51单片机(呼吸灯)C语言版
声控灯程序C语言,基于51单片机的声控灯的设计.doc

声控灯程序C语⾔,基于51单⽚机的声控灯的设计.docPAGE 3基于51单⽚机的声控⼩灯电⼦信息⼯程技术信息⼯程系电⼦信息⼯程技术信息⼯程系年 10 ⽉ 20 ⽇诚 信 声 明本⼈郑重声明:所呈交的毕业设计⽂本和成果,是本⼈在指导⽼师的指导下,独⽴进⾏研究所取得的成果。
成果不存在知识产权争议,本毕业设计不含任何其他个⼈或集体已经发表过的作品和成果。
本⼈完全意识到本声明的法律结果由本⼈承担。
毕业设计者签名:年 ⽉ ⽇⽬ 录1.绪论 (4)1.1论⽂选题的⽬的和意义 (4)1.2国内外关于该论题的研究现状和发展趋势..................... (4)TOC \o "1-3" \h \z \u 2.课程设计的思路和设计说明 (5)2.1题⽬要求 (5)2.2设计思路及说明 (5)3.设计⽅案的⽐较和论证 (5)3.1软件设计⽅法 (5)3.2硬件设计⽅法 (6)4. 声控灯模块设计 (8)4.1光敏电阻.................................... (8)4.2驻极体话筒................................. (9)4.3电源电路设计 (9)4.4串⼝通信的实现 (10)4.5声控模块设计 (11)4. 6声控电路设计 (11)4.7时钟模块设计 (11)4.8系统程序编写 (11)4.9 51单⽚机系统及功能实现 (11)5.设计过程中遇到的问题及解决⽅法 (12)6.实验结果及结论 (12)6.1声控电路结果分析...... (12)致谢 (13)参考⽂献 (13)附页 (15)基于51单⽚机的声控⼩灯摘要:在⽣活中,我们⽆时⽆刻不在使⽤着灯,如台灯、路灯、⽇光灯、照明灯、彩灯等等,但不管什么⽅式的灯,他们的作⽤都是⼀致的——照明。
因此,设计⼀个既实⽤⽅便的照明灯则是我们共同的愿望。
设计⼀种极不浪费电⼒⼜⽅便实⽤的照明灯更是我们⼀直以来努⼒的⽬标。
51单片机pwm呼吸灯原理

51单片机pwm呼吸灯原理
呼吸灯是一种常见的电子灯光效果,在嵌入式系统中使用PWM(脉宽调制)
技术可以实现呼吸灯效果。
51单片机作为一种常用的嵌入式系统控制器,也可以
利用其内部的PWM功能来实现呼吸灯效果。
PWM是一种通过改变脉冲信号的高低电平比例来控制信号的占空比的技术。
在呼吸灯中,我们可以利用PWM的占空比来控制LED灯的亮度变化,从而实现
灯光逐渐变亮再逐渐变暗的效果。
实现51单片机的PWM呼吸灯效果需要主要以下几个步骤:
1. 配置单片机的PWM模块:先确定使用哪个定时器的PWM功能,然后设置
定时器工作模式和计数器初值。
2. 设置占空比:根据呼吸灯的效果要求,选择适当的周期和占空比。
通过改变PWM的脉冲信号的高电平时间和周期来控制LED的亮度变化。
3. 控制流程:编写程序,通过适当的控制结构如循环语句,在适当的时间段改
变PWM占空比,从而实现呼吸灯效果。
具体实现时,需要根据具体的单片机型号和编程语言来进行具体的配置和编程。
在编写程序时,可以利用定时器中断来实现精确的时间控制,以达到更加流畅的呼吸灯效果。
总之,通过合理配置51单片机的PWM模块,并编写相应的程序实现占空比
的变化控制,可以轻松实现呼吸灯效果。
这种效果不仅可以为电子产品增添美感,还可以用于指示、装饰等方面。
51单片机(呼吸灯)汇编语言版

单片机实训课程之:呼吸灯一.设计要求二.相关原理三.论证分析四.硬件原理五.软件程序设计六.测试方法与结果七.使用说明(附录)一.设计要求呼吸灯顾名思义就是让LED灯的闪烁像呼吸一样,时呼时吸,时亮时暗。
二.相关原理呼吸灯的原理:呼吸灯,是用LED模拟呼吸的过程,即渐亮再渐暗再渐亮再渐暗……如此往复,再利用LED的余辉和人眼的暂留效应,看上去就和人的呼吸一样了。
三.论证分析程序流程图(1)80C511.单片机定义“单片机”就是将计算机的基本部件集成到一块芯片上,包括CPU、ROM、RAM、并行口、串行口、定时器/计数器、中断系统、系统时钟等。
MCS-51的微处理器是由运算器和控制器构成所的。
运算器:主要用来对操作数进行算术、逻辑运算和位操作。
主要包括算术逻辑运算单元ALU、累加器A、寄存器B、位处理器、程序状态字寄存器PSW以及BCD码修正电路等。
控制器:单片机的指挥控制部件,控制器的主要任务是识别指令,并根据指令的性质控制单片机各功能部件,从而保证单片机各部分能自动而协调地工作。
(2)时钟电路外部时钟方式是使用外部振荡脉冲信号,常用于多片MCS-51单片机同时工作,以便于同步。
外部时钟电路,是由一个12MHz晶振和两个瓷片电容组成,为单片机提供标准时钟,其中两个瓷片电容起微调作用,外接晶振频率精确度直接影响电子钟计时的准确性。
(外部时钟方式是把外部已经有的时钟信号引入到单片机内部。
时钟电路在计算机系统中起着非常重要的作用,是保证系统正常工作的基础。
