25立方液化石油气储罐设计方案
液化石油气储罐设计
课程设计任务书1.设计目的:1)使用国家最新压力容器标准、规范进行设计,掌握典型过程设备设计的全过程。
2)掌握查阅、综合分析文献资料的能力,进行设计方法和方案的可行性研究和论证。
3)掌握电算设计计算,要求设计思路清晰,计算数据准确、可靠,且正确掌握计算机操作和专业软件的使用。
4)掌握工程图纸的计算机绘图。
2.设计内容和要求(包括原始数据、技术参数、条件、设计要求等):1.原始数据设计条件表序号项目数值单位备注1 名称液化石油气储罐2 用途液化石油气储配站3 最高工作压力 1.947 MPa 由介质温度确定4 工作温度-20~48 ℃5 公称容积(V g)10/20/25/40/50 M36 工作压力波动情况可不考虑7 装量系数(φV) 0.98 工作介质液化石油气(易燃)9 使用地点室外10 安装与地基要求储罐底壁坡度0.01~0.0211 其它要求管口表接管代号公称尺寸连接尺寸标准连接面形式用途或名称a 32 HG20592-1997 MFM 液位计接口b 80 HG20592-1997 MFM 放气管c 500 HG/T21514-2005 MFM 人孔d 80 HG20592-1997 MFM 安全阀接口e 80 HG20592-1997 MFM 排污管f 80 HG20592-1997 MFM 液相出口管g 80 HG20592-1997 MFM 液相回流管h 80 HG20592-1997 MFM 液相进口管i 80 HG20592-1997 MFM 气相管j 20 HG20592-1997 MFM 压力表接口k 20 HG20592-1997 MFM 温度计接口2.设计内容1)设备工艺、结构设计;2)设备强度计算与校核;3)技术条件编制;4)绘制设备总装配图;5)编制设计说明书。
3.设计工作任务及工作量的要求〔包括课程设计计算说明书(论文)、图纸、实物样品等〕:1)设计说明书:主要内容包括:封面、设计任务书、目录、设计方案的分析和拟定、各部分结构尺寸的设计计算和确定、设计总结、参考文献等;2)总装配图设计图纸应遵循国家机械制图标准和化工设备图样技术要求有关规定,图面布置要合理,结构表达要清楚、正确,图面要整洁,文字书写采用仿宋体、内容要详尽,图纸采用计算机绘制。
25M3埋地卧式油罐
《管道及储罐强度设计》课程设计题目25m3埋地卧式油罐图所在院(系)石油工程学院专业班级储运1007班学号201004020712学生姓名杨睿指导教师邓志安完成时间2013.07.12《油罐及管道强度设计》课程设计任务书题目25m3埋地卧式油罐图学生姓名刘丹学号200804020624 专业班级储运0806设计内容与要求一、原始数据1.适用范围及设计条件油罐用于储存工业或民用设施中常用的燃料油。
(1)设计压力常压(2)设计温度-19℃≤t≤200℃(3)设计寿命 15年(4)焊接接头系数 0.85(5)水压试验压力盛水试漏(6)腐蚀裕量 1.5mm(7)装量系数 0.9(8)介质燃料油2.设计基本参数和尺寸25m3埋地卧式油罐的基本参数尺寸见表一。
表一:25m3埋地卧式油罐基本参数和尺寸公称容积(m3)筒体主要尺寸封头壁厚(mm)壳体材料设备金属总质量(kg)直径×长度×壁厚25 2200×6400×8 8 20R 4300二、设计要求1.了解埋地卧式油罐的基本结构和局部构件;2.根据给定油罐大小,查阅相关标准确定相应构件的规格尺寸;3.学会使用AUTOCAD制图;4.相关技术要求参考有关规范。
三、完成内容1.25m3埋地卧式油罐图纸一张(2#);2.课程设计说明书一份。
起止时间2013 年7月01 日至2013年7月12 日指导教师签名年月日系(教研室)主任签名年月日学生签名年月日目录1绪论 (1)1.1金属油罐设计的基本知识 (1)1.1.1 金属油罐的发展趋势 (1)1.1.2 对金属油罐的基本要求 (1)1.2金属油罐的分类 (2)1.2.1 地上钢油罐 (3)1.2.2 地下油罐 (3)1.3卧式油罐简介 (4)1.4课题意义 (4)2埋地卧式油罐课程设计说明书 (5)2.1设计说明书 (5)2.1.1 适用范围 (5)2.1.2 设计、制造遵循的主要标准规范 (5)2.2主要设计内容 (5)2.2.1 油罐供油系统流程图 (5)2.2.2 25m3埋地卧式油罐加工制造图,基本参数和尺寸 (5)2.3安全 (6)2.4设计遵循参照的主要规范 (6)2.5设计范围 (6)2.5.1防雷电与防静电措施 (6)2.5.2防火措施 (7)2.6防腐 (7)2.7油罐接管 (7)2.8油罐容积的确定 (7)2.9其它 (8)3课程设计计算书 (9)3.1设计的基本参数 (9)3.2壳体壁厚计算 (9)3.2.1 筒体壁厚计算 (9)3.2.2 封头壁厚计算 (9)3.2.3许用外压力[P] (10)3.30.1362MP A外压校核 (11)3.3.1 筒体0.1362MPa外压校核 (11)3.3.2 封头0.136193MPa外压校核 (12)3.4罐体最小容积计算 (12)3.5水压试验时的应力校核 (12)3.6筒体加强圈的设计计算 (12)3.6.1 加强圈数的确定计算 (12)3.6.2 加强圈尺寸的设计 (13)3.6.2.1 加强圈的选择 (13)3.6.2.2 计算加强全横截面积As即组合截面的惯性矩 (13)3.6.2.3由下式计算参数B: (14)3.7鞍座的选择计算 (14)3.7.1 罐体重Q1 (14)3.7.2 封头重Q2 (14)3.7.3 汽油重Q3 (14)3.7.4 附件重Q4 (15)3.8鞍座作用下筒体应力计算 (15)3.8.1 筒体轴向弯矩计算 (15)3.8.2 筒体轴向应力计算 (15)3.8.2.1 在横截面的最高点处: (16)3.8.2.2 在横截面的最低点处: (16)3.8.2.3 在支座处的轴向应力: (16)3.8.3 筒体轴向应力校核 (16)3.8.4 筒体切向应力的计算 (17)3.8.5 筒体周向应力计算 (17)3.8.5.1 周向弯矩计算 (17)3.8.5.2 周向压缩应力计算 (18)3.8.5.3 周向总应力的计算和校核 (18)3.8.6 鞍座地震载荷 (19)3.9圆筒应力的强度校核 (19)3.9.1 受力分析 (19)3.9.1.1 圆筒轴向应力的校核 (20)3.9.1.2 圆筒轴向应力的校核 (21)3.10抗浮验算 (21)参考文献 (23)1绪论1.1 金属油罐设计的基本知识1.1.1 金属油罐的发展趋势近一、二十年来,油罐的设计与施工技术都较过去有了更快的发展。
