为6公里与8.5公里,两人付给滴滴快车的费用相同.(1)求这两辆滴滴快车的实际行车时间相差多少分钟;(2)实际乘车时间较少的人,由于出发时间比另一个人早,所以提前到达约见地点在大厅等候,已知他等候另一人的时间是他自己实际乘车时间的1.5倍,且比另一个人的实际乘车时间的一半多8.5分钟,计算两人各自的实际乘车时间.2.(2019宜昌)《人民日报》点赞湖北宜昌“智慧停车平台”.作为“全国智慧城市”试点,我市通过“互联网+”、“大数据”等新科技,打造“智慧停车平台”,着力化解城市“停车难”问题.市内某智慧公共停车场的收费标准是:停车不超过30分钟,不收费;超过30分钟,不超过60分钟,计1小时,收费3元;超过1小时后,超过1小时的部分按每小时2元收费(不足1小时,按1小时计).(1)填空:若市民张先生某次在该停车场停车2小时10分钟,应交停车费________元.若李先生也在该停车场停车,支付停车费11元,则停车场按________小时(填整数)计时收费;(2)当x取整数且x≥1时,求该停车场停车费y(单位:元)关于停车计时x(单位:小时)的函数解析式.3. (2019福建逆袭卷)某公司与销售人员签订了这样的工资合同:工资由两部分组成,一部分是3000元(基本工资+全勤奖+补助);另一部分是按月销售量确定的奖励工资,每销售一件产品,奖励工资10元.设某销售员销售产品x件,他应得的工资记为y元.(1)求y与x之间的函数关系式,并写出x的取值范围;(2)要使每月工资不低于4500元,则销售员当月的销售量至少为多少件?(3)当某员工销售100件产品时,则他的当月工资是多少元?4.现如今,外卖市场竞争激烈,美团、百度、饿了么等公司订单大量增加,某公司负责招聘外卖送餐员,每月工资:底薪1000元,另加外卖送单补贴(送一次外卖称为一单),具体方案如下:m单的部分(700≤m≤900)超过m单的部分10(1)若某“外卖小哥”4月份送餐600单,求他这个月的工资总额;(2)设这个月“外卖小哥”送餐x单,所得工资为y元,求y与x的函数关系式;(3)若“外卖小哥”本月送餐800单,所得工资6400≤y≤6500,求m的取值范围.类型三几何面积问题针对演练1. (2019南京)某地计划对矩形广场进行扩建改造.如图,原广场长50 m,宽40 m,要求扩充后的矩形广场长与宽的比为3∶2,扩充区域的扩建费用每平方米30元,扩建后在原广场和扩充区域都铺设地砖,铺设地砖费用每平方米100元.如果计划总费用642000元,扩充后广场的长和宽应分别是多少米?第1题图2.如图是某种品牌的玻璃窗,这种玻璃窗是由四块矩形玻璃通过框架支撑得到的,不考虑矩形玻璃和支架镶嵌的部分,已知这种玻璃窗长3 m,宽2 m,四周是2x cm宽的框架,中间三条宽度相等的支架,其宽度为x cm,若5≤x≤10.(1)求玻璃窗的透光面积y(cm2)与宽度x(cm)之间的关系式;(2)求玻璃窗的最大透光面积是多少?第2题图3.(2019福建逆袭卷)如图,某社区有一块直角三角形空地(△ABC),∠ACB=90°,为了美化社区,社区领导决定在空地内修建一个小的矩形花园CMPN,P点在斜边AB上,M、N分别在BC、AC上,已知BC=16 m,AC=10 m,设CM=x m,CN=y m.(1)求y与x之间的函数关系式;(2)当CM、CN的长度分别为多少时,花园CMPN的面积最大?并求出最大面积.第3题图4.(2019福建黑白卷)某小区有一块如图所示的矩形ABCD空地,规划在中间的一块四边形EFGH空地上种花,其余的四块三角形空地上铺设草坪,要求AE=BF=CG=DH,已知AB=40米,BC=24米,设AE=x米,种花的面积为y1平方米,草坪面积为y2平方米.(1)分别求出y1和y2与x的函数关系式;(2)若种花每平方米需200元,铺设草坪每平方米需100元,现设计要求种花的面积不大于456平方米,那么至少需要准备多少元费用?第4题图5.用一段长32 m的篱笆和长8 m的墙,围成一个矩形的菜园.第5题图(1)如图①,如果矩形菜园的一边靠墙AB,另三边由篱笆CDEF围成.①设DE等于x m,直接写出菜园面积y与x之间的函数关系式,并写出自变量的取值范围;②菜园的面积能不能等于110 m2?若能,求出此时x的值;若不能,请说明理由;(2)如图②,如果矩形菜园的一边由墙AB和一节篱笆BF构成,另三边由篱笆ADEF围成,求菜园面积的最大值.类型四其他类型1.费用问题(2019常德)某生态体验园推出了甲、乙两种消费卡,设入园次数为x时,所需费用为y元,选择这两种卡消费时,y与x的函数关系如图所示,解答下列问题:(1)分别求出选择这两种卡消费时,y关于x的函数表达式;(2)请根据入园次数确定选择哪种卡消费比较合算.第1题图2. 工程问题为落实“美丽城区”的工作部署,市政府计划对城区道路进行改造,现安排甲、乙两个工程队完成.已知甲队的工作效率是乙队工作效率的32倍,甲队改造480米的道路比乙队改造同样长的道路少用4天.(1)甲、乙两工程队每天能改造道路的长度分别是多少米?(2)若甲队工作一天需付费用3万元,乙队工作一天需付费用2.4万元,如需改造的道路全长1200米,改造总费用不超过66万元,至少安排甲队工作多少天?3. 行程问题(2019百色)一艘轮船在相距90千米的甲、乙两地之间匀速航行,从甲地到乙地顺流航行用6小时,逆流航行比顺流航行多用4小时.(1)求该轮船在静水中的速度和水流速度;(2)若在甲、乙两地之间建立丙码头,使该轮船从甲地到丙地和从乙地到丙地所用的航行时间相同,问甲、丙两地相距多少千米?4.行程问题快车从甲地驶向乙地,慢车从乙地驶向甲地,两车同时出发并且在同一条公路上匀速行驶,途中快车休息1.5小时,慢车没有休息.设慢车行驶的时间为x小时,快车行驶的路程为y1千米,慢车行驶的路程为y2千米.下图中折线OAEC表示y1与x之间的函数关系,线段OD表示y2与x之间的函数关系.请解答下列问题:(1)求快车和慢车的速度;(2)求图中线段EC所表示的y1与x之间的函数表达式;(3)线段OD与线段EC相交于点F,直接写出点F的坐标,并解释点F的实际意义.第4题图参考答案类型一分配类问题(含最值)1.解:(1)设小明原计划购买文具袋x个,根据题意,得:10x-8.5(x+1)=17,解得x=17.答:小明原计划购买文具袋17个;(2)设小明最多可购买钢笔y 支,则签字笔可买(50-y )支,根据题意,得:6.4y +4.8(50-y )≤400-8.5×(17+1),解得:y ≤438,则y 可取最大整数为4. 答:小明最多可购买4支钢笔.2. 解:(1)根据题意得y =120x +200(100-x )=-80x +20000(24≤x ≤86);【解法提示】生产A 商品x 千克,则需要甲种原料3x 千克,需要乙种原料2x 千克,则生产B 商品共(100-x )千克,需要甲原料2.5(100-x )千克,需要乙种原料3.5(100-x )千克,∵3x +2.5(100-x )≤293,解得x ≤86,2x +3.5(100-x )≤314,解得x ≥24,∴x 的取值范围是24≤x ≤86.(2)∵y =-80x +20000,∴y 随x 的增大而减小.∵24≤x ≤86,∴当x =86时,y =13120.故x 取86时,总成本y 最小,最小成本为13120元.3. 解:(1)∵该产品每提高一个等级,每天产量减少5件,∴y =95-5×(x -1)=-5x +100(1≤x ≤10);(2)设当天的总利润为w 元,则由题意可得:w =[6+2(x -1)]·y=[6+2(x -1)]·(-5x +100)=-10x 2+180x +400=-10(x -9)2+1210.∴当x =9时,w 取最大值,最大值为1210.答:该工厂当天生产产品等级为第9等级时,可使获得的利润最大,最大利润为1210元.4. 解:(1)当6≤x ≤10时,由题意设y =kx +b (k ≠0),它的图象经过点(6,1000),点(10,200). ∴⎩⎪⎨⎪⎧1000=6k +b ,200=10k +b ,解得⎩⎪⎨⎪⎧k =-200,b =2200. ∴y =-200x +200,当10<x ≤12时,y =200.答:y 与x 的函数解析式为y =⎩⎪⎨⎪⎧-200x +2200,6≤x ≤10,200,10<x ≤12; (2)当6≤x ≤10时,y =-200x +2200,W =(x -6)y =(x -6)(-200x +2200)=-200(x -172)2+1250. ∵-200<0,6≤x ≤10,∴当x =172时,W 最大,且W 的最大值为1250; 当10<x ≤12时,y =200,W =(x -6)y =200(x -6)=200x -1200.∵200>0,∴W 随x 增大而增大.又∵10<x ≤12,当x =12时,W 最大,且W 的最大值为1200.∵1250>1200,∴W 的最大值为1250.答:这一天销售西瓜获得利润最大值为1250元.5. 解:(1)W 1=(160-2x )(50+x )=-2x 2+60x +8000,W 2=20(50-x )=-20x +1000;(2)依题意得:W =W 1+W 2=-2x 2+40x +9000=-2(x -10)2+9200.∵x 为正整数,∴当x =10时,总利润W 最大,最大值为9200元.类型二 阶梯收费问题1. 解:(1)设小王和小张实际乘车时间为x 和y 分钟.根据题意有:1.8×6+0.3 x =1.8×8.5+0.3 y +(8.5-7)×0.8,解得x -y =19,即实际时间相差为19分钟;(2)由题意可知小张乘车时间较少,可得方程组⎩⎪⎨⎪⎧x -y =19,1.5y =12x +8.5, 解得⎩⎪⎨⎪⎧x =37,y =18, 答:小王与小张的乘车时间分别是37分钟和18分钟.2. 解:(1)7,5;【解法提示】∵市民张先生某次在该停车场停车2小时10分钟,超过了1小时,∴应交停车费为3+2×(3-1)=7(元).∵11>3,∴李先生在该停车场停车超过了1小时.设停车场按x (x 为整数)小时计时收费.根据题意,得3+2(x -1)=11.解得x =5,即停车场按5小时计时收费.(2)根据题意,得y =3+2(x -1),即y =2x +1.∴y 关于x 的函数解析式为y =2x +1(x ≥1).3. 解:(1)由题意得y =10x +3000(x ≥0,且x 为整数);(2)当y ≥4500时,即10x +3000≥4500,解得x ≥150,∴要使每月工资不抵于4500元,销售员当月的销售量至少为150件;(3)当x =100时,y =10×100+3000=4000,∴当某员工销售100件产品时,他的当月工资是4000元.4. 解:(1)由题意可得,1000+500×6+(600-500)×8=1000+3000+800=4800(元),答:他这个月的工资总额是4800元;(2)由题意可得,当0<x ≤500时,y =1000+6x ,当500<x ≤m 时,y =1000+500×6+(x -500)×8=8x ,当x >m 时,y =1000+500×6+(m -500)×8+(x -m )×10=10x -2m ,综上所述,y =⎩⎪⎨⎪⎧1000+6x (0<x ≤500),8x (500<x ≤m ),10x -2m (x >m ).(3)若800<m ≤900,y =8×800=6400,符合题意,若700≤m ≤800,6400≤-2m +10×800≤6500,解得750≤m ≤800,∴m 的取值范围为750≤m ≤900.类型三 几何面积问题1. 解:设扩充后广场的长为3x m ,宽为2x m .根据题意,得3x ·2x ·100+30(3x ·2x -50×40)=642000.解得x 1=30,x 2=-30(不合题意,舍去).所以3x =90,2x =60.答:扩充后广场的长和宽应分别为90 m 和60 m .2. 解:(1)由已知得,y =(300-2×2x -3x )(200-2×2x )=28x 2-2600x +60000(5≤x ≤10);(2)由(1)知y =28x 2-2600x +60000,∵-(-2600)2×28≈46,且28>0, ∴当5≤x ≤10时,y 随x 的增大而减小.∴当x =5时,y =47700 cm 2.∴玻璃窗的最大透光面积是47700 cm 2.3. 解:(1)∵四边形CMPN 是矩形,∴PN ∥BC ,PN =CM .∴△ANP ∽△ACB . ∴NP CB =AN AC.∵BC =16,AC =10,NP =x ,CN =y ,∴x 16=10-y 10, 即y =-58x +10; (2)设花园CMPN 的面积为S ,则S =xy =x (-58x +10)=-58(x -8)2+40. ∵-58<0,∴当x =8时,S 有最大值,S 最大值=40. 即当CM =8 m ,CN =5 m 时,花园CMPN 的面积最大,最大面积为40 m 2.4. 解:(1)∵四边形ABCD 是矩形,∴AD =BC ,AB =CD .∵AE =BF =CG =DH =x 米,∴BE =DG =(40-x )米,CF =AH =(24-x )米.∴y 2=S △AEH +S △CGF +S △BEF +S △DGH =x (24-x )+x (40-x )=-2x 2+64x ,y 1=S 矩形ABCD -y 2=40×24-(-2x 2+64x )=2x 2-64x +960;(2)设种花和铺设草坪所需总费用为W 元,总费用 W =200(2x 2-64x +960)+100(-2x 2+64x )=200(x -16)2+140800,由题意知y 1=2x 2-64x +960≤456,2x 2-64x +504≤0,化简得(x -14)(x -18)≤0,由函数图象可得14≤x ≤18,∴当x =16时,W 取得最小值,最小值为140800元,答:至少需要准备140800元费用.5. 解:(1)①设DE =x m ,则CD =EF =16-12x (m ), 则y =x (16-12x )=-12x 2+16x (0<x ≤8); ②令y =110,即-12x 2+16x =110, 解得:x 1=10,x 2=22,∵0<x ≤8,∴x 1=10,x 2=22均不符合题意.故菜园的面积不能等于110 m 2;(2)设菜园的面积为S ,BF =t m ,则DE =t +8,AD =EF =32-t -(t +8)2=12-t , 则S =(t +8)(12-t )=-t 2+4t +96=-(t -2)2+100,∴当t =2时,S 最大,最大值为100.答:菜园面积的最大值为100 m 2.类型四 其他类型1. 解:设选择甲种卡消费时,函数关系式为y 甲=kx ,将(5,100)代入,得100=5k ,解得k =20,∴y 甲=20x ;设选择乙种卡消费时,函数关系式为y 乙=k ′x +b ,将(0,100),(20,300)代入,得⎩⎪⎨⎪⎧b =100,20k ′+b =300, 解得⎩⎪⎨⎪⎧k ′=10,b =100, ∴y 乙=10x +100;(2)当y 甲<y 乙,即20x <10x +100,解得x <10时;当y 甲=y 乙,即20x =10x +100时,解得x =10;当y 甲>y 乙,即20x >10x +100时,解得x >10;综上所述,当入园次数不足10次时,选择甲种消费卡合算,当入园次数等于10次时,两种卡消费一样,当入园次数超过10次时,选择乙种消费卡合算.2. 解:(1)设乙工程队每天能改造道路x 米,则甲工程队每天能改造道路32x 米,依题意得480x -48032x =4, 解得:x =40,经检验,x =40是分式方程的解,且符合题意,∴32x =60. 答:甲工程队每天能改造道路60米,乙工程队每天能改造道路40米.(2)设安排甲队工作m 天,则安排乙队工作1200-60 m 40天, 依题意,得:3m +2.4×1200-60 m 40≤66, 解得:m ≥10.答:至少安排甲队工作10天.3. 解:⑴设该轮船在静水中的速度是x ,水流速度是y .由题意可得⎩⎪⎨⎪⎧6(x +y )=90,(6+4)(x -y )=90,解得⎩⎪⎨⎪⎧x =12,y =3. 答:该轮船在静水中的速度是12千米时,水流的速度是3千米时.(2)设甲、丙两地相距z 千米,则乙丙两地相距(90-z )千米.由题意可得z 12+3=90-z 12-3,解得z =2254. 答:甲、丙两地相距2254千米. 4. 解:(1)由题意可知,快车2小时行驶了180千米,∴快车速度为180÷2=90千米/小时. 慢车3小时行驶了180千米,∴慢车的速度为180÷3=60千米/小时.(2)∵快车中途休息了1.5小时,即AE 段,∴点E 的坐标为(3.5,180).快车再行驶360-180=180千米所用时间为2小时,则点C 的坐标为(5.5,360), 设EC 段所表示的函数关系式为y 1=kx +b ,则⎩⎪⎨⎪⎧3.5k +b =180,5.5k +b =360, 解得⎩⎪⎨⎪⎧k =90,b =-135, ∴线段EC 段所表示的函数关系式为y 1=90x -135(3.5≤x ≤5.5).(3)点F 的坐标为(4.5,270).点F 表示的实际意义是:经过4.5小时,两车均行驶了270千米.【解法提示】∵OD 的函数解析式为y 2=60x ,∴联立得⎩⎪⎨⎪⎧y 1=90x -135,y 2=60x ,解得⎩⎪⎨⎪⎧x =4.5,y =270,∴F (4,5,270).。