在一个单片机应用系统中,时钟有两方面的含义:一是指为保障系统正常工作的基准振荡定时信号,主要由晶振和外围电路组成,晶振频率的大小决定了单片机系统工作的快慢;二是指系统的标准定时时钟,即定时时间。
)2.单片机电子钟利用内部定时/计数器溢出产生中断(12M晶振一般为50ms)再乘以相应的倍率来实现秒、分、时的转换。
从定时/计数器产生中断请求到响应中断需要3-8个机器周期,定时中断子程序中的数据入栈和重装定时/计数器的初值还需要占用数个机器周期,还有从中断入口转到中断子程序也要占用一定的机器周期。
51单片机PWM呼吸灯源程序

51单片机PWM-呼吸灯源程序/*************************************************** **************** @file : main.c* @xu ran* @date : 2014年5月23日20:55:19 - 2014年5月23日22:32:12* @version : V2.0* @brief : PWM脉冲宽度调制技术实现呼吸灯************************************************* **************** @attention* 实验平台 : 51hei开发板* 单片机 : STC89C52RC MCU 晶振 : 11.0592 MHZ************************************************* ****************/#include //使用STC89C52库/* 三八译码器74HC138 */sbit ADDR3 = P1^3;sbit ENLED = P1^4;sbit PWMOUT = P0^0; //LED0/* PWM占空比 */unsigned char code pwmTable[] = {3, 5, 8, 11, 13, 16, 21, 24, 27, 30, 33, 36, 40, 45, 49,53, 55, 57, 61, 65, 67, 69, 72, 75, 79, 82, 86, 89, 91,93, 96, 99}; // dc%/* PWM的高电平和低电平的定时器的重载值 */ unsigned char Highthr0, Hightlr0;unsigned char Lowthr0, Lowtlr0;/* 定时器T1计数装载值 */unsigned char thr1, tlr1;/* PWM 频率计数值 */unsigned long tmp = 0;/******************local functiondefines**************************/void ConfigPWM(unsigned int fr, unsigned char dc); void ConfigTimer1(unsigned int xms);/******************************************************************//*** @brief : 主函数* @param : 无* @retval : 无*/void main(void){P0 = 0xFF; //初始化P0数据口ADDR3 = 1;ENLED = 0; //选择LEDP1 = (P1 & 0xF8) | 0x06; //LEDS6PWMOUT = 1; //初始化为熄灭ConfigPWM(100, 2); //PWM频率为100HZ, 占空比为2% ConfigTimer1(50); //50ms调整一次占空比EA = 1; //开启总中断!while (1); //wait interrupt happen!}/*** @brief : 配置PWM 调制PWM脉冲宽度* @param : PWM的脉冲宽度 PWM的占空比* @retval : 无*/void ConfigPWM(unsigned int fr, unsigned char dc) {unsigned int high = 0, low = 0;tmp = (11059200/12/fr); //fr频率的计数值high = (tmp * dc) / 100; //高电平计数值low = tmp - high; //低电平计数值high = 65536 - high; //高电平的计数定时器装载初值low = 65536 - low; //低电平的计数定时器装载初值Highthr0 = (unsigned char)(high >;>; 8);Hightlr0 = (unsigned char)high; //高电平Lowthr0 = (unsigned char)(low >;>; 8);Lowtlr0 = (unsigned char)low; //低电平/* 配置Timer0 方式1 */TMOD &= 0xF0; //清零T0控制位TMOD |= 0x01; //方式1TH0 = Highthr0;TL0 = Hightlr0; //先装高电平TR0 = 1;ET0 = 1; //开启定时器T0中断}/*** @brief : 配置Timer1,用来调整PWM占空比* @param : 待定时的时间* @retval : 无*/void ConfigTimer1(unsigned int xms){unsigned long tmp;tmp = 11059200/12;tmp = (tmp * xms) / 1000; //定时xms时间需要的计数值tmp = 65536 - tmp; //需要装载的计数初值thr1 = (unsigned char)(tmp >;>; 8);tlr1 = (unsigned char)tmp;TMOD &= 0x0F; //清零T1控制位TMOD |= 0x10; //T1方式1TH1 = thr1;TL1 = tlr1; //装载初值TR1 = 1;ET1 = 1;}/*** @brief : 调整PWM的占空比 (高电平的脉冲宽度)* @param : 占空比 dc* @retval : 无*/void tiaoZhengPWM(unsigned char dc){unsigned int high = 0, low = 0;high = (tmp * dc) / 100; //高电平计数值low = tmp - high; //低电平计数值high = 65536 - high;low = 65536 - low; //计数装载初值Highthr0 = (unsigned char)(high >;>; 8);Hightlr0 = (unsigned char)high; //取高电平计数装载初值Lowthr0 = (unsigned char)(low >;>; 8);Lowtlr0 = (unsigned char)low; //取低电平计数装载初值}/*** @brief : 定时器T0中断服务改变PWM的状态* @param : 无* @retval : 无*/void Timer0_ISP() interrupt 1{if (PWMOUT) //由高电平切换到低电平{TH0 = Lowthr0;TL0 = Lowtlr0; //装载低电平计数初值PWMOUT = 0; //点亮LED}else{TH0 = Highthr0;TL0 = Hightlr0; //装载高电平计数值PWMOUT = 1; //熄灭LED}}/*** @brief : 定时器T1中断服务调整PWM的占空比* @param : 无* @retval : 无*/void Timer1_ISP() interrupt 3{static unsigned char index = 0;static bit bir = 0; //方向标志 (0 小->;大 1 大->;小)TH1 = thr1;TL1 = tlr1;tiaoZhengPWM(pwmTable[index]); //调整PWM占空比if (bir == 0){index++;//递增if (index >;= 31) //到31立刻改变PWM的控制方向,即占空比由大到小变化(LED 暗->;亮){bir = 1; //改变方向}}else{index--;if (index == 0) //到0时立刻改变PWM的方向,即占空比由小到大变化(LED 亮->;暗){bir = 0; //改变方向}}}/**********************************END OF FILE*************new line****************/。
单片机控制LED灯点亮(C语言)

根据实际需求,设计合理的程序流程,例如通过循环或条件判断等方式实现LED灯的闪烁、呼吸灯等 效果。
延时函数实现及时间控制
延时函数实现
编写延时函数,用于控制LED灯的亮灭时 间间隔,实现不同的闪烁频率和占空比 。
VS
时间控制
根据延时函数的实现和实际需求,精确控 制LED灯的亮灭时间,以达到预期的效果 。同时,需要注意单片机的时钟频率和延 时函数的精度对时间控制的影响。
LED音乐频谱
结合音频处理技术,将音频信号转换为LED灯的亮度或颜色变化,实现音乐频谱的可视化 效果。可以应用于音乐播放器、舞台灯光等场景。
THANKS
感谢观看
02
节能环保
LED灯作为一种节能环保的照明设备,在各个领域得到了广泛应用。通
过单片机控制,可以实现LED灯的精确调光和节能控制。
03
学习与实践
对于电子爱好者和学生来说,通过单片机控制LED灯的点亮是学习嵌入
式系统和C语言编程的一个很好的实践项目。
单片机和LED灯简介
单片机
单片机是一种集成电路芯片,它将微处理器、存储器、输入输出接口等集成在一 个芯片上,具有体积小、功耗低、可靠性高等优点。常见的单片机有51系列、 STM32系列等。
for语句
用于循环执行一段代码块。例如,`for (int i = 0; i < 10; i) { led = i; }`表示将led的值从0循环设置 为9。
while语句
