集成运放的基本运算电路

合集下载

集成运算放大器的基本运算电路

集成运算放大器的基本运算电路

ui2 u
u i3
u
0
R1
R2
R3
2.加减运算电路
ui1
R1
Rf
ui2
R2
N
-∞
ui3
R 3
P

R
ui4
4
R'
当ui1、ui2短路时 当Ui1、Ui2、Ui3、Ui4共同作用时
若又满足Rf =R1=R2=R3=R4时则
利用叠加定理求uo与ui1、ui2、 ui3各ui4之间的关系
uo
当ui3、ui4短路时
(ui1 ui2 ui3 )
Uo (ui1 ui2 ui3 )
上式中比例系数为-1,实现了加法运算。
2)同相求和运算电路
R'
ui1 i1
R 1
ui2 i2
R2
ui3 i3
R 3
i f
Rf
N

u-

P u+ +
R1//R2//R3=R′//Rf
根据 “虚断”概念
uo
i1+i2+i3=0
ui1 u
2.一般单限比较器
图4-22所示的电路是一般单限比较器. UREF为外加参考电压。 集成运放的反相输入端接信号ui,同相输入端接参考电压UREF。
由于Aod→∞,所以当U﹣<U+时,ui<UREF时,受电源电压的 限制,uo只能为正极限值UOM,即UOH=﹣UOM; 反之,当U﹣>U+时,uo为负极限值,即UOL=﹣UOM。 其传输入特性如图4-22(b)实线所示。
I1
U i1 R1
因虚地, u﹢=u﹣=
,
I2
Ui2 R2

集成运放组成的基本运算电路

集成运放组成的基本运算电路

K2
C 1μF
R2 1M
K1 +15V
vS

R1 100K
A
vO

R′ 100K
-15V
vo
1 R1
t
0 vsdt
积分运算电路
4. 积分运算电路
将实验数据及波形填入下述表格中:
vs波形
vs幅度值
vo波形
vo频率
vo幅度值
5. 用积分电路转换方波为三角波
电路如下图所示。图中电阻R2的接入是为了抑制由 IIO、VIO所造成的积分漂移,从而稳定运放的输出零 点。
A
vO
υS

R′ 10K
-15V
v0
(1
RF R1
)vs
同相比例运算电路
2. 实现同相比例运算
将实验数据及波形填入下述表格中:
输入信号vs1 (V)
有效值
波形
输入信号vs2 (V)
有效值
波形
有效值
输出电压vo (V)
峰值
波形
注:上表针对正弦波输入,若是其他信号输入表作相应改变。
3. 减法器(差分放大电路)
减法器(差分放大电路)运算仿真电路
3. 减法器(差分放大电路)
减法器(差分放大电路)运算仿真电路
3. 减法器(差分放大电路)
将实验数据及波形填入下述表格中:
输入信号vs1 (V)
有效值
波形
输入信号vs2 (V)
ቤተ መጻሕፍቲ ባይዱ
有效值
波形
有效值
输出电压vo (V)
峰值
波形
注:上表针对正弦波输入,若是其他信号输入表作相应改变。
vs波形

集成运放组成的基本运算电路 实验报告

集成运放组成的基本运算电路 实验报告

实验报告课程名称: 电路与模拟电子技术实验 指导老师: 张冶沁 成绩:__________________ 实验名称: 基本运算电路设计 实验类型: 电路实验 同组学生姓名:__________ 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理 六、实验结果与分析(必填) 七、讨论、心得一、实验目的和要求1.掌握集成运放组成的比例、加法和积分等基本运算电路的设计。

2.掌握基本运算电路的调试方法。

3.学习集成运算放大器的实际应用。

二、实验内容和原理1.实现反相加法运算电路2.实现反相减法运算电路3.用积分电路将方波转换为三角波4.同相比例运算电路的电压传输特性(选做)5.查看积分电路的输出轨迹(选做)三、主要仪器设备HY3003D-3型可调式直流稳压稳流电源 示波器、信号发生器、万用表 实验箱LM358运放模块四、操作方法和实验步骤1.两个信号的反相加法运算1) 按设计的运算电路进行连接。

