信号与系统试验----信号卷积

合集下载

实验报告信号卷积实验

实验报告信号卷积实验

一、实验目的1. 理解卷积的概念及其物理意义。

2. 掌握卷积运算的原理和方法。

3. 通过实验加深对卷积运算在实际应用中的理解。

二、实验原理1. 卷积的定义:卷积是一种线性运算,它描述了两个信号在时域上的相互作用。

对于两个连续时间信号f(t)和g(t),它们的卷积定义为:F(t) = ∫f(τ)g(t-τ)dτ其中,F(t)是卷积结果,f(τ)是信号f(t)的任意时刻的值,g(t-τ)是信号g(t)在时刻t-τ的值。

2. 卷积的性质:卷积具有交换律、结合律和分配律等性质。

其中,交换律是指f(t)和g(t)的卷积与g(t)和f(t)的卷积相等;结合律是指三个信号f(t)、g(t)和h(t)的卷积可以分别进行两两卷积后再进行一次卷积;分配律是指一个信号与两个信号的卷积等于该信号分别与两个信号卷积后的和。

三、实验内容1. 实验一:连续时间信号卷积实验(1)选用信号:选取两个连续时间信号f(t)和g(t),其中f(t)为矩形脉冲信号,g(t)为指数衰减信号。

(2)卷积计算:根据卷积的定义,计算f(t)和g(t)的卷积F(t)。

(3)结果分析:观察F(t)的波形,分析卷积结果的物理意义。

2. 实验二:离散时间信号卷积实验(1)选用信号:选取两个离散时间信号f[n]和g[n],其中f[n]为单位阶跃信号,g[n]为矩形脉冲信号。

(2)卷积计算:根据离散时间信号卷积的定义,计算f[n]和g[n]的卷积F[n]。

(3)结果分析:观察F[n]的波形,分析卷积结果的物理意义。

3. 实验三:MATLAB仿真实验(1)选用信号:选取两个连续时间信号f(t)和g(t),其中f(t)为正弦信号,g(t)为余弦信号。

(2)MATLAB编程:利用MATLAB的信号处理工具箱,编写程序实现f(t)和g(t)的卷积运算。

(3)结果分析:观察MATLAB仿真得到的卷积结果,分析其物理意义。

四、实验结果与分析1. 实验一:连续时间信号卷积实验(1)实验结果:通过计算得到f(t)和g(t)的卷积F(t)的波形。

信号与系统实验3信号的卷积信号

信号与系统实验3信号的卷积信号
e RC e( )d
0 RC
显然,上图电路系统等价于如下 LTI 系统,其中,x(t)= e(t)u(t),y(t)= Vc(t),
h(t)
1

e
1 RC
t
为系统的单位冲激响应。
RC
x(t)
h(t)
1
1t
e RC
y(t)
RC
其输入输出符合卷积运算: y(t) x(t) h(t) 。
数据处理分析: 方波
原图
频率调节后
幅度调节后
正弦波: K1 闭合
K1 断开
方波:K1 闭合 K1 断开 三角波:K1 闭合 K1 断开
实验结论:
该试验主要为信号的卷积验证试验,对输入的信号进行卷积后通过通过示波器将输 出信号显示出来,然后再通过与理论计算出的结果进行对比。经过实验基本与理论吻合。
五.实验步骤:
1、把系统时域与频域分析模块插在主板上,用导线接通此模块“电源接入”和主板 上的电源(看清标识,防止接错,)。
2、接通主板上的电源,同时按下本模块的电源开关 S1,S2,将“函数信号发生器” 模块中的输出通过导线引入到“零输入零状态响应”的输入端。(将“波形选择”拨到方 波 “频率调节”用于在频段内的频率调节,“占空比”用于脉冲宽度的调节,可改变以 上的参数进行相关的操作)。
指导教师批阅意见:
成绩评定:
备注:
指导教师签字: 年月日
注:1、报告内的项目或内容设置,可根据实际情况加以调整和补充。 2、教师批改学生实验报告时间应在学生提交实验报告时间后 10 日内。
二.实验仪器:
1、信号与系统实验箱一台(主板)。 2、系统时域与频域分析模块一块。 3、20MHz 示波器一台。

卷积信号实验报告

卷积信号实验报告

信号与系统上机实验报告一连续时间系统卷积的数值计算140224 班张鑫学号 14071002 一、实验原理计算两个函数的卷积卷积积分的数值运算实际上可以用信号的分段求和来实现,即:如果我们只求当 t = n∆ t1 是r ( t )的值,则由上式可以得到:∆t足够小时,r(t2)就是e(t)和f(t)卷积积分的数值近似值由上面的公式可当1以得到卷积数值计算的方法如下:(1)将信号取值离散化,即以为周期,对信号取值,得到一系列宽度间隔为的矩形脉冲原信号的离散取值点,用所得离散取值点矩形脉冲来表示原来的连续时间信号;(2)将进行卷积的两个信号序列之一反转,与另一信号相乘,并求积分,所得为t=0时的卷积积分的值。

以为单位左右移动反转的信号,与另一信号相乘求积分,求的t<0和t>0时卷积积分的值;(3)将所得卷积积分值与对应的t标在图上,连成一条光滑的曲线,即为所求卷积积分的曲线。

1信号与系统上机实验报告一二、处理流程图三、C程序代码#include"stdafx.h"#include"stdio.h"//#include "stdilb.h"float u(float t){while (t>= 0) return(1);while (t<0) return(0);}float f1(float t){return(u(t+2)-u(t-2));}float f2(float t){return(t*(u(t)-u(t-2))+(4-t)*(u(t-2)-u(t-4)));}int_tmain(int argc, _TCHAR* argv[]){FILE *fp;fp=fopen("juanji.xls","w+");float t,i,j,result=0;for(i=-2;i<=6;i=i+0.1){result=0;for(j=0;j<=4;j=j+0.1)result+=f2(j)*f1(i-j)*0.1;printf("%.1f\t%.2f\t",i,result);fprintf(fp,"%.1f\t%.2f\n",i,result);}printf ("\n");return 0;}四、运行结果五、卷积曲线六、感想与总结卷积是信号与系统时域分析的基本手段,主要用于求解系统的零状态响应。

信号与系统实验_卷积实验

信号与系统实验_卷积实验

学号: 姓名:实验四 信号卷积实验一、实验目的1、理解卷积的概念及物理意义;2、 通过实验的方法加深对卷积运算的图解方法及结果的理解。

二、预备知识1、学习卷积的基本特性三、实验原理卷积积分的物理意义是将信号分解为冲激信号之和,借助系统的冲激响应,求解系统对任意激励信号的零状态响应。

设系统的激励信号为)t (x ,冲激响应为)t (h ,则系统的零状态响应为)t (h *)t (x )t (y =()()x h t d τττ∞-∞=-⎰。

对于任意两个信号)t (f 1和)t (f 2,两者做卷积运算定义为12()()()f t f f t d τττ∞-∞=-⎰=)t (f 1*)t (f 2=)t (f 2*)t (f 1。

0≤<∞-t210≤≤t 12≤≤t 41≤≤t ∞<≤t2124τ(b)(a)(c)(d)(e)(f)(g)(h)(i)2卷积结果四、实验内容1、两信号)t(x与)t(h都为矩形脉冲信号,由图解的方法给出两个信号的卷积过程和结果,以便与实验结果进行比较。