用于在满足条件时循环执行一段代码块。例如, `while (led < 10) { led; }`表示当led小于10时, 不断将led的值加1。
时等。
06
拓展应用与案例分析
51单片机汇编语言及C语言经典实例

51单片机汇编语言及C语言经典实例汇编语言是一种用来编写计算机指令的低级语言,它与机器语言十分接近,可以直接控制计算机硬件。
而C语言是一种高级程序设计语言,它具有结构化编程和模块化设计的特点。
本文将介绍51单片机汇编语言和C语言的经典实例,并进行详细解析。
一、LED指示灯的闪烁我们首先来看一个经典的51单片机汇编语言的实例——LED指示灯的闪烁。
我们可以通过控制单片机的IO口来实现LED的闪烁效果。
以下是汇编语言的代码:```assemblyORG 0 ; 程序起始地址MOV P1, #0; 将 P1 置为0,熄灭LEDLJMP $ ; 无限循环```以上代码使用了51单片机的MOV指令和LJMP指令。
MOV指令用来将一个立即数(这里是0)存储到寄存器P1中,控制对应的I/O口输出低电平,从而熄灭LED。
而LJMP指令则是无条件跳转指令,将程序跳转到当前地址处,实现了无限循环的效果。
对应的C语言代码如下:```c#include <reg51.h>void main() {P1 = 0; // 将 P1 置为0,熄灭LEDwhile(1); // 无限循环}```以上代码使用了reg51.h头文件,该头文件提供了对51单片机内部寄存器和外设的访问。
通过将P1赋值为0,控制IO口输出低电平,实现了熄灭LED的效果。
while(1)是一个无限循环,使得程序一直停留在这个循环中。
二、数码管的动态显示接下来我们介绍51单片机汇编语言和C语言实现数码管动态显示的经典实例。
数码管动态显示是通过控制多个IO口的高低电平来控制数码管显示不同的数字。
以下是汇编语言的代码:```assemblyORG 0 ; 程序起始地址MOV A, #0FH ; 设置数码管全亮,A存储数码管控制位MOV P2, A ; 将 A 的值存储到 P2,控制数码管的数码控制位DELAY: ; 延时循环MOV R7, #0FFH ; 设置延时计数值LOOP1: ; 内层循环MOV R6, #0FFH ; 设置延时计数值LOOP2: ; 内部延时循环DJNZ R6, LOOP2 ; 延时计数减1并判断是否为0,不为0则继续循环DJNZ R7, LOOP1 ; 延时计数减1并判断是否为0,不为0则继续循环DJNZ A, DELAY ; A减1并判断是否为0,不为0则继续循环JMP DELAY ; 无限循环,实现动态显示```以上代码中,我们通过MOV指令来将一个立即数(0x0F)存储到寄存器A中,控制数码管显示0-9的数字。
用51单片机制作呼吸灯

用51单片机制作呼吸灯//晶振11.0592//灯光在单片机控制之下完成由亮到暗的逐渐变化,感觉像是在呼吸//本例在51hei-5型开发板上实现了一个数码管和一个led灯一起实现呼吸效果//文件下载:51hei/f/fxd.rar#includereg52.h#define uint unsigned int#define uchar unsigned char sbit D1=P0 ; uchar sr;uchar jf; uchar code table[]={0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,2 8,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49}; void light(uchar num);void delay(uint z); void main(){//设置计数器//选取计数方式1TMOD = 0x11;//给计数器写初值TH0 = 0;TL0 = 0;//////////////////////操作单片机//开启CPU中断EA = 1;/////////////////////开启定时器T0位中断ET0 = 1;//开启计数器TR0 = 1;//操作二极管P1=0;while(1){ if(sr50) light(sr); else sr=0;}}//子函数void light(uchar num) {uchar tme;D1 = 0;tme = table[num];delay(tme);D1 = 1;delay(49-tme);}//中断函数void time () interrupt 1{//自变量自加if (jf2) { jf++; TH0 =0; TL0 = 0; }if (jf==2) {//写初值jf=0; TH0 = 254; TL0 = 254; sr++; } }void delay(uint z){uint x,y;for(x=10;x0;x--) for(y=z;y0;y--);} tips:感谢大家的阅读,本文由我司收集整编。
51单片机pwm呼吸灯原理