2) 静态测试:将输入接地,测试直流输出电压。

保证零输入时电路为零输出。

3) 调出0.2V 三角波和0.5V 方波,送示波器验证。

4) V S1输入0.2V 三角波,V S2输入0.5V 方波,用示波器双踪观察输入和输出波形,确认电路功能正确。

记录示波器波形(坐标对齐,注明幅值)。

2. 减法器(差分放大电路)减法器电路,为了消除输入偏置电流以及输入共模成分的影响,要求R1=R2、RF=R3。

专业: 姓名:学号: 日期: 地点:学生序号61) 按设计的运算电路进行连接。

2) 静态测试:输入接地,保证零输入时为零输出。

3) V S1和V S2输入正弦波(频率和幅值),用示波器观察输入和输出波形,确认电路功能正确。

4) 用示波器测量输入和输出信号幅值,记到表格中。

3.用积分电路转换方波为三角波电路中电阻R2的接入是为了抑制由I IO、V IO所造成的积分漂移,从而稳定运放的输出零点。

实验五 集成运放的基本应用——信号运算电路

实验五 集成运放的基本应用——信号运算电路
实验五
一、实验目的:
集成运放的基本应用——信号运算电路
1、熟悉用集成运算放大器构成基本运算电路的方法; 2、学习设计比例放大,加法、减法运算等电路; 3、掌握电流、电压转换电路的设计、调试方法; 4、学习双电源的连接方法。
二、实验原理:
集成运算放大器具有增益范围大,通用性强,灵活性大,体积小,寿命长,耗电省,使 用方便等特点, 因此应用非常广泛, 由运算放大器构成的数学运算电路是运放线性应用电路 之一。 1、反相比例运算 在理想条件下,电路的闭环增益为:
图 5-5 基本微分运算电路
三、实验内容:
1、按图 5-6 安装运放调零电路,在输入端接地时调节 W 使 uO=0。
2
Hale Waihona Puke 图 5-6 调零电路 2.反相比例放大器 实验电路如图5-7所示
图5-7 反相比例放大电路 按表5-1内容实验并测量记录 表5-1 直流输入电压Vi(mV) 理论估算(mV) 输出电压Vo 实 际 值(mV) 误差 3.反相求和放大电路 实验电路如图5-8所示 100 300 500 600 1000 3000
四、预习要求:
1、了解F741运算放大器的性能参数,计算各运算电路输出电压UO的数值。 2、当用示波器观察积分输入、输出信号时,会发现波形不稳定,怎样才能使波形稳定 下来。
五、思考题:
1、分析基本运算电路输出电压的误差产生的原因,如何减小误差。 2、在分析加法、减法、微分、积分运算电路时,所依据地基本概念是什么?基尔霍夫 电流定律(KCL)是否得到应用?如何导出输入与输出之间的关系?
Auf
Rf Rf UO ,U O US US R1 R1
上式可见 R f R1 为比例系数,若当 R f R1 时,则 U S U O ,故电路即变成了反相 器。 R2 R f / / R1 用来减小输入偏置电流引起的误差。

集成运算放大器基本应用(模拟运算电路)实训指导

集成运算放大器基本应用(模拟运算电路)实训指导

集成运算放大器基本应用 (模拟运算电路)实训指导(特别提醒:实验电路图中可能存在有的元器件数值与实验电路板中的不相同,实验时应以实验电路板中的为准。

另外,由于元器件老化、湿度变化、温度变化等诸多因素的影响所致,实验电路板中所标的元器件数值也可能与元器件的实际数值不一致。

有的元器件虽然已经坏了,但仅凭肉眼看不出来。

因此,在每次实验前,应该先对元器件(尤其是电阻、电容、三极管)进行单个元件的测量(注意避免与其它元器件或人体串联或并联在一块测量)。

并记下元器件的实际数值。

否则,实验测得的数值与计算出的数值可能无法进行科学分析。

)一.实验目的1.研究由集成运放组成的比例、加法、减法和积分等基本运算电路的功能。

2.了解运算放大器在实际应用时应考虑的一些问题。

二.实验原理集成运算放大器是一种具有高电压放大倍数的直接耦合多级放大电路。

当外部接入不同的线性或非线性元器件组成输入和负反馈电路时,可以灵活地实现各种特定的函数关系。

在线性应用方面,可组成比例、加法、减法、积分、微分、对数等模拟运算电路。

基本运算电路。

1)反相比例运算电路电路如图8—1所示。

对于理想运放,该电路的输出电压与输入电压之间的关系为i F O U R RU 1-=为了减小输入级偏置电流引起的运算误差,在同相端应接入平衡电阻R 2=R 1||R F 。

U OOU U图8—1 图8—22)反相加法电路电路如图8—2,输出电压与输入电压之间的关系为)(2211i F i F O U R RU R R U +-=R 3= R 1‖R 2‖R F 3)同相比例运算电路图8—3(a)是同相比例运算电路,它的输出电压与输入电压之间的关系为 i F O U R R U ⎪⎪⎭⎫ ⎝⎛+=11 R 2 = R 1‖R F当R 1 ∞,U o =U i ,即得到如图8—3(b)所示的电压跟随器,图中R 2=R F ,用以减小漂移和起保作用。

