捷联惯导系统设计和分析
捷联惯导系统性能分析
捷联惯导系统性能分析摘要本文简要介绍捷联式惯性导航系统的各种分析技术,对捷联惯导系统算法验证的过程进行了讨论。
封闭形式分析仿真驱动程序,可以用来锻炼/验证捷联算法方程。
分析的精度捷联络筒,划船和分析方法位置融合算法(包括位置算法的折叠效果)函数的算法重复率和系统振动输入。
包括的是一个简化的分析模型,该模型描述可用于翻译系统到惯性传感器作为传感器组件的函数的输入的振动安装失衡。
捷联系统静态漂移和的旋转测试程序/方程描述捷联式传感器的校准系数确定。
该文件概述了卡尔曼滤波器的设计和协方差分析技术,并介绍了验证辅助捷联惯导系统的一般步骤卡尔曼滤波器的配置。
最后,论述了系统集成测试的一般过程验证所有的硬件,软件,系统功能操作进行正确和准确和界面元素。
坐标框架在本文中,使用一个坐标系是一个分析性的抽象定义的三个相互垂直单位矢量。
一个坐标系可以看作一组三个相互垂直的线(轴)通过一个共同的点(原点)与来自沿着坐标轴的原点上的单位向量。
在本文中,每个坐标系的原点的物理位置是任意的。
主坐标帧利用有以下几种:B帧=“身体”捷联式惯性传感器轴平行的坐标系。
N帧=“导航”的坐标系在当地具有Z轴平行地垂直向上定位。
A“漂移方位”N帧有水平的X,Y轴旋转相对于非旋转的惯性空间在本地地球的速度的垂直分量绕Z轴。
“自由方位”N帧的转动惯量为零率X,Y轴的Z轴周围。
“地理”N帧的X,Y轴绕Z轴旋转,以维持当地的真北Y轴平行。
E型=“地球”的引用与固定角几何相对于地球坐标系。
I帧=“惯性”非旋转坐标系。
符号V =向量没有特定的坐标系指定。
向量是一个有长度的参数和方向。
纸中使用的载体,被分类为“免费的矢量”,因此,没有坐标框架中,他们分析描述的理想地点。
V A =列矩阵的元素等于V的坐标系A轴的投影。
“投影V对每个Frame A轴等于与坐标框架的V的点积A轴的单位向量。
V A×=斜对称的(或跨产品)的形式表示的正方形矩阵的V A0 - VZA VYAVZA 0 - VXA- VYA VXA 0VXA,VYA,VZA是V A的组成部分。
捷联惯性组合导航系统的工程设计
速度误差补偿后送入计算机进行实时计算 , 以得到 可 将 比力从载体坐标系转换到导航 坐标系的姿态矩 阵。 通 过 姿态 矩 阵 可 以确 定 载 体 的 姿 态 信 息 。姿 态 矩 阵 常用的即时修正方法有欧拉角法、 向余 弦法和 四元 方
模块等。双 C U系统使 P 14可以专注于解算 , P C0 保证 了 系统 的实 时性 。
1 捷联 惯性组合导航 系统总体 方案
捷联惯导系统是将加速 度计 和陀螺仪沿载体 坐 标 系安装 , 在进行 导航 参数计算 时, 需要是导航 坐标
系 中 的量 。因 此 应 先 将 惯 性 器 件 测 得 的 比力 和 角 加
基于 P 1 和 可编程逻辑阵列器件协 同合作 的导航 计算机 系统 。系统主要 包括数据 采集模 块和数据 解算模 块两部 分, C0 4
给 出了 P 1 与 F G C0 4 P A的片 内接收模块进行通信 的设计方案 。为提 高 F G P A与 工控机 之 间的数 据传输速度 ,设 计 了通 过共 享双端 1 R M 的方 式,实现 了工控机 与 F G 7 : A P A之 间的 高速 数据 交换 。从硬件 结构 和软件设 计 方面说 明 了 系统各
Wu J n e ,L A u w i I NG a c a Y n ho
( o eeo uo a o ,H ri nier gU i r t,H ri 50 1 hn ) C l g f t t n ab E g e n nv sy ab 10 0 ,C ia l A m i n n i ei n
- J
平 昴 ∞ 苍
期
E e t ncS i& T c . Jn 1 lcr i c. o e h / a . 5.2 1 02
捷联惯性导航系统的解算方法课件
02
CATALOGUE
捷联惯性导航系统组成及工作 原理
主要组成部分介绍
惯性测量单元
包括加速度计和陀螺仪,用于测量载体在三个正交轴上的加速度 和角速度。
导航计算机
用于处理惯性测量单元的测量数据,解算出载体的姿态、速度和 位置信息。
控制与显示单元
用于实现人机交互,包括设置导航参数、显示导航信息等。
工作原理简述
学生自我评价报告
知识掌握情况
学生对捷联惯性导航系统的基本原理、解算 方法和实现技术有了深入的理解和掌握。
实践能力提升
通过实验和仿真,学生的动手实践能力得到了提升 ,能够独立完成相关的实验和仿真验证。
团队协作能力
在课程项目中,学生之间的团队协作能力得 到了锻炼和提升,能够相互协作完成项目任 务。
对未来发展趋势的预测和建议
捷联惯性导航系统的解算 方法课件
CATALOGUE
目 录
• 捷联惯性导航系统概述 • 捷联惯性导航系统组成及工作原理 • 捷联惯性导航系统解算方法 • 误差分析及补偿策略 • 实验验证与结果展示 • 总结与展望
01
CATALOGUE
捷联惯性导航系统概述
定义与基本原理
定义
捷联惯性导航系统是一种基于惯性测量元件(加速度计和陀螺仪)来测量载体(如飞机、导弹等)的加速度和角 速度,并通过积分运算得到载体位置、速度和姿态信息的自主导航系统。
01
高精度、高可靠性
02
多传感器融合技术
随着科技的发展和应用需求的提高, 捷联惯性导航系统需要进一步提高精 度和可靠性,以满足更高层次的应用 需求。
为了克服单一传感器的局限性,可以 采用多传感器融合技术,将捷联惯性 导航系统与其他传感器进行融合,提 高导航系统的性能和鲁棒性。