液化石油气储罐毕业设计_
液化石油气储罐毕业设计_目录绪论....................................................................................... ............ (2)第一章设计参数的选择1.1 设计题目....................................................................................... ............ (3)1.2 原始数据....................................................................................... ............ (3)1.3 设计压力....................................................................................... ........ . (3)1.4 设计温第2页(共58页)度....................................................................................... ........ . (3)1.5 主要元件材料的选择....................................................................................... ........... .. (3)第二章容器的结构设计2.1 圆筒厚度的设计....................................................................................... ........... . (4)2.2 封头壁厚的设计....................................................................................... .......... .. (4)2.3 筒体和封头的结构设计....................................................................................... .......... .. (5)2.4 人孔的选第3页(共58页)择....................................................................................... ........ (6)2.5 接管,法兰,垫片和螺栓(柱)............................................................................... .................. (6)2.6 鞍座选型和结构设计....................................................................................... ......... . (9)第三章开孔补强设计3.1 补强方法判别..................................................................................... .......... . (11)3.2 有效补强范围....................................................................................... ........ (11)3.3 有效补强面第4页(共58页)积....................................................................................... ........ (12)3.4 补强面积....................................................................................... ........ .. (12)第四章强度计算4.1 水压试验校核....................................................................................... ........ (13)4.2 圆筒轴向弯矩计算....................................................................................... ........ . (13)4.3 圆筒轴向应力计算并校核.................................................................................... .. . (14)4.4 切向剪应力的计算及校第5页(共58页)核.................................................................................... .. . (15)4.5 圆筒周向应力的计算和校核.................................................................................... .. (16)4.6 鞍座应力计算并校核.................................................................................... .. (18)4.7地震引起的地脚螺栓应力.................................................................................... .. (20)附录:参考文献.............................................................................. ........ (22)第6页(共58页)第7页(共58页)绪论液化石油气贮罐是盛装液化石油气的常用设备, 由于该气体具有易燃易爆的特点, 因此在设计这种贮罐时, 要注意与一般气体贮罐的不同点, 尤其是安第8页(共58页)全与防火, 还要注意在制造、安装等方面的特点。