PWM呼吸灯原理概述PWM(Pulse Width Modulation,脉宽调制)是一种通过改变信号的脉冲宽度来控制信号的平均功率的技术。
在51单片机中,通过使用PWM技术可以实现呼吸灯效果,即灯光逐渐变亮再逐渐变暗的效果。
本文将详细解释与51单片机PWM呼吸灯原理相关的基本原理。
基本原理PWM呼吸灯的基本原理是通过不断改变LED的亮度来产生呼吸灯效果。
具体步骤如下:1. 设置定时器首先需要设置一个定时器,用于产生固定频率的脉冲信号。
定时器的工作模式为自动重装载模式,即当定时器计数达到设定值后,会自动重新加载初始值,并产生一个中断信号。
2. 设置占空比占空比(Duty Cycle)是指PWM信号中高电平的时间占整个周期的比例。
在呼吸灯效果中,占空比会不断变化,从而产生灯光逐渐变亮再逐渐变暗的效果。
占空比的大小决定了LED的亮度。
3. 改变占空比为了实现呼吸灯效果,需要不断改变占空比的大小。
可以通过改变定时器的初始值来改变占空比。
初始值越小,高电平时间越短,占空比越小,LED的亮度越低;初始值越大,高电平时间越长,占空比越大,LED的亮度越高。
4. 周期性改变占空比为了实现呼吸灯效果,需要周期性地改变占空比。
可以通过定时器中断来触发改变占空比的操作。
当定时器产生中断时,改变定时器的初始值,从而改变占空比。
为了实现呼吸灯效果,可以设定一个周期,在周期内逐渐增加或减小占空比。
5. 控制LED亮度最后一步是根据占空比的大小来控制LED的亮度。
当占空比为100%时,LED处于最亮状态;当占空比为0%时,LED处于最暗状态。
通过改变占空比的大小,可以实现灯光逐渐变亮再逐渐变暗的效果。
实现步骤根据上述基本原理,可以按照以下步骤来实现51单片机的PWM呼吸灯效果:1.初始化定时器,设置定时器的工作模式为自动重装载模式。
2.设置定时器的初始值,即占空比的大小。
3.设置定时器的中断,当定时器计数达到设定值后,触发中断。
51单片机PWM的控制(呼吸灯)

51单片机PWM的控制(呼吸灯)一、PWMPulse Width Modulation脉冲宽度调制,简称PWM。
PWM(脉冲宽度调制)对模拟信号电平进行数字编码的方法,计算机只能输出0或5V的数字电压值而不能输出模拟电压,而我们如果想获得一个模拟电压值,则需通过使用高分辨率计数器,改变方波的占空比来对一个模拟信号的电平进行编码。
仍输出数字信号,因为满幅值的直流供电只有5V(1)和0V(0)两种。
电压是以一种连接(1)或断开(0)的重复脉冲序列被夹到模拟负载上去的,连接即是直流供电输出,断开即是直流供电断开。
通过对连接和断开时间的控制,只要带宽足够,可以输出任意不大于最大电压值的模拟电压。
输出电压=(接通时间/脉冲时间)*最大电压值•1•2二、51单片机的Timer作者用的单片机是STC89C52,其内部有3个16位Timer,分别为T/C0,T/C1,T/C2,通过配置相关寄存器即可实现Timer的功能控制。
控制PWM需要用到定时器来生成不同占空比的波形,采用定时器中断的方式。
相关寄存器:1.IE寄存器位名称功能0 EX0 外部中断0的中断允许位1 ET0 Timer0的溢出中断允许位2 EX1 外部中断1的中断允许位3 ET1 Timer1的溢出中断允许位位 名称功能 4 ES 串行口中断允许位5 ET2 Timer6 - -7 EA 中断允许总控制位2. TCON 寄存器位 名称 功能0 IT0 外部中断0的触发方式选择位。
功能和IE1类似1 IE0 外部中断0的中断请求标志位。
功能和IE1类似2 IT1 外部中断1的触发方式选择位。
当IT1=1时,为下降沿触发方式,也就是从高到低的跳变会触发外部中断1。
当IT1=0时,为低电平触发,也就是单片机检测到该引脚电平为低时,会触发外部中断13 IE1 外部中断1的中断请求标志位。
当IE1=1的时候,表示外部中断1被触发,正在请求单片机处理中断事件。
不用pwm做呼吸灯c语言程序

不用pwm做呼吸灯c语言程序呼吸灯是一种常见的LED灯效,它模拟人类呼吸的变化,让LED 灯的亮度逐渐增加和减小,给人一种温柔的感觉。
通常情况下,我们会使用脉冲宽度调制(PWM)来实现呼吸灯效果,但是今天我将介绍一种不使用PWM的方法来实现呼吸灯效果的C语言程序。
首先,我们需要了解呼吸灯的原理。
呼吸灯的亮度变化是通过改变LED灯的电流来实现的。
当电流逐渐增加时,LED灯的亮度也会逐渐增加;当电流逐渐减小时,LED灯的亮度也会逐渐减小。
因此,我们可以通过改变LED灯的电流来实现呼吸灯效果。
在C语言中,我们可以使用延时函数来控制电流的变化。
延时函数可以让程序暂停一段时间,然后再继续执行。
通过不断地调整延时的时间,我们可以实现电流的逐渐增加和减小,从而实现呼吸灯效果。