卫星导航捷联惯性导航系统的建模与设计
卫星导航捷联惯性导航系统的建模与设计导航系统在现代社会中起着不可或缺的作用。
随着卫星导航技术的快速发展,卫星导航捷联惯性导航系统(SGINS)成为一种高精度、高可靠性的导航解决方案。
本文将探讨SGINS的建模与设计方法。
一、SGINS的基本原理卫星导航捷联惯性导航系统是将全球定位系统(GPS)和惯性导航系统(INS)相互融合的一种导航方案。
GPS通过接收卫星发射的定位信号来确定位置,但其精度受环境因素和信号传播延迟的影响。
而INS则通过测量加速度和角速度来估计位置和姿态,但由于积分误差的累积,导航精度会随时间增长而降低。
SGINS利用GPS和INS互补的性质,实现了位置和姿态的精确估计。
二、SGINS的建模方法1. 系统状态估计SGINS的建模首先需要考虑系统状态的估计问题。
系统状态通常包括飞行器的位置、速度和姿态等信息。
可以使用卡尔曼滤波器来处理系统状态的估计问题,通过状态观测和预测来优化估计结果。
同时,还需要根据系统的实际情况选择合适的状态表示和测量模型,以提高估计的准确性。
2. 误差建模SGINS中的误差主要来自于GPS和INS的测量误差,需要进行误差建模和补偿。
对于GPS测量误差,可以通过统计分析和模型辨识来进行建模。
INS测量误差主要包括随机误差和系统误差,可以通过校准和校正来减小。
此外,还需要考虑动态误差和环境因素对误差的影响,例如加速度噪声、温度变化等。
3. 系统动力学建模SGINS的建模还需要考虑系统的动力学特性。
对于飞行器的运动状态,可以利用运动学和动力学方程来描述。
此外,还需要考虑外部扰动和不确定性对系统动力学的影响,以提高系统的稳定性和鲁棒性。
三、SGINS的设计方法1. 系统硬件设计SGINS的设计首先需要选取合适的硬件组件,包括GPS接收器、惯性传感器和计算单元等。
对于GPS接收器,可以选择多系统接收器,以提高定位精度和可用性。
对于惯性传感器,可以选择高精度的加速度计和陀螺仪,以减小测量误差。
捷联惯导系统极区导航算法优化设计及误差特性分析
捷联惯导系统极区导航算法优化设计及误差特性分析张海峰;张礼伟;王兴岭;李琳;仲岩【摘要】采用格网坐标系下的力学编排方案能够有效解决常规惯导系统力学编排方案在极区航向误差急剧发散且无法实现定位定向的难题.格网坐标系力学编排方案可以直接获得格网航向,以及地心地固坐标系下的位置坐标,且输出航向精度及定位精度不随纬度的增高而变差.通过深入研究格网坐标系力学编排方案的误差传播规律,详细分析了高纬度下格网航向保持高精度输出的数学机理.针对格网坐标系力学编排方案在极点附近存在计算奇异值的问题,提出了一种通过格网坐标系和地球坐标系间的位置方向余弦矩阵更新解算替代由地心地固位置坐标求解经纬度三角函数值的优化算法,实现了真正意义上的格网坐标系力学编排方案在极区的“无死角”导航能力.仿真分析了载体沿经线穿越极点运动时的算法性能,并与固定指北力学编排方案进行了比较,结果表明,相比于传统导航方案,格网系下输出的航向误差不随纬度升高而发散,导航精度与低纬度区域导航能力相当.【期刊名称】《中国惯性技术学报》【年(卷),期】2015(023)006【总页数】6页(P701-706)【关键词】极区导航;格网坐标系;误差特性;算法优化【作者】张海峰;张礼伟;王兴岭;李琳;仲岩【作者单位】天津航海仪器研究所,天津300131;天津航海仪器研究所,天津300131;天津航海仪器研究所,天津300131;天津航海仪器研究所,天津300131;天津航海仪器研究所,天津300131【正文语种】中文【中图分类】U666.1随着航空、航海事业的蓬勃发展以及国际政治经济的不断变化,对海军作战舰艇的全球作战能力提出了更高的要求。
由于极区地理经线快速收敛,导致传统地理导航坐标系失效。
虽然自由和游移方位惯导可在极区完成姿态方向余弦矩阵和位置方向余弦矩阵的解算,但从矩阵中提取航向信息和经度信息时存在奇异值。
采用格网线取代传统的地理经纬线对地表重新划分是解决该问题的有效手段之一。
《2024年捷联惯性导航系统关键技术研究》范文
《捷联惯性导航系统关键技术研究》篇一一、引言捷联惯性导航系统(SINS)是一种利用惯性测量单元(IMU)来获取和解析导航信息的先进技术。
它以其高精度、高动态性以及全自主工作的特性,在航空、航天、航海、车辆导航等领域中发挥着重要的作用。
本文将深入探讨捷联惯性导航系统的关键技术研究,从系统组成、工作原理、技术难点到解决方案等方面进行详细阐述。
二、系统组成与工作原理捷联惯性导航系统主要由惯性测量单元(IMU)、导航计算机、算法处理软件等部分组成。
其中,IMU是系统的核心,它包括加速度计和陀螺仪,用于实时测量载体在三维空间中的运动状态。
导航计算机则负责采集IMU的数据,通过算法处理软件进行数据解析和处理,最终输出导航信息。
捷联惯性导航系统的工作原理主要依赖于牛顿第二定律和角动量守恒定律。
通过测量载体的加速度和角速度,系统可以推算出载体的运动轨迹和姿态信息,从而实现导航定位。
三、关键技术研究1. 高精度IMU技术研究IMU的精度直接影响到整个系统的导航精度,因此提高IMU 的精度是捷联惯性导航系统的关键技术之一。
当前,研究者们正在通过优化加速度计和陀螺仪的设计和制造工艺,提高其测量精度和稳定性。
此外,采用先进的滤波算法和校准技术,也可以有效提高IMU的精度。
2. 算法优化技术研究算法是捷联惯性导航系统的核心,其优化程度直接影响到系统的性能。
目前,研究者们正在致力于开发更加高效的算法,以实现更快的数据处理速度和更高的导航精度。