埋地卧式油罐课程设计25m3埋地卧式油罐本科论文
《油罐与管道强度设计》课程设计25m埋地卧式油罐题目3所在院(系)石油工程学院专业班级学号学生姓名指导教师完成时间2015年7月15日《油罐及管道强度设计》课程设计任务书目录1 绪论 (1)1.1 金属油罐设计的基本知识 (1)1.1.1 金属油罐的发展趋势 (1)1.1.2 对金属油罐的基本要求 (1)1.2 金属油罐的分类 (2)1.2.1 地上钢油罐 (3)1.2.2 地下油罐 (3)1.3 课题意义 (4)2 设计说明书 (4)2.1 适用范围 (4)2.2 设计、制造遵循的主要标准规范 (4)2.3 主要设计内容 (4)2.3.1 油罐供油系统流程图 (5)2.3.2 加工制造图基本参数和尺寸 (6)2.4 安全 (6)2.5 设计遵循参照的主要规范 (6)2.6 设计范围 (6)2.6.1 防雷电与防静电措施 (6)2.6.2防火措施 (7)2.7 防腐 (8)2.8 油罐接管 (8)2.9 油罐容积的确定 (8)2.10 其它 (8)3 设计计算书 (9)3.1 设计的基本参数 (9)3.2 壳体壁厚计算 (9)3.2.1 筒体壁厚计算 (9)3.2.2 封头壁厚计算 (9)3.3许用外压力[P] (10)3.3.1 设计外压Py (10)3.4 0.1362MPa外压校核 (11)3.4.1 筒体0.1362MPa外压校核 (11)3.4.2 封头0.136193MPa外压校核 (12)3.5 筒体加强圈的设计计算 (12)3.5.1 加强圈数的确定计算 (12)3.5.2 加强圈尺寸的设计 (13)3.5.2.1 加强圈的选择 (13)3.5.2.2 计算加强全横截面积As即组合截面的惯性矩 (13)3.5.2.3由下式计算参数B: (13)3.6 鞍座的选择计算 (14) (14)3.6.1 罐体重Q13.6.2 燃料油重Q (14)23.6.3 储罐总重Q (14)3.7 鞍座作用下筒体应力计算 (14)3.7.1 筒体轴向弯矩计算 (14)3.7.2 筒体轴向应力计算 (15)3.7.3 筒体周向应力计算 (17)3.8 抗浮验算 (18)参考文献 (19)1 绪论1.1 金属油罐设计的基本知识1.1.1金属油罐的发展趋势近一、二十年来,油罐的设计与施工技术都较过去有了更快的发展。
石油液化气储配站设计
石油液化气储配站设计一、引言二、设计要求1.容量要求:根据当地用户需求和规模,确定储存罐的容量。
2.安全要求:确保储配站的安全运行,包括预防火灾、爆炸和泄漏等事故。
3.环境要求:符合环保标准,减少对周围环境的污染。
4.供应稳定性:保证稳定的燃气供应,满足用户需求。
5.经济效益:在满足安全和环保要求的前提下,实现经济可行性。
三、设计方案1.场地选址:选择距离居民区和危险品仓库一定距离,并且方便运输和供应的地点。
2.储罐设计:根据容量要求和安全性考虑,选择适当的储存罐类型和材料。
应采用双层罐或加保温措施,以减少液化气的散失。
3.输送管道:采用高品质的钢管或塑料管道,确保气体输送的安全性和稳定性。
4.设备选择:选择优质的液化气气化设备和供应设备,以确保供应的可靠性和高效性。
5.安全设施:设置适当的火灾报警系统、泄漏报警系统和通风设备,以及紧急切断阀等设施,保证安全。
6.环保设施:采取措施减少气体排放,如设置废气处理设备和废水处理设施。
7.自动化控制:采用现代化自动化控制系统,实现对储配站运行的监控和控制,提高运行效率。
四、施工和运维要求1.施工过程中,需遵守相关法律法规和安全操作规程,确保工人和周围环境的安全。
2.施工完成后,需要进行安全检查和验收,确保设施符合安全要求。
3.储配站的运维需要定期进行设备检查和维护,确保设备正常运行。
4.操作人员需要经过专门培训,了解安全操作规程和应急处理措施。
5.储配站应设有安全管理人员,负责安全管理和应急处理。
五、结论石油液化气储配站的设计是一个综合性的工程,需要兼顾安全、环保和经济效益。
通过选择合适的设备和措施,确保储配站的安全运行和稳定供应,可为用户提供高品质的燃气服务。
在设计、施工和运维过程中,要严格按照相关规范和要求进行操作,以保证设施的完整性和安全性。
25立方米液氯储罐课程设计
目录第一章工艺设计.............................................................................................................................................. - 1 -1.1存储量................................................................................................................................................ - 1 -1.2设备的选型及轮廓尺寸.................................................................................................................... - 1 - 第二章机械设计............................................................................................................................................ - 3 -2.1 结构设计........................................................................................................................................... - 3 -2.1.1筒体以及封头设计................................................................................................................. - 