下面是一个简单的C语言程序,用于实现呼吸灯效果:```c#include <stdio.h>#include <unistd.h>int main() {int brightness = 0; // 亮度变量,范围从0到100int direction = 1; // 方向变量,用于控制电流的增加和减小while (1) {printf("当前亮度:%d\n", brightness);if (brightness == 100) {direction = -1; // 当亮度达到最大值时,改变方向为减小} else if (brightness == 0) {direction = 1; // 当亮度达到最小值时,改变方向为增加}brightness += direction; // 根据方向改变亮度usleep(100000); // 延时100毫秒// 在这里可以控制LED灯的电流,实现亮度的变化}return 0;}```在这个程序中,我们使用了一个while循环来不断地改变亮度变量的值。
手把手教你学51单片机(C语言版)

10.1.2 定时时间精准性调 整
10.1.4 数码管扫描函数算 法改进
12
Part One
11 UART串口通信
11 UART串口通信
11.1 串行通信的 初步认识
11.2 RS-232通 信接口
11.3 USB转串口 通信
11.4 IO口模拟 UART串口通信
11.5 UART串口 通信的基本应用
A
C
E
13.2 1602整屏 移动
13.4 计算器实 例
13.6 练习题
13.1 通信时序 解析
13.3 多.c文件 的初步认识
B
13.5 串口通信机制 和实用的串口例程
D
F
15
Part One
14 I^2C总线与E^2PROM
14 I^2C总线与E^2PROM
14.1 I2C时 序初步 认识
14.2 I2C寻 址模式
18 RS-485通信与Modbus协议
01
18.1 RS485通信
02
18.2 Modbus 通信协议介绍
18.2.1 Modbus协议 特点 18.2.2 RTU协议帧数 据
03
18.3 Modbus 多机通信例程
04
18.4 练习题
20
Part One
19 实践项目开发——多功能电子钟
19 实践项目开发——多功能电子钟
1.6 答读者问
03
Part One
2 点亮你的LED
2 点亮你的LED
2.1 单片机的 内部资源
2.2 单片机最 小系统
2.3 LED小灯
2.6 练习题
2.5 程序下载
51单片机技术应用教程(C语言版)项目四 花样霓红灯的设计与制作

函数 atoi atol atof strtod strtol strtoul
rand srand calloc free init_mempool
malloc realloc
功能 将字符串sl转换成整型数值并返回这个值 将字符串sl转换成长整型数值并返回这个值 将字符串sl转换成浮点数值并返回这个值 将字符串s转换成浮点型数据并返回这个值 将字符串s转换成long型数值并返回这个值 将字符串s转换成unsigned long型数值并返回这个值
5.请写出二维数组的格式,并举例说明。
51单片机技术应用活页式教程(C语言版)
项目四 花样霓虹灯的设计与制作
4.1 C51库函数
知识 链接
4.2 用户自定义函数 4.3 C51数组
【知识点4.1】 C51库函数
• 函数有库函数和自定义函数两类。 • C51的库函数由C51的编译器提供,每个库函数的原型放
使单片机程序产生延时 对字节中的一位进行测试
【知识点4.2】用户自定义函数
• 1.用户自定义函数的形式
• (1)无参数函数。此种函数被调用时,既无参数输入,也不返回结果给调用函数,它 是为完成某种操作过程而编写的。
• (2)有参数函数。在定义此类函数时,必须定义与实际参数一一对应的形式参数,并 在函数结束时返回结果给调用该函数的程序使用,函数的返回值是通过函数中的return 语句获得的。调用时必须提供实际的输入参数。
如果P1口接了8个LED灯,该程序的功能是:
51单片机技术应用活页式教程(C语言版)
项目四 花样霓虹灯的设计与制作
【引导学习】
2. 请接合第1题程序,请写出有参与无参、形参与实参的含义。
3.请用字符型数组定义LED,存放流水灯8种显示状态,存放在程 序存储器中。 4.请用一维数组定义LED数码管的0-9的显示编码。
51单片机呼吸灯实验报告

呼吸灯1 功能与技术分析呼吸灯就是让LED灯的闪烁像呼吸一样,时呼时吸,时亮时暗,利用LED的余辉和人眼的暂留效应,看上去和人的呼吸一样。
可以展示出各种酷炫的图像。
1.1 呼吸灯的实现效果使用调制的方法,灯在高速闪烁时人眼是看不出来的,每个循环给闪烁的熄灭时间加1,灯就会慢慢变暗,在设置熄灭时间加到一定程度就开始减一,就会渐渐变亮了。
使得LED灯按照顺序逐渐改变亮度。
1.2 功能分析灯光在微电脑控制之下完成由亮到暗的绝剑变化,感觉就像是在呼吸。
广泛应用与数码产品,起到装饰和指示工作效果。
目前被广泛用于手机之上,并成为各大品牌新款手机的卖点之一。
1.3 技术分析用C语言编程实现PWM(脉宽调制)输出驱动LED,逐渐增加PWM的占空比从而实现LED模拟呼吸的过程,即渐亮再渐暗再渐亮再渐暗……如此往复,再利用LED的余辉和人眼的暂留效应,看上去就和人的呼吸一样。