同时,针对不同应用场景,如高动态、强干扰等环境,研究者们也在进行相应的算法优化工作。
3. 系统误差校正技术研究由于惯性器件的误差积累和环境干扰等因素的影响,捷联惯性导航系统在长时间工作时会产生较大的误差。
因此,系统误差校正是捷联惯性导航系统的另一个关键技术。
研究者们正在通过建立更加精确的误差模型,采用先进的校正算法和技术手段,对系统误差进行实时校正,以保证系统的导航精度和稳定性。
四、结论捷联惯性导航系统是一种重要的导航技术,具有广泛的应用前景。
捷联惯导系统设计和分析
1 概述
本文将简略讨论捷联惯导系统设计。 尽管不同的应用中所采用的具体方法和设计重点常 常很不相同,但对任何捷联系统,一般都需要下面的设计步骤。 对于应用于战术导弹上的捷联惯导系统, 应重点评估和分析惯导系统在动态飞行条件下 的性能。惯导系统将受飞行机动、大加速度和恶劣的振动环境的影响,所有这些都将大大影 响惯性器件的选择以及它们在飞行中能够提供的测量精度。 另外, 从运动平台上发射的导弹 也会影响导弹反射前进行的导航初始对准精度。因此,在整个系统设计过程中,对影响系统 性能的所有可能的误差源之间进行合理的平衡折中非常重要。 作为系统设计过程的一部分,必须首先考虑选择对应用最合适的系统机械编排。然后, 通过误差预估分析评估可接受的对准误差、 惯性器件误差和导航解算误差的大小。 误差预估 要求的评估可在不同的水平上进行, 从相对简单的单通道误差模型到应用仿真进行更严格的 分析, 其中后者可以考虑到动态运动的影响进而进行更精确的评估。 对于此处讨论的战术导 弹应用,动态影响较大,简化的计算很难适用,因此,需采用更复杂的计算,或更常用的误 差预估分配仿真。一般地,在确定既实际又可行的一组误差参数值之前,需要误差预估分析 过程的几次迭代。 在确定了惯性器件工作特性和对准精度以及任何可能潜在的计算困难后, 就可以开始确 定适用的惯性器件以及导航解算算法。 在这个过程中, 可能需要根据惯性器件的类型对误差 预估计算进行更多的迭代,以得到更满意的设计。
以损失一个参数为代价而放宽另一些参数对误差预估的影响的做法, 其作用通常相当有 限。例如,在基于常规陀螺的设计中,固定零偏项对误差预估的影响允许增加一些,而将与
g 有关的零偏调整到在实际应用中更容易实现的水平。分析表明,在这类的应用中系统性能
对与 g 有关的零偏系数特别敏感。同时还可见,与陀螺仪和加速度计有关的某些交叉耦合项 需要为小量,以便达到所需的性能。 当然无论什么时候都应确保任何一项误差的影响都不会超过总误差预估。 通常需要对参 数选择过程进行几次迭代, 才能获得一组合理的设置值。 表 2 给出了一组误差参数值以及它 们各自对总位置和姿态误差预估的影响。 表 2 清楚地表明, 主要的误差源是姿态对准误差以及某些与 g 有关的陀螺零偏和加速度 计交叉耦合,在导弹存在纵向加速度时后两者会引起较大的位置误差。此外,在导弹飞行的 助推阶段有俯仰转弯机动时,陀螺交叉耦合误差对总误差预估也产生显著影响。 利用表 2 给出的对准误差和惯性器件误差, 沿航迹的位置误差、 横滚误差和速度误差 (在 该表没有给出)可计算: 1) 沿航迹位置误差 RSS 41m ; 2) 横滚误差 RSS 0.3 ; 3) 沿航迹速度误差 RSS 0.7 m s ; 4) 横向速度误差 RSS 3.7 m s ; 5) 垂直速度误差 RSS 3.8 m s 。 由上述误差可知,每项都在技术指标要求规定的范围内。 确定了惯性器件的性能指标之后, 重要的是评估在一组典型弹道上的系统性能。 许多误 差对总导航性能的影响, 常常与飞行期间系统承受的精确运动密切相关。 为了更好地设计系 统,在设计阶段可能需要进一步细化某些误差参数值。 在按上述的过程设计时,设计可能希望把某些误差合并,尤其是那些传播方式类似,对 惯导系统性能的影响类似的误差。例如: 1) 陀螺仪非等弹性:当存在周期运动时,由于轴承变形不相等,在常规陀螺仪输出中会造 成零偏。 2) 加速度计振摆误差:当存在振动时,在摆式加速度计输出中会存在附加的零偏。 3) 圆锥和划桨运动: 如果惯性器件处于圆锥和划桨运动状态, 会分别出现附加的角速率和 线加速度零偏。 为了考虑这些影响,在误差预估分析中所采用的陀螺仪和加速度计零偏可能需要增加。
§3.9~3.10捷联式惯导系统
§3.9捷联式惯导系统概论一、概述“捷联”(strap down)这一术语的英文原意就是“捆绑”的意思,因此,所谓捷联系统就是将惯性测量装置的敏感器(陀螺仪与加速度计)直接捆绑在运载体上,从而可实现运动对象的自主导航目的。
平台式惯性导航系统虽然已经达到很高水平,但其造价高、使用十分昂贵。
计算机虽为数字式,但框架伺服系统一般仅采用模拟线路,所以相对来讲,可靠性差一些。
就在平台式惯性导航系统迅速发展的同时,捷联式惯性导航系统也处于研制过程中。
捷联式惯导方案是1956年提出的,当时由于没有满足捷联式系统历要求的惯性元件和计算机,因而没有被采用。
而平台式系统则不断改进、不断完善,达到了相当高的精度,满足了大多数任务的要求。
但是在可靠性和成本方面平台式系统都暴露出一系列严重问题。
与此同时计算技术取得了惊人的进展,克服了捷联式系统发展的一个主要障碍。
捷联式系统的高可靠性和低成本促使人们进—步对它进行新的技术探索。
上世纪六十年代初,美国联合飞机公司首先研制成功了第一个捷联式系统,于1969年成功地应用在阿波罗登月任务中。
捷联式惯性导航系统是将惯性敏感器(陀螺和加速度计)直接安装在运载体上,不再需要物理实现稳定平台的惯性导航系统。