3 -2.1.2接管及接管法兰设计............................................................................................................. - 5 -2.1.3人孔的结构设计..................................................................................................................... - 9 -2.1.4 核算开孔补强...................................................................................................................... - 11 -2.1.5支座的设计........................................................................................................................... - 13 -2.1.6液面计及安全阀选择........................................................................................................... - 15 -2.1.7总体布局............................................................................................................................... - 20 -2.1.8焊接结构设计及焊条的选择 ............................................................................................... - 20 -2.2强度校核.......................................................................................................................................... - 22 -2.2.1内压圆筒的校核................................................................................................................... - 22 -2.2.2内压椭圆封头的校核........................................................................................................... - 24 -2.2.3右封头校核........................................................................................................................... - 25 -2.2.4卧式容器(双鞍座)的校核 ............................................................................................... - 25 -2.2.5开孔补强计算....................................................................................................................... - 32 - 参考文献........................................................................................................................................................ - 39 - 致谢................................................................................................................................................................ - 40 -第一章工艺设计1.1存储量盛装液化气体的压力容器设计存储量t V W ρφ=式中:W ——储存量,t ;φ——装载系数; V ——压力容器容积;t ρ——设计温度下的饱和溶液的密度,3m t;根据设计条件t V W ρφ==0.9×25×1.307=29.408t1.2设备的选型及轮廓尺寸选型:目前我国普遍采用常温压力储罐一般有两种形式,球形贮罐和圆筒形贮罐。
25立方储罐标准尺寸
25立方储罐标准尺寸本标准尺寸适用于25立方米的储罐,包括以下方面:1.直径和高度标准直径(D)通常为4.5米,高度(H)通常为3.5米。
实际尺寸可能因制造商和用途而异。
2.封头类型储罐封头一般采用椭圆形或圆形封头。
椭圆形封头具有较好的应力分布特性,而圆形封头则具有较低的制造难度。
具体采用哪种封头类型需根据实际需求和设计要求来确定。
3.材质储罐材质通常为碳钢、不锈钢、铝合金等。
具体选用哪种材质需根据实际需求、使用环境、介质特性等因素来确定。
4.防腐处理储罐内壁和外壁都需要进行防腐处理,以延长其使用寿命。
常见的防腐处理方法包括环氧树脂涂层、聚氨酯涂层、玻璃鳞片涂层等。
具体采用哪种防腐处理方法需根据实际情况和设计要求来确定。
5.支座设计储罐支座设计需考虑地基承载力、风载荷、地震载荷等因素,以确保储罐的稳定性和安全性。
支座材料通常为铸铁、混凝土等。
具体采用哪种支座材料需根据实际情况和设计要求来确定。
6.人孔储罐上应设置一个人孔,以便于设备的安装、清洗和维修。