一般R F 取10K Ω,R F 太小起不到保护作用,太大则影响跟随性。

运放组成的加减乘除等运算电路

运放组成的加减乘除等运算电路
模 拟电子技术
第7章
集成运放组成的运算电路
7.1 概述 7.2 基本运算电路 7.3 对数和指数运算电路 7.4 集成模拟乘法器 7.5 除法运算电路
小结
模 拟电子技术
7.1 概述
1. 运放的电压传输特性:
运算放大器的两个工作区域(状态):线性区和非线性区,
设:电源电压±VCC=±10V, 运放的AVO=104
P+
uO 解:uO1RF(uRI33uRI44)
uO2 RF(uRI11uRI22)
R
uORF(uRI33u RI44uRI11u RI22)
(2) 双运放减法运算电路
uI3 R3 uI4 R4
RF
-∞ +
+
uI1 R1 uO1 RF uI2 R2
RF
-∞ +
+
uO1(R RF 3uI3R RF 4uI4) uO uO(R RF 1uI1R RF 2uI2R RF FuO)1
当 R1 = ,Rf = 0 时,
此时有 Auf 1
值得注意的是,电压跟随器反馈系数F=1,
反馈深度深,输入电阻高,输出电阻低, 常用作阻抗变换或缓冲级,
uI
RF
-∞ +
uO
+
同相比例运算电路有输入电阻高的特点,但输入共 模信号电压高,对集成运放的共模抑制比要求也高, 另一方面如果共模电压超过允许的数值,电路也无法 正常工作,
R1 i1
i1i2i3iF
uI2
R2 i2
RF iF
uI1uI2uI3uO
uI3
R3 i3 N - ∞
+
uO
R1 R2 R3 RF

模电课件集成运放基本电路

模电课件集成运放基本电路

R f 8 R f 20
R2
R3
加减运算电路旳设计环节 R1 24k 先根据函数关系画出电路,R2然 后30计k算参数
解(1) 画出电路 (2) 计算电阻
平衡电阻
R3 12k R 80k
Rf
R’ // R1 // R2 =Rf // R3
uo
Rf R1
ui1
Rf R2
ui 2
Rf R3
ui 3
(由2虚)断因:为i叠 加i点为0虚地,i输i1 入ii信2 号ii3之间i f
满u足i1 线u0性 叠u加i2 定 0u理 ,互ui不3 影0u响。u0 uo
R1
R2
R3
Rf
uo 由由u虚R虚Rf 短地uu:i:1 u0i2 ui3
ui3 ui2
ii3 ii2
R3 R2
Rf
若 R1 = R2 = R3 = R
换作用
1反相微分器 平衡电阻R’=Rf
iC
C
duC dt
由虚断:i i 0 iC i i f i f
iC
u uo Rf
C d ui
dt
由“虚
地u” 0
u
uo
iC
R
f
C
iiCi
ui
dui t
RuC
dt
u
u R
if ii+
Rf
uo
2实际应用旳微分器Zf
uRωi ↑限i→Zi制11/输uω入Ci电↓- →流i,C ↑降→低高高频u频噪o 噪声声uo Cf相位补u 偿i,+ 克制自激振荡
由虚短: u u
uo ui2
R1 R f RRf R2 R R1

常用运算放大器16个基本运算电路

常用运算放大器16个基本运算电路

5. 微分运算电路
微分运算电路如图 5 所示,
XFG1
R2 15kΩ
C2
22nF
V3
R1
C1
4
12 V
2
1kΩ
22nF
U1A
1
3
T L082CD
8
V2 12 V
XSC1
A +_
B +_
Ext Trig +
_
图5
电路的输出电压为 uo 为:
uo = −R2C1 dui dt
式中, R2C1 为微分电路的时间常数。若选用集成运放的最大输出电压为UOM ,
式中,Auf = 1+ RF / R1 为同相比例放大电路的电压增益。同样要求 Auf 必须小于 3, 电路才能稳定工作,当 f = fo 时,带通滤波器具有最大电压增益 Auo ,其值为:
Auo = Auf / (3 − Auf )
10. 二阶带阻滤波电路
二阶带阻滤波电路如图 10 所示,
C1
1nF R1
_
图 15 全波整流电路是一种对交流整流的电路,能够把交流转换成单一方向电 流,最少由两个整流器合并而成,一个负责正方向,一个负责负方向,最典 型的全波整流电路是由四个二极管组成的整流桥,一般用于电源的整流。 全波整流输出电压的直流成分(较半波)增大,脉动程度减小,但变压器需 要中心抽头、制造麻烦,整流二极管需承受的反向电压高,故一般适用于要 求输出电压不太高的场合。
R1 10kΩ
4 2
12 V
U1A 1
3
8 TL082CD
R3 9kΩ
V2 12 V
D2 1N4148
XSC1
A +_