陀螺仪作为角速率传感器而不是作为角位移传感器;加速度计的输入轴不是保持在已知确定方向上,加速度计测量值是运载体瞬时运动方向的加速度值。
通过计算机内的姿态矩阵实时计算而得到一个“数学解析平台”,它同样可以起到机电结合的稳定平台所提供的在惯性空间始终保持所要求的姿态作用。
捷联式惯性导航系统有以下几个主要优点:(1) 惯性敏感器便于安装、维修和更换。
(2) 惯性敏感器可以直接给出载体坐标系轴向的线加速度、线速度、供给载体稳定控制系统。
(3) 便于将惯性敏感器重复布置,从而易在惯性敏感器的级别上实现冗余技术,这对提高系统的性能和可靠性十分有利。
(4) 由于去掉了物理实现的平台,一则消除了稳定平台稳定过程中的各种误差;二则由于不存在机电结合的平台装置,使整个系统可以做得小而轻,并易于维护。
捷联惯导系统仿真器的设计与实现
随着 惯性 导航 技 术 和 计算 机 技 术 的发展 , 联 捷
惯 导系统 已成为 当前 惯 性 导 航 系统 发 展 的趋势 , 并
仿 真 系统 的 正确性 和精 度 。
设 定姿 态 角随 时 问变 化 的 函数 , 进 一 步 得 到 可 姿态 角一 阶导数 随 时 间变 化 的 函数 , 由姿 态 角 和 再 姿态 角 的一 阶 导 数 算 出载 体 下 相 对 于 地 理 系 的 转
( 泗洪 县建设局 测绘 队 , 江苏 宿迁 2 3 0 , 江苏省测绘工程 院, 2 90 。 江苏 南京 2 0 1 ) 10 3 摘 要 本 文研 究了捷联惯性导航 系统的仿 真原 理, 然后 以 Matb为平 台, 对捷 联惯 性导航 系统 仿 真的基 础 t a 在
上, 分析 了在纯捷 联惯导情况下导航 系统的导航精度 。实验结果表明捷联惯性导航 系统 的导航精度 随时 间的积 累
惯 性 器 件 由陀 螺 仪 和 加 速 度 计 两 部 分 组 成 。 陀螺 仪是 敏感载 体 角 运 动 的 元 件 , 由于 陀 螺仪 本 身 存在 误差 , 因此 陀螺 仪 的输 出为 :
蕊 一诜 + () 3
由于条 件 限制 , 法 得 到 实 际 飞 行 轨 迹 数 据 , 无 而捷联 惯 导 仿 真 系 统 测 试 验 证 又 必 须 要 有 飞行 轨 迹 数据 。为此 , 们 采 用 一 种 纯数 学 方 法 产 生 捷联 我 惯 导仿 真 系统测 试 用 飞行 轨 迹 数 据[ ] 4 。测 试 用 飞
对 惯 导系统 的仿真是 非 常有必 要 的 。
动角 速率 在 载 体 系 中 的 投 影 。姿 态 角 随 时 间 变 化
《2024年捷联惯性导航系统关键技术研究》范文
《捷联惯性导航系统关键技术研究》篇一一、引言随着科技的进步,导航系统在众多领域如航空、航天、机器人等领域扮演着至关重要的角色。
其中,捷联惯性导航系统(Inertial Navigation System,简称INS)因其具有独立性强、实时性高和隐蔽性好的特点,成为众多导航系统中重要的技术手段。
本文旨在探讨捷联惯性导航系统的关键技术及其发展趋势。
二、捷联惯性导航系统概述捷联惯性导航系统基于惯性传感器(如陀螺仪和加速度计)的测量原理,将物理信息转化为电信号,以实现对载体姿态、速度和位置的实时解算。
相较于传统的平台式惯性导航系统,捷联式结构更加简单、体积更小、可靠性更高。
三、关键技术研究1. 惯性传感器技术惯性传感器是捷联惯性导航系统的核心部件,其性能直接决定了系统的精度和稳定性。
目前,高精度、低噪声的陀螺仪和加速度计是研究的重点。
此外,微机电系统(MEMS)技术的发展为惯性传感器的小型化、低成本化提供了可能。
2. 算法研究算法是捷联惯性导航系统的灵魂,其性能直接影响到系统的解算精度和实时性。
目前,主要的算法包括姿态解算算法、速度和位置解算算法、误差补偿算法等。
其中,基于卡尔曼滤波的姿态和位置解算算法是研究的热点。
此外,随着人工智能技术的发展,基于深度学习、神经网络的算法也在逐渐应用于捷联惯性导航系统中。
3. 系统集成与优化系统集成与优化是提高捷联惯性导航系统性能的重要手段。
这包括硬件电路的优化设计、软件算法的优化以及系统整体性能的评估与优化等。
通过优化设计,可以在保证系统性能的前提下,减小系统的体积和成本,提高系统的可靠性。
四、发展趋势1. 高精度化:随着科技的进步,对导航系统的精度要求越来越高。
因此,进一步提高惯性传感器的精度、优化算法、减少误差等是未来的重要研究方向。
2. 智能化:随着人工智能技术的发展,将人工智能技术应用于捷联惯性导航系统中,提高系统的自主性、智能性和适应性是未来的重要趋势。
3. 微型化:随着微机电系统(MEMS)技术的发展,捷联惯性导航系统的微型化、低成本化将成为可能。
《2024年捷联惯性导航系统关键技术研究》范文
《捷联惯性导航系统关键技术研究》篇一一、引言捷联惯性导航系统(SINS)是现代导航技术的重要组成部分,其核心利用惯性测量单元(IMU)来感知和测量载体的运动状态,从而实现对载体的导航和定位。
随着科技的不断进步,SINS在军事、民用等领域的应用越来越广泛,对其关键技术的研究也日益深入。
本文将重点探讨捷联惯性导航系统的关键技术研究,以期为相关领域的研究和应用提供参考。
二、SINS的基本原理与构成SINS主要由惯性测量单元(IMU)、导航算法和数据处理模块等部分构成。
其中,IMU是SINS的核心部件,包括加速度计和陀螺仪等传感器,用于测量载体的运动状态。
导航算法则根据IMU测量的数据,通过一定的算法计算出载体的姿态、速度和位置等信息。
数据处理模块则负责对导航算法输出的数据进行处理和优化,以提高导航精度和稳定性。