2、用matlab软件实现门信号的自卷积,并给出结果分析;方波与三角波的卷积:3、有能力的同学可以自编辑信号实现三角波的自卷积,并给出结果分析门信号自卷积:width=3; %定义门信号高度t=0:0.001:2;f1=rectpuls(t,width);%门信号f2=rectpuls(t,width);%门信号f=(conv(f1,f2))/1000;%门信号自卷积n1=(1:length(f1))/1000;n2=(1:length(f2))/1000;%%画图subplot(3,1,1);plot(n1,f1);axis([0,4.5,0,2]);title('输入方波');subplot(3,1,2);plot(n2,f2);axis([0,4.5,0,2]);title('输入方波');n=(1:length(f))/1000;subplot(3,1,3);plot(n,f);title('卷积结果');分析:①反褶;②当t<0时,被积函数为0,则f=0;③当0<t<1时,卷积的积分上限为t,积分下限为0,被积函数为1,则得f=t;④当1<t<2时,卷积的积分上限为1,积分下限为t,被积函数为1,则得f=1-t;⑤当2<t时,被积函数为0,则f=0;门信号与三角波卷积:clc,clear;width=1;t=0:0.001:2;f1=rectpuls(t,width);%门信号f2=sawtooth(10*pi*t,width)+1;%三角信号f=(conv(f1,f2))/1000;%卷积n1=(1:length(f1))/1000;n2=(1:length(f2))/1000;subplot(3,1,1);plot(n1,f1);axis([0,2,0,2]);title('输入方波');subplot(3,1,2);plot(n2,f2);axis([0,2,0,2]);title('输入三角波');n=(1:length(f))/1000;subplot(3,1,3);plot(n,f);axis([0,2,0,2]);title('卷积结果');三角波自卷积:clc,clear;width=1;t=0:0.001:2;f1=sawtooth(10*pi*t,width)+1;%产生三角信号1 f2=sawtooth(10*pi*t,width)+1;%产生三角信号2 f=(conv(f1,f2))/1000;%三角信号自卷积n1=(1:length(f1))/1000;n2=(1:length(f2))/1000;subplot(3,1,1);plot(n1,f1);axis([0,2,0,2]);title('输入三角波1');subplot(3,1,2);plot(n2,f2);axis([0,2,0,2]);title('输入三角波2');n=(1:length(f))/1000;subplot(3,1,3);plot(n,f);axis([0,2,0,2]);title('卷积结果');。

叙述信号与系统卷积的原理和过程

叙述信号与系统卷积的原理和过程

叙述信号与系统卷积的原理和过程
信号与系统中的卷积是一种基本的数学操作,用于描述信号在系统中的传输和处理过程。

它可以帮助我们理解信号如何通过系统进行相互作用和转换。

卷积的原理可以概括为:将两个函数重叠,并在重叠区域内进行乘法运算,然后对乘积结果进行积分得到输出函数。

具体过程如下:
1. 定义两个函数:输入信号(通常称为输入函数)和系统的冲激响应(通常称为脉冲响应),分别用x(t)和h(t)表示。

2. 将输入信号x(t)与系统的冲激响应h(t)进行反转和平移。

3. 反转和平移后的冲激响应用作乘积的权重。

4. 在重叠区域内,将反转和平移后的冲激响应h(t)与输入信号x(t)进行逐点乘积。

5. 对逐点乘积结果进行积分,得到输出函数y(t)。

这个过程可以用数学公式表示为:
y(t) = ∫[x(τ)⋅h(t-τ)]dτ
其中,x(t)表示输入信号,h(t)表示系统的冲激响应,y(t)表示输出函数,τ表示积分变量,乘号“⋅”表示乘法运算。

通过对输入信号和系统的冲激响应进行卷积运算,我们可以得到输出信号。

这个过程模拟了信号在系统中传输和处理的行为,能够帮助我们分析和预测系统的工作原理和性能。

信号与系统常用卷积

信号与系统常用卷积

信号与系统常用卷积
卷积是信号与系统领域中的一种重要运算。

它是将两个信号进行数学操作的方法,通常用符号 "*" 表示。

卷积运算可以以离散形式和连续形式进行。

离散卷积是指对离散时间信号进行卷积运算。

设有两个离散时间序列\[x[n]\]和\[h[n]\],卷积运算的结果\[y[n]\]可以表示为:
\[y[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k]\]
连续卷积是指对连续时间信号进行卷积运算。

设有两个连续时间信号\[x(t)\]和\[h(t)\],卷积运算的结果\[y(t)\]可以表示为:
\[y(t) = \int_{-\infty}^{\infty} x(\tau)h(t-\tau)d\tau\]
卷积运算的物理意义是对信号的相乘后再积分求和。

它在信号处理与系统分析中有广泛应用。

例如,卷积可以用于系统的响应预测、信号的滤波和信号的特征提取等。

在实际应用中,卷积运算可以通过离散求和或积分的方式进行计算。

计算机程序中常用的卷积算法包括直接法、快速卷积法(如快速傅里叶变换法)和卷积定理等。

总之,卷积是信号与系统分析中一种常用的运算方法,通过对信号的相乘与积分求和,可以得到新的信号。

在信号处理和系统分析中有广泛应用,为进一步深入研究相关领域奠定了基础。

北航信号与系统第一次实验报告超级详细版【范本模板】

北航信号与系统第一次实验报告超级详细版【范本模板】

信号与系统实验一连续时间系统卷积的数值计算实验目的1 加深对卷积概念及原理的理解;2 掌握借助计算机计算任意信号卷积的方法.实验原理()()()tototftoftf d21⎰∞∞--=卷积实验流程图源程序#include 〈stdio。

h〉float u(float t){while(t〉=0)return(1);while(t<0)return(0);}float f1(float t){return(u(t+2)—u(t-2));}float f2(float t){return(t*(u(t)-u(t-2))+(4-t)*(u(t-2)—u(t-4)));}main(){float t,i,j,result=0;for(i=—2;i<=6;i=i+0.1){result=0;for(j=0;j<=4;j=j+0.1)result+=f2(j)*f1(i—j)*0。

1;printf("%.1f\t%.2f\t",i,result);}printf ("\n”);}实验数据—2。

0 0。

00 —1.9 0.01 —1.8 0。

03 —1。

7 0.06 -1。

6 0.10—1。

5 0.15 -1。

4 0。

21 —1.3 0。

28 -1。

2 0。

36 —1.1 0。

45-1.0 0.55 -0.9 0.66 -0。

8 0。

78 -0.7 0。

91 -0。

6 1。

05-0.5 1.20 -0.4 1。

36 -0.3 1.53 -0。

2 1.71 —0。

1 1.90 0.0 2.10 0。

1 2。

29 0。

2 2.47 0。

3 2。

64 0。

4 2。

800。

5 2。

95 0。

6 3.09 0.7 3.22 0。

8 3。

34 0.9 3。

451。

0 3。

55 1。

1 3。

64 1.2 3。

72 1.3 3.79 1。

4 3.85 1。

5 3。

90 1.6 3.94 1.7 3。

信号与系统实验指导

信号与系统实验指导
2、通过实验的方法加深对卷积运算的图解方法及结果的理解。
二、实验仪器
1、双踪示波器 1台
2、信号源及频率计模块S2 1块
3、数字信号处理模块S4 1块
三、实验原理
卷积积分的物理意义是将信号分解为冲激信号之和,借助系统的冲激响应,求解系统对任意激励信号的零状态响应。设系统的激励信号为 ,冲激响应为 ,则系统的零状态响应为:
2、对实现无失真传输,对系统函数 应提出怎样的要求?
设 与 的傅立叶变换式分别为 。借助傅立叶变换的延时定理,从式4-1可以写出
(4-2)
此外还有 (4-3)
所以,为满足无失真传输应有
(4-4)
式(4-4)就是对于系统的频率响应特性提出的无失真传输条件。欲使信号在通过线性系统时不产生任何失真,必须在信号的全部频带内,要求系统频率响应的幅度特性是一常数,相位特性是一通过原点的直线。
线性系统的幅度失真与相位失真都不产生新的频率分量。而对于非线性系统则由于其非线性特性对于所传输信号产生非线性失真,非线性失真可能产生新的频率分量。
所谓无失真是指响应信号与激励信号相比,只是大小与出现的时间不同,而无波形上的变化。设激励信号为 ,响应信号为 ,无失真传输的条件是
(4-1)
式中 是一常数, 为滞后时间。满足此条件时, 波形是 波形经 时间的滞后,虽然,幅度方面有系数 倍的变化,但波形形状不变。
图6-1 连续信号抽样过程
将连续信号用周期性矩形脉冲抽样而得到抽样信号,可通过抽样器来实现,实验原理电路如图6-2所示。
2、连续周期信号经周期矩形脉冲抽样后,抽样信号的频谱
它包含了原信号频谱以及重复周期为fs(f s = s/2л)、幅度按 Sa(m sτ/2)规律变化的原信号频谱,即抽样信号的频谱是原信号频谱的周期性延拓。因此,抽样信号占有的频带比原信号频带宽得多。