实验四 集成运放组成的基本运算电路

实验四 集成运放组成的基本运算电路

实验四 集成运放组成的基本运算电路一. 实验目的1.掌握集成运算放大器的正确使用方法。

2.了解集成运算放大器在信号放大和模拟运算方面的应用。

二. 实验设备实验箱 1个实验电路板 1个数字万用表 1个三. 简述运算放大器是具有两个输入端和一个输出端的高增益、高输入阻抗的多级直接耦合电压放大器。

只要在集成运放的外部配以适当的电阻和电容等器件就可构成比例、加减、积分、微分等模拟运算电路。

在这些应用电路中,引入了深度负反馈,集成运放工作在线性放大区,属于运算放大器的线性应用范畴,因此分析时可将集成运放视为理想运放,运用虚断和虚短的原则。

虚断:即认为流入运放两个净输入端的电流近似为零。

虚短:即认为运放两个净输入端的电位近似相等(u +≈ u -)。

从而可方便地得出输入与输出之间的运算表达式。

使用集成运算放大器时,首先应根据运放的型号查阅参数表,了解其性能、指标等,然后根据管脚图连接外部接线(包括电源、调零电路、消振电路、外接反馈电阻等等)。

四. 设计实验要求1. 设计由双列直插通用集成运放μA741构成的基本运算电路,要求实现:反相比例运算,反相加法运算,同相比例运算,电压跟随器,差动运算(减法运算)等5种运算。

每一运算电路需要设计两种典型的输入信号。

2. 自己设计选择电路参数和放大倍数,画出电路图并标出各电阻的阻值(μA741的最大输出电流小于10mA ,因此阻值选取不能小于1KΩ)。

3. 自拟实验步骤。

4. 电源电压一律取12V ±。

本实验用直流信号源,自己选择输入信号源的取值,已知信号源(5i u V ≤)。

5. 设计举例:反相比例运算电路的设计反相比例放大器的运算功能为:1R R u u A F i o uf -==; 设,10-=uf A 负反馈电阻Ω=K R F 100;可以计算出110R K =Ω,平衡电阻100//109.1R K '=≈Ω。

max =9o u V,max max 90.910o i uf u u V A ∴≤==,即输入信号的设计值小于0.9V ±。

实验13 集成运放组成的基本运算电路

实验13 集成运放组成的基本运算电路

实验13 集成运放组成的基本运算电路一、实验目的:1.掌握集成运放组成的比例、加法和积分等基本运算电路的功能。

2.了解集成运算放大器在实际应用时应考虑的一些问题。

3.掌握在放大电路中引入负反馈的方法。

二、实验内容1.实现两个信号的反相加法运算。

2.实现同相比例运算。

3.用减法器实现两信号的减法运算。

4.实现积分运算。

5.用积分电路将方波转换为三角波。

三、实验准备1.复习教材中有关集成运放的线性应用部分。

2.拟定实验任务所要求的各个运算电路,列出各电路的运算表达式。

3.拟定每项实验任务的测试步骤,选定输入测试信号υS 的类型(直流或交流)、幅度和频率范围。

4.拟定实验中所需仪器和元件。

5.在图9.30所示积分运算电路中,当选择υI =0.2V 时,若用示波器观察υO (t )的变化轨迹,并假定扫速开关置于“1s/div ”,Y 轴灵敏度开关置于“2V/div ”,光点一开始位于屏幕左上角,当开关S 2由闭合转为打开后,电容即被充电。

试分析并画出υO 随时间变化的轨迹。

四、实验原理与说明由集成运放、电阻和电容等器件可构成比例、加减、积分、微分等模拟运算电路。

在这些应用中,须确保集成运放工作在线性放大区,分析时可将其视为理想器件,从而得出输入输出间的运算表达式。

下面介绍几种常用的运算电路:1.反相加法运算电路如图9.27所示,其输入与输出之间的函数关系为:)(2211I f I fO v R R v R R v +-=图9.27 反相加法运算电路 通过该电路可实现信号υI1和υI2的反相加法运算。

为了消除运放输入偏置电流及其漂移造成的运算误差,须在运放同相端接入平衡电阻R 3,其阻值应与运放反相端的外接等效电阻相等,即要求R 3= R l ∥R 2∥R f 。

实验时应注意:(1)为了提高运算精度,首先应对输出直流电位进行调零,即保证在零输入时运放输出为零。

(2)输入信号采用交流或直流均可,但在选取信号的频率和幅度时,应考虑运放的频率响应和输出幅度的限制。

第六章 集成运放组成的运算电路

第六章 集成运放组成的运算电路

第六章集成运放组成的运算电路知识点教学要求学时掌握理解了解运算电路的分析方法√基本运算电路的结构及工作原理√对数和反对数运算电路的工作原理√模拟乘法器工作原理√基本应用电路及分析方法√运放使用中的几个问题选型、调零、消振和保护√运算电路的误差分析√二、重点和难点本章的重点是:基本运算电路的结构、工作原理和分析方法,模拟乘法器的基本应用电路及分析方法。