人孔通常为圆形或椭圆形,直径一般为600mm-800mm。
具体尺寸需根据实际情况和设计要求来确定。
7.液位计储罐上应设置液位计,以便于监测储罐内的液位高度和液位变化。
液位计类型可选用玻璃管液位计、磁翻板液位计、超声波液位计等。
具体选用哪种液位计需根据实际情况和设计要求来确定。
8.呼吸阀储罐上应设置呼吸阀,以控制储罐内外的气体交换,保持储罐内压力的稳定。
呼吸阀类型可选用开放式呼吸阀、封闭式呼吸阀等。
具体选用哪种呼吸阀需根据实际情况和设计要求来确定。
9.排水阀储罐底部应设置排水阀,以便于排放积液和进行清洗。
排水阀类型可选用手动排水阀、自动排水阀等。
具体选用哪种排水阀需根据实际情况和设计要求来确定。
10.温度计储罐上应设置温度计,以便于监测储罐内的温度变化。
温度计类型可选用液体温度计、金属温度计等。
具体选用哪种温度计需根据实际情况和设计要求来确定。
25立方液化石油气储罐设计方案(25立方液化气储罐-25立方石油液化气储罐)
25立方液化石油气储罐一.设计背景该储罐由菏泽锅炉厂有限公司设计,是用来盛装生产用的液化石油气的容器。
设计压力为,温度在-19~52摄氏度范围内,设备空重约为5900Kg,体积为25立方米,属于中压容器。
石油液化气为易燃易爆介质,且有毒,因此选材基本采用Q345R。
此液化石油气卧式储罐是典型的重要焊接结构,焊接接头是其最重要的连接结构,焊接接头的性能会直接影响储存液化石油气的质量和安全。
二.总的技术特性:三.储气罐基本构成储气罐是一个承受内压的钢制焊接压力容器。
在规定的使用温度和对应的工作压力下,应保证安全可靠,罐体的基本结构部件应包括人孔、封头、筒体、法兰、支座。
图1储气罐的结构简图筒体本产品的简体是用钢板卷焊成筒节后组焊而成,这时的简体有纵环焊缝。
封头按几何形状不同,有椭圆形封头,球形封头,蝶形封头,锥形封头和平盖等各种形式。
封头和简体组合在一起构成一台容器壳体的主要部分,也是最主要的受压元件之一。
此储气罐选择的是椭圆形封头。
从制造方法分,封头有整体成形和分片成形后组焊成一体的两种。
当封头直径较大,超出生产能力时,多采用分片成形方法制造,分片成形控制难度大,易出现不合格产品。
对整体成形的封头尺寸、形状,虽然易控制但一般需要有大型冲压模具的压力机或大型旋压设备,工艺设备庞大,制造成本高。
从封头成形方式讲,有冷压成形、热压成形和旋压成形。
对于壁厚较薄的封头,一般采用冷压成形。
采用调质钢板制造的封头或封头瓣片,为不破坏钢板调质状态的力学性能,节省模具制造费用,往往采用多点冷压成形法制造。
当封头厚度较大时,均采用热压成形法,即将封头坯料加热至900℃~1000℃。
钢板在高温下冲压产生塑性变形而成形,此时对于有些材料(如正火态钢板),由于改变了原始状态的力学性能,为恢复和改善其力学性能,封头冲压成形后还要做正火、正火+回火或淬火+回火等相应的热处理。
对于直径大且厚度薄的封头,采用旋压成形法制造是最经济最合理的选择。
液化石油气储罐设计
液化石油气储罐设计
1.储罐材料选择:
2.结构设计:
3.安全阀和泄压装置:
储罐设计需要考虑到可能发生的过压和过温情况。
为了确保储罐内部压力在可接受范围内,应安装安全阀和泄压装置。
这些装置将会在压力过高或温度过高时自动释放气体。
4.罐体绝热:
由于液化石油气的低温特性,储罐设计需要确保罐体具有良好的绝热特性。
这可以通过采用绝热材料来实现,其中包括内部绝热层、外部绝热层和真空层等。
5.地震设计:
储罐的地震设计是非常重要的,特别是对于经常发生地震的地区。
储罐的结构应具备足够的抗震能力,以确保在地震发生时储罐不会受到严重损坏。
6.罐体检测和监测系统:
储罐应配备完备的检测和监测系统,以实时监测储罐内的压力、温度和液位等参数。
这有助于及时发现潜在的故障,并采取相应的措施进行修复和保养。
7.罐体密封系统:
储罐的密封系统对于防止气体泄漏和液体挥发至关重要。
密封系统应设计为可靠的,并在罐体发生压力变化时能够保持稳定的密封效果。
综上所述,液化石油气储罐设计应综合考虑储罐的材料选择、结构设计、安全阀和泄压装置、罐体绝热、地震设计、检测和监测系统以及罐体密封系统等关键要素。
通过合理的设计和建造,可以确保液化石油气储罐的安全运行,防止事故发生,保护人员和环境的安全。
【精品】液化石油气储罐设计课程设计
课程设计课程名称:过程设备课程设计设计名称:10m3液化石油气储罐设计专业班级:过控1203学号:21学生姓名:胡拯纲指导教师:孙海阳2015年6月19日课程设计任务书10M3液化石油气储罐设计课程设计要求及原始数据一、课程设计要求1、按照国家压力容器设计标准,规范进行设计,掌握典型过程设备设计的过程。
2、设计计算采用手算,要求设计思路清晰,计算数据准确、可靠。
3、工程图纸要求计算机绘图。
4、独立完成.二、原始数据:设计条件表课程设计主要内容:1、设备工艺设计2、设备结构设计3、设备强度设计4、技术条件编制5、绘制设备总装配图6、编制设计说明书学生应交出的设计文件(论文)1、设计说明书一份2、总装配图一张(折合A1图纸一张)摘要液化石油气贮罐是盛装液化石油气的常用设备,由于该气体具有易燃易爆的特点,因此在设计这种贮罐时,要注意与一般气体贮罐的不同点,尤其是安全与防火,还要注意在制造、安装等方面的特点.目前我国普遍采用常温压力贮罐,常温贮罐一般有两种形式:球形贮罐和圆筒形贮罐。
球形贮罐和圆筒形贮罐相比:前者具有投资少,金属耗量少,占地面积少等优点,但加工制造及安装复杂,焊接工作量大,故安装费用较高。
一般贮存总量大于500m3或单罐容积大于200m3时选用球形贮罐比较经济;而圆筒形贮罐具有加工制造安装简单,安装费用少等优点,但金属耗量大占地面积大,所以在总贮量小于500m3,单罐容积小于100m3时选用卧式贮罐比较经济.圆筒形贮罐按安装方式可分为卧式和立式两种。
在一般中、小型液化石油气站内大多选用卧式圆筒形贮罐,只有某些特殊情况下(站内地方受限制等)才选用立式。
本文主要讨论卧式圆筒形液化石油气贮罐的设计.液化石油气呈液态时的特点。
(1)容积膨胀系数比汽油、煤油以及水等都大,约为水的16倍,因此,往槽车、贮罐以及钢瓶充灌时要严格控制灌装量,以确保安全;(2)容重约为水的一半。
因为液化石油气是由多种碳氢化合物组成的,所以液化石油气的液态比重即为各组成成份的平均比重.卧式液化石油气贮罐设计的特点。
液化石油气储罐的设计
过程设备设计课程设计说明书
绪论