三、SINS的关键技术研究1. IMU技术研究IMU是SINS的核心部件,其性能直接影响到SINS的导航精度和稳定性。
因此,IMU技术的研究是SINS关键技术研究的重点。
目前,IMU技术的研究主要集中在提高传感器的精度、降低噪声、增强抗干扰能力等方面。
此外,多传感器融合技术也是IMU技术研究的热点,通过将多种传感器数据进行融合,可以提高SINS的导航精度和稳定性。
2. 导航算法研究导航算法是SINS的核心,其性能直接影响到SINS的导航精度和响应速度。
目前,常用的SINS导航算法包括经典的最小二乘法、卡尔曼滤波算法等。
然而,这些算法在复杂环境下的性能受到限制。
因此,研究新型的、适用于复杂环境的SINS导航算法具有重要意义。
例如,基于神经网络的导航算法、基于深度学习的导航算法等都是当前研究的热点。
3. 数据处理与优化技术研究数据处理与优化技术是提高SINS性能的重要手段。
通过对导航算法输出的数据进行处理和优化,可以提高SINS的导航精度和稳定性。
目前,常用的数据处理与优化技术包括数据滤波、数据融合、误差补偿等。
6.7 捷联式惯性导航系统
rx0 cos H ry0 sin H rx0 sin H ry0 cos H
rz1 rz0
cos H sin H 0
TheFirstTurn : sin H cos H 0
0
0 1
rx0
H x0
x1( x2)
ry1
O
ry0
rx1
θ y1
3
捷联式惯性导航系统
捷联姿态矩阵
地理坐标系 ox0y0z0 与载体坐标系 oxyz 之间的关系,可以用三个转动欧 拉角来表示:
z
z2
Ф
z0(z1)
θ
o
ox0 y0z0
绕oz0
H
ox1 y1z1
绕ox1
ox2 y2z2
绕oy2
oxyz
H
x0
Ф
x1(x2) x
y2(y)
θ y1
H
y0
捷联式惯性导航系统
sin cos
cos sin H cos cos H
sin
sin cos H cos sin sin H
sin
sin
H
cos
sin
cos
H
cos cos
作用1:姿态和航向的求解
z
z2
Ф
z0(z1)
θ
tg 1
T31 T33
sin
sin
H
cos
sin
cos
H
cos cos
• 纵摇角—— θ • 横摇角—— • 航向角—— H
捷联惯导系统的算法研究及其仿真实现(捷联惯导系统的发展趋势 初始对准技术的发展与研究现状)
捷联惯导系统的算法研究及其仿真实现Study and Simulation of Strapdown Inertial Navigation System1.1.3捷联惯导系统的发展趋势捷联式惯导系统是从20世纪60年代初开始发展起来的。
20世纪70年代以来,作为捷联系统的核心部件—惯性测量装置和计算机技术有了很大发展,而电子技术、计算机技术、现代控制理论的不断进步,为捷联惯性技术的发展创造了有利条件。
在硬件方面,新一代惯性器件如激光陀螺、光纤陀螺的成功研制,为捷联惯导的飞速发展打下了物质基础。
进入20世纪80-90年代,在航天飞机、宇宙飞船、卫星等民用领域及各种战略、战术导弹、军用飞机、反潜武器、作战舰艇等军事领域开始采用动力调谐式陀螺、激光陀螺和光纤式陀螺的捷联惯导系统。
其中激光陀螺和光纤式陀螺是捷联惯导系统的理想器件。
激光陀螺具有角速率动态范围宽、对加速度和震动不敏感、不需温控、启动时间特别短和可靠性高等优点。
激光陀螺惯导系统己在波音757/767、A310民机以及F-20战斗机上试用,精度达到 1.85km/h 的量级。
20世纪90年代,激光陀螺惯导系统估计占到全部惯导系统的一半以上,其价格与普通惯导系统差不多,但由于增加了平均故障间隔时间,其寿命期费用只有普通惯导系统的15%-20%。
光纤陀螺实际上是激光陀螺中的一种,其原理与环型激光陀螺相同,它克服了由激光陀螺闭锁带来的负效应,具有检测灵敏度和分辨率极高、启动时间极短、动态范围极宽、结构简单、零部件少体积小、造价低、可靠性高等优点。
采用光纤陀螺的捷联航姿系统已用于战斗机的机载武器系统及波音777飞机中。
波音777由于采用了光纤陀螺的捷联惯导系统,其平均故障间隔时间可高达20000h。
采用光纤陀螺的捷联惯导系统被认为是一种极有发展前途的导航系统。
而随着航空航天技术的发展及新型惯性器件关键技术的陆续突破,捷联惯导系统的可靠性、精度将会更高。
捷联惯导算法及车载组合导航系统研究
2、GPS和捷联惯导组合导航系统具有互补性,可以实现优势互补,提高导航 系统的性能。
然而,本研究仍存在一些不足之处。首先,对于GPS和捷联惯导组合导航系 统的具体实现方法,尚未进行详细探讨。未来研究可以进一步深入研究系统的硬 件实现方法、软件算法等具体技术细节。其次,虽然本次演示对GPS和捷联惯导 组合导航系统的应用
参考内容
引言
随着科技的不断发展,导航系统在军事、民用等领域的应用越来越广泛。其 中,全球定位系统(GPS)和捷联惯导组合导航系统受到了高度重视。本次演示 旨在分析GPS和捷联惯导组合导航系统的研究现状、方法、结果和展望,以期为 相关领域的研究和实践提供参考。
研究方法
本次演示采用文献综述和理论分析相结合的方法,对GPS和捷联惯导组合导 航系统进行深入研究。首先,收集并阅读相关文献,了解GPS和捷联惯导组合导 航系统的发展历程、研究现状和应用场景。其次,从系统组成、工作原理、性能 特点等方面,对GPS和捷联惯导组合导航系统进行理论分析。
结论