本章的难点是:模拟乘法器的工作原理,实际运算放大器运算电路的误差分析。

三、教学内容6.1运算电路的分析方法由于运算放大器的增益很高,引入负反馈后很容易满足深度负反馈条件,可实现性能优越的各种数学运算电路。

为了突出基本概念,减少复杂的计算,在分析各种运算电路时,将集成运放视为理想器件。

1.理想运放的特性和都趋向无限大,并且、、和均等于零,其它参数也不考虑,这就是理想运算放大器。

2.运放的工作状态在运算电路中,由于电路引入深度负反馈,运放工作在线性状态。

当输入信号过大时,输出信号受直流电源电压的限制,将会出现非线性失真。

3.虚短、虚断和虚地对于工作在线性区的运放,下述两条重要结论普遍适用,也是分析运放应用电路的基本出发点。

虚短——运放两个输入端之间的电压差近似等于零。

虚断——流入运放输入端的电流近似等于零。

当信号从反相输入端输入,且同相输入端的电位等于零时,“虚短”的结论可引深为反相输端为“虚地”的结论。

4.分析计算方法对纯电阻和运放组成的电路,利用虚短和虚断的结论和求解线性电路的方法,直接求解输出与输入的关系。

对于含有电容和电感的复杂运算电路,可运用拉氏变换,先求出电路的传递函数,再进行拉氏反变换后得出输出与输入的函数关系。

6.2基本运算电路基本运算电路包含比例、加法、减法、积分和微分运算电路,其输入输出函数呈线性关系,也称为线性运算电路。

1.比例运算电路反相输入比例运算电路是电压并联负反馈电路,它具有输出和输入电阻都小等特点。

通过增大信号源与运放输入端串联电阻可提高电路输入电阻,但同时会出现电路增益降低的情况。

集成运算放大器基本运算电路

集成运算放大器基本运算电路

集成运算放大器的基本运算电路集成运算放大器是一种具有高电压放大倍数的直接耦合多级放大电路。

当外部接入不同的线性或非线性元器件组成负反馈电路时,可以灵活地实现各种特定的函数关系。

在线性应用方面,可组成比例、加法、减法、积分、微分、对数等模拟运算电路。

基本运算电路(1)反相比例运算电路电路如图1所示,对于理想运放,该电路的输出电压与输入电压之间的关系为uO=-ui图1 反相比例运算电路为了减小输入偏置电流引起的运算误差,在同相输入端应接入平衡电阻R2=R1||RF。

(2)同相比例运算电路图2是同相比例运算电路,它的输出电压与输入电压之间的关系为)ui当R1→∞时,uO=ui,即得到如图3所示的电压跟随器。

图中R2=RF,用以减小漂移和起保护作用。

一般RF取10KΩ,RF太小起不到保护作用,太大则影响跟随性。

图2 同相比例运算电路图3 电压跟随器(3)反相加法电路电路如图4所示。

图4 反相加法运算电路输出电压与输入电压之间的关系为uO=()R3=R1||R2||RF (4) 减法运算电路对于图5所示的减法运算电路,当R1=R2,R3=RF时,有如下关系式uO=(ui2-ui1)图5 减法运算电路(5)积分运算电路反相积分电路如图6所示。

在理想化条件下,输出电压uo等于uo(t)= —式中“—”号表示输出信号与输入信号反相。

uc(o)是t=0时刻电容C两端的电压值,即初始值。

图6 积分运算电路如果ui(t)是幅值为E的阶跃电压,并设uc(o)=0,则—即输出电压uo(t)随时间增长而线性下降。

显然时间常数R1C的数值大,达到给定的uo值所需的时间就长。

积分输出电压所能达到的最大值受集成运放最大输出范围的限制。

在进行积分运算之前,首先应对运放调零。

为了便于调节,将图中K1闭合,通过电阻R2的负反馈作用帮助实现调零。

但在完成调零后,应将K1打开,以免因R2的接入造成积分误差。

K2的设置一方面为积分电容放电提供通路,同时可实现积分电容初始电压uc(o)=0。

运放三种输入方式的基本运算电路及其设计方法【范本模板】

运放三种输入方式的基本运算电路及其设计方法【范本模板】

熟悉运放三种输入方式的基本运算电路及其设计方法ﻫ2、了解其主要特点,掌握运用虚短、虚断的概念分析各种运算电路的输出与输入的函数关系。

3、了解积分、微分电路的工作原理和输出与输入的函数关系.ﻫﻫ学习重点:应用虚短和虚断的概念分析运算电路。

ﻫﻫ学习难点:实际运算放大器的误差分析ﻫﻫ集成运放的线性工作区域前面讲到差放时,曾得出其传输特性如图,而集成运放的输入级为差放,因此其传输特性类似于差放.ﻫ当集成运放工作在线性区时,作为一个线性放大元件ﻫﻫ v o=A vo v id=Avo(v+-v-)ﻫﻫ通常A vo很大,为使其工作在线性区,大都引入深度的负反馈以减小运放的净输入,保证vo不超出线性范围。