中考数学方程(组)和不等式(组)试题(含答案)题型归纳

中考数学方程(组)和不等式(组)试题(含答案)题型归纳

中考数学方程(组)和不等式(组)试题(含答案)题型归纳以下是为您推荐的中考数学方程(组)和不等式(组)试题(含答案),希望本篇文章对您学习有所帮助。

中考数学方程(组)和不等式(组)试题(含答案)一、选择题1(山西省2分)分式方程的解为A. B. C. D.【答案】B。

【考点】解分式方程。

【分析】观察可得最简公分母是2 ( +3),方程两边乘最简公分母,可以把分式方程转化为整式方程求解:方程的两边同乘2 ( +3),得 +3=4 ,解得 =1.检验:把 =1代入2 ( +3)=80。

原方程的解为: =1。

故选B。

2.(山西省2分)五一节期间,某电器按成本价提高30%后标价,再打8折(标价的80%)销售,售价为2080元.设该电器的成本价为元,根据题意,下面所列方程正确的是A. B.C. D.【答案】A。

【考点】由实际问题抽象出一元一次方程。

【分析】设该电器的成本价为元,根据按成本价提高30%后标价,再打8折(标价的80%)销售,售价为2080元可列出方程: (1+30%)80%=2080。

故选A。

3.(内蒙古巴彦淖尔、赤峰3分)不等式组_+20 _-20的解集在数轴上表示正确的是【答案】B。

【考点】解一元一次不等式组,在数轴上表示不等式的解集。

【分析】解一元一次不等式组,先求出不等式组中每一个不等式的解集,再利用口诀求出这些解集的公共部分:同大取大,同小取小,大小小大中间找,大大小小解不了(无解)。

解不等式组得到﹣2不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(向右画;向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个。

在表示解集时,要用实心圆点表示;,要用空心圆点表示。

据此观察在数轴上的表示。

故选B。

4.(内蒙古巴彦淖尔、赤峰3分)如图,在△ABC中,AB=20cm,AC=12cm,点P从点B出发以每秒3cm的速度向点A运动,点Q从点A同时出发以每秒2cm的速度向点C运动,其中一个动点到达端点时,另一个动点也随之停止运动,当△APQ是等腰三角形时,运动的时间是A、2.5秒B、3秒C、3.5秒D、4秒【答案】D。

中考数学重难点突破专题三:方程、不等式的实际应用问题试题(含答案)

中考数学重难点突破专题三:方程、不等式的实际应用问题试题(含答案)