本次演示对捷联惯导算法和车载组合导航系统进行了详细的研究和介绍。捷 联惯导算法作为一种重要的惯性导航算法,具有广泛的应用前景。车载组合导航 系统则是智能驾驶领域的一种重要技术,可以提高导航精度和可靠性。随着科技 的不断进步,
对于捷联惯导算法和车载组合导航系统的研究将会不断深入,出现更多的研 究成果和应用实例。未来的研究方向可以包括进一步优化捷联惯导算法以提高其 精度和稳定性,以及研究更为复杂的车载组合导航系统以适应更加复杂的道路环 境和驾驶任务。
捷联惯导算法及车载组合导航 系统研究
01 引言
目录
02 捷联惯导算法研究
03
车载组合导航系统研 究
04 结论
05 参考内容
捷联惯导系统
(3)无框架锁定系统,允许全方位(全姿态)工作。
(4)除能提供平台式系统所能提供的所有参数外,还可以提供沿弹 体三个轴的速度和加速度信息。
缺点:
但是,由于在捷联惯导系统中,惯性元件与载体直接固连, 其工作环境恶劣,对惯性元件及机(弹)载计算机等部件也 提出了较高的要求。
(1)要求加速度表在宽动态范围内具有高性能、高可靠性, 且能数字输出。
1.4捷联惯导系统的精度
惯性导航和制导系统对陀螺仪和加速度计的精度要求极高, 如加速度计分辨率通常为0.0001g~0.00001g,陀螺随机漂 移率为0.01°/小时甚至更低,并且要求其有大的测量范围, 如军用飞机所要求的测速范围应达10的9次方(0.01°/小 时~400°/秒)。因此,陀螺仪和加速度计属于精密仪表范 畴。
“数学解析平台”的原理简图
捷联惯导优点:
捷联惯导系统和平台式惯导系统一样,能精确提供载体的姿态、地 速、经纬度等导航参数。但平台式惯导系统结构较复杂、可靠性较 低、故障间隔时间较短、造价较高,为可靠起见,通常在一个运载 体上要配用两套惯导装臵,这就增加了维修和购臵费用。在捷联惯 导系统中,由于计算机中存储的方向余弦解析参考系取代了平台系 统以物理形式实现的参考系,因此,捷联惯导系统有以下独特优点。 (1)去掉了复杂的平台机械系统,系统结构极为简单,减小了系统 的体积和重量,同时降低了成本,简化了维修,提高了可靠性。 (2)无常用的机械平台,缩短了整个系统的启动准备时间,也消除 了与平台系统有关的误差。
为测量基准,它不再采用机电平台,惯性平台的功能由计算 机完成,即在计算机内建立一个数学平台取代机电平台的功 能,其飞行器姿态数据通过计算机计算得到,故有时也称其 为"数学平台",这是捷联惯导系统区别于平台式惯导系统的 根本点。由于惯性元器件有固定漂移率,会造成导航误差, 因此,远程导弹、飞机等武器平台通常采用指令、GPS或其 组合等方式对惯导进行定时修正,以获取持续准确的位臵参 数。如采用指令+捷联式惯导、GPS+惯导(GPS/INS)。美国 的战斧巡航导弹采用了GPS+INS +地形匹配组合导航。
《2024年捷联惯性导航系统关键技术研究》范文
《捷联惯性导航系统关键技术研究》篇一一、引言捷联惯性导航系统(SINS)是一种基于惯性测量单元(IMU)的导航技术,其通过测量物体的加速度和角速度信息,结合数字积分算法,实现对物体运动状态的精确估计和导航。
SINS具有高精度、抗干扰能力强、无需外部辅助等优点,在军事、航空、航天、航海等领域具有广泛的应用前景。
本文将重点研究捷联惯性导航系统的关键技术,包括传感器技术、算法技术以及系统集成技术。
二、传感器技术研究1. 陀螺仪技术陀螺仪是SINS的核心部件之一,其性能直接影响到整个系统的精度和稳定性。
目前,常用的陀螺仪包括机械陀螺、光学陀螺和微机电系统(MEMS)陀螺等。
其中,MEMS陀螺因其体积小、重量轻、成本低等优点,在SINS中得到了广泛应用。
然而,MEMS陀螺的精度和稳定性仍需进一步提高。
因此,研究高性能的MEMS陀螺制造技术和材料,以及优化其工作原理和结构,是提高SINS性能的关键。
2. 加速度计技术加速度计是SINS的另一个重要传感器,其测量精度和稳定性对SINS的导航性能有着重要影响。
目前,常用的加速度计包括压阻式、电容式和压电式等。
为了提高加速度计的测量精度和稳定性,需要研究新型的加速度计制造技术和材料,以及优化其电路设计和信号处理算法。
三、算法技术研究1. 姿态解算算法姿态解算算法是SINS的核心算法之一,其目的是通过陀螺仪和加速度计的测量数据,计算出物体的姿态信息。
目前常用的姿态解算算法包括欧拉角法、四元数法和卡尔曼滤波法等。
为了提高算法的精度和实时性,需要研究新型的姿态解算算法,如基于机器学习的姿态解算方法等。
2. 误差补偿算法由于传感器自身的误差和外部环境的影响,SINS在运行过程中会产生误差。
为了减小误差对系统性能的影响,需要研究误差补偿算法。
目前常用的误差补偿算法包括基于模型的方法和基于数据的自适应补偿方法等。
研究新型的误差补偿算法和技术手段是提高SINS性能的重要方向。
四、系统集成技术研究1. 数据融合技术数据融合技术是将来自不同传感器的数据信息融合起来,以提高导航系统的整体性能。
惯导原理捷联惯导基本算法与误差课件
由于陀螺仪和加速度计随时间变 化的稳定性问题导致的偏差,这 种误差通常需要通过实时滤波和 数据融合技术来减小。
05
提高捷联惯性导航精度的策
略
采用高性能的惯性传感器
陀螺仪
陀螺仪是惯性导航系统中的重要组成部分,能够测量载体在三个轴向的角速度。 采用高性能的陀螺仪可以提高捷联惯性导航系统的精度。
粒子滤波是一种基于贝叶斯推断的非线性滤波算法,能够处理非线性、非高斯系统。采用粒子滤波可以提高捷联 惯性导航系统在复杂环境下的性能。
利用外部信息进行修正
GPS修正
全球定位系统(GPS)是一种高精度的导航系统,能够提供准确的位置和时间信息。利用GPS信息对 捷联惯性导航系统进行修正可以提高其精度。