ﻫ对于工作在线性区的理想运放有如下特点:ﻫ∵理想运放Avo=∞,则 v+-v—=v o/ Avo=0 v+=v—ﻫ∵理想运放R i=∞ i+=i—=0ﻫﻫ这恰好就是深度负反馈下的虚短概念。

ﻫﻫ已知运放F007工作在线性区,其A vo=100dB=105 ,若v o=10V,R i=2MΩ。

则v+—v—=?,i+=?,i-=?ﻫﻫ可以看出,运放的差动输入电压、电流都很小,与电路中其它电量相比可忽略不计。

这说明在工程应用上,把实际运放当成理想运放来分析是合理的 .返回第二节基本运算电路比例运算电路是一种最基本、最简单的运算电路,如图8。

1所示.后面几种运算电路都可在比例电路的基础上发展起来演变得到。

v o∝v i:v o=k v i(比例系数k即反馈电路增益 A vF,vo=A vF v i)输入信号的接法有三种:ﻫﻫ反相输入(电压并联负反馈)见图8.2ﻫﻫ同相输入(电压串联负反馈)见图8.3ﻫ差动输入(前两种方式的组合)ﻫ讨论:ﻫ1)各种比例电路的共同之处是:无一例外地引入了电压负反馈。

2)分析时都可利用"虚短”和”虚断”的结论: iI=0、vN=vp .见图8.4ﻫ3)A vF的正负号决定于输入v i接至何处:ﻫ接反相端:A vF<0ﻫ接同相端:A vF>0,见图8。

实验3.8 集成运算放大器基本运算电路

实验3.8  集成运算放大器基本运算电路

113实验3.8 集成运算放大器基本运算电路一、实验目的(1)掌握由集成运算放大器组成的比例、加法、减法和积分等模拟运算电路功能。

(2)熟悉运算放大器在模拟运算中的应用。

二、实验设备及材料函数信号发生器、双踪示波器、交流毫伏表、数字万用表、直流稳压电源、实验电路板。

三、实验原理集成运算放大器在线性应用方面,可组成比例、加法、减法、积分、微分、对数、指数等模拟运算电路。

1、反相比例运算电路反相比例运算电路如图3.8.1所示。

对于理想运放,该电路的输出电压与输入电压之间的关系为:i 1f o U R RU -= (3-8-1)为减小输入级偏置电流引起的运算误差,在同相输入端应接入平衡电阻R ´=R 1||R f 。

实验中采用10 k Ω和100 k Ω两个电阻并联。

2、同相比例运算电路图3.8.2是同相比例运算电路,它的输出电压与输入电压之间的关系为i 1f o )1(U R RU += (3-8-2)当R 1→∞时,U o =U i ,即为电压跟随器。

3、反相加法电路反相加法电路电路如图3.8.3所示,输出电压与输入电压之间的关系为)+(=B 2f A 1f o U R RU R R U - (3-8-3)R ´ = R 1 || R 2 || R f4、同相加法电路同相加法电路电路如图3.8.4所示,输出电压与输入电压之间的关系为:)+++(+=B211A 2123f 3o U R R R U R R R R R R U(3-8-4)图3.8.3 反相加法运算电路图3.8.2 同相比例运算电路图3.8.1 反相比例运算电路1145、减法运算电路(差动放大器)减法运算电路如图3.8.5所示,输出电压与输入电压之间的关系为:f f o A B 1121 ()()R R R U U U R R R R '=+'+-+当R 1 = R 2,R ´ = R f 时,图3.8.5电路为差动放大器,输出电压为:)(=A B 1f o U U R RU - (3-8-5)6、积分运算电路反相积分电路如图3.8.6所示,其中R f是为限制低频增益、减小失调电压的影响而增加的。

集成运放组成的基本运算电路实验报告

集成运放组成的基本运算电路实验报告

集成运放组成的基本运算电路实验报告【集成运放组成的基本运算电路实验报告】摘要:本实验采用集成运放组成的基本运算电路,通过实际搭建电路和数据测量,验证运算放大器的基本特性和运算电路的功能。

实验结果表明,基本运算电路能够实现加法、减法、放大、求反等基本运算功能,并具有稳定性和线性性。

1. 引言运算放大器是一种具有高增益、高输入阻抗和低输出阻抗的放大器,常用于运算电路和信号处理。

本实验采用TL081型集成运放,通过搭建基本运算电路,验证其基本特性和功能。

2. 实验仪器与材料2.1 实验仪器- 示波器- 信号发生器- 直流电源- 电阻箱- 万用表2.2 实验材料- TL081集成运放- 电阻、电容3. 实验过程3.1 实验电路搭建根据实验要求,搭建如下基本运算电路:- 加法电路- 减法电路- 放大电路- 反相电路3.2 电压测量使用万用表测量电路中各节点的电压值,记录在实验数据表格中。