精品基础教育教学资料,仅供参考,需要可下载使用!专题三 方程、不等式的实际应用问题类型1 方程(组)、不等式的应用问题1.(2017·贵港)某次篮球联赛初赛阶段,每队有10场比赛,每场比赛都要分出胜负,每队胜一场得2分,负一场得1分,积分超过15分才能获得参赛资格.(1)已知甲队在初赛阶段的积分为18分,求甲队初赛阶段胜、负各多少场;(2)如果乙队要获得参加决赛资格,那么乙队在初赛阶段至少要胜多少场?解:(1)设甲队胜了x 场,则负了(10-x)场,根据题意可得:2x +10-x =18,解得:x =8,则10-x =2,答:甲队胜了8场,负了2场;(2)设乙队在初赛阶段胜a 场,根据题意可得:2a +(10-a)>15,解得:a >5,∵a 为整数,∴a 最小=6,答:乙队在初赛阶段至少要胜6场.2.(2017·玉林)某新建成学校举行美化绿化校园活动,九年级计划购买A ,B 两种花木共100棵绿化操场,其中A 花木每棵50元,B 花木每棵100元.(1)若购进A ,B 两种花木刚好用去8000元,则购买了A ,B 两种花木各多少棵?(2)如果购买B 花木的数量不少于A 花木的数量,请设计一种购买方案使所需总费用最低,并求出该购买方案所需总费用.解:(1)设购买A 种花木x 棵,B 种花木y 棵,则:⎩⎪⎨⎪⎧x +y =10050x +100y =8000,解得:⎩⎪⎨⎪⎧x =40y =60,答:购买A 种花木40棵,B 种花木60棵;(2)设购买A 种花木a 棵,则购买B 种花木(100-a)棵,根据题意,得:100-a ≥a ,解得:a ≤50,设购买总费用为W ,则W =50a +100(100-a)=-50a +10000,∵W 随a 的增大而减小,∴当a =50时,W 取得最小值,最小值为7500元,3.某蔬菜经营户从蔬菜批发市场批发蔬菜进行零售,部分蔬菜批发价格与零售价格如表:(1)第一天,该经营户批发西红柿和西兰花两种蔬菜共300 kg ,用去了1520元钱,这两种蔬菜当天全部售完一共能赚多少元钱?(2)第二天,该经营户用1520元钱仍然批发西红柿和西兰花,要想当天全部售完后所赚钱数不少于1050元,则该经营户最多能批发西红柿多少 kg?解:(1)设批发西红柿x kg ,西兰花y kg.由题意得⎩⎪⎨⎪⎧x +y =300,3.6x +8y =1520.解得⎩⎪⎨⎪⎧x =200,y =100.200×(5.4-3.6)+100×(14-8)=960(元). 答:两种蔬菜当天全部售完一共能赚960元钱.(2)设批发西红柿a kg ,由题意得(5.4-3.6)a +(14-8)×1520-3.6a 8≥1050.解得a ≤100. 答:该经营户最多能批发西红柿100 kg.类型2 方程(组)、不等式与函数的应用问题4.某地为了鼓励居民节约用水,决定实行两级收费制,即每月用水量不超过12吨(含12吨)时,每吨按政府补贴优惠价收费;每月超过12吨,超过部分每吨按市场调节价收费,小黄家1月份用水24吨,交水费42元.2月份用水20吨,交水费32元.(1)求每吨水的政府补贴优惠价和市场调节价分别是多少元;(2)设每月用水量为x 吨,应交水费为y 元,写出y 与x 之间的函数关系式;(3)小黄家3月份用水26吨,他家应交水费多少元?解:(1)设每吨水的政府补贴优惠价和市场调节价分别为a 元,b 元.依题意得⎩⎪⎨⎪⎧12a +12b =42,12a +8b =32.解得⎩⎪⎨⎪⎧a =1,b =2.5. 答:每吨水的政府补贴优惠价1元,市场调节价2.5元.(2)当0≤x ≤12时,y =x.当x >12时,y =12+2.5(x -12),即y =2.5x -18.∴y =⎩⎪⎨⎪⎧x (0≤x ≤12)2.5x -18(x >12) (3)当x =26时,y =2.5×26-18=65-18=47(元).答:小黄家三月份应交水费47元.5.某超市计划购进一批甲、乙两种玩具,已知5件甲种玩具的进价与3件乙种玩具的进价的和为231元,2件甲种玩具的进价与3件乙种玩具的进价的和为141元.(1)求每件甲种、乙种玩具的进价分别是多少元?(2)如果购进甲种玩具有优惠,优惠方法是:购进甲种玩具超过20件,超出部分可以享受7折优惠,若购进x(x >0)件甲种玩具需要花费y 元,请你求出y 与x 的函数关系式;(3)在(2)的条件下,超市决定在甲、乙两种玩具中选购其中一种,且数量超过20件,请你帮助超市判断购进哪种玩具省钱.解:(1)设每件甲种玩具的进价是x 元,每件乙种玩具的进价是y 元,由题意得⎩⎪⎨⎪⎧5x +3y =231,2x +3y =141.解得{x =30,y =27.答:每件甲种玩具的进价是30元,每件乙种玩具的进价是27元.(2)当0<x ≤20时,y =30x ;当x >20时,y =20×30+(x -20)×30×0.7=21x +180.∴y =⎩⎪⎨⎪⎧30x (0<x ≤20)21x +180(x >20) (3)设购进玩具z 件(z >20),则乙种玩具消费27z 元;当27z =21z +180,则z =30.所以当购进玩具正好30件,选择购其中一种即可;当27z >21z +180,则z >30.所以当购进玩具超过30件,选择购甲种玩具省钱;当27z <21z +180,则z <30.所以当购进玩具多于20件少于30件,选择购乙种玩具省钱.6.(2017·郴州)某工厂有甲种原料130 kg ,乙种原料144 kg .现用这两种原料生产出A ,B 两种产品共30件.已知生产每件A 产品需甲种原料5 kg ,乙种原料4 kg ,且每件A 产品可获利700元;生产每件B 产品需甲种原料3 kg ,乙种原料6 kg ,且每件B 产品可获利900元.设生产A 产品x 件(产品件数为整数件),根据以上信息解答下列问题:(1)生产A ,B 两种产品的方案有哪几种;(2)设生产这30件产品可获利y 元,写出y 关于x 的函数解析式,写出(1)中利润最大的方案,并求出最大利润.解:(1)根据题意得:⎩⎪⎨⎪⎧5x +3(30-x )≤1304x +6(30-x )≤144,解得18≤x ≤20,∵x 是正整数,∴x =18、19、20,共有三种方案:方案一:A 产品18件,B 产品12件,方案二:A 产品19件,B 产品11件,方案三:A 产品20件,B 产品10件; (2)根据题意得:y =700x +900(30-x)=-200x +27000,∵-200<0,∴y 随x 的增大而减小,∴x =18时,y 有最大值,y 最大=-200×18+27000=23400元.答:方案一利润最大,最大利润为23400元.。

中考数学复习《方程(组)与不等式(组》测试题(含答案)

中考数学复习《方程(组)与不等式(组》测试题(含答案)