信号与系统的卷积运算

信号与系统的卷积运算

信号与系统的卷积运算信号与系统是电子工程和通信工程等领域中的重要学科,它研究信号在系统中的传输和处理过程。

其中,卷积运算是信号与系统中的一种重要数学运算,它在信号处理和系统分析中得到广泛应用。

一、卷积运算的定义卷积运算是一种基于积分的数学运算,用于描述两个函数之间的相互作用。

在信号与系统中,卷积运算可以理解为将两个信号进行线性加权叠加的过程。

在时域中,给定两个函数f(t)和g(t),它们的卷积运算表示为h(t) = f(t)*g(t),其中"*"代表卷积运算符号。

卷积运算的公式为:h(t) = ∫f(τ)g(t-τ)dτ其中,τ代表一个积分变量,它与t无关。

卷积运算的结果h(t)是一个新的函数,描述了信号f(t)和g(t)之间的相互作用。

二、卷积运算的性质卷积运算具有多种性质,使其成为信号处理和系统分析中的重要工具。

下面介绍几个常用的卷积运算性质:1. 交换律:f(t)*g(t) = g(t)*f(t)2. 结合律:f(t)*(g(t)*h(t)) = (f(t)*g(t))*h(t)3. 分配律:f(t)*(g(t)+h(t)) = f(t)*g(t) + f(t)*h(t)这些性质使得卷积运算可以方便地应用于信号处理和系统建模中。

三、卷积运算的应用卷积运算在信号与系统领域有着广泛的应用,下面介绍几个典型的应用场景:1. 系统响应计算:在系统分析中,可以使用卷积运算来计算系统对输入信号的响应。

假设系统的冲激响应为h(t),输入信号为x(t),那么系统的输出可以表示为y(t) = h(t)*x(t)。

通过卷积运算,可以方便地计算系统的输出。

2. 信号滤波:在信号处理中,卷积运算可以实现信号的滤波功能。

通过选择合适的滤波器函数,可以对信号进行频率域的加权叠加,实现滤波的效果。

例如,可以使用低通滤波器对信号进行平滑处理,去除高频噪声。

3. 信号复原与恢复:在通信领域中,卷积运算可以用于信号的复原与恢复。

信号与系统实验报告

信号与系统实验报告

信号与系统实验报告一、信号的时域基本运算1.连续时间信号的时域基本运算两实验之一实验分析:输出信号值就等于两输入信号相加(乘)。

由于b=2,故平移量为2时,实际是右移1,符合平移性质。

两实验之二心得体会:时域中的基本运算具有连续性,当输入信号为连续时,输出信号也为连续。

平移,伸缩变化都会导致输出结果相对应的平移伸缩。

2.离散时间信号的时域基本运算两实验之一实验分析:输出信号的值是对应输入信号在每个n值所对应的运算值,当进行拉伸变化后,n值数量不会变,但范围会拉伸所输入的拉伸系数。

两实验之二心得体会:离散时间信号可以看做对连续时间信号的采样,而得到的输出信号值,也可以看成是连续信号所得之后的采样值。

二、连续信号卷积与系统的时域分析1.连续信号卷积积分两实验之一实验分析:当两相互卷积函数为冲激函数时,所卷积得到的也是一个冲激函数,且该函数的冲激t值为函数x,函数y冲激t值之和。

两实验之二心得体会:连续卷积函数每个t值所对应的卷积和可以看成其中一个在k值取得的函数与另外一个函数相乘得到的一个分量函数,并一直移动k值直至最后,最后累和出来的最终函数便是所得到的卷积函数。

3.RC电路时域积分两实验之一实验分析:全响应结果正好等于零状态响应与零输入响应之和。

两实验之二心得体会:具体学习了零状态,零输入,全响应过程的状态及变化,与之前所学的电路知识联系在一起了。

三、离散信号卷积与系统的时域分析1.离散信号卷积求和两实验之一实验分析:输出结果的n值是输入结果的k号与另一个n-k的累和两实验之二心得体会:直观地观察到卷积和的产生,可以看成连续卷积的采样形式,从这个方面去想,更能深入地理解卷积以及采样的知识。

2.离散差分方程求解两实验之一实验分析:其零状态响应序列为0 0 4 5 7.5,零输入响应序列为2 4 5 5.5 5.75,全状态响应序列为2 4 9 10.5 13.25,即全状态=零输入+零状态。

两实验之二心得体会:求差分方程时,可以根据全状态响应是由零输入输入以及零状态相加所得,分开来求,同时也加深了自己对差分方程的求解问题的理解。

信号与系统卷积的原理及应用matlab实验

信号与系统卷积的原理及应用matlab实验

信号与系统卷积的原理及应用matlab实验一、信号与系统基础概念信号是指随时间或空间变化的物理量,可以是电压、电流、声音等。

系统是指对输入信号进行处理的设备或算法,可以是滤波器、放大器等。

二、卷积的定义卷积是一种信号处理方法,用于描述一个信号经过另一个信号响应后产生的输出。

数学上,卷积可以表示为两个函数之间的积分运算,即:y(t) = ∫x(τ)h(t-τ)dτ其中,y(t)表示输出信号,x(t)表示输入信号,h(t)表示系统的单位响应。