液化石油气贮罐是盛装液化石油气的常用设备, 由于该气体具有易燃易爆的特点, 因此在设计 这种贮罐时, 要注意与一般气体贮罐的不同点, 尤其是安全与防火, 还要注意在制造、安装等方 面的特点。 目前我国普遍采用常温压力贮罐, 常温贮罐一般有两种形式: 球形贮罐和圆筒形贮罐。球形贮罐 和圆筒形贮罐相比: 前者具有投资少, 金属耗量少, 占地面积少等优点, 但加工制造及安装复杂, 焊接工作量大, 故安装费用较高。一般贮存总量大于 500m 3 或单罐容积大于 200m 3 时选用球 形贮罐比较经济; 而圆筒形贮罐具有加工制造安装简单, 安装费用少等优点, 但金属耗量大占 地面积大, 所以在总贮量小于 500m 3, 单罐容积小于 100m 3 时选用卧式贮罐比较经济。圆筒形 贮罐按安装方式可分为卧式和立式两种。在一般中、小型液化石油气站内大多选用卧式圆筒形 贮罐, 只有某些特殊情况下(站内地方受限制等) 才选用立式。本文主要讨论卧式圆筒形液化石 油气贮罐的设计。
查标准 HG20580-1998《钢制化工容器设计基础规定》表 7-1 知,钢板厚度负偏差为 0.25mm, 而有 GB150-1998 中 3.5.5.1 知,当钢材的厚度负偏差不大于 0.25mm,且不超过名义厚度的 6%
mm
M3
液化石油气(易燃) 100%探伤
备注
1.3、设计压力:
设计压力取工作压力的 1.1 倍,即 P 1.12.16 2.38MPa
1.4、设计温度:
设计温度取 55。C 。
1.5、主要元件材料的选择:
1.5.1 筒体材料的选择: 根据 GB150-1998 表 4-1,选用筒体材料为 16MnR(钢材标准为 GB6654)。 1.5.2 鞍座材料的选择:
液化石油气储罐设计
液化石油气储罐设计
液化石油气(LPG)储罐是用来存储液化石油气的设施,它是石油气
工业的重要组成部分。
在设计液化石油气储罐时,需要考虑多个因素,包
括容量和尺寸、结构强度、安全性、环境保护等。
本文将从这些方面详细
阐述液化石油气储罐的设计。
其次,结构强度对液化石油气储罐设计至关重要。
由于液化石油气的
压力较高,储罐必须能够承受内外压力的差异。
因此,储罐的壁厚和支撑
结构需要足够强度和刚性,以防止变形或破裂。
常用的结构材料包括碳钢
和低合金钢,可以选择合适的强度等级和厚度。
第三,安全性是设计中最重要的考虑因素之一、液化石油气是易燃易
爆的物质,必须采取适当的安全措施来保护储罐。
要确保防火和爆炸的安全,储罐应配备适当的防爆装置,如安全阀、疏水阀等。
此外,储罐周围
应设有火灾自动报警系统和灭火装置,以防止火灾蔓延。
储罐还应具备良
好的防泄漏措施和紧急切断装置,以减少事故发生的风险。
最后,液化石油气储罐设计应考虑环境保护。
在储罐的设计中,应该
采用环保材料,如防腐蚀涂层和隔热材料,以减少对环境的污染。
此外,
储罐的泄漏控制和废气处理系统也要考虑到环境影响,并采取相应的措施,如安装泄漏报警装置和废气处理设备。
总之,液化石油气储罐的设计需要综合考虑容量和尺寸、结构强度、
安全性和环境保护等因素。
通过合理选择材料和设备,以及采取相应的安
全措施,可以确保储罐安全运行,并为石油气工业提供可靠的储存设施。
以上是对液化石油气储罐设计的简要阐述,涵盖了其基本设计要点。
25立方米液氨储罐设计说明书1
目录一、工艺设计 (1)1.1存储量设计 (1)1.2 设计压力的确定 (1)1.3设计温度 (2)二、结构设计 (2)2.1设计条件 (2)2.2结构设计 (3)2.2.1材料选择 (3)2.2.2筒体和封头结构设计 (4)2.2.3法兰设计 (5)2.2.4人孔、手孔、液面计结构设计 (7)2.2.5支座结构设计 (9)2.2.6焊接接头设计 (12)三、强度计算 (15)3.1容器的筒体和封头壁厚设计 (15)3.1.1容器的筒体和封头壁厚计算 (15)3.1.2压力容器水压试验 (16)3.2开孔补强计算 (16)一、工艺设计工艺设计的内容是根据设计任务提供的原始数据和生产工艺要求,通过计算和选型确定设备的轮廓尺寸。
1.1存储量设计设计存储量由式1-1进行计算:1-1 式中, -- 存储量,;-- 装量系数;-- 压力容器容积,-- 设计温度下饱和液体密度,。
1.2 设计压力的确定设计压力应根据最高工作压力来确定。
对于承装液化气体的压力容器,可根据《固定式压力容器安全技术监察规程》 TSG R0004-2009 中条例3.9.3来确定,常温储存液化气体压力容器温度下的工作压力按表1-1确定:表1-1 常温储存液化气体压力容器规定温度下的工作压力设计条件要求储罐无保冷设施,且临界温度为50,因此规定温度下的工作压力为50的饱和蒸汽压,液氨50时的饱和蒸汽压为1.968 。
1.3设计温度设计温度指容器在正常工作情况下,设定的元件金属温度(沿元件金属截面的平均温度值)。
设计温度与设计压力一起作为设计载荷条件。
设计温度不得低于元件金属在工作状态可能达到的最高温度。
对于0以下的金属温度,设计温度不得高于元件金属可能达到的最低温度。
由表1-2给出了液氨的饱和蒸汽压及密度:表1-2 液氨饱和蒸汽压及饱和液密度设计条件要求工作温度为-20—50,因此,设计温度为50。
二、结构设计2.1设计条件以结构设计条件表和管口表的形式列出,见表2-1和表2-2:表2-1 结构设计条件表表 2-2 管口表2.2结构设计化工设备的结构设计包括设备承压壳体(一般为筒体和封头)及其零部件的设计。
25立方米液氯压力储罐课程设计
m'rtJAN UNIVERflTi OF TECHNOLOGY课程设计说明书SPECIFICATION25m3液氨储罐设计学院:班级:姓名:学号:指导教师完成时间:目录任务书 ..........................................第一章工艺设计1.1存储量.....................................1.2设备地选型及轮廓尺寸 ......................第二章机械设计2.1结构设计2.1.1筒体及封头设计材料地选择.................................筒体壁厚地设计计算.........................封头壁厚地设计计算.........................2.1.2接管及接管法兰设计接管尺寸选择•…管口表及连接标准接管法兰地选择垫片地选择 ......