无线通信修正
利用无线通信网络,接收外部信息对捷联惯性导航系统进行修正可以提高其精度。例如,接收差分 GPS信号、无线电导航信号等。
06
捷联惯性导航发展趋势与挑
战
技术升级与改进
器件性能提升
随着微电子、精密制造等技术的 进步,捷联惯性导航系统的器件 性能得到不断提升,为实现更高
精度的导航提供了基础保障。
算法优化
04
捷联惯性导航误差分析
系统误差
零偏误差
由于陀螺仪和加速度计的 制造和安装偏差导致的固 定偏差,这种误差通常很 难通过校准消除。
刻度系数偏差
由于陀螺仪和加速度计的 刻度系数不准确导致的误 差,需要通过校准消除。
安装误差
由于陀螺仪和加速度计在 系统中的安装位置不准确 导致的误差,这种误差通 常很难通过校准消除。
随机误差
陀螺仪随机漂移误差
由于陀螺仪内部的热噪声和机械噪声导致的随机偏差,这种误差通常需要通过 滤波和数据融合技术来减小。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
需要在俯仰和偏航两个平面中同时机动, 在这种情况下每个误差源将对所有通道的导航误差 产生影响。此外,在更一般的情况下,由于导弹机动,一些额外的与 g 有关的零偏和标度因 数误差可能变得相当大。然而,为了举例说明技术的基本原理,这里给出简化分析已经足够 了。
3.2 误差预估分配的改进
在表 1 列出的误差项中, 给出的姿态对准精度和有些惯性器件零偏值在实际应用中很难 达到。因此,设计者必须充分利用自己的系统设计和惯性器件技术性能方面的经验,选择合 适的误差系数值,同时牢记那些总误差对其最敏感的参数。 表 2 基于最小风险策略的惯性器件误差预估
5 惯性器件的选择
为了满足系统性能要求, 在确定了惯性器件必须满足的性能指标后, 就可以据此选择合 适的陀螺仪和加速度计。 根据各种类型惯性器件性能, 在上述飞行条件下有许多陀螺仪和加速度计能够满足性能 要求。根据捷联惯导系统的设计经验,可用于弹载惯导系统的陀螺仪主要有如下类型: 1) 动力调谐陀螺(DTG)或绕性陀螺仪; 2) 速率积分陀螺仪(RIG) ; 3) 光纤陀螺仪(FOG) ; 4) 环形激光陀螺仪(RLG) ; 5) 振动陀螺仪。 对于加速度计,首选的是摆式力反馈加速度计,其它可选的类型有: 1) 硅加速度计; 2) 表面声波(SAW)加速度计。 这些惯性器件对选取系统性能要求和误差预估分析的不同参数的符合性示于表 3 和 4 。 表 3 陀螺选择
因此,假设由于惯性器件误差和对准误差引起的总导航误差的标准偏差是 50m,那么每个单 独的误差源的影响允许为 50
30 9m 1 ,如表 1 所示。
表 1 中给出的结果只是为了举例说明, 这些结果来自仅仅在俯仰平面内机动的导弹。 在 这些简化条件下, 惯导系统横向通道和高度通道相互保持高度的解耦, 且多数误差源只在一 个通道中引起导航误差。结果,位置和姿态的总误差都处在要求规定的范围内。通常,导弹
捷联惯导系统设计和分析
1 概述
本文将简略讨论捷联惯导系统设计。 尽管不同的应用中所采用的具体方法和设计重点常 常很不相同,但对任何捷联系统,一般都需要下面的设计步骤。 对于应用于战术导弹上的捷联惯导系统, 应重点评估和分析惯导系统在动态飞行条件下 的性能。惯导系统将受飞行机动、大加速度和恶劣的振动环境的影响,所有这些都将大大影 响惯性器件的选择以及它们在飞行中能够提供的测量精度。 另外, 从运动平台上发射的导弹 也会影响导弹反射前进行的导航初始对准精度。因此,在整个系统设计过程中,对影响系统 性能的所有可能的误差源之间进行合理的平衡折中非常重要。 作为系统设计过程的一部分,必须首先考虑选择对应用最合适的系统机械编排。然后, 通过误差预估分析评估可接受的对准误差、 惯性器件误差和导航解算误差的大小。 误差预估 要求的评估可在不同的水平上进行, 从相对简单的单通道误差模型到应用仿真进行更严格的 分析, 其中后者可以考虑到动态运动的影响进而进行更精确的评估。 对于此处讨论的战术导 弹应用,动态影响较大,简化的计算很难适用,因此,需采用更复杂的计算,或更常用的误 差预估分配仿真。一般地,在确定既实际又可行的一组误差参数值之前,需要误差预估分析 过程的几次迭代。 在确定了惯性器件工作特性和对准精度以及任何可能潜在的计算困难后, 就可以开始确 定适用的惯性器件以及导航解算算法。 在这个过程中, 可能需要根据惯性器件的类型对误差 预估计算进行更多的迭代,以得到更满意的设计。
4 系统对准
在影响惯导系统性能的因素中, 一个关键的因素是导航开始前的对准误差或初始化误差。 如果对准误差对总误差预估的影响如上节所述,则所需的 1 姿态对准精度大约为 0.16 ( 10 ) ,初始速度和位置精度分别为 0.6 m s 和 1m ( 1 ) 。 虽然达到足够小的失准角非常重要,但由于舰艇参考坐标系和导弹之间存在杆臂效应,
过程放宽性能要求,例如对准精度或加速度计性能。或者,把导弹内其他子系统的性能要求 放宽。这是一个全系统权衡分析的问题。 在决定基于技术成熟性和最小风险选择惯性器件的情况下, 最有可能选择力反馈加速度 计以及动力调谐陀螺仪或单自由度速率积分陀螺仪。 动力调谐陀螺仪更吸引人的是只需两个 就能提供所需的三轴角速率测量。 此外,由于光纤技术和微机电系统(MEMS)技术的成熟,因而越来越多的惯导系统采用 表面声波或硅加速度计和光纤陀螺仪,这是由于它们的成本较低,且为固态结构,没有运动 部件。
表 4 加速度计选择