3.3 实验数据处理根据测得的电压值,计算放大倍数、增益、输入输出电压关系等,绘制相应的实验曲线和图表。

4. 实验结果与分析根据实验数据处理的结果,得到以下实验结果和分析:4.1 加法电路通过测量加法电路中各节点的电压,计算得到输入电压与输出电压的关系,实验结果显示加法电路能够实现两个输入电压的相加功能,并对输入电压进行放大。

4.2 减法电路减法电路采用了反相输入,通过测量各节点电压,计算得到输入电压与输出电压的关系,实验结果表明减法电路能够实现两个输入电压的相减功能,并对输入电压进行放大。

4.3 放大电路通过测量放大电路中各节点的电压,计算得到输入电压与输出电压的关系,实验结果显示放大电路能够对输入电压进行放大,并具有一定的放大倍数。

4.4 反相电路反相电路采用了反相输入,通过测量各节点电压,计算得到输入电压与输出电压的关系,实验结果表明反相电路能够实现输入电压的反向输出,并对输入电压进行放大。

5. 结论与总结通过实际搭建基本运算电路并进行数据测量,本实验验证了集成运放的基本特性和运算电路的功能。

集成运放的基本运算电路实验报告

集成运放的基本运算电路实验报告

集成运放的基本运算电路实验报告实验报告:集成运放的基本运算电路实验目的:1. 了解集成运放的基本原理和性质;2. 学习基本运算电路的设计和实现方法;3. 实验验证运算放大器的基本运算电路,包括反相放大器、非反相放大器、求和放大器和差分放大器。

实验器材:1. 集成运放(可以使用LM741等常见型号);2. 电阻(包括不同阻值的固定电阻和可变电阻);3. 电源(正负双电源,供应电压根据集成运放的需求确定);4. 示波器;5. 信号源。

实验步骤:1. 反相放大器的设计和实现:a. 准备电阻并连接电路,将集成运放的输入接口连接到信号源,输出接口连接示波器;b. 调整可变电阻的阻值,观察输出信号的变化,记录并分析结果。

2. 非反相放大器的设计和实现:a. 准备电阻并连接电路,将集成运放的输入接口连接到信号源,输出接口连接示波器;b. 调整可变电阻的阻值,观察输出信号的变化,记录并分析结果。

3. 求和放大器的设计和实现:a. 准备电阻并连接电路,将集成运放的输入接口连接到不同信号源,输出接口连接示波器;b. 调整可变电阻的阻值,观察输出信号的变化,记录并分析结果。

4. 差分放大器的设计和实现:a. 准备电阻并连接电路,将集成运放的输入接口分别连接到两个信号源,输出接口连接示波器;b. 调整可变电阻的阻值,观察输出信号的变化,记录并分析结果。

实验结果:1. 反相放大器实验结果:记录输入和输出信号的幅度和相位差,并绘制输入-输出特性曲线。

2. 非反相放大器实验结果:记录输入和输出信号的幅度和相位差,并绘制输入-输出特性曲线。

3. 求和放大器实验结果:记录输入和输出信号的幅度和相位差,并绘制输入-输出特性曲线。

4. 差分放大器实验结果:记录输入和输出信号的幅度和相位差,并绘制输入-输出特性曲线。

实验分析:1. 通过对实验结果的观察和分析,可以验证集成运放的基本运算电路的原理和性质。

2. 在实验中可以调整电阻的数值来改变放大倍数或增益,验证运算放大器的增益特性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验2.3 集成运放的基本运算电路
一、实验目的
1、进一步熟悉THM-4模拟电路实验箱面板布局。

2、深入理解集成运放工作于线性区的条件与特点。

3、掌握用集成运算放大器组成电压跟随器、比例、求和电路的特点及性能。

4、学会上述电路的测试和分析方法。

二、实验原理
由于集成电路运放通常都具有极高的差模电压增益,欲使其稳定工作于线性状态下,必须加入深度负反馈,否则它必将工作于非线性状态。

图2.3.1(a)所示是在集成运放中引入了电压负反馈的电路,(b )则是其理想化后的闭环电压传输特性。

由此可见,假设A f =2,输入电压U i 不超出-5V —+5V 的范围,则运放将稳定工作于线性区A0B 内,当U i 超出线性范围时,集成运放将进入
饱和状态,输出保持为最大值不变(其大小决定于电源电压)。