中考数学复习《方程(组)与不等式(组》测试题(含答案)一、选择题1.下列数值中不是不等式5x ≥2x +9的解的是( ) A. 5 B. 4 C. 3 D. 22.将不等式3x -2<1的解集表示在数轴上,正确的是( )3.若关于x 的方程x 2-2x +c =0有一根为-1,则方程的另一根为( ) A. -1 B. -3 C. 1 D. 34.已知甲、乙两数的和是7,甲数是乙数的2倍,设甲数为x ,乙数为y ,根据题意,列方程组正确的是( ) A. ⎩⎪⎨⎪⎧x +y =7x =2yB. ⎩⎪⎨⎪⎧x +y =7y =2x C. ⎩⎪⎨⎪⎧x +2y =7x =2y D. ⎩⎪⎨⎪⎧2x +y =7y =2x5.已知3是关于x 的方程x 2-(m +1)x +2m =0的一个实数根,并且这个方程的两个实数根恰好是等腰△ABC 的两条边的边长,则△ABC 的周长为( ) A. 7 B. 10 C. 11 D. 10或11 6.若关于x 的方程x +m x -3+3m 3-x=3的解为正数,则m 的取值范围是( ) A. m <92 B. m <92且m ≠32 C. m >-94 D. m >-94且m ≠-347.定义新运算:a ★b =a (1-b ),若a ,b 是方程x 2-x +14m =0(m <1)的两根,则b ★b -a ★a 的值为( )A. 0B. 1C. 2D. 与m 无关8.在求3x 的倒数的值时,嘉淇同学误将3x 看成了8x ,她求得的值比正确答案小5.依上述情形,所列关系式成立的是( )A. 13x =18x -5B. 13x =18x +5C. 13x =8x -5D. 13x =8x +5 9.如图,某小区有一块长为18 m ,宽为 6 m 的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为60 m 2,两块绿地之间及周边留有宽度相等的人行通道.若设人行通道的宽度为x m ,则可列出关于x 的方程是( )A. x 2+9x -8=0 B. x 2-9x -8=0 C. x 2-9x +8=0 D. 2x 2-9x +8=010.从-3,-1,12,1,3这五个数中,随机抽取一个数,记为a .若数a 使关于x 的不等式组⎩⎪⎨⎪⎧13(2x +7)≥3x -a <0无解,且使关于x 的分式方程x x -3-a -23-x =-1有整数解,那么这5个数中所有满足条件的a 的值之和是( )31二、填空题11.一件服装的标价为300元,打八折销售后可获利60元,则该件服装的成本价是________元. 12.分式方程1x -2=3x的解是________. 13.已知A ,B 两地相距160 km ,一辆汽车从A 地到B 地的速度比原来提高了25%,结果比原来提前0.4 h 到达,则这辆汽车原来的速度是________km/h.14.不等式组⎩⎪⎨⎪⎧x +2>12x -1≤8-x 的最大整数解是________.15.若方程(x -m )(x -n )=3(m ,n 为常数,且m <n )的两实数根分别为a 、b (a <b ),则m 、n 、a 、b 的大小关系为______________. 16.已知⎩⎪⎨⎪⎧x =3y =-2是方程组⎩⎪⎨⎪⎧ax +by =3bx +ay =-7的解,则代数式(a +b )(a -b )的值为________.17.已知关于x 的方程2x =m 的解满足⎩⎪⎨⎪⎧x -y =3-n x +2y =5n (0<n <3),若y >1,则m 的取值范围是________.三、解答题18.解方程组⎩⎪⎨⎪⎧9x 2-4y 2=36x -y =2.19.解方程:2x +3=1x -1.20.已知关于x 的不等式组⎩⎪⎨⎪⎧5x +2>3(x -1)12x ≤8-32x +2a 有四个整数解,求实数a 的取值范围.21.解不等式组⎩⎪⎨⎪⎧5x -3<4x4(x +1)+2≥x ,并把它们的解集在数轴上表示出来.22.关于x 的两个不等式①3x +a2<1与②1-3x >0.(1)若两个不等式的解集相同,求a 的值; (2)若不等式①的解都是②的解,求a 的取值范围.23.已知关于x 的方程x 2+mx +m -2=0. (1)若此方程的一个根为1,求m 的值;(2)求证:不论m 取何实数,此方程都有两个不相等的实数根.24.某校学生利用双休时间去距学校10 km 的炎帝故里参观,一部分学生骑自行车先走,过了20 min 后,其余学生乘汽车沿相同路线出发,结果他们同时到达.已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度和汽车的速度.25.某一公路的道路维修工程,准备从甲、乙两个工程队中选一个队单独完成.根据两队每天的工程费用和每天完成的工程量可知,若由两队合做此项维修工程,6天可以完成,共需工程费用385200元,若单独完成此项维修工程,甲队比乙队少用5天,每天的工程费用甲队比乙队多4000元,从节省资金的角度考虑,应该选择哪个工程队?26.春节期间,某商场计划购进甲、乙两种商品,已知购进甲商品2件和乙商品3件共需270元;购进甲商品3件和乙商品2件共需230元.(1)求甲、乙两种商品每件的进价分别是多少元?(2)商场决定甲商品以每件40元出售,乙商品以每件90元出售,为满足市场需求,需购进甲、乙两种商品共100件,且甲种商品的数量不少于乙种商品数量的4倍,请你求出获利最大的进货方案,并确定最大利润.27.为进一步发展基础教育,自2014年以来,某县加大了教育经费的投入,2014年该县投入教育经费6000万元,2016年投入教育经费8640万元,假设该县这两年投入教育经费的年平均增长率相同.(1)求这两年该县投入教育经费的年平均增长率;(2)若该县教育经费的投入还将保持相同的年平均增长率,请你预算2017年该县将投入教育经费多少万元?28.五月初,我市多地遭遇了持续强降雨的恶劣天气,造成部分地区出现严重洪涝灾害,某爱心组织紧急筹集了部分资金,计划购买甲、乙两种救灾物品共2000件送往灾区,已知每件甲种物品的价格比每件乙种物品的价格贵10元,用350元购买甲种物品的件数恰好与用300元购买乙种物品的件数相同.(1)求甲、乙两种救灾物品每件的价格各是多少元?(2)经调查,灾区对乙种物品件数的需求量是甲种物品件数的3倍,若该爱心组织按照此需求量的比例购买这2000件物品,需筹集资金多少元?29.倡导健康生活,推进全民健身,某社区要购进A,B两种型号的健身器材若干套,A,B两种型号健身器材的购买单价分别为每套310元,460元,且每种型号健身器材必须整套购买.(1)若购买A,B两种型号的健身器材共50套,且恰好支出20000元,求A,B两种型号健身器材各购买多少套?(2)若购买A,B两种型号的健身器材共50套,且支出不超过18000元,求A种型号健身器材至少要购买多少套?30.如图,一块长5米、宽4米的地毯,为了美观设计了两横、两纵的配色条纹(图中阴影部分),已知配色条纹的宽度相同,所占面积是整个地毯面积的1780.(1)求配色条纹的宽度;(2)如果地毯配色条纹部分每平方米造价200元,其余部分每平方米造价100元,求地毯的总造价.方程(组)与不等式(组)阶段测评1. D 【解析】不等式5x ≥2x +9的解集是x ≥3,因此2不是这个不等式的解,故选D.2. D 【解析】3x -2<1,解得x <1,故选D.3. D 【解析】设方程的另一个根为x 2,则根据根与系数关系有-1+x 2=2,解得x 2=3.4. A【解析】根据题意可得等量关系:①甲数+乙数=7,②甲数=乙数×2,根据等量关系列出方程组即可.设甲数为x ,乙数为y ,根据题意,可列方程组:⎩⎪⎨⎪⎧x +y =7x =2y,故选A.5. D 【解析】∵3是方程x 2-(m +1)x +2m =0的一个实数根,∴9-3(m +1)+2m =0,解得m =6,∴方程为x 2-7x +12=0,解得x 1=3,x 2=4,若等腰△ABC 的腰长为3,底边长为4,则其周长为3+3+4=10;若等腰△ABC 的腰长为4,底边长为3,则周长为4+4+3=11.6. B 【解析】由x +m x -3+3m 3-x =3,得x +m x -3-3m x -3=3,解得x =9-2m 2,解方程组⎩⎨⎧9-2m2>09-2m2≠3,得m <92且m ≠32,故选B.7. A 【解析】∵a ,b 是方程x 2-x +14m =0的两根,∴a 2-a =-14m ,b 2-b =-14m ,∴b ★b -a ★a=b (1-b )-a (1-a )=b -b 2-a +a 2=-(b 2-b )+(a 2-a )=14m -14m =0.8. B 【解析】根据题意可知:8x 的倒数18x 比3x 的倒数13x 小5,所以可列方程为13x =18x +5.9. C 【解析】因为人行道的宽度为x 米,所以阴影部分的长为(18-3x )米,宽为(6-2x )米,故阴影部分面积为(18-3x )(6-2x )=60,化简得x 2-9x +8=0.故选C.10. B 【解析】解不等式组得⎩⎪⎨⎪⎧x ≥1x <a,∵原不等式组无解,∴a ≤1,则a 不能取五个已知值中的3;解分式方程得x =5-a 2,又∵分式方程有整数解,∴5-a 2为整数,且5-a 2≠3,∴a 只能从-3,-1,12,1中取-3,1,所以满足条件的a 的值的和为-3+1=-2.11. 180 【解析】设成本为x 元,由题意得:300×0.8-x =60,解得x =180.12. x =3 【解析】去分母,两边同乘x(x -2)得x =3(x -2),去括号得x =3x -6,移项并合并同类项得x =3,经检验x =3是原分式方程的根.13. 80 【解析】设这辆汽车原来的速度是x km /h ,根据题意得:160x -160(1+25%)x =0.4,解得x =80,经检验x =80是原方程的根.14. 3 【解析】由x +2>1得x >-1,由2x -1≤8-x 得x ≤3,所以原不等式组的解集是-1<x ≤3,最大整数解为x =3.15. a <m <n <b 【解析】如解图,解方程(x -m)(x -n)=3可以看作是求y =(x -m)(x -n)与y =3这两个函数图象的交点,由解图易得a <m <n <b.16. -8 【解析】⎩⎪⎨⎪⎧x =3y =-2是方程组⎩⎪⎨⎪⎧ax +by =3bx +ay =-7的解,即⎩⎪⎨⎪⎧3a -2b =3 ①3b -2a =-7 ②,①+②得a +b =-4,①-②得5a -5b =10,则a -b =2,∴(a +b)(a -b)=-4×2=-8.17. 25<m <23 【解析】解原方程组,得⎩⎪⎨⎪⎧x =n +2y =2n -1.∵y >1,∴2n -1>1,即n >1.∵0<n <3,∴1<n <3,∴3<x <5.当x =3时,m =2x =23;当x =5时,m =2x =25.∵当x >0时,m 随x 的增大而减小,∴25<m <23.18. 【思路分析】利用代入消元法,将方程②变为y =x -2,将此方程代入方程①求x ,进而求出y.解:⎩⎪⎨⎪⎧9x 2-4y 2=36①x -y =2 ②,将②变形为y =x -2 ③,将③代入①得:9x 2-4(x -2)2=36, 化简得:5x 2+16x -52=0,将方程左边因式分解得:(x -2)(5x +26)=0, 解得x =2或x =-265,将x =2代入方程②得y =0; 将x =-265代入方程②得y =-365.综上所述,原方程组的解为⎩⎪⎨⎪⎧x =2y =0或⎩⎨⎧x =-265y =-365.19. 解:去分母,得2(x -1)=x +3, 去括号、移项、合并同类项,得x =5, 经检验,x =5是原方程的根. ∴原方程的解为x =5.20. 解:⎩⎪⎨⎪⎧5x +2>3(x -1) ①12x ≤8-32x +2a ②, 解不等式①得x >-52,解不等式②得x ≤a +4,由不等式组的解集有四个整数解,得1≤a +4<2, ∴-3≤a <-2.21. 解:解不等式5x -3<4x 得x<3, 解不等式4(x +1)+2≥x 得x ≥-2, ∴不等式组的解集为-2≤x<3. 解集在数轴上表示如解图所示:22. 解:解不等式①,得x<2-a3,解不等式②,得x<13.(1)∵两个不等式的解集相同, ∴2-a 3=13, ∴a =1.(2)∵不等式①的解都是不等式②的解, ∴2-a 3≤13, ∴a ≥1.23. (1)解:将x =1代入x 2+mx +m -2=0,得 12+1×m +m -2=0, 解得m =12.(2) 证明:一元二次方程x 2+mx +m -2=0的根的判别式为: b 2-4ac =m 2-4(m -2)=m 2-4m +8=(m -2)2+4. ∵不论m 取何实数,(m -2)2≥0, ∴(m -2)2+4>0,即b 2-4ac >0,∴不论m 取何实数,原方程都有两个不相等的实数根.24. 解:设骑车学生的速度为x km /h ,则汽车的速度为2x km /h ,可得:10x =102x +2060,解得x =15,经检验x =15是原方程的解,汽车的速度为:2x =2×15=30 km /h ,答:骑车学生的速度和汽车的速度分别是15 km /h ,30 km /h . 25. 解:设甲队单独完成此项工程需x 天,则乙队需(x +5)天, 依据题意可以列方程: 1x +1x +5=16, 解得x 1=10,x 2=-3(舍去),经检验x =10是原方程的解;设甲队每天的工程费用为y 元,则乙队每天的工程费用为(y -4000)元,依据题意得: 6y +6(y -4000)=385200, 解得y =34100,∴甲队单独完成此项工程费用为:34100×10=341000元 , 乙队单独完成此项工程费用为:30100×15=451500元 , ∵341000<451500,∴选择甲工程队.答:从节省资金的角度考虑,应该选择甲工程队.⎪⎧2x +3y =270解得⎩⎪⎨⎪⎧x =30y =70,答:甲种商品每件进价为30元,乙种商品每件进价为70元. (2)设商场购进甲种商品a 件,则购进乙种商品为(100-a)件,利润为w 元.根据题意得a ≥4(100-a), 解得a ≥80,由题意得w =(40-30)a +(90-70)(100-a)=-10a +2000, ∵k =-10<0,∴w 随a 的增大而减小,∴当a 取最小值80时,w 最大=-10×80+2000=1200(元),∴100-a =100-80=20(件).答:当商场购进甲种商品80件,乙种商品20件时,获利最大,最大利润为1200元. 27. 解:(1)设这两年该县投入教育经费的年平均增长率为x ,根据题意得: 6000(x +1)2=8640,解得x 1=-2.2(舍去),x 2=0.2答:这两年该县投入教育经费的年平均增长率为20%. (2)2017年该县投入教育经费为: 8640×(0.2+1)=10368(万元),答:预算2017年该县将投入教育经费为10368万元.28. 解:(1)设乙种救灾物品每件x 元,则甲种救灾物品每件(x +10)元,由题意得: 350x +10=300x, 解得x =60,经检验x =60是原方程的解,∴x +10=70(元).答:甲、乙两种救灾物品每件的价格分别为70元、60元. (2)70×2000×14+60×2000×34=125000(元).答:需筹集资金125000元.29. 解:(1)设购买A 种型号健身器材x 套,B 种型号健身器材y 套,根据题意得:⎩⎪⎨⎪⎧x +y =50310x +460y =20000, 解得⎩⎪⎨⎪⎧x =20y =30.答:购买A 种型号健身器材20套,B 种型号健身器材30套. (2)设购买A 种型号健身器材z 套,根据题意得: 310z +460(50-z)≤18000, 解得z ≥3313.∵z 为整数,∴z 的最小值为34.答:A 种型号健身器材至少要购买34套.11 重叠部分的面积”, 列方程求解即可.解:设配色条纹的宽度为x 米,由题意得5x ×2+4x ×2-4×x 2=1780×4×5, 解得:x =14或x =174(不合题意舍去). 答:配色条纹的宽度为14米. (2)解:由题意得地毯的总造价为:1780×4×5×200+(1-1780)×4×5×100=850+1575=2425(元), 答:地毯的总造价为2425元.。

中考数学《方程与不等式》专题知识训练50题(含参考解析)

中考数学《方程与不等式》专题知识训练50题(含参考解析)