紧固件地选择•…2.1.3 人孔地结构设计密封面地选择… 人孔地设计……2.1.4 核算开孔补强…2.1.5 支座地设计支座地选择…………2.1.6液面计及安全阀选择2.1.7总体布局2.1.8 焊接接头设计2.2 强度校核参考文献任务书25立方M液氯储罐设计课程设计要求及原始数据(资料)—、课程设计要求:1、按照国家压力容器设计标准,规范进行设计,掌握典型过程设备设计地过程2、设计计算采用手算,要求设计思路清晰,计算数据准确、可靠•3、工程图纸要求计算机绘图.4、独立完成.二、原始数据:课程设计主要内容:1、设备工艺设计2、设备结构设计3、设备强度计算4、技术条件编制5、绘制设备总装配图6、编制设计说明书应交出地设计文件(论文):1、设计说明书一份2、总装配图一张(折合A1 图纸一张)摘要液氯为黄绿色地油状液体,有毒,在15C时比重为1.4256,在标准状况下,沸点为-346C,凝固点为-101.5 C .在水分存在下对钢铁有强烈腐蚀性.液氯为基本化工原料,可用于冶金、防止、造纸等工业,并且是合成盐酸、聚氯乙烯、塑料、农药地原料.用高压钢瓶包装,净重500kg、1000kg ;槽车罐装,净重25吨左右/罐.贮于阴凉干燥通风处,防火、防晒、防热.工程指标一等品二等品氯含量,% 99.8 99.6 99.6水份含量,% 0.015 0.030 0.040技术指标:GB-T5138-1996危害特性:液氯不会燃烧,但可助燃•一般可燃物大都能在氯气中燃烧,一般易燃气体或蒸汽也都能与氯气形成爆炸性混合物•氯气能与许多化学品如乙炔、松节油、乙醚、氨、燃料气、烃类、氢气、金属粉末等猛烈反应发生爆炸或生成爆炸性物质•它几乎对金属和非金属都有腐蚀作用•第一章工艺设计a)存储量盛装液化气体地压力容器设计存储量W 二V「t式中:W――储存量,t;-――装载系数;V ――压力容器容积;根据设计条件W = V t= 0.9 25 1.511t = 33.9975tb)设备地选型及轮廓尺寸查表《容器参数》可得:筒体地公称直径D j = 2200mm,长度L = 5800mm,计算体积V 计=25.7m3选用EHA椭圆封头,查《EHA椭圆形封头内表面积及容积表》可得:深度第二章机械设计2.1结构设计2.1.1筒体及封头设计.材料地选择常见地压力容器用碳素钢和低合金钢钢板有Q245,Q345R,Q370R等;无缝钢管材料有10, 20,16M n等.考虑到该容器地内径为2100mm,所以选用筒体由钢板卷制而成,由于低合金钢有较高地强度,良好地塑性,价格相对较低,所以选用Q345R..筒体壁厚设计计算I.设计压力液氯储罐地工作温度-20 C ―― 50 C,故选取设计温度t=50 C,由本次地《化工设备机械基础》课程设计指导书查得,该温度下液氯地绝对饱和蒸汽压为 1.430MPa.由于通常地设计压力在没有说明地情况下,均指表压在本次设计中地液氯储罐上装有安全阀,通常认为设计压力为工作压力地1.05―― 1.10倍,所以安全阀地开启压力为,A =(1.05~1.10) P w =1.5015,因为p> A,所以P=1.6MPa,公称压力选1.6MPa.II.液柱静压力3由《化工设备机械基础》课程设计指导书查得,液氯地密度为1511 kg/ m,内径22100mm由《各地区重力加速度表》查地太原地区地g = 9.79684m/s,则根据公式卩静=:?gD i可P静=0.0414MPaIII.计算压力P cP静—二2.8% 5%因为P,所以可忽略静压力地影响.即p c= p =1.6MPaIV.设计温度下材料地许用应力t为-2°〜50°C,假设筒体厚度为3〜16mm ,由《材料许用应力表》可得Q345R 地 t t=189MPav.焊接接头系数'本次液氯储罐地设计采用双面对接焊地全焊透对接接头,局部无损检测,所以=0.85.VI.内压容器地计算厚度根据内压容器地计算厚度公式【2】:「6 22°° =11.01mm2 189 0.85-1.6取腐蚀裕量 C 2 =4mm ,所以设计厚度 3•C 2=15.01mm .由于GB 713《锅炉和压力容器用钢钢板》和 举地锅炉和压力容器专用钢板地厚允许偏差按Ci =0.3mm另外取负偏差C1=0.3mm,所以名义厚度在3〜16mm 之间,故假设是成立地.GB 3513《低温压力容器用低合金钢板》中列GB/T 709中地B 类要求,即厚度负偏差a - C 1 = 15.30mm ,经过圆整后为16mm ,.封头壁厚地设计计算标准椭圆形封头地计算厚度 根据标准椭圆形封头地计算厚度公式:1&22002 189 0.85-0.5 1.6取腐蚀裕量C 2 =4mm , :n 经过圆整后为16mm . 可见标准椭圆形封头与筒体等厚2.1.2接管及接管法兰设计1,本次设计所用地接管地尺寸表如下所示:p c D i 2 -ppQ 2 匕一= 10.98mm2,本次设计所用地接管及管口表如下表管口表3接管法兰地选泽查《压力容器中化学介质毒性危害和爆炸危害程度分类》HG-20660-2000得:液氯地毒性为高等危害,故采用带颈对焊法兰,密封面为凹凸面,带加强环地缠绕式垫片和专用级紧固件结合•根据设计压力为p =1.6MPa,操作温度为一20~50C,故采用锻件,材料选Q345R,类别为1C1,由于设计压力为p =1.6MPa,查《中华人民共和国化工行业标准.》HG/T 20592-2009得,PN16材料Q345R为地钢制管法兰材料地最大允许工作压力16.0bar,因此该法兰地公称压力为PN16,由于PN< 25但介质有毒,所以采用专用级全螺纹螺柱和I丨型六角螺母接管地法兰结构如下:RA3D表3接管法兰结构尺寸表【3表5接管法兰标记2.1.3人孔地结构设计①.密封面地选择由于本次设计地介质是高度危害地,所以本次设计采用凹凸法兰密封面( MFM)②.人孔地设计本次设计地储罐设计压力为 1.6MPa,根据HG /T21514〜21535 — 2005《钢制人孔和手孔》【3】,采用回转盖带颈对焊法兰人孔该人孔标记为:人孔MFM 川s -35CM B 450 - 2.5 HG/T21518- 20051______ _______密封面型式公称压力PN公称直径DN dw V d D D1 H1 H2 bMFM 2.5 450 480 汽12 456 67060025012142bl b2 A B L d0螺柱螺母螺柱总质量数量直径汉长度图3.1人孔结构示意图表3.1人孔结构尺寸【3】进行开孔补强.GB150采用等面积补强..查表《补强圈尺寸系列》,补强圈外径D 2 = 760mm ,补强圈地厚度为壳体地壁厚,材料与壳体相同,为Q345R ,考虑到液氯地毒性程度为高度危害,补强圈地坡口形式选为D 型,查JB/T 4736-2002知:DN500 ,-'■c = 16mm 时,该补强圈地质量为 33.9 kg,可确定补强圈为:JB/T4736 2.1.5支座地设计①.