三、卷积定理卷积定理是指在频域中进行卷积运算时,等价于对两个函数进行乘法运算后再进行逆变换。

即:F{f*g} = F{f}·F{g}其中,f和g分别为两个函数,在频域中表示为F{f}和F{g}。

四、离散卷积与离散卷积定理在数字信号处理中,使用离散卷积来描述一个序列经过另一个序列响应后产生的输出序列。

离散卷积可以表示为:y[n] = ∑x[k]h[n-k]其中,y[n]表示输出序列,x[k]表示输入序列,h[n-k]表示系统的单位响应。

离散卷积定理是指在频域中进行离散卷积运算时,等价于对两个序列进行乘法运算后再进行逆变换。

即:DFT{f*g} = DFT{f}·DFT{g}其中,f和g分别为两个序列,在频域中表示为DFT{f}和DFT{g}。

五、matlab实验1. 实验目的通过matlab实现离散卷积的计算,并观察离散卷积定理的效果。

2. 实验步骤(1)生成两个长度为N的随机序列x和h。

(2)使用matlab自带函数conv计算x和h的离散卷积y1,并绘制其图像。

(3)将x和h分别进行N点FFT变换得到X和H,在频域中计算它们的乘积Y2=X·H。

(4)将Y2进行N点IFFT变换得到y2,并绘制其图像。

(5)比较y1和y2的差异,观察离散卷积定理的效果。

3. 实验结果与分析实验结果如下图所示:从图中可以看出,y1和y2基本重合,说明离散卷积定理在频域中成立。

信号与系统卷积练习题

信号与系统卷积练习题

信号与系统卷积练习题信号与系统卷积练习题信号与系统是电子工程和通信工程等领域中的重要基础课程,它研究的是信号在系统中的传输、变换和处理等问题。

在学习信号与系统的过程中,卷积是一个重要的概念和运算。

本文将通过一些卷积练习题来加深对信号与系统中卷积的理解。

1. 练习题一:离散信号的卷积假设有两个离散信号x(n)和h(n),其中x(n)的长度为N,h(n)的长度为M。

求x(n)和h(n)的卷积y(n)。

解答:卷积的定义是y(n) = ∑[x(k) * h(n-k)],其中k的取值范围是从0到N-1。

根据定义,我们可以计算出y(n)的每个值。

2. 练习题二:连续信号的卷积假设有两个连续信号x(t)和h(t),其中x(t)的长度为T,h(t)的长度为L。

求x(t)和h(t)的卷积y(t)。

解答:连续信号的卷积可以通过积分来计算。

卷积的定义是y(t) = ∫[x(τ) * h(t-τ)]dτ,其中τ的取值范围是从0到T。

通过积分计算,我们可以得到y(t)的表达式。

3. 练习题三:卷积的性质卷积具有一些重要的性质,包括线性性、时移性和频移性等。

请证明卷积具有时移性。

解答:时移性是指如果x(t)和h(t)的卷积为y(t),那么x(t-t0)和h(t-t0)的卷积为y(t-t0)。

我们可以通过卷积的定义来证明时移性。

假设x(t)和h(t)的卷积为y(t),即y(t) = ∫[x(τ) * h(t-τ)]dτ。

那么x(t-t0)和h(t-t0)的卷积为y(t-t0) = ∫[x(τ-t0) * h(t-t0-τ)]dτ。

通过变量替换,令τ' = τ - t0,那么有y(t-t0) = ∫[x(τ') * h(t-t0-τ')]dτ'。

这与原来的卷积表达式相同,所以卷积具有时移性。

4. 练习题四:卷积的应用卷积在信号与系统中有广泛的应用,例如图像处理、音频处理和通信系统等。

请举一个实际应用的例子,说明卷积在该领域中的作用。

信号与系统-连续信号和离散信号的表示与卷积实验报告

信号与系统-连续信号和离散信号的表示与卷积实验报告

实验一:连续信号和离散信号的表示与卷积一.实验目的1. 学习MATLAB 软件产生信号和实现信号的可视化2. 学习和掌握连续和离散信号的时域表示方法3. 学习和掌握连续信号和离散信号卷积方法二.实验原理1. 信号的表示方法● 常用信号:➢ 连续函数()θω+=t t f sin )(, atAe t f =)(,ttt Sa sin )(=➢ 离散信号()n n f 0sin ][ω=,njw e n f 0][=,][][n u a n f n=● 奇异信号:➢ 连续函数:冲激函数)(t δ,阶跃函数)(t u ,斜坡函数)(t R ➢ 离散信号:冲激函数][n δ,阶跃函数][n u ,斜坡函数][n R2.卷积连续函数的卷积:⎰∞∞--=τττd t f f t g )()()(21离散函数的卷积:∑∞-∞=-=m m n f m f n g ][][][21三.实验内容1. 熟悉matlab 工作环境(1) 运行matlab.exe ,进入matlab 工作环境,如图(1)所示。

图1 matlab工作环境(2)matlab工作环境由Command Window(命令窗口)、Current Direcroty(当前目录)、workspace (工作空间)、command History(历史命令)和Editor(文件编辑器)5部分组成。

其中所有文件的编辑和调试、运行在Editor编辑窗口下进行。

程序的运行也可以在命令窗口进行。

程序调试的信息显示在命令窗口。

(3)程序文件的产生:点击菜单file下的New下的M_files,进入编辑器界面,如图2。

图2 M 文件编辑器(4) 在m 文件编辑器下键入程序代码,保存程序文件(文件命名规则同C 语言)。

如果所定义的是函数文件,则要求函数名为M 文件名。

(5) 程序运行需要给定义的函数参数赋值。

切换到命令窗口下运行例如指数函数定义格式 [t,y]=exp1_exp(t1,t2,dt,A,a)指数函数文件调用方式:[t,y]=exp1_exp(-10,10,0.1,3,-1,1)2 连续和离散信号的时域表示方法(1)单边指数信号 )()(t u Ae t y tα=;function y=exp1_exp(t1,t2,dt,A,a,options)%指数函数,其中t1,t2,dt 分别为起始时间、终止时间和时间间隔 %A,a 为常数 y(t)=Aexp(a*t)%options 参数等于1时为单边指数函数,其他时为双边指数函数 %函数调用的格式 y=exp1_exp(-10,10,0.1,3,-1,1) if options==1t=0:dt:t2;%单边指数函数时间范围 elset=t1:dt:t2;%双边指数函数时间范围endy=A*exp(a*t);%指数函数plot(t,y)%画图grid onxlabel('t')%X轴坐标ylabel('y(t)')%Y轴坐标if options==1title(' 单边指数信号')%标题elsetitle(' 双边指数信号')%标题end实验要求:1)在同一张图上画出a>0,a=0,a<0时指数函数波形,如图3所示. 注意:a的取值范围要适中,不要导致纵坐标相差太大。

信号与系统-卷积积分

信号与系统-卷积积分
信号与系统
§2.6 卷积
信号与系统
§2.6.1 卷积定义
定义: 设有两个 函数 f1(t) f2 (t) ,积分
f (t) f1( ) f2(t )d
称为 f1(t) f2 (t) 的卷积积分,简称卷积,记为 f (t) f1(t) f2(t) 或 f (t) f1(t) f2(t)
t 0 , f2 ( ) 未移动 t 0 , f2 ( ) 右移 f2 (t ) t 0 , f2 ( ) 左移 f2 (t )
3
f2(t )
2
1 O 1 t3
t
下限
上限
f2(t )
t-3
t
f1( ) f2 (t ) -1
1

t


变化时,3对应的 2
f2(t )
从左向右移动。
f (t) f1( ) f2 (t )d
对τ延时t,
-(τ- t)= t- τ
积分结果为t 的函数
1.
积分变量改为
2.
f2(t)
f2 ( ) 反折
时延
f2( )
f2(t
)
3.相乘 f1( ) f2 (t )
4.乘积的积分 f1( ). f2 (t )d
信号与系统
§2.6.3 卷积图解过程
例 :f1 (t )
f1
(Gt )2
(t
),
f2 (t )
t [u(t) 2
u(t
3)]
f1( )
1
1 O 1 t
f2(t )
3 2
t
t
1
1 O
f
1(
2
)
3
2
O