对于这一点,有时容易忽视甚至误解,以为在集成运放中加入负反馈后,其输出就会随输入而无限增加,这是必须加以注意的。

图2.3.1
(b) 闭环电压传输特性
(a) 引入电压负反馈集成运放电路
U i
U o
对于理想化了的运放,当它工作于线性状态下时具有两个十分突出的特点。

其一是“虚断”,即I +=I -=0;其二是“虚短”,即U +=U -(在反相输入同相接地电路中因U +=0,故“虚短”又可引伸为“虚地”)。

不管电路结构形式如何复杂,均可根据这两个特点推导出输出与输入之间的函数关系。

例如在图2.3.1(a )中,由于I +=I -(I -=0),U -=0(虚地),故有
这就是反相放大器的闭环电压传输特性。

其中
称为闭环电压放大倍数。

实际运行与理想运放之间总存在一定的差异,故在实际使用中常采用一些措施以减小它的误差,提高其运算精度。

经常采用的一个措施是加入平衡电阻R ,以保证实际运放的反相与同相输入端对地的等效电阻相等,从而使其处于对称与平衡工作状态,减小由输入偏置电流引入的误差。

其次是防自激,运放在使用中有时会产生自激,此时即使U i =0,也会产生一定的交流输出、使运放无法正常工作。

消余自激的办法是在电源端加接去耦电容或增设电源滤波电路,同时应尽可能减小线路、元件间的分布电容,对于具有补偿引脚的集成运放器件,还可接入适当的补偿电容。

三、实验设备
1、模拟电路实验箱 一套
2、示波器 一台
3、数字万用表 一块
1
R R A f f -
=i
f U R R U =-=1
四、实验任务及步骤
本次实验所选用的集成运放为uA741,它是一种单运放,本实验采用 12V 电源。

1、熟悉THM-14模拟电路实验箱的面板。

2、电压跟随器
按实验电路图2.3.2连线,加入不同的直流信号电压U i 至正相输入端,用数
字电压表测出U o (加负载和不加负载),记入表2.3.1中。

3、反相比例放大器
首先测量所选的电阻值,然后按实验电路图2.3.3连线,加入不同的直流信
表2.3.1 U U o
图2.3.2 电压跟随器
U U o
图2.3.3 反相比例放大器
U o
图2.3.4 同相比例放大器
100K 100K
号电压U i 至反相输入端,用数字电压表测出U b1、U b2和U o ,记入表2.3.2中。

1f 4、同相比例放大器
首先测量所选的电阻值,然后按实验电路图2.3.4连线,加入不同的直流信号电压U i 至同相输入端,用数字电压表测出U b1、U b2和U o ,记入表2.3.3中。

表2.3.3 R 1= K Ω R f = K Ω
5、反相加法器
首先测量所选的电阻值,然后按实验电路图2.3.5连线,再按表2.3.4给定的U A 、U B 值,测量相应的输出电压U o 。

表2.3.4 R 1= K Ω R 2= K Ω R f = K Ω U U o
图2.3.5 反相求和放大器
10K
U
6、减法器(差动放大器)
首先测量所选的电阻值,然后按图3.3.6接线,再按表3.3.5给定的U A 、U B
值,测量相应的输出电压U o 。

7、多级运算放大器
首先测量所选的电阻值,然后按实验电路图2.3.7连线,再按表3.3.6给定的U A 、U B 值,测量相应的输出电压U 01和U 02。

表2.3.5 R 1= K Ω R 2= K Ω R f = K Ω
图2.3.6 减法器
U U o
U
U 图2.3.7 多级运算放大器电路图 10K
U
五、报告要求
1、按理想运放推导出实验电路中输入与输出的函数关系式,并根据选定的电路参数与给定的U i 计算出输出量U o ,再与实测结果比较,说明产生误差的原因。

2、实测结果,在同一座标纸上绘出反相与同相比例放大器的电压传输特性曲线。

3、总结电压跟随器的特点。

六、注意事项
1、用万用表测量电阻的阻值时,电阻不得带电(关断直流电压电源),且至少应有一端从电路中断开(即不能有回路)。

2、运放±12V 电源电压由模拟电路实验箱提供。

3、 自己检查运放好坏。

可以有多种方法来进行,若按图2.3.4正确连接,检查无误后(无断线)接通电源,一定会得出如下结果V i =V +=V -= V i ,否则就可以确定运放是坏的。

4、μA741集成运放管脚图及管脚说明
表2.3.6 R 1= K Ω R 2= K Ω R f1= K Ω R 3 K Ω R f2= K Ω
1— 调零端
5—调零端 2— 反相输入端 6—输出端 3— 同相输入端 7—正电源 4— 负电源
8—空脚
七、思考题
1、何谓“虚地”?它在什么条件下才能发生?“虚地”点可以直接接地吗?为什么?
2、在反相比例放大器实验中,若A
f =5,U
i
=4V,则输出电压U
o
为什么不等于
-20V?。

相关文档
最新文档