2 硬件基础与设计整个系统的搭建,由以下元器件组成:1、12MHz晶振一个;2、stc89c51单片机一个;3、30pf无极性电容2个;4,、按钮一个;5、10K电阻一个;6、10uf有极性电容一个;7、洞洞板一个;8、LED灯若干。
2.1 基于51单片机的最小系统的设计STC89C51RC是采用8051核的ISP(In System Programming)在系统可编程芯片,最高工作时钟频率为80MHz,片内含8K Bytes 的可反复擦写1000次的Flash只读程序存储器,器件兼容标准MCS-51指令系统及80C51引脚结构,芯片内集成了通用8位中央处理器和ISP Flash存储单元,具有在系统可编程(ISP)特性,配合PC端的控制程序即可将用户的程序代码下载进单片机内部,省去了购买通用编程器,而且速度更快。
STC89C51RC系列单片机是单时钟/机器周期(1T)的兼容8051 内核单片机,是高速/ 低功耗的新一代8051 单片机,全新的流水线/精简指令集结构,内部集成MAX810 专用复位电路。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基于单片机与PWM的呼吸灯设计实训指导教师:班级:设计人姓名:设计日期:设计地点:完成时间:摘要本设计是基于单片机的原理与接口设计,采用单片机I/O口,加以C 语言编程实现LED渐亮再渐暗类似人的呼吸一样的效果。
关键词AT89C51,PWM(脉宽调制)一、设计要求:呼吸灯就是让LED灯的闪烁像呼吸一样,时呼时吸,时亮时暗,利用LED的余辉和人眼的暂留效应,看上去和人的呼吸一样。
二、设计原理:用C语言编程实现PWM(脉宽调制)输出驱动LED,逐渐增加PWM的占空比从而实现LED模拟呼吸的过程,即渐亮再渐暗再渐亮再渐暗……如此往复,再利用LED的余辉和人眼的暂留效应,看上去就和人的呼吸一样。
三、整体方案设计8个LED按照顺序逐个实现呼吸效果。
加以其他闪烁花样增加更炫彩的效果。
四、实验元件及器材(1)元件: LED(发光二极管)8个1KΩ电阻8个1nf电容2个晶振1个AT89C51芯片1个(2)器件:Atmega128开发板1块计算机1台五、硬件原理(1)主电路:8个LED分别连接AT89C51的P1口,使用共阳方式,并加以1kΩ的电阻接入电源。
(2)时钟电路:外部时钟方式是使用外部振荡脉冲信号。
六、软件设计及系统仿真调试(1)调试方法:利用keil软件进行C语言程序编写及调试,再利用Proteus 仿真软件进行仿真实验。
(2)调试过程所遇问题:1、由于呼吸灯的程序在仿真软件Proteus中实现的效果不明显,很难辨别LED是否具有呼吸的效果。
所以边用keil调试程序边用STC烧写软件直接写入开发板,从而很明显看出LED是否具有呼吸效果;2、程序运行时,出现LED闪烁过快,由于人眼的暂留效应看似LED全部一直亮着,经调试,修改延时时间,实现呼吸效果。
七、结论与心得在本次设计中,C语言程序在开发板中得以实现应有的功能。
在调试过程中,发现很多问题都是由于不细心导致的,因此在以后的设计方案中,要集中精力,莫粗心大意。
再者就是知识量的不足,虽然是一个小小的设计方案,但是查阅了很多相关资料,在日后,要多充足自己的知识量,保证C程序的编写质量。
参考文献[1]郭天祥,《新概念51单片机C语言教程》,电子工业出版社,2009年1月[2]徐爱钧,《单片机高级语言C51应用程序设计》,电子工业出版社,2000年5月附件A:呼吸灯设计电路图附件B:C语言程序清单#include<reg51.h>/*-----------定义单片机引脚-----*/ sbit LED0=P1^0;sbit LED1=P1^1;sbit LED2=P1^2;sbit LED3=P1^3;sbit LED4=P1^4;sbit LED5=P1^5;sbit LED6=P1^6;sbit LED7=P1^7;void Delay(unsigned int t); //函数声明unsigned int z,y;void main (void)//主函数unsigned int CYCLE=500,PWM_LOW=0;//定义周期并赋值while (1) //主循环{/*--------整排LED灯呼吸---------*/P1=0x00;Delay(500); //加延时,可以看到熄灭的过程(下面程序同理)for(PWM_LOW=1;PWM_LOW<CYCLE;PWM_LOW++) //PWM_LOW表示低{P1=0x00;Delay(PWM_LOW);P1=0xff;Delay(CYCLE-PWM_LOW);}P1=0xff;for(PWM_LOW=CYCLE-1;PWM_LOW>0;PWM_LOW--) //与逐渐变亮相反的过程{P1=0x00; //点亮LEDDelay(PWM_LOW);P1=0xff; //熄灭LEDDelay(CYCLE-PWM_LOW); //主循环中添加其他需要一直工作的程序,延时长度,600次循