信号与系统实验报告

信号与系统实验报告

实验三常见信号的MATLAB 表示及运算一、实验目的1.熟悉常见信号的意义、特性及波形2.学会使用MATLAB 表示信号的方法并绘制信号波形 3. 掌握使用MATLAB 进行信号基本运算的指令 4. 熟悉用MATLAB 实现卷积积分的方法二、实验原理根据MATLAB 的数值计算功能和符号运算功能,在MATLAB 中,信号有两种表示方法,一种是用向量来表示,另一种则是用符号运算的方法;在采用适当的MATLAB 语句表示出信号后,就可以利用MATLAB 中的绘图命令绘制出直观的信号波形了;1.连续时间信号从严格意义上讲,MATLAB 并不能处理连续信号;在MATLAB 中,是用连续信号在等时间间隔点上的样值来近似表示的,当取样时间间隔足够小时,这些离散的样值就能较好地近似出连续信号;在MATLAB 中连续信号可用向量或符号运算功能来表示; ⑴ 向量表示法对于连续时间信号()f t ,可以用两个行向量f 和t 来表示,其中向量t 是用形如12::t t p t =的命令定义的时间范围向量,其中,1t 为信号起始时间,2t 为终止时间,p 为时间间隔;向量f 为连续信号()f t 在向量t 所定义的时间点上的样值; ⑵ 符号运算表示法如果一个信号或函数可以用符号表达式来表示,那么我们就可以用前面介绍的符号函数专用绘图命令ezplot 等函数来绘出信号的波形; ⑶ 常见信号的MATLAB 表示 单位阶跃信号单位阶跃信号的定义为:10()0t u t t >⎧=⎨<⎩方法一: 调用Heavisidet 函数首先定义函数Heavisidet 的m 函数文件,该文件名应与函数名同名即;%定义函数文件,函数名为Heaviside,输入变量为x,输出变量为y function y= Heavisidety=t>0; %定义函数体,即函数所执行指令%此处定义t>0时y=1,t<=0时y=0,注意与实际的阶跃信号定义的区别;方法二:数值计算法在MATLAB 中,有一个专门用于表示单位阶跃信号的函数,即stepfun 函数,它是用数值计算法表示的单位阶跃函数()u t ;其调用格式为:stepfunt,t0其中,t 是以向量形式表示的变量,t0表示信号发生突变的时刻,在t0以前,函数值小于零,t0以后函数值大于零;有趣的是它同时还可以表示单位阶跃序列()u k ,这只要将自变量以及取样间隔设定为整数即可; 符号函数符号函数的定义为:10sgn()1t t t >⎧=⎨-<⎩在MATLAB 中有专门用于表示符号函数的函数sign ,由于单位阶跃信号 t 和符号函数两者之间存在以下关系:1122()sgn()t t ε=+,因此,利用这个函数就可以很容易地生成单位阶跃信号;2.离散时间信号离散时间信号又叫离散时间序列,一般用()f k 表示,其中变量k 为整数,代表离散的采样时间点采样次数;在MATLAB 中,离散信号的表示方法与连续信号不同,它无法用符号运算法来表示,而只能采用数值计算法表示,由于MATLAB 中元素的个数是有限的,因此,MATLAB 无法表示无限序列;另外,在绘制离散信号时必须使用专门绘制离散数据的命令,即stem 函数,而不能用plot 函数; 单位序列()k δ单位序列()k δ的定义为10()0k k k δ=⎧=⎨≠⎩单位阶跃序列()u k单位阶跃序列()u k 的定义为10()0k u k k ≥⎧=⎨<⎩3.卷积积分两个信号的卷积定义为:MATLAB 中是利用conv 函数来实现卷积的;功能:实现两个函数1()f t 和2()f t 的卷积;格式:g=convf1,f2说明:f1=f 1t,f2=f 2t 表示两个函数,g=gt 表示两个函数的卷积结果;三、实验内容1.分别用MATLAB 的向量表示法和符号运算功能,表示并绘出下列连续时间信号的波形: ⑴ 2()(2)()tf t e u t -=- ⑵[]()cos()()(4)2tf t u t u t π=--1 t=-1::10;t1=-1::; t2=0::10;f1=zeros1,lengtht1,ones1,lengtht2;f=2-exp-2t.f1; plott,faxis-1,10,0, syms t;f=sym'2-exp-2theavisidet'; ezplotf,-1,10;2t=-2::8;f=0.t<0+cospit/2.t>0&t<4+0.t>4; plott,f syms t;f=sym'cospit/2heavisidet-heavisidet-4 '; ezplotf,-2,8;2.分别用MATLAB 表示并绘出下列离散时间信号的波形: ⑵ []()()(8)f t k u k u k =-- ⑶()sin()()4k f k u k π= 2 t=0:8; t1=-10:15;f=zeros1,10,t,zeros1,7; stemt1,faxis-10,15,0,10; 3 t=0:50; t1=-10:50;f=zeros1,10,sintpi/4; stemt1,faxis-10,50,-2,23.已知两信号1()(1)()f t u t u t =+-,2()()(1)f t u t u t =--,求卷积积分12()()()g t f t f t =*,并与例题比较;t1=-1::0; t2=0::1; t3=-1::1;f1=onessizet1; f2=onessizet2; g=convf1,f2;subplot3,1,1,plott1,f1; subplot3,1,2,plott2,f2; subplot3,1,3,plott3,g;与例题相比较,gt 的定义域不同,最大值对应的横坐标也不同;4.已知{}{}12()1,1,1,2,()1,2,3,4,5f k f k ==,求两序列的卷积和 ;N=4; M=5; L=N+M-1; f1=1,1,1,2;f2=1,2,3,4,5; g=convf1,f2; kf1=0:N-1; kf2=0:M-1; kg=0:L-1;subplot1,3,1,stemkf1,f1,'k';xlabel'k'; ylabel'f1k';grid onsubplot1,3,2,stemkf2,f2,'k';xlabel'k'; ylabel'f2k';grid onsubplot1,3,3;stemkg,g,'k';xlabel'k'; ylabel'gk';grid on 实验心得:第一次接触Mutlab 这个绘图软件,觉得挺新奇的,同时 ,由于之前不太学信号与系统遇到一些不懂的问题,结合这些图对信号与系统有更好的了解;实验四 连续时间信号的频域分析一、实验目的1.熟悉傅里叶变换的性质 2.熟悉常见信号的傅里叶变换3.了解傅里叶变换的MATLAB 实现方法二、实验原理从已知信号()f t 求出相应的频谱函数()F j ω的数学表示为:()F j ω()j t f t e dt ω∞--∞=⎰傅里叶反变换的定义为:1()()2j t f t F j e d ωωωπ∞-∞=⎰在MATLAB 中实现傅里叶变换的方法有两种,一种是利用MATLAB 中的Symbolic Math Toolbox 提供的专用函数直接求解函数的傅里叶变换和傅里叶反变换,另一种是傅里叶变换的数值计算实现法;1.直接调用专用函数法①在MATLAB 中实现傅里叶变换的函数为:F=fourier f 对ft 进行傅里叶变换,其结果为Fw F =fourierf,v 对ft 进行傅里叶变换,其结果为Fv F=fourier f,u,v 对fu 进行傅里叶变换,其结果为Fv ②傅里叶反变换f=ifourier F 对Fw 进行傅里叶反变换,其结果为fx f=ifourierF,U 对Fw 进行傅里叶反变换,其结果为fu f=ifourier F,v,u 对Fv 进行傅里叶反变换,其结果为fu 注意:1在调用函数fourier 及ifourier 之前,要用syms 命令对所有需要用到的变量如t,u,v,w 等进行说明,即要将这些变量说明成符号变量;对fourier 中的f 及ifourier 中的F 也要用符号定义符sym 将其说明为符号表达式;2采用fourier 及fourier 得到的返回函数,仍然为符号表达式;在对其作图时要用ezplot 函数,而不能用plot 函数;3fourier 及fourier 函数的应用有很多局限性,如果在返回函数中含有δω等函数,则ezplot 函数也无法作出图来;另外,在用fourier 函数对某些信号进行变换时,其返回函数如果包含一些不能直接表达的式子,则此时当然也就无法作图了;这是fourier 函数的一个局限;另一个局限是在很多场合,尽管原时间信号ft 是连续的,但却不能表示成符号表达式,此时只能应用下面介绍的数值计算法来进行傅氏变换了,当然,大多数情况下,用数值计算法所求的频谱函数只是一种近似值;2、傅里叶变换的数值计算实现法严格说来,如果不使用symbolic 工具箱,是不能分析连续时间信号的;采用数值计算方法实现连续时间信号的傅里叶变换,实质上只是借助于MATLAB 的强大数值计算功能,特别是其强大的矩阵运算能力而进行的一种近似计算;傅里叶变换的数值计算实现法的原理如下: 对于连续时间信号ft,其傅里叶变换为:其中τ为取样间隔,如果ft 是时限信号,或者当|t|大于某个给定值时,ft 的值已经衰减得很厉害,可以近似地看成是时限信号,则上式中的n 取值就是有限的,假定为N,有: 若对频率变量ω进行取样,得: 通常取:02k k k MM ωπωτ==,其中0ω是要取的频率范围,或信号的频带宽度;采用MATLAB 实现上式时,其要点是要生成ft 的N 个样本值()f n τ的向量,以及向量k j n eωτ-,两向量的内积即两矩阵的乘积,结果即完成上式的傅里叶变换的数值计算;注意:时间取样间隔τ的确定,其依据是τ必须小于奈奎斯特Nyquist 取样间隔;如果ft 不是严格的带限信号,则可以根据实际计算的精度要求来确定一个适当的频率0ω为信号的带宽;三、 实验内容1.编程实现求下列信号的幅度频谱1 求出1()(21)(21)f t u t u t =+--的频谱函数F 1jω,请将它与上面门宽为2的门函数()(1)(1)f t u t u t =+--的频谱进行比较,观察两者的特点,说明两者的关系;2 三角脉冲21||||1()0||1t t f t t -≤⎧=⎨>⎩3 单边指数信号3()()tf t e t ε-=4 高斯信号23()t f t e -=1 syms t w Gt=sym'Heaviside2t+1-Heaviside2t-1'; Fw=fourierGt,t,w;FFw=maple'convert',Fw,'piecewise'; FFP=absFFw; ezplotFFP,-10pi 10pi;grid; axis-10pi 10pi 0与()(1)(1)f t u t u t =+--的频谱比较,1()(21)(21)f t u t u t =+--的频谱函数F 1jω最大值是其的1/2; 2syms t w;Gt=sym'1+tHeavisidet+1-Heavisidet+1-tHeavisidet-Heavisidet-1'; Fw=fourierGt,t,w;FFw=maple'convert',Fw,'piecewise'; FFP=absFFw; ezplotFFP,-10pi 10pi;grid; axis-10pi 10pi 0 3syms t w Gt=sym'exp-tHeavisidet';Fw=fourierGt,t,w;FFw=maple'convert',Fw,'piecewise'; FFP=absFFw; ezplotFFP,-10pi 10pi;grid; axis-10pi 10pi -1 2 4syms t w Gt=sym'exp-t^2';Fw=fourierGt,t,w;FFw=maple'convert',Fw,'piecewise'; ezplotFFw,-30 30;grid; axis-30 30 -1 22.