中考数学《方程与不等式》专题知识训练50题含答案(有理数、实数、代数、因式分解、二次根式)一、单选题1.已知一个不等式组的解集如图所示,则以下各数是该不等式组的解的是()A.﹣5B.2C.3D.4【答案】B【详解】由题意,得-2≤x<3,故选B.2.把不等式x<﹣1的解集在数轴上表示出来,则正确的是()A.B.C.D.【答案】C【分析】根据数轴上表示不等式解集的方法进行解答即可.【详解】解:∵此不等式不包含等于号,∵可排除B、D,∵此不等式是小于号,∵应向左化折线,∵A错误,C正确.故选C.【点睛】本题考查的是在数轴上表示不等式的解集,熟知实心圆点与空心圆点的区别是解答此题的关键.3.关于x的一元二次方程220kx x--=有实数根,则实数k的取值范围是()A.18k=-B.18k≥-C.18k≥-且0k≠D.18k≤-【答案】C【分析】根据一元二次方程的定义和根的情况列出不等式即可求出结论.4.下列命题中,是真命题的是()A.内错角相等B.对顶角相等C.若x2=4,则x=2D.若a>b,则a2>b2【答案】B【分析】判断命题是真命题还是假命题,假命题只需举出反例,可判断A、C、D;B 通过定义发现是同一角的邻补角可证明B为真命题.【详解】A、在两直线平行的条件下,内错角相等,没有平行线条件,不相等,故A 假命题,B、由对顶角的定义,知是两直线相交所成的角中,有共顶点,没有公共边的两个角是同一个角的补角,故相等,B为真命题,C、x=-2,也有x2=4,故x2=4,x=±2,故C为假命题,D、a=-1,b=-3,故有a>b,但a2<b2,故D为假命题.故选择:B【点睛】本题考查命题真假问题,判断命题是真命题还是假命题,能举出反例就为假命题,真命题是需要加以证明.5.不等式3x-2>-1的解集是()A.x>13B.x<13C.x>-1D.x<-1【点睛】本题考查了一元一次不等式的解法,熟知解一元一次不等式的基本步骤是解决问题的关键.6.已知关于x的方程:22222 4 2 1 03 0x x x x x x y ax bx=-=+++=++=①;②();③;④,其中是一元二次方程的有()A.1个B.2个C.3个D.4个【答案】A【分析】根据一元二次方程的定义逐个判断即可.【详解】解:2 2x=①,是一元二次方程;2 4x x x x-=+②(),化简后是一元一次方程;2 2 1 0x y++=③,有两个未知数,不是一元二次方程;2 3 0ax bx++=④,二次项系数为0时,不是一元二次方程;故选:A.【点睛】本题考查了一元二次方程的定义,解题关键是明确只含一个未知数,且未知数的最高次为2的整式方程是一元二次方程,注意:一元二次方程二次项系数不为0.7.不等式组22xx>-⎧⎨≤⎩的解集在数轴上表示正确的是()A.B.C.D.【答案】C【分析】将每一个不等式的解集在数轴上表示出来,然后逐项进行对比即可得答案,方法是先定界点,再定方向.【详解】不等式组22xx>-⎧⎨≤⎩的解集在数轴上表示如下:故选:C.【点睛】本题考查了在数轴上表示不等式组的解集,解题的关键是掌握不等式的解集在数轴上的表示方法.8.某校拓展课书法培训班准备购买一批书法笔,购买一支A型书法笔与一支B型书法笔一共需要42元,用360元购买A 型书法笔与用450购买B 型书法笔的数量相同,设A 型书法笔的单价为x 元,依题意,下面所列方程正确的是( ) A .36045042x x=- B .36045042x x=+ C .36045042x x=-D .3604504242x x=-+9.如图,在长为10cm ,宽为8cm 的矩形的四个角上截去四个全等的正方形,使得留下的图形面积是原矩形面积的80%,所截去的小正方形的边长是多少?设小正方形的边长是x cm ,下列方程正确的是( )A .()()10810880%x x --=⨯⨯B .()()1028210880%x x --=⨯⨯C .()()10810820%x x --=⨯⨯D .21084=10880%x ⨯-⨯⨯ 【答案】D【分析】等量关系为:矩形面积-四个全等的小正方形面积=矩形面积80%⨯,即可列出方程.【详解】解:设小正方形的边长为xcm ,由题意得2108410880%x ⨯-=⨯⨯,故选:D .【点睛】此题考查了有实际问题抽象出一元二次方程,读懂题意,找到合适的等量关系是解决本题的关键.10.一元二次方程23210x x 的根的情况为( ) A .有两个相等的实数根 B .有两个不相等的实数根 C .没有实数根 D .只有一个实数根【答案】B【分析】直接利用判别式∵判断即可. 【详解】∵∆=()()22431160--⋅⋅-=> ∵一元二次方程有两个不等的实根 故选:B .【点睛】本题考查一元二次方程根的情况,注意在求解判别式∵时,正负号不要弄错了.11.二元一次方程432x y +=的解可以是( ) A .=1x -,2y = B .4x =,1y =C .1x =,2y =D .2x =-,2y =【答案】A【分析】分别把各选项中的值代入432x y +=验证即可.【详解】解:A.当=1x -,2y =时,4x+3y=-4+6=2,故是方程的解; B.当4x =,1y =时,4x+3y=16+3=19≠2,故不是方程的解; C.当1x =,2y =时,4x+3y=4+6=10≠2,故不是方程的解; D.当2x =-,2y =时,4x+3y=-8+6=-2≠2,故不是方程的解; 故选A .【点睛】本题考查了求二元一次方程的解,能使二元一次方程左右两边相等的未知数的值叫做二元一次方程的解.12.某市2018年投入教育经费4900万元,预计2020年投入6400万元,设这两年投入教育经费的年平均增长率为x ,则( ) A .4900x 2=6400 B .4900(1+x)2=6400 C .4900 (1+x)=6400D .4900(1+x)+4900(1+x)2=6400 【答案】B【分析】这两年投入教育经费的年平均增长率为x ,根据某市2008年投入教育经费4900万元,预计2010年投入6400万元可列方程. 【详解】解:这两年投入教育经费的年平均增长率为x , 4900(1+x )2=6400. 故选:B .【点睛】本题考查了由实际问题抽象出一元二次方程中增长率问题,求平均变化率的方法为:若设变化前的量为a ,变化后的量为b ,平均变化率为x ,则经过两次变化后的数量关系为a (1±x )2=b . 13.分式方程411(1)(2)x x x x -=--+的解是( ) A .=1x - B .1x = C .2x = D .3x =14.一件商品的进价500元,标价为600元,打折销售后要保证获利不低于8%,则此商品最多打( )折 A .6 B .7 C .8 D .915.在不透明的袋子中有黑棋子10枚和白棋子若干(它们除颜色外都相同),现随机从中摸出10枚记下颜色后放回,这样连续做了10次,记录了如下的数据:根据以上数据,估算袋中的白棋子数量为()A.60枚B.50枚C.40枚D.30枚16.温州某服装店十月份的营业额为8000元,第四季度的营业额共为40000元.若平均每月的增长率为x,则由题意可列出方程为()A.8000(1+x)2=40000B.8000+8000(1+x)2=40000 C.8000+8000×2x=40000D.8000[1+(1+x)+(1+x)2]=40000【答案】D【详解】试题解析:设平均每月的增长率为x,则十一月份的营业额为8000(1+x),十二月份的营业额为8000(1+x)2,由此列出方程:8000[1+(1+x)+(1+x)2]=40000.故选D.17.某店商以1200元/件卖了两件进价不同的商品,其中一件盈利20%,另一件亏损20%,在这次买卖中,该店商( ) A .不赢不亏 B .盈利100元C .亏损100元D .亏损300元【答案】C【分析】根据题意列出方程求解,然后根据利润等于售价减去进价即可得出结果. 【详解】解:设盈利商品的进价为x 元,亏损商品的进价为y 元,根据题意可得:()120%1200x +=,()120%1200y -=,解得:1000x =,1500y =, ∴1200120010001500100+--=-, ∴该商店亏损100元, 故选:C .【点睛】题目主要考查一元一次方程的应用,理解题意,列出方程是解题关键. 18.如图,在ABC 中,AB AC =,AD BC ⊥于点 D ,点M 是ABC 内一点,连接BM 交AD 于点 N ,已知108∠=︒AMB ,若点M 是CAN △的内心,则 BAC ∠的度数为( )A .36°B .48°C .60°D .72°【答案】B【分析】过M 点作ME AD ⊥交AD 于点E ,根据在ABC 中,AB AC =,AD BC ⊥于点D ,可得ABC 是等腰三角形,AD 是BC 边上的中垂线,得到NB NC =,NBDNCD ;根据AD BC ⊥,ME AD ⊥,得到NMENBD ,再根据点M 是CAN △的内心,得到NAMMAC ,ANM CNM ∠=∠,设NAM x ,NBDy ,可得4BAC x ,NBD NCDNMEy ,2ENMCNMy ,利用108∠=︒AMB 可整理出18272y x yx,求解即可得到结果.【详解】解:如图示,过M 点作ME AD ⊥交AD 于点E ,∵在ABC 中,AB AC =,AD BC ⊥于点 D , ∵ABC 是等腰三角形,AD 是BC 边上的中垂线, ∵NB NC =,BAD CAD ∠=∠, ∵NBDNCD ,又∵AD BC ⊥,ME AD ⊥ ∵//EM BC ∵NMENBD ,∵点M 是CAN △的内心,即点M 在NAC ∠和ANC ∠的角平分线上, ∵NAM MAC ,ANM CNM ∠=∠, 设NAMx ,NBDy ,则有:4BAC x ,NBDNCDNMEy ,2ENMCNMy ,∵108∠=︒AMB ∵108AMEAMBEMNy则在AEM △中,10890x y,ANM 中,218010872x y ,即有18272y x yx ,解之得:1230x y∵441248BACx,故选:B .【点睛】本题考查了等腰三角形的性质,三角形的内心,角平分线的性质,平行线的判定与性质,解二元一次方程组等知识点,熟悉相关性质是解题的关键. 19.已知代数式 23-x 与 312x -的值互为相反数,则x 的值为( )A .117B .7C .711D .1220. 如图,点A 的坐标为(1,0),点B 在直线y=-x 上运动,当线段AB 最短时,点B 的坐标为 ( )A .(0,0)B .(-12,12)C .(2,-2) D .(12,-12)二、填空题21.方程218x --=的解是x=___________. 【答案】-20【分析】先移项,然后系数化为1即可求解. 【详解】解:移项得:-x=20, 系数化为1得:x=-20, 故答案为-20.【点睛】本题考查了解一元一次方程,熟练掌握解一元一次方程的一般步骤是解题关键.22.“x 的2倍比y 小”用不等式表示为 _______. 【答案】2x <y##y >2x【分析】x 的2倍即为2x ,小即“<”,据此列不等式.【详解】解:由题意得,2x <y .故答案为:2x <y .【点睛】本题考查了由实际问题抽象出一元一次不等式,读懂题意,抓住关键词语,弄清运算的先后顺序和不等关系是关键.23.如果关于x 的方程1333k x x =---有增根,那么k =___________.24.分式方程3214x x =+-的解为 _____.25.若2(2)350m x x --+=是关于x 的一元二次方程,则m 的取值范围为______.【答案】2m ≠【分析】根据形如20(0)ax bx c a ++=≠叫做一元二次方程,列式计算即可.【详解】因为2(2)350m x x --+=是关于x 的一元二次方程,所以20m -≠,所以2m ≠,故答案为:2m ≠.【点睛】本题考查了一元二次方程的定义即形如20(0)ax bx c a ++=≠叫做一元二次方程,熟练掌握方程的条件是解题的关键.26.己知方程2310x y -+=,且含x 的式子表示y =________.27.若关于x 的分式方程x m x 1x 1---=2的解为正实数,则整数m 的最大值是______. 【答案】0【分析】分式方程去分母转化为整式方程,表示出方程的解x ,由解为正实数确定出m 的范围,即可求出所求.【详解】解:分式方程去分母得:x-m=2x-2,解得:x=2-m ,由分式方程的解为正实数,得到2-m >0,且2-m≠1,解得:m <2且m≠1,则整数m 的最大值是0,故答案为0【点睛】此题考查了分式方程的解,以及解一元一次不等式,熟练掌握运算法则是解本题的关键.28.列方程解应用题.