环中从599减至1}/*--------第一颗LED灯呼吸---------*/LED0=1;Delay(500);for(PWM_LOW=1;PWM_LOW<CYCLE;PWM_LOW++){LED0=0;Delay(PWM_LOW);LED0=1;Delay(CYCLE-PWM_LOW);}LED0=0;for(PWM_LOW=CYCLE-1;PWM_LOW>0;PWM_LOW--){LED0=0;Delay(PWM_LOW);LED0=1;Delay(CYCLE-PWM_LOW);}/*--------第二颗LED灯呼吸----------*/LED1=1;Delay(500);for(PWM_LOW=1;PWM_LOW<CYCLE;PWM_LOW++) {LED1=0;Delay(PWM_LOW);LED1=1;Delay(CYCLE-PWM_LOW);}LED1=0;for(PWM_LOW=CYCLE-1;PWM_LOW>0;PWM_LOW--) {LED1=0;Delay(PWM_LOW);LED1=1;Delay(CYCLE-PWM_LOW);}/*--------第三颗LED灯呼吸----------*/LED2=1;Delay(500);for(PWM_LOW=1;PWM_LOW<CYCLE;PWM_LOW++) {LED2=0;Delay(PWM_LOW);LED2=1;Delay(CYCLE-PWM_LOW);}LED2=0;for(PWM_LOW=CYCLE-1;PWM_LOW>0;PWM_LOW--) {LED2=0;Delay(PWM_LOW);LED2=1;Delay(CYCLE-PWM_LOW);}/*--------第四颗LED灯呼吸----------*/LED3=1;Delay(500);for(PWM_LOW=1;PWM_LOW<CYCLE;PWM_LOW++) {LED3=0;Delay(PWM_LOW);LED3=1;Delay(CYCLE-PWM_LOW);}LED3=0;for(PWM_LOW=CYCLE-1;PWM_LOW>0;PWM_LOW--) {LED3=0;Delay(PWM_LOW);LED3=1;Delay(CYCLE-PWM_LOW);}/*--------第五颗LED灯呼吸----------*/LED4=1;Delay(500);for(PWM_LOW=1;PWM_LOW<CYCLE;PWM_LOW++){LED4=0;Delay(PWM_LOW);LED4=1;Delay(CYCLE-PWM_LOW);}LED4=0;for(PWM_LOW=CYCLE-1;PWM_LOW>0;PWM_LOW--) {LED4=0;Delay(PWM_LOW);LED4=1;Delay(CYCLE-PWM_LOW);}/*--------第六颗LED灯呼吸----------*/LED5=1;Delay(500);for(PWM_LOW=1;PWM_LOW<CYCLE;PWM_LOW++) {LED5=0;Delay(PWM_LOW);LED5=1;Delay(CYCLE-PWM_LOW);}LED5=0;for(PWM_LOW=CYCLE-1;PWM_LOW>0;PWM_LOW--) {LED5=0;Delay(PWM_LOW);LED5=1;Delay(CYCLE-PWM_LOW);}/*--------第七颗LED灯呼吸----------*/LED6=1;Delay(500);for(PWM_LOW=1;PWM_LOW<CYCLE;PWM_LOW++) {LED6=0;Delay(PWM_LOW);LED6=1;Delay(CYCLE-PWM_LOW);}LED6=0;for(PWM_LOW=CYCLE-1;PWM_LOW>0;PWM_LOW--) {LED6=0;Delay(PWM_LOW);LED6=1;Delay(CYCLE-PWM_LOW);}/*--------第八颗LED灯呼吸----------*/LED7=1;Delay(500);for(PWM_LOW=1;PWM_LOW<CYCLE;PWM_LOW++) {LED7=0;Delay(PWM_LOW);LED7=1;Delay(CYCLE-PWM_LOW);}LED7=0;for(PWM_LOW=CYCLE-1;PWM_LOW>0;PWM_LOW--) {LED7=0;Delay(PWM_LOW);LED7=1;Delay(CYCLE-PWM_LOW);}P1=0x00;for(z=500;z>0;z--)for(y=110;y>0;y--);P1=0xff;for(z=500;z>0;z--)for(y=110;y>0;y--);P1=0x00;for(z=500;z>0;z--)for(y=110;y>0;y--);P1=0xff;for(z=500;z>0;z--)for(y=110;y>0;y--);}}void Delay(unsigned int t){while(--t); }。