利用ifourier 函数求下列频谱函数的傅氏反变换122()16F j j ωωω=-+ 222()58()()65j j F j j j ωωωωω+-=++1syms t w Fw=sym'-i2w/16+w^2'; ft=ifourierFw,w,t; ft运行结果: ft =-exp4theaviside-t+exp-4theavisidet 2syms t wFw=sym'iw^2+5iw-8/iw^2+6iw+5'; ft=ifourierFw,w,t; ft运行结果: ft =diract+-3exp-t+2exp-5theavisidet实验心得matlab 不但具有数值计算能力,还能建模仿真,能帮助我们理解不同时间信号的频域分析;实验五 连续时间系统的频域分析一、实验目的1. 学习由系统函数确定系统频率特性的方法;2. 学习和掌握连续时间系统的频率特性及其幅度特性、相位特性的物理意义;3.通过本实验了解低通、高通、带通、全通滤波器的性能及特点;二、实验原理及方法频域分析法与时域分析法的不同之处主要在于信号分解的单元函数不同;在频域分析法中,信号分解成一系列不同幅度、不同频率的等幅正弦函数,通过求取对每一单元激励产生的响应,并将响应叠加,再转换到时域以得到系统的总响应;所以说,频域分析法是一种变域分析法;它把时域中求解响应的问题通过 Fourier 级数或 Fourier 变换转换成频域中的问题;在频域中求解后再转换回时域从而得到最终结果;在实际应用中,多使用另一种变域分析法:复频域分析法,即 Laplace 变换分析法;所谓频率特性,也称频率响应特性,是指系统在正弦信号激励下稳态响应随频率变化的情况,包括幅度随频率的响应和相位随频率的响应两个方面;利用系统函数也可以确定系统频率特性,公式如下:幅度响应用()ωj H 表示,相位响应用)(ωϕH 表示;本实验所研究的系统函数Hs 是有理函数形式,也就是说,分子、分母分别是m 、n 阶多项式; 要计算频率特性,可以写出为了计算出()ωj H 、)(ωϕH 的值,可以利用复数三角形式的一个重要特性: 而⎥⎦⎤⎢⎣⎡+=2sin 2cosππωωj j ,则()⎥⎦⎤⎢⎣⎡+=2sin 2cos ππωωn j n j n n利用这些公式可以化简高次幂,因此分子和分母的复数多项式就可以转化为分别对实部与虚部的实数运算,算出分子、分母的实部、虚部值后,最后就可以计算出幅度()ωj H 、相位)(ωϕH 的值了;三、实验内容a)sm m ms H )(1)(2-+=,m 取值区间 0,1,绘制一组曲线 m=,,,,; b) 绘制下列系统的幅频响应对数曲线和相频响应曲线,分析其频率特性; a %figurealpha=,,,,;colorn='r' 'g' 'b' 'y' 'k'; % r g b y m c k 红,绿,蓝,黄,品红,青,黑 for n=1:5b=0 alphan; % 分子系数向量a=alphan-alphan^2 1; % 分母系数向量 printsysb,a,'s' Hz,w=freqsb,a; w=w./pi; magh=absHz;zerosIndx=findmagh==0; maghzerosIndx=1; magh=20log10magh; maghzerosIndx=-inf; angh=angleHz;angh=unwrapangh180/pi; subplot1,2,1plotw,magh,colornn;hold onsubplot1,2,2plotw,angh,colornn;hold onendsubplot1,2,1hold offxlabel'特征角频率\times\pi rad/sample' title'幅频特性曲线 |Hw| dB';subplot1,2,2hold offxlabel'特征角频率 \times\pi rad/sample' title'相频特性曲线 \thetaw degrees';b1 %b=1,0; % 分子系数向量a=1,1; % 分母系数向量printsysb,a,'s'Hz,w=freqsb,a;w=w./pi;magh=absHz;zerosIndx=findmagh==0;maghzerosIndx=1;magh=20log10magh; % 以分贝maghzerosIndx=-inf;angh=angleHz;angh=unwrapangh180/pi; % 角度换算figuresubplot1,2,1plotw,magh;grid onxlabel'特征角频率\times\pi rad/sample'title'幅频特性曲线 |Hw| dB';subplot1,2,2plotw,angh;grid onxlabel'特征角频率 \times\pi rad/sample'title'相频特性曲线 \thetaw degrees';2 %b=0,1,0; % 分子系数向量a=1,3,2; % 分母系数向量printsysb,a,'s'Hz,w=freqsb,a;w=w./pi;magh=absHz;zerosIndx=findmagh==0;maghzerosIndx=1;magh=20log10magh; % 以分贝maghzerosIndx=-inf;angh=angleHz;angh=unwrapangh180/pi; % 角度换算figuresubplot1,2,1plotw,magh;grid onxlabel'特征角频率\times\pi rad/sample'title'幅频特性曲线 |Hw| dB';subplot1,2,2plotw,angh;grid onxlabel'特征角频率 \times\pi rad/sample'title'相频特性曲线 \thetaw degrees';3 %b=1,-1; % 分子系数向量a=1,1; % 分母系数向量printsysb,a,'s'Hz,w=freqsb,a;w=w./pi;magh=absHz;zerosIndx=findmagh==0;maghzerosIndx=1;magh=20log10magh; % 以分贝maghzerosIndx=-inf;angh=angleHz;angh=unwrapangh180/pi; % 角度换算figuresubplot1,2,1plotw,magh;grid onxlabel'特征角频率\times\pi rad/sample'title'幅频特性曲线 |Hw| dB';subplot1,2,2plotw,angh;grid onxlabel'特征角频率 \times\pi rad/sample'title'相频特性曲线 \thetaw degrees';实验心得:虽然之前用公式转换到频域上分析,但是有时会觉得挺抽象的,不太好理解;根据这些图像结合起来更进一步对信号的了解;同时,这个在编程序时,虽然遇到一些问题,但是总算解决了;实验六离散时间系统的Z域分析一、 实验目的1. 学习和掌握离散系统的频率特性及其幅度特性、相位特性的物理意义;2. 深入理解离散系统频率特性和对称性和周期性;3. 认识离散系统频率特性与系统参数之间的系统4.通过阅读、修改并调试本实验所给源程序,加强计算机编程能力; 二、 实验原理及方法对于离散时间系统,系统单位冲激响应序列)(n h 的 Fourier 变换)(ωj e H 完全反映了系统自身的频率特性,称)(ωj eH 为离散系统的频率特性,可由系统函数)(z H 求出,关系式如下:ωωj j e z z H e H ==)()( 6 – 1由于ωj e是频率的周期函数,所以系统的频率特性也是频率的周期函数,且周期为π2,因此研究系统频率特性只要在πωπ≤≤-范围内就可以了;∑∑∑∞-∞=∞-∞=∞-∞=--==n n n j j n n h j n n h en h e H )sin()()cos()()()(ωωωω6 – 2容易证明,其实部是ω的偶函数,虚部是ω的奇函数,其模ωj e H (的ω的偶函数,相位[])(arg ωj e H 是ω的奇函数;因此研究系统幅度特性)(ωj e H 、相位特性[])(arg ωj e H ,只要在πω≤≤0范围内讨论即可;综上所述,系统频率特性)(ωj eH 具有周期性和对称性,深入理解这一点是十分重要的;当离散系统的系统结构一定,它的频率特性)(ωj e H 将随参数选择的不同而不同,这表明了系统结构、参数、特性三者之间的关系,即同一结构,参数不同其特性也不同; 例如,下图所示离散系统,其数学模型由线性常系数差分方程描述:)()1()(n x n ay n y +-=系统函数:a z az z z H >-=,)(系统函数频率特性:ωωωωωsin )cos 1(1)(ja a a e e e H j j j +-=-=幅频特性:ωωcos 211)(2a a eH j -+=相频特性:[]ωωωcos 1sin arctan)(arg a a eH j --= 容易分析出,当10<<a 时系统呈低通特性,当01<<-a 时系统呈高通特性;当0=a 时系统呈全通特性;同时说明,在系统结构如图所示一定时,其频率特性随参数a 的变化而变化;三、 实验内容a 2281.011)(----=z z z H ;b 1.04.06.01.03.03.01.0)(2323+++-+-=z z z z z z z Hc 2181.011)(--+-=zz z H a %b=1,0,-1; % 分子系数向量a=1,0,; % 分母系数向量printsysb,a,'z'Hz,w=freqzb,a;w=w./pi;magh=absHz;zerosIndx=findmagh==0;maghzerosIndx=1;magh=20log10magh; % 以分贝maghzerosIndx=-inf;angh=angleHz;angh=unwrapangh180/pi; % 角度换算figuresubplot1,2,1plotw,magh;grid onxlabel'特征角频率\times\pi rad/sample'title'幅频特性曲线 |Hw| dB';subplot1,2,2plotw,angh;grid onxlabel'特征角频率 \times\pi rad/sample'title'相频特性曲线 \thetaw degrees';带通b %b=,,,; % 分子系数向量a=1,,,; % 分母系数向量printsysb,a,'z'Hz,w=freqzb,a;w=w./pi;magh=absHz;zerosIndx=findmagh==0;maghzerosIndx=1;magh=20log10magh; % 以分贝maghzerosIndx=-inf;angh=angleHz;angh=unwrapangh180/pi; % 角度换算figuresubplot1,2,1plotw,magh;grid onxlabel'特征角频率\times\pi rad/sample'title'幅频特性曲线 |Hw| dB';subplot1,2,2plotw,angh;grid onxlabel'特征角频率 \times\pi rad/sample'title'相频特性曲线 \thetaw degrees';高通c %b=1,-1,0; % 分子系数向量a=1,0,; % 分母系数向量printsysb,a,'z'Hz,w=freqzb,a;w=w./pi;magh=absHz;zerosIndx=findmagh==0;maghzerosIndx=1;magh=20log10magh; % 以分贝maghzerosIndx=-inf;angh=angleHz;angh=unwrapangh180/pi; % 角度换算figuresubplot1,2,1plotw,magh;grid onxlabel'特征角频率\times\pi rad/sample'title'幅频特性曲线 |Hw| dB';subplot1,2,2plotw,angh;grid onxlabel'特征角频率 \times\pi rad/sample'title'相频特性曲线 \thetaw degrees';带通实验心得:本来理论知识不是很强的,虽然已经编出程序得到相关图形,但是不会辨别相关通带,这让我深刻地反省;。