某商品原售价为25元,经过连续两次降价后售价为16元.求平均每次降价的百分率.【答案】平均每次降价的百分率为20%【分析】根据题意得出等量关系,列出方程求解即可.【详解】解:设平均每次降价的百分率为x ,由题意可得:()225116x -=,解得10.2=20%x =,2 1.8x =(舍去)答:平均每次降价的百分率为20%.【点睛】本题考查了一元二次方程的应用,解题的关键是利用增长(降低)率的知识找出等量关系.29.不等式2x ﹣7<5﹣2x 的非负整数解的个数为__个.【答案】3【分析】【详解】∵2x+2x<5+7,∵4x<12,∵x<3,则不等式的非负整数解有0、1、2这3个,故答案为:3.30.把一根 9m 长的钢管截成 1m 长和 2m 长两种规格均有的短钢管,且没有余料,设某种截法中 1m 长的钢管有 a 根,则 a 的值可能有_____种. 【答案】4【分析】根据题意列二元一次方程即可解决问题.【详解】设2m 的钢管b 根,根据题意得:a +2b =9, ∵a 、b 均为正整数, ∵14a b =⎧⎨=⎩,33a b =⎧⎨=⎩,52a b =⎧⎨=⎩,71a b =⎧⎨=⎩. a 的值可能有4种,故答案为:4.【点睛】本题运用了二元一次方程的整数解的知识点,运算准确是解此题的关键. 31.某景点门票价是:每人5元,一次购票满30张,每张票可少收1元.当人数少于30人时,至少要有_______人去该景点,买30张票反而合算.【答案】25【分析】先求出购买30张票,优惠后需要多少钱,然后再利用5x >120时,求出买到的张数的取值范围再加上1即可.【详解】解:30×(5-1)=30×4=120(元),故5x >120时,解得:x >24,当有24人时,购买24张票和30张票的价格相同,再多1人时买30张票较合算, 24+1=25(人),则至少要有25人去世纪公园,买30张票反而合算.故答案为:25.【点睛】本题考查了一元一次不等式的应用,找到按5元的单价付款和4元单价付款的等量关系是解题的关键.32.某地区规划将21000平方米矩形土地用于修建文化广场,已知该片土地的宽为x 米,长比宽长10米,那么这块矩形土地的长是______米. 【答案】150【分析】土地的宽为x 米,则长为()10x +米,根据矩形面积为21000平方米列一元二次方程,求解即可.【详解】解:根据题意,土地的宽为x 米,则长为()10x +米,∵()1021000x x +=,解得1140x =,2150x =-(不合题意,舍去),∵矩形土地的长为14010150+=(米),故答案为:150.【点睛】本题考查了一元二次方程的应用,根据题意建立等量关系是解题的关键. 33.填空:(1)若10x +>,两边都加上1-,得____________________________(依据:_______________).(2)若26x >-,两边都除以2,得______________________________(依据:______________).(3)若1132x -≤,两边都乘3-,得_____________________________(依据:_______________).【答案】 1x >-##1x -< 不等式两边加(或减)同一个数(或式子),不等号的方向不变 3x >-##3x -< 不等式两边乘(或除以)同一个正数,不等号的方向不34.解方程412343x x-+=-1的第一步是方程左、右两边同时乘以________去分母,最后可得方程的解为________.35.从满足不等式组2173211xx+≤⎧⎨--⎩>的所有整数解中任意取一个数记作a,则关于y的一元二次方程230 4ay y--=有实数根的概率是_____________.36.商店将定价600元的商品降价10%后出售,至少要获利20%,那么这种商品的进价应不高于______元.【答案】450【分析】设这种商品的进价为x元,则降价后的价钱为600×(1-10%),然后根据仍能至少获利20%列出不等式,求出x的范围.【详解】设这种商品的进价为x元,由题意得,600×(1-10%)≥x(1+20%),解得:x≤450.即这种商品的进价应不超过450元.【点睛】此题主要考查了一元一次不等式的应用,解决本题的关键是得到商品售价的等量关系,列出不等式求出最小整数解.37.分解因式4m 3﹣mn 2的结果是____;二元一次方程组22x y x y +=⎧⎨-=-⎩的解是___. 【答案】 m (2m +n )(2m-n ) 02x y =⎧⎨=⎩ 【分析】利用提公因式法和公式法分解因式和加减消元法解二元一次方程组即可求解.【详解】解:4m 3﹣mn 2=m (4m 2﹣n 2)= m (2m +n )(2m-n );22x y x y +=⎧⎨-=-⎩①②, ∵+∵得:2x =0,得x =0 , 将x =0代入∵得y =2,方程组的解为02x y =⎧⎨=⎩, 故答案为:m (2m +n )(2m-n );02x y =⎧⎨=⎩【点睛】此题考查提公因式法和公式法分解因式和加减消元法解二元一次方程组,掌握相应的运算方法是解答此题的关键.38.若关于x 的一元一次不等式组20122x x m -<⎧⎪⎨+≥⎪⎩有4个整数解,则m 的取值范围为_______________________.732m < 【分析】先求出每个不等式的解集,根据找不等式组解集的规律找出不等式组的解集,根据已知得出答案即可.【详解】解:解不等式122x m +,得:不等式组有4个整数解,,732m < 故答案为732m <【点睛】本题主要考查的是不等式的解集,由不等式无解判断出是解题的关键.39220x --≤的解集是_______.40.已知25x y -=,若用含x 的代数式表示y ,则y =_____________.【答案】2x-5.【分析】将x 看做已知数求出y 即可.【详解】2x-y=5,解得:y=2x-5.故答案为2x-5.【点睛】此题考查了解二元一次方程,解题的关键是将x 看做已知数求出y .三、解答题41.解不等式2(3)3(2)x x -+>+【答案】x <−12【分析】根据解一元一次不等式的步骤:先去括号,再移项、合并同类项,最后系数化为1即可.【详解】解:去括号,得−6+2x >3x +6,移项、合并同类项,得−x >12,系数化为1,得x <−12.【点睛】本题考查了解简单不等式的能力,解不等式要依据不等式的基本性质: ∵在不等式的两边同时加上或减去同一个数或整式不等号的方向不变;∵在不等式的两边同时乘以或除以同一个正数不等号的方向不变;∵在不等式的两边同时乘以或除以同一个负数不等号的方向改变.42.解方程:(1)()235x x +=-;(2)325123y y ---=. 【答案】(1)11x =-;(2)5y =-【分析】(1)按照去括号,移项、合并同类项、将系数化为1的步骤计算即可; (2)按照去分母、去括号、移项、合并同类项、将系数化为1的步骤计算即可.【详解】解:(1)去括号,得265x x +=-移项,得256x x -=--合并同类项,将系数化为1,得11x =-.(2)去分母,得3(3)62(25)y y --=-去括号,得396410y y --=-移项,得341096y y -=-++合并同类项,得5-=y系数化为1,得5y =-.【点睛】本题考查了解一元一次方程,熟练掌握解方程的一般步骤是解题的关键. 43.解方程:(1)5(21)x x --=(2)1324x x +-= 【答案】(1)2x =;(2)13x =.【分析】(1)去括号、移项、合并同类项、系数化为1,据此求出方程的解是多少即可.(2)去分母、去括号、移项、合并同类项、系数化为1,据此求出方程的解是多少即可.【详解】(1)去括号,得:521x x -+=,移项,得:251x x --=--,合并同类项,得:36x -=-,系数化为1,得:2x =; (2)去分母,得:()2112x x -+=,去括号,得:2112x x --=,移项,得:2121x x -=+,合并同类项,得:13x =.【点睛】本题主要考查了解一元一次方程的方法,要熟练掌握,解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1.44.(1)计算:1202020131)(1)2-⎛⎫+-+- ⎪⎝⎭(2)解方程:132x x =+45.我县化工园区一化工厂,组织20辆汽车装运A 、B 、C 三种化学物资共200吨到某地.按计划20辆汽车都要装运,每辆汽车只能装运同一种物资且必须装满.请结合表中提供的信息,解答下列问题:(1)设装运A种物资的车辆数为x,装运B种物资的车辆数为y.求y与x的函数关系式;(2)如果装运A种物资的车辆数不少于5辆,装运B种物资的车辆数不少于4辆,若要求总运费最少,应如何安排使得总运费最少,并求出最少总运费.【答案】(1)y=20-2x(2)装运A种物资的车8辆,装运B种物资的车4辆,装运C种物资的车8辆;最少为48640元【详解】试题分析:(1)设装运A种物资的车辆数为x,装运B种物资的车辆数为y,所以装运C种物资的车辆数(20-x-y),然后根据化学物资共200吨,可得函数关系式y=20-2x;(2)根据装运A种物资的车辆数不少于5辆,装运B种物资的车辆数不少于4辆,可求出x的取值范围,设总运费为M元,然后求出函数关系式M=-1920x+64000,然后利用一次函数的增减性,x取最大值时,M最小.试题解析:解:(1)根据题意得:12x+10y+8(20-x-y)=2001分12x+10y+160-8x-8y=2002x+y=20,2分∵y=20-2x4分(2)根据题意得:5{2024xx≥-≥,解得58x≤≤,5分设总运费为M元,则M=12×240x+10×320(20-2x)+8×200(20-x+2x-20)6分即:M=-1920x+640007分∵M是x的一次函数,且M随x增大而减小,x取正整数,∵当x=8时,M 最小,最少为48640元. 8分 即装运A 种物资的车8辆,装运B 种物资的车4辆,装运C 种物资的车8辆 9分考点:1.确定一次函数解析式;2.不等式组;3.一次函数的实际应用.46.每年的6月5日为世界环保日,为了提倡低碳环保,某公司决定购买节省能源的新设备,现有甲、乙两种型号的设备可供选购,经调查:购买3台甲型设备比购买2台乙型设备多花16万元,购买2台甲型设备比购买3台乙型设备少花6万元.(1)求甲、乙两种型号设备的价格;(2)公司决定购买甲、乙两种型号的设备共10台,且该公司经预算决定购买节省能源的新设备的资金不超过110万元,你认为该公司甲种型号的设备至多购买几台? 【答案】(1)甲、乙两种型号设备每台的价格分别为12万元和10万元(2)至多购买5台【分析】(1)设甲、乙两种型号设备每台的价格分别为x 万元和y 万元,再根据“购买3台甲型设备比购买2台乙型设备多花16万元,购买2台甲型设备比购买3台乙型设备少花6万元”建立方程组,解方程组即可得;(2)设购买甲种型号的设备m 台,则购买乙种型号的设备(10)m -台,再根据“资金不超过110万元”建立不等式,解不等式即可得.(1)解:甲、乙两种型号设备每台的价格分别为x 万元和y 万元,由题意得:3216236x y x y -=⎧⎨-+=⎩, 解得1210x y =⎧⎨=⎩, 答:甲、乙两种型号设备每台的价格分别为12万元和10万元.(2)解:设购买甲种型号的设备m 台,则购买乙种型号的设备(10)m -台,由题意得:1210(10)110m m +-≤,解得5m ≤,答:该公司甲种型号的设备至多购买5台.【点睛】本题考查了二元一次方程组的应用、一元一次不等式的应用,正确建立方程组和不等式是解题关键.47.已知关于x的一元二次方程x2﹣3x+k﹣2=0有两个不相等的实数根.(1)求k的取值范围;(2)选一个适当的k值使得此一元二次方程的根都是整数.48.解方程:(1)224-=.x x(2)2320x x-+=.∵x 1=1,x 2=2. 【点睛】此题考查了解一元二次方程,利用因式分解法解方程时,首先将方程右边化为0,左边化为积的形式,再由利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程,求出一次方程的解即可得到原方程的解.49.完成下列各题: (1)解方程:∵2111x x x +=+- ∵22216224x x x x x -+-=+-- (2)观察下列等式,并探索它们的规律:111111111,,12223233434=-=-=-⨯⨯⨯...,试用正整数n 表示这个规律,并加以证明.50.(1)251x yx y-=⎧⎨+=⎩,(2)325429m nm n-=⎧⎨+=⎩,(3)357425x yx y-=⎧⎨+=⎩。