显然, 多种不同的惯性器件能够提供满足系统精度要求的角速率和比力加速度测量。 由 表 3 可知, 有 3 种首选陀螺仪满足要求, 即, 两种类型机械转子陀螺仪和光纤陀螺仪。 同样, 由表 4 可知,可以选择所考虑的 3 种类型的加速度计中的任何一种。 此外,需注意的是,环形激光陀螺仪提供的角速率测量精度远高于应用要求的精度,因 此选择的可能性很小。 然而, 使用这种的惯性器件也许可对惯导系统误差预估有影响的那些
2 系统机械编排选择
在导弹飞行的惯性中制导阶段, 制导指令是由弹上惯导系统提供的导弹位置和速度同舰 艇上跟踪装置提供的目标位置和速度相结合而产生的。 为了能够得到满意的结果, 导弹和目 标的位置和速度必须都表示在同一坐标系下。 假设舰艇上配有姿态航向基准系统, 或者是一套全舰载惯导系统, 该系统名义上定义了 一个指向真北和当地垂线的参考坐标系。 此外, 假设全部舰艇设备的参考坐标系是协调一致 的。因此,跟踪装置能提供在该参考坐标系下的目标位置和速度。同样地,弹载惯导系统在 导弹发射前可与该坐标系对准。 于是制导将在这个参考坐标系中进行, 其坐标原点是舰艇的 姿态航向基座系统在导弹开始导航时的位置。 因此,弹载惯导系统将提供导弹相对地球坐标系的位置、速度和姿态,这个坐标系是在 导弹发射或即将发射前弹载惯导系统开始导航时定义的。 为了使目标位置和速度也表示在同 一坐标系下,目标跟踪装置提供的测量(表示在随舰艇运动的参考坐标系中)需要修正,以 便考虑在导弹飞行期间舰艇的运动。 这种方法比在随舰艇运动的参考坐标系中进行导弹导航
Hale Waihona Puke 以损失一个参数为代价而放宽另一些参数对误差预估的影响的做法, 其作用通常相当有 限。例如,在基于常规陀螺的设计中,固定零偏项对误差预估的影响允许增加一些,而将与
g 有关的零偏调整到在实际应用中更容易实现的水平。分析表明,在这类的应用中系统性能
对与 g 有关的零偏系数特别敏感。同时还可见,与陀螺仪和加速度计有关的某些交叉耦合项 需要为小量,以便达到所需的性能。 当然无论什么时候都应确保任何一项误差的影响都不会超过总误差预估。 通常需要对参 数选择过程进行几次迭代, 才能获得一组合理的设置值。 表 2 给出了一组误差参数值以及它 们各自对总位置和姿态误差预估的影响。 表 2 清楚地表明, 主要的误差源是姿态对准误差以及某些与 g 有关的陀螺零偏和加速度 计交叉耦合,在导弹存在纵向加速度时后两者会引起较大的位置误差。此外,在导弹飞行的 助推阶段有俯仰转弯机动时,陀螺交叉耦合误差对总误差预估也产生显著影响。 利用表 2 给出的对准误差和惯性器件误差, 沿航迹的位置误差、 横滚误差和速度误差 (在 该表没有给出)可计算: 1) 沿航迹位置误差 RSS 41m ; 2) 横滚误差 RSS 0.3 ; 3) 沿航迹速度误差 RSS 0.7 m s ; 4) 横向速度误差 RSS 3.7 m s ; 5) 垂直速度误差 RSS 3.8 m s 。 由上述误差可知,每项都在技术指标要求规定的范围内。 确定了惯性器件的性能指标之后, 重要的是评估在一组典型弹道上的系统性能。 许多误 差对总导航性能的影响, 常常与飞行期间系统承受的精确运动密切相关。 为了更好地设计系 统,在设计阶段可能需要进一步细化某些误差参数值。 在按上述的过程设计时,设计可能希望把某些误差合并,尤其是那些传播方式类似,对 惯导系统性能的影响类似的误差。例如: 1) 陀螺仪非等弹性:当存在周期运动时,由于轴承变形不相等,在常规陀螺仪输出中会造 成零偏。 2) 加速度计振摆误差:当存在振动时,在摆式加速度计输出中会存在附加的零偏。 3) 圆锥和划桨运动: 如果惯性器件处于圆锥和划桨运动状态, 会分别出现附加的角速率和 线加速度零偏。 为了考虑这些影响,在误差预估分析中所采用的陀螺仪和加速度计零偏可能需要增加。
要好,这样可避免在飞行期间把舰艇运动的数据传到导航上。综上所述,此应用中的弹载惯 导系统常选用地球坐标系下的系统机械编排。 在此类应用中, 惯性器件在捷联惯导系统中正交配置安装, 而不需要惯性器件冗余配置 或绕任意轴测量特别高的角速率, 否则可能就需要考虑惯性器件的斜置配置安装。 惯性器件 各自的敏感轴与导弹体轴系的各轴一致, 从而能够提供自动驾驶仪反馈所需要的横向加速度 和旋转角速率。
零偏稳定性
3.1 初步误差分配过程
表 1 列出了在导弹应用中对总误差预估影响显著的 30 种误差源。一开始,假设每一个 误差在均方根意义上对 15s 飞行期间传播的总横向位置和高度误差的影响是相同的, 并以此 为每个误差参数赋值。 在这个分析中, 特别关注的焦点是把横向位置和高度误差维持在给定 的性能范围内, 因为这对成功地完成惯性中制导是至关重要的。 虽然满足姿态 (俯仰和偏航) 精度要求也是很重要的,但这些要求更容易满足,如误差预估表 1 和 2 所列。 表 1 基于误差影响均等的惯性器件误差预估
造成系统初始化速度误差很大。 对于从运动平台上发射的战术导弹系统, 要达到要求的对准 精度是特别困难的。 除了对准精度要求, 影响对准方式选择的另一个主要因素是对准时间的 长短。 由文献可知,对于舰艇上弹载惯导系统的对准最好采用所谓的“一次性”对准来完成, 即把对准数据在很短的时间内 (约 1s) 从安装在导弹发射箱上的惯导系统快速传递给导弹。 这个装置将需要利用舰艇提供的测量值单独进行对准, 这些测量值来自舰载惯导系统或卫星 导航系统。 考虑到在运动的舰艇上实现弹载惯导系统精确对准的潜在困难, 可以通过提高惯性器件 性能为代价进一步放宽对对准精度的要求。然而,由误差预估可知,进一步放宽对对准精度 要求的范围很有限。