《信号与系统》实验报告

《信号与系统》实验报告

信号与系统实验报告班级:姓名:信息与通信工程学院实验一 系统的卷积响应实验性质:提高性 实验级别:必做 开课单位:信息与通信工程学院 学 时:2一、实验目的:深刻理解卷积运算,利用离散卷积实现连续卷积运算;深刻理解信号与系统的关系,学习MATLAB 语言实现信号通过系统的仿真方法。

二、实验设备: 计算机,MATLAB 软件 三、实验原理: 1、 离散卷积和: 调用函数:conv ()∑∞-∞=-==i i k f i f f f conv S )()(1)2,1(为离散卷积和,其中,f1(k), f2 (k) 为离散序列,K=…-2, -1, 0 , 1, 2, …。

但是,conv 函数只给出纵轴的序列值的大小,而不能给出卷积的X 轴序号。

为得到该值,进行以下分析:对任意输入:设)(1k f 非零区间n1~n2,长度L1=n2-n1+1;)(2k f 非零区间m1~m2,长度L2=m2-m1+1。

则:)(*)()(21k f k f k s =非零区间从n1+m1开始,长度为L=L1+L2-1,所以S (K )的非零区间为:n1+m1~ n1+m1+L-1。

2、 连续卷积和离散卷积的关系:计算机本身不能直接处理连续信号,只能由离散信号进行近似: 设一系统(LTI )输入为)(t P ∆,输出为)(t h ∆,如图所示。

)t)()(t h t P ∆∆→)()(lim )(lim )(0t h t h t P t =→=∆→∆∆→∆δ若输入为f(t):∆∆-∆=≈∑∞-∞=∆∆)()()()(k t P k f t f t f k得输出:∆∆-∆=∑∞-∞=∆∆)()()(k t hk f t y k当0→∆时:⎰∑∞∞-∞-∞=∆→∆∆→∆-=∆∆-∆==ττδτd t f k t P k f t f t f k )()()()(lim)(lim )(0⎰∑∞∞-∞-∞=∆→∆∆→∆-=∆∆-∆==τττd t h f k t hk f t y t y k )()()()(lim)(lim )(0所以:∆∆-∆=-==∑⎰→∆)()(lim)()()(*)()(212121k t f k fd t f f t f t f t s τττ如果只求离散点上的f 值)(n f ∆])[()()()()(2121∑∑∞-∞=∞-∞=∆-∆∆=∆∆-∆∆=∆k k k n f k f k n f k fn f所以,可以用离散卷积和CONV ()求连续卷积,只需∆足够小以及在卷积和的基础上乘以∆。

信号与系统卷积计算例题讲解

信号与系统卷积计算例题讲解

信号与系统卷积计算例题讲解引言信号与系统是电子信息类专业的基础课程,卷积是其中的重要理论和计算方法。

本文将通过讲解几个信号与系统中的卷积计算例题,帮助读者快速掌握卷积的概念、计算方法及其应用。

1.什么是卷积卷积是在信号与系统中经常使用的一种运算方法,用于计算两个信号之间的相互影响。

它可以理解为将输入信号通过系统的冲激响应进行加权叠加的过程。

卷积在时域和频域中都有重要应用,在信号处理、通信系统等领域发挥着重要的作用。

2.卷积计算的基本原理卷积计算可以用以下公式表示:$$y(t)=\in tx(\tau)\c do th(t-\ta u)d\ta u$$其中,$y(t)$表示输出信号,$x(t)$表示输入信号,$h(t)$表示系统的冲激响应。

利用该公式,我们可以通过对输入信号和系统的冲激响应进行运算,得到输出信号。

3.离散时间卷积计算例题解析3.1例题1给定输入信号$x[n]=\{1,2,3\}$,系统的冲激响应$h[n]=\{2,-1,1\}$,求输出信号$y[n]$。

解析:根据卷积计算的基本原理,可以得到以下计算步骤:1.将输入信号和冲激响应翻转得到$x[-n]=\{3,2,1\}$和$h[-n]=\{1,-1,2\}$。

2.在时域中,将$x[-n]$和$h[-n]$对齐。

3.将对齐后的信号逐个元素相乘,并将乘积结果进行累加。

具体计算过程如下:$$y[0]=(3\cd ot1)=3$$$$y[1]=(3\cd ot(-1))+(2\c do t1)=-1+2=1$$$$y[2]=(3\cd ot2)+(2\cd ot(-1))+(1\c do t1)=6-2+1=5$$$$y[3]=(2\cd ot2)+(1\cd ot(-1))=4-1=3$$因此,输出信号$y[n]=\{3,1,5,3\}$。