2023年中考数学《方程与不等式的实际应用》专题知识回顾及练习题(含答案解析)

2023年中考数学《方程与不等式的实际应用》专题知识回顾及练习题(含答案解析)

知识回顾2023年中考数学《方程与不等式的实际应用》专题知识回顾及练习题(含答案解析)1. 列方程(不等式组)解实际应用题的基本步骤:①审题——仔细审题,找出题目中的等量关系。

②设未知数——根据问题与等量关系直接或间接设未知数。

③列方程(不等式):根据等量(不等量)关系与未知数列出相应的方程(不等式)。

④解方程(不等式)——按照解相应方程(不等式)的步骤解方程。

⑤检验作答——检验方程的解是否满足实际情况,然后作答。

2. 常见的建立方程的方法:①基本等量关系建立方程。

②同一个量的两种不同表达式相等。

3. 常见的基本等量关系:①行程问题基本等量关系:路程=时间×速度;时间=路程÷速度;速度=路程÷时间。

顺行:顺行速度=自身速度+风速(水速);逆行速度=自身速度-风速(水速) ②工程问题:工作总量=工作时间×工作效率。

③配套问题: 实际生产比=配套比。

④商品销售问题:利润=售价-成本;售价=标价×0.1折扣;利润率=利润÷进价×100% 总利润=单利润×数量现单利润=原单利润+涨价部分(-降价部分) 现数量=原数量-变化基数涨价基础涨价部分⨯(原数量+变化基数降价基础降价部分⨯)⑤图形的周长,面积,体积问题。

利用勾股定理建立一元二次方程。

利用面积公式建立二元一次方程。

⑥传播问题:计算公式:原病例数×(1+传播数)传播轮数=总病例数。

⑦握手(比赛)问题:计算公式:单循环:()21+n n =总数;双循环:()1+n n =总数。

(n 表示参与数量)⑧数字问题:一个十位数可表示为:10×十位上的数字+个位上的数字;一个百位数可表示为:100×百位上的数字+10×十位上的数字+个位上的数字。

以此类推。

⑨平均增长率(下降率)问题:计算公式:原数×(1+增长率)增长轮数=总数, 原数×(1-下降率)下降轮数=总数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

联系实际问题一、方程问题考试目标导引:1.重点热点: 将与市场经济、成本计算、利润、商品价格等实际生活中的应用题建立为方程(组)模型.2.目标要求:会通过分析数量关系,找出题中的等量关系,列出方程(组).命题趋热分析:例1 (1)我市某企业为节约用水,自建污水净化站,3月份净化污水3000吨,5月份增加到3630吨,则这两个月净化污水的量平均每月增长的百分率为_______.(2)北京至石家庄的铁路长392千米,为适应经济发展,自2001年10月21日起,某客运列车的行车速度每小时比原来增加40千米,使得石家庄到北京的行车时 间缩短了1小时,如果设该列车提速前的速度为每小时X 千米,那么为求X 所列出的方程为________.(3)某商场根据市场信息,对商场中现有的两台不同型号的空调进行调价销售,其中一台空调价后售出可获利10%(相对于进价),另一台空调价后售出则要亏本10%(相对于进价),而这两台空调调价后的售价恰好相同,那么商场把这两台空调调价后售出( )A.既不获利也不亏本B.可获利1%C.要亏本2%D.要亏本1%【特色】以上几道题与课本中的基本题型一致,且与实际生活紧密结合.【解答】(1)设平均每月增长的百分率为x ,则依题意列方程3000(1+X)2=3630 解答x 1=0.1 x 2=-2.1(舍去)故平均每月增长的百分率为10%; (2)140392392=+-X X ; (3)设一种型号空调进价为a ,另一种为b ,则1.1a=0.96 得b=a 911 代入下式101.0)(9.01.0-=-=++-+ba b a b a % 故选D. 【拓展】解产销问题时,关键在于理解成本价、销售价、利润、利率之间的关系: 利润=售价-进价,利率=销售利润÷成本×100%等.例2 (2002北京市西城区)(1)据2001年中国环境状况公报,我国由水蚀和风蚀造成的水土流失面 积达356万平方公里,其中风蚀造成的水土流失面积比水蚀造成的水土流失面积多26万平方公里.问水蚀与风蚀造成的水土流失面积各多少万平方公里?(2)某省重视治理水土流失问题,2001年治理了水土流失面积400平方公里,该省逐年加大治理力度,计划今明两年每年治理水土流失面积都比前一年增长一个相同的百分数,到2003年底,使这三年治理的水土流失面积达到1324平方公里.求该省今明两年治理水土流失面积每年增长的百分数.【特色】这是一道贴近社会热点的方程应用题,它不仅可以对学生的阅读理解能力进行考查,而且也是让学生了解我国环境状况的一份很好的资料.【解答】(1)设水蚀造成的水土流失面积为X 万平方公里,依题意得X+(X+26)=356 解得 X=165 ∴X+26=191答:水蚀和风蚀造成的水土流失面积分别为165万平方公里和191万平方公里.(2)设该省今明两年治理水土流失面积每年增长的百分数为x,依题意得 400+400(1+x)+400(1+x)2=1324整理,得100x 2+300x-31=0 解得x 1=0.1 x 2=-3.1(舍去)答:平均每年增长的百分数为10%.【拓展】增长率问题可归结为a(1±x)2=b 的形式,其中a 为初始数,b 为末数,x 为增长率(或下降率).例3 黄冈百货商品服装柜在销售中发现:“宝乐”牌童装平均每天可售出20件,每 件盈利40元,为了迎接“六·一”国际儿童节,商场决定采取适当的降价措施,扩大销售量,增加盈利,减少库存.经市场调查发现:如果每件童装每降价4元,那么平均每天就可多售出8件,要想平均每天在销售这种童装上盈利1200元,那么每件童装应降价多少元?【特色】在近几年各地中考试卷中常能见到这种类型的问题.【解答】设每件童装应降价x元,依题意得(40-x)(20+2x)=1200整理,得x2-30x+200=0,解得x1=10 x2=20因要尽量减少库存,故x应取20.答:每件童装应降价20元.【拓展】当用一元二次方程的解法求出两个解后,一定要注意检验是否符合题意. 中考动向前瞻:贴近社会热点的方程应用题,以选择题、填空题的题型出现时,一般都较为基本,而以解答题出现时,具有一定的综合性,主要考查学生收集和处理信息、分析和解决实际问题的能力.中考佳题自测1.(2002南宁市)革命老区百色某芒果种植基地,去年结余为500万元,估计今年可结余960万元,并且今年的收入比去年高15%,支出比去年低10%,求去年的收入与支出各是多少万元?2.(2002武汉市)武汉市某校组织甲、乙两班学生参加“美化校园”的义务劳动,若甲班做2小时,乙班做3小时则恰好完成全部工作的一半;若甲班先做2小时后另有任务,剩下工作由乙班单独完成,则乙班所用的时间恰好比甲班单独完成全部工作的时间多1小时,问单独完成这项工作,甲、乙两班各需多少时间?3.(2001浙江绍兴)光明中学现有校舍面积20000平方米,为改善办学条件,计划拆除部分旧校舍,建造新校舍,使新造校舍的面积是拆除旧校舍面积的3倍还多1000平方米.这样,计划完成后的校舍总面积可比现有校舍面积增加20%,已知拆除旧校舍每平方米需用80元,建造新校舍每平方米需费用700元,问完成该计划需多少费用?中考新题演练1.两条都是长1.5千米的绿化带上有废弃物,甲、乙两组共青团员在星期日上午各清扫一条,乙组的清扫速度是甲组的1.2倍,乙组比甲组少用半小时就完成任务,求甲、乙两组的清扫速度各是多少.2.某市为了进一步缓解交通拥堵现象,决定修建一条从市中心到飞机场的轻轨铁路,为使工程能提前3个月完成,需要将原定的工作效率提高12%.问原计划完成这项工程用多少个月?3.某公园有东、西两个门,开园半小时内东门售出成人票65张,儿童票12张,收票款568元,西门售出成人票81张,儿童票8张,收票款680元,问此公园成人票、儿童票每张售价各几元?4.甲、乙两名职工接受相同数量的生产任务,开始时,乙比甲每天少做4件,乙比甲多用2天时间,这样甲、乙两人各剩624件;随后,乙改进了生产技术,每天比原来多做6件,而甲每天的工作量不变,结果两人完成全部生产任务所用.......求原来甲、........的时间相同乙两人每天各做多少件?每人的全部生产任务是多少?5.小明的妈妈上周三在自选商场花10元钱买了几瓶酸奶,周六再去买时,正好遇上商场搞酬宾活动,同样的酸奶,每瓶比周三便宜0.5元,结果小明的妈妈只比上次多花了2元钱,却比上次多买了2瓶酸奶,问她上周三买了几瓶酸奶?6.为落实“珍惜和合理利用每一寸土地”的基本国策,某地区计划经过若干年开发“改造后可利用土地”360平方千米,实际施工中,每年比原计划多开发2平方千米,按此进度预计可提前6年完成开发任务,问实际每年可开发多少平方千米?7.美化城市,改善人们的居住环境已成为城市建设的一项重要内容,某市城区近几年来,通过拆迁旧房,植草,栽树,修建公园等措施,使城区绿地面积不断增加(如图所示).(1)根据图中所提供的信息,回答下列问题:2001年底的绿地面积为____公顷,比2000年底增加了_____公顷;在1999年,2000年,2001年这三年中,绿地面积增加最多的是____年.(2)为满足城市发展的需要,计划到2003年底使城区绿地总面积达到72.6公顷,试求今明两年绿地面积的年平均增长率.参考答案中考佳题自测:1.设去年收入是x 万元,支出是y 万元,依题意得5001510(1)(1)960100100x y x y -=⎧⎪⎨+--=⎪⎩,解得20401540x y =⎧⎨=⎩答:去年收入2040万元,支出1540万元.2.设单独完成这项工作,甲班需x 小时,乙班需y 小时, 依题意得2312211x y x x y ⎧+=⎪⎪⎨+⎪+=⎪⎩, 解得 11812x y =⎧⎨=⎩2212x y =⎧⎨=-⎩答:单独完成这项工作,甲班需8小时,乙班需12小时.3.设拆除旧校舍的面积为x 平方米,依题意得20000-x+3x+1000=20000(1+20%)解得x=15001500×80+(3×1500+1000)×700=3970000这时完成该计划需费用3970000元.中考新题演练:1.设甲组的清扫速度为x 千米/时,根据题意得, 212.15.15.1=-x x解得x=0.5,经检验为原方程的解,当x=0.5时,1.2x=0.6.2.设原计划完成这项工程用x 个月,根据题意得(1+12%)×311-=x x 解得x=28.3.设此公园成人票每张售价x 元,儿童票每张售价y 元.根据题意得6512568818680x y x y +=⎧⎨+=⎩, 得 84x y =⎧⎨=⎩4.设原来甲每天做x 件,则乙每天做(x-4)件,由题意得 22624624=+-x x 解得x 1=24,x 2=-26(舍去)设每人的全部生产任务为y 件,则 22462420624=---y y ,解得y=864.5.设小明的妈妈上周三买了x 瓶酸奶,根据题意得 22105.010++=-x x 解得x 1=4,x 2=-10(舍去).6.设实际每年可开发x 平方千米,依题意得 .63602360=--x x 解得x 1=12, x 2=-10(舍去).7.(1)60,4,2000(2)设今明两年绿地面积的年平均增长率为x.根据题意, 得60(1+x)2=72.6 解得x 1=0.1,x 2=-2.1(舍去).二、不等式问题考试目标导引:1.重点、热点:将与市场经济、成本计算、利润、商品价格,人物分配等应用题建立为不等式(组)模型.2.目标要求:会通过分析数量关系列出不等式(组)命题趋势分析:例1 (1)恩格尔系数表示家庭日常饮食开支家庭经济总收入的比例,它反映了居民家庭的实际生活水平,各种类型家庭的恩格尔系数如下表所示:则用含n的不等式表示小康家庭的恩格尔系数__________.(2)(2001荆门市)有10名菜农,每人可种甲种蔬菜3亩或乙种蔬菜2亩,已知甲种蔬菜每亩可收入0.5万元,乙种蔬菜每亩可收入0.8万元,若要使总收入不低于15.6万元,则最多只能安排____________.(3)(2002重庆市)韩日“世界杯”期间,重庆球迷一行56人从旅馆乘出租车到球场为中国队加油,现有A、B两个出租车队,A队比B队少3辆车,若全部安排乘A队的车,每辆坐5人,车不够,每辆坐6人,有的车未坐满;若全部安排乘B队的车,每辆车坐4人,车不够,每辆车坐5人,有的车未坐满,则A队有出租车()A.11辆B.10辆C.9辆D.8辆【特色】这几道题都是运用不等式的基本知识解决实际问题的.【解答】(1)40%≤n≤49%(2)设最多只能安排x人种甲种蔬菜,则0.5×3x+0.8×2(10-x)≥15.6 解得x ≤4 ,故x 取4.(3)设A 队有X 辆车,依题意得55664(3)565(3)x x x x <<⎧⎨+<<+⎩ 易得x 取10 故选B.【拓展】求不等式(组)的整数解的方法是:(1)求出不等式(组)的解集;(2)找出适合解集范围的整数解.例2 某校为了奖励在数学竞赛中获奖的学生,买了若干本课外读物准备送给他们. 如果每人送3本,则还余8本;如果前面每人送5本,最后一人得到的课外读物不足3本.设该校买了m 本课外读物,有x 名学生获奖,请解答下列问题:(1)用含x 的代数式表示m;(2)求出该校的获奖人数及所买课外读物的本数.【特色】本题立意于对学生基础知识的考查.【解答】(1)m=3x+8(2)根据题意得385(1)0385(1)3x x x x +--≥⎧⎨+--<⎩ 不等式组解集为5<x ≤621∵x 为正整数,∴x=6把x=6代入m=3x+8中,得m=26.【拓展】先根据题意列出不等式组,再求出整数解.例3 香港受潮汐的影响,近日每天24小时港内的水深变化大体如下图:一艘货轮于上午7时在该港码头开始卸货,计划当天卸完货后离港,已知这艘货轮货后吃水深度为2.5m(吃水深度即船底离开水面的距离).该港口规定:为保证航全,只有当航底与港内水底间的距离不少于3.5m时,才能进出该港.根据题目中所给的条件,回答下列问题:(1)要使该船能在当天卸完货并安全出港,则出港的水深不能少于______m,卸货只能用____小时;(2)已知该船装有1200吨货,先由甲装卸队单独卸,每小时卸180吨,工作了一段后,交由乙队接着单独卸,每小时卸120吨,如果要保证该船能在当天卸完货并出港,则甲队至少应工作几小时,才能交给乙方接着卸?【特色】这是一道很有创意的好题,不仅考查了学生数形结合的解题思想,而且也考查了学生运用不等式的有关知识解决实际问题的能力.【解答】(1)6,8;(2)设甲队工作y小时,令180y+120(8-y)≥1200,解得y≥4,答:甲队至少应工作4小时.【拓展】第(2)小题是在前面提供的数据信息的基础上,利用不等式知识求甲队至少工作的时间,确保该船能在当天卸完货并安全出港.中考动向前瞻:贴近社会热点的不等式(组)应用题,一般很少以选择题、填空题出现,而以解答题出现时,主要考查数形结合以及通过分析数量关系建立不等式(组)模型的解题思想.中考佳题自测1.(2001陕西)乘某城市的一种出租汽车起价是10元(即行驶路程在5km以内需付10元车费),达到或超过5km后,每增加1km加价1.2元(不足1km部分按1km计),现在某人乘这种出租汽车从甲地到乙地支付车费17.2元,从甲地到乙地的路程大约是多少?2.(2001荆州)在双休日,某公司决定组织48名员工到附近一水上公园坐船游园,公司先派一个人去了解船只的租金情况,这个人看到的租金价格表如下:那么,怎样设计租船方案才能使所付租金最少?(严禁超载)3.(2001安徽)某工程队要招聘甲、乙两种工种的工人150人,甲、乙两种工种的工人月工资分别为600元和1000元.现要求乙种工种的人数不少于甲种工种人数的2倍,问甲、乙两种工种各招聘多少人时,可使得每月所付的工资最少?中考新题演练1.某商品的进价是1000元,售价为1500元,由于销售情况不好,商店决定降价出售,但又要保证利润率不低于5%,那么,商店最多降_________元出售此商品.(利润=销售价-进货价,利润率=利润÷进货价×100%).2.某种植物适宜生长在温度为18℃~22℃的山区,已知山区海拔每升高100m,气温下降0.5℃,现测出山脚下的平均气温为22℃,问该植物种在山上的哪一部分为宜(设山脚下的平均海拔高度为 0m).3.商场出售的A 型冰箱每台售价2190元,每日耗电量为1度,而B 型节能冰箱每台售价虽比A 型冰箱高出10%,但每日耗电量却为0.55度,现将A 型冰箱打折出售(打一折后的售价为原价的101),问商场至少打几折,消费者购买才合算(按使用期为10年,每年365天,每度电0.40元计算)?4.修筑高速公路经过某村,需搬迁一批农户,为了节约土地资源和保护环境,政府统一规划搬迁建房区域.规划要求区域内绿色环境占地面积不得少于区域总面积的20%.若搬迁农户建房每户占地150m 2,则绿色环境面积还占总面积的40%;政府又鼓励其他有积蓄的农户到规划区域建房,这样又有20户农户加入建房,若仍以每户占地150m 2计算,则这时绿色环境面积又只占总面积的15%,为了符合规划要求,又需要退出部分农户.问:(1)最初需搬迁建房的农户有多少户?政府规划的建房区域总面积是多少m 2?(2)为了保证绿色环境占地面积不少于区域总面积的20%,至少需退出农户几户?5.某园林的门票每张10元,一次使用,考虑到人们的不同需求,也为了吸引更多的游客,该园林除保留原来的售票方法外,还推出了一种“购买个人年票”的售票方法(个人年票从购买日起,可供持票者使用一年).年票分A、B、C三类:A类年票每张120元,持票者进入园林时,无需再用门票;B类年票每张60元,持票者进入该园林时,需再购买门票,每次2元;C类年票每张40元,持票者进入该园林时,需再购买门票,每次3元.(1)如果你只选择一种购买门票的方式,并且你计划在一年中用80元花在该园林的门票上,试通过计算,找出可使该园林的次数最多的购票方式.(2)求一年中进入该园林至少超过多少次时,购买A类年票比较合算.6.在车站开始检票时,有a(a>0)名旅客在候车室等候检查进站,检查开始后,仍有旅客继续前来排队检票进站,设旅客按固定的速度增加,检票口检票的速度也是固定的.若开放一个检票口,则需30分钟才可将排队等候检票的旅客全部检票完毕;若开放两个检票口,内只需10分钟便可将排队等候检票的旅客全部检票完毕;如果要在5分钟内将排队等候检票的旅客全部检票完毕,以使后来到站的旅客能随到随检,至少要同时开放几个检票口?参考答案中考佳题自测:1.设从甲地到乙地的路程大约是xkm,依题意得16<10+1.2(x-5)≤17.2 解得10<x ≤11.2.设租大船x 只,小船y 只,则5x+3y=48 得y=16-35x 又 x ≥0 ,y ≥0 得0≤x ≤548 费用A=3x+2y=3x+2(16-35x)=32-31x ∴当x=9时, A 最小为29故最佳方案是租大船9只,租小船1只.3.设招聘甲种工种的工人x 人,则招聘乙种工种的工人为(150-x)人,依题意得150-x ≥2x 解得x ≤50于是0≤x ≤50;设所聘请的工人共需付月工资y 元,则有y=600x+1000(150-x)=-400x+150000 易知x=50时,y 最小=130000此时乙种工种的工人为150-x=100(人).中考新题演练:1.设最多降x 元售出此商品,由题意得100010001500--x ≥5% 得x ≤450 故x 取450元 2.设该植物种在海拔高度为x 米为宜,由题意得18≤22-100x ·0.5≤20 得400≤x ≤800 3.设商场将A 型冰箱打x 折出售,则消费者购买A 型冰箱需耗资2190×10x +365×10×1×0.4(元) ; 购买B 型冰箱需耗资 2190(1+10%)+360×10×0.55×0.4(元)依题意得2190×10x +365×10×1×0.4≤2190×(1+10%)+365×10×0.55×0.4 解得x ≤8因此,商场应将A 型冰箱至少打八折出售,消费者购买才合算.4.(1)设最初需搬迁建房的农户有x 户,政府规划的建房区域总面积为ym 2,则有 15040%150(20)15%x y y x y y +=⎧⎨++=⎩, 解得4812000x y =⎧⎨=⎩(2)设至少需退出z 户,则有12000-150(68-z)≥12000×20% 解得z ≥4.5.(1)因为80<120,所以不可能选A 类年票若选B 类年票,则1024080=-(次); 若选C 类年票,则1334080=-(次); 若不购买年票,则81080=(次). 所以计划用80元花在该园林的门票上时,选择购买C 类年票的方法进入园林的次数最多,为13次.(2)设至少超过x 次时,购买A 类年票比较合算,则有不等式组602120403120x x +>⎧⎨+>⎩, 解得 302263x x >⎧⎪⎨>⎪⎩其公共解集为x>30.所以一年中进入该园林至少超过30次时,购买A 类年票比较合算.6.设至少要同时开放n 个检票口,且每分钟旅客进站x 人、检票口检票y 人,依题意得 303010210a x y a x y+=⎧⎨+=⨯⎩解得n ≥3.5∵n 只能取整数,∴n=4.a+5x ≤5ny。

相关文档
最新文档