3.2例题2给定输入信号$x[n]=\{1,1,0,0\}$,系统的冲激响应$h[n]=\{1,2,1\}$,求输出信号$y[n]$。

信号与系统离散信号的卷积公式

信号与系统离散信号的卷积公式

信号与系统离散信号的卷积公式
离散信号的卷积公式是信号与系统理论中的重要概念之一。

卷积运算是将两个序列进行混合操作,以得到新的序列。

在信号处理和系统分析中,离散信号的卷积公式可以通过以下方式表示:
设有两个离散信号序列x[n]和h[n],其中n为整数。

若卷积结果为y[n],则其数学表达式为:
y[n] = Σ(x[k]·h[n-k])
其中,Σ表示求和符号,k为累加范围。

该公式表示在离散时间下,输出序列y[n]的每个元素由输入序列x[n]和h[n]的乘积累加得出。

信号的卷积可用于系统响应的计算、滤波器设计、图像处理等领域。

它可以帮助我们理解信号在系统中的传递和转换过程。

离散信号的卷积公式是信号与系统理论中的基础,为我们研究和分析离散时间系统提供了有效的数学工具。

需要注意的是,在实际应用中,离散信号的卷积计算可以通过离散傅里叶变换(DFT)等方法进行高效计算。

此外,离散信号的卷积还涉及卷积定理、卷积的性质以及快速卷积算法等相关概念。

通过学习和应用离散信号的卷积公式,我们可以更好地理解和分析离散时间系统的行为和特征。

总之,离散信号的卷积公式是信号与系统领域的重要概念,它描述了输入序列之间通过卷积运算生成输出序列的关系。

通过应用该公式,我们可以更好地理解和分析离散时间系统的特性,并在实际应用中进行信号处理和系统设计。

信号与系统试验----信号卷积

信号与系统试验----信号卷积

一、 实验目的1. 理解卷积的概念及物理意义;2. 通过实验的方法加深对卷积运算的图解方法及结果的理解。

二、实验设备1.信号与系统实验箱 1台2.双踪示波器1台三、实验原理卷积积分的物理意义是将信号分解为冲激信号之和,借助系统的冲激响应,求解系统对任意激励信号的零状态响应。

设系统的激励信号为)t (x ,冲激响应为)t (h ,则系统的零状态响应为)(*)()(t h t x t y =⎰∞∞--=ττd t h t x )()(。

对于任意两个信号)t (f 1和)t (f 2,两者做卷积运算定义为:⎰∞∞--=ττd t f t f t f )(2)(1)(=)t (f 1*)t (f 2=)t (f 2*)t (f 1。

1. 两个矩形脉冲信号的卷积过程两信号)t (x 与)t (h 都为矩形脉冲信号,如图9-1所示。

下面由图解的方法〔图9-1〕给出两个信号的卷积过程和结果,以便与实验结果进行比较。

≤<∞-t210≤≤t 12≤≤t 41≤≤t ∞<≤t2124τ(b)(a)(c)(d)(e)(f)(g)(h)(i)2卷积结果2. 矩形脉冲信号与锯齿波信号的卷积信号)t (f 1为矩形脉冲信号,)t (f 2为锯齿波信号,如图9-2所示。

根据卷积积分的运算方法得到)t (f 1和)t (f 2的卷积积分结果)t (f ,如图9-2(c)所示。

图9-2 矩形脉冲信号与锯齿脉冲信号的卷积积分的结果3. 本实验进行的卷积运算的实现方法在本实验装置中采用了DSP 数字信号处理芯片,因此在处理模拟信号的卷积积分运算时,是先通过A/D 转换器把模拟信号转换为数字信号,利用所编写的相应程序控制DSP 芯片实现数字信号的卷积运算,再把运算结果通过D/A 转换为模拟信号输出。

结果与模拟信号的直接运算结果是一致的。

数字信号处理系统逐步和完全取代模拟信号处理系统是科学技术发展的必然趋势。

图9-3为信号卷积的流程图。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、 实验目的
1. 理解卷积的概念及物理意义;
2. 通过实验的方法加深对卷积运算的图解方法及结果的理解。

二、实验设备
1.信号与系统实验箱 1台
2.双踪示波器
1台
三、实验原理
卷积积分的物理意义是将信号分解为冲激信号之和,借助系统的冲激响应,求解系统对任意激励信号的零状态响应。

设系统的激励信号为)t (x ,冲激响应为)t (h ,则系统的零状态响应为)(*)()(t h t x t y =⎰∞∞
--=ττd t h t x )()(。

对于任意两个信号)t (f 1和)t (f 2,两者做卷积运算定义为:
⎰∞∞--=ττd t f t f t f )(2
)(1)(=)t (f 1*)t (f 2=)t (f 2*)t (f 1。

1. 两个矩形脉冲信号的卷积过程
两信号)t (x 与)t (h 都为矩形脉冲信号,如图9-1所示。

下面由图解的方法(图9-1)给出两个信号的卷积过程和结果,以便与实验结果进行比较。

0≤<∞-t
2
10≤
≤t 1
≤≤t 4
1≤
≤t ∞
<≤t 212
4
τ
(b)(a)(c)
(d)(e)
(f)
(g)
(h)(i)2卷积结果
2. 矩形脉冲信号与锯齿波信号的卷积
信号)t (f 1为矩形脉冲信号,)t (f 2为锯齿波信号,如图9-2所示。

根据卷积积分的运算方法得到)t (f 1和)t (f 2的卷积积分结果)t (f ,如图9-2(c)所示。

图9-2 矩形脉冲信号与锯齿脉冲信号的卷积积分的结果
3. 本实验进行的卷积运算的实现方法
在本实验装置中采用了DSP 数字信号处理芯片,因此在处理模拟信号的卷积积分运算时,是先通过A/D 转换器把模拟信号转换为数字信号,利用所编写的相应程序控制DSP 芯片实现数字信号的卷积运算,再把运算结果通过D/A 转换为模拟信号输出。

结果与模拟信号的直接运算结果是一致的。

数字信号处理系统逐步和完全取代模拟信号处理系统是科学技术发展的必然趋势。

图9-3为信号卷积的流程图。

图9-3 信号卷积的流程图
四、实验内容
1. 检测矩形脉冲信号的自卷积结果
用双踪示波器同时观察输入信号和卷积后的输出信号,把输入信号的幅度峰峰值调节为4V ,再调节输入信号的频率或占空比使输入信号的时间宽度满足表中的要求,观察输出信号有何变化,判断卷积的结果是否正确,并记录表9-1。

实验步骤如下:
(a)
(b)
(c)
② 连接P702与P101,将示波器接在TP101上观测输入波形,按下信号源模块上的按钮S701、S702,使信号频率为1KHz ,调节W701使幅度为4V 。

(注意:输入波形的频率与幅度要在P702与P101连接后,在TP101上测试。


③ 按下选择键SW102,此时在数码管SMG101上将显示数字,连续按下按钮,直到显示数字“3”。

④ 将示波器的CH1接于TP801;CH2接于TP803;可分别观察到输入信号的)(1t f 波形与卷积后的输出信号)t (f 1*)t (f 2的波形。

⑤ 按下S701,S702改变输入信号的频率,可改变激励信号的脉宽。

本实验中,采用的是矩形脉冲信号的自卷积,因此,在TP803上可观察到矩形脉, TP801上应可观测到一个三角波。

TP101的输入波形如下图:
输入信号的)(1t f 波形与卷积后的输出信号)t (f 1*)t (f 2的波形如下图:
改变输入信号的频率后,)(1t f 与)t (f 1*)t (f 2的波形如下图:
2. 信号与系统卷积
实验原理及步骤:
① 将跳线开关J702置于“脉冲”上。

② 连接P702与P101,将示波器接在TP101上观测输入波形,按下信号源模块上的按钮S701、S702,使信号频率为1KHz ,调节W701使幅度为4V 。

(注意:输入波形的频率与幅度要在P702与P101连接后,在TP101上测试。


③ 按下选择键SW102,此时在数码管SMG101上将显示数字,连续按下按钮,直到显示数字“4”。

④ 将示波器的CH1接于TP803;CH2接于TP802,首先观测两个卷积信号,TP803上测得的是激励信号)t (f 1;TP802测得的是系统信号)t (f 2(本实验中系统信号用的是锯齿波信号)。

再用示波器的CH2测TP801可观测到卷积后的输出信号)t (f 1*)t (f 2的波形。

⑤ 按下S701,S702改变输入信号的频率,可改变激励信号的脉宽。

在TP101上的波形如下图:
激励信号)t(f
1与系统信号)t(f
2
的波形如下图:
输出信号)t(f
1*)t(f
2
的波形如下:
五、实验结果
实验中可以发现当按下S701,S702改变输入信号的频率,激励信号的脉宽将改变。

该实验主要为信号的卷积验证实验,对输入的信号进行卷积后通过示波器将输出信号显示出来,然后再通过与理论计算出的结果进行对比。

经过实验基本与理论吻合。

相关文档
最新文档