支座地选择 鞍座结构该卧式容器采用双鞍式支座,材料选用 Q235-A.估算鞍座地负荷: 储罐总质量m = m + 2m + m mm 1 —筒体质量m 2 —单个封头地质量:查标准 JB/T4746-2002《钢制压力容器用封头》中表 B.2 EHA 椭圆形封头质量,可知,m 2二683.2cg2.1.4人孔地开孔补强计算按照GB150壳体开孔满足以下要求时,可不另行1,设计压力小于等于2.5 MPa ;3, 接管地公称外径小于等于89mm ;4,接管厚度满足下表:接管外 径/mm 25 32 38 4548 57 最小壁 厚/mm 3.54565 76 896 6由于除人孔和备用口外,其他接管地外径均小于89mm ,故我们需要对人孔和备用口d z 450 16 -D -Q345R2,两相邻开孔中心地间距应不小于两孔直径之和地两倍;叫—充液质量::■水 <:■液氯,m 3 二"氯V 计二130725.7=33589-^kgm 4 —附件质量:人孔质量为 245kg ,其他接管质量总和 292kg ,即m 4 = 546kg综上所述,m = m 1 2m 2 m 3 m 4 =5035 2 683.2 33589.9 546 = 40537.3kgG=mg=397.67kN,每个鞍座承受地重量为198.84kN表4:鞍式支座结构尺寸单位:mm公称 直径DN 允许 载荷Q /kN鞍座 高度h底板腹板筋板11b1q§213 b2 b362200 405 250 1580 240 14 10 245 208 290 8垫板 螺栓配置 鞍座增加100mm 高由此查JB4712.1-2007容器支座,选取轻型,焊制为 JB4712.1-2007得鞍座结构尺寸如下表 4:A,包角为120,有垫板地鞍座.查2.1.6液面计及安全阀选择本次设计采用磁性液位计,普通型,压力等级为 1.6 MPa.根据实际要求,选用液位计地长度为1400mm.标记HG/T21594-95Z-1.6FM-1400-LS.根据公称压力PN=1.6和适用介质,选择型号为A41H-16C地安全阀.2.1.7总体布局液氯进气管外伸度80mm,内伸高度1620mm.,备用口、排气口,压力表管外伸高度150mm,内伸高度0mm.排污口管外伸度150m,内伸高度0m.排液口管外伸高度150m,内伸高度0m.安全阀外伸高度150mm,内伸高度0mm.人孔外伸361mm,内伸0mm.接管与接管间距400mm,进液口接管与左侧人孔间距600mm,加强圈外侧与焊缝距离等于300mm,鞍座距圭寸头切线1190mm.2.1.8焊接结构设计及焊条地选择综合考虑各种因素,针对本次设计储存地介质是高毒性介质,所以本次设计地壳体A、B类焊接接头应为X型地如图.而对于法兰与壳体、接管连接地接头,应采用全焊透接头.对于人孔、补强圈与壳体地接头选用,如图一22强度校核图8.3补强圈接头形式图8.1 x型焊接接头图8.2接管与筒体地接头六、结束语为期两周地课程设计很快就结束了,在这两周里,我们过地忙碌而充实•在经历了一周地手工作图和一周了电脑绘图之后,我们深深地体会到了工程师地不容易•我们不仅从中学到了过程装备设计地知识,也学到了设计中地种种细节对一个设备甚至一个工程地重要性.这对我们以后地学习也大有裨益.总之,这两周,是很有收获地两周.主要参考文献(资料):《化工设备机械基础》-课程设计指导书.太原理工大学.20151) TSG R0004-2009 固定式压力容器安全技术监察规程.国家质量监督检验检疫总局颁布,2009.8.312) HG 20660-2000 压力容器中化学介质毒性危害和爆炸危险程度分类北京:全国化工工程建设标准编辑中心,20113) GB150-1998 钢制压力容器北京:中国标准出版社,19984) JB/T4736-2002,JB/T4746-2002. 补强圈钢制压力容器用封头国家经济贸易委员会,20025)HG20592〜20635-2009钢制管法兰中华人民共和国工业和信息化部,20096)JB/T5117-1995碳钢焊条和JB/T5118〜1995低合金钢焊条7)JB4700〜4707-2000.压力容器法兰•昆明:云南科技出版社,20008)HG/T21514 〜21535-2005 钢制人孔和手孔.北京:中国计划出版社,2005。
液化石油气储罐设计
液化石油气储罐设计液化石油气储罐是一种用于储存液化石油气(LPG)的设备,其设计是为了确保安全、高效地储存和输送石油气至最终用户。
液化石油气储罐的设计需要考虑罐体结构、安全措施以及运输和使用的方便性等因素。
下面将对液化石油气储罐的设计进行详细说明。
首先,液化石油气储罐的罐体结构需要具备足够的强度和耐久性。
罐体通常由高强度低合金钢制成,以承受内部压力和外部环境的荷载。
罐体的结构应采用圆柱形设计,有利于承受内部压力和降低应力集中。
此外,罐体需要具备良好的防腐蚀性能,可通过涂覆耐腐蚀涂层或使用不锈钢等材料来实现。
为了确保罐体的安全性,液化石油气储罐的设计还需要包括多种防爆和泄漏措施。
首先,罐体应设计成双壁结构,内外壁之间的空间可用于泄漏检测和泄漏液体的收集。
罐体还应配备安全阀,以保证内部压力不超过设计压力,从而避免爆炸的危险。
此外,罐体应设置泄漏报警装置和自动灭火系统,及时检测并处理泄漏情况,确保现场安全。
液化石油气储罐的设计还应考虑运输和使用的便利性。
罐体应具有一定的可移动性,方便在不同地点进行储气和输送。
此外,罐体应设置便于连接输送管道的接口,以便快速且安全地将石油气输送至用户。
为了方便用户使用,储罐的设计还应包括方便的计量和计量系统,确保用户能够准确地测量和购买所需的石油气量。
在液化石油气储罐的设计中,还需要综合考虑地震、超压、温度变化等外部条件的影响。
罐体应具备一定的抗震能力,以防止在地震发生时发生破坏。
此外,储罐的设计应考虑到不同环境温度对石油气的影响,采取隔热措施以保持石油气的低温状态。
总之,液化石油气储罐的设计是一个涉及多个因素的复杂过程。
它需要考虑罐体结构、安全措施、便利性以及外部条件等多个方面的要求,以确保储罐的安全、高效运行。
通过综合考虑这些因素,可以设计出适应不同环境和用途要求的液化石油气储罐。
液化石油气储罐设计说明书
液化石油气储罐设计说明书目录一.设计条件及任务1.1设计条件1.2设计任务二.设计计算2.1设计温度及压力2.2筒体设计及封头选择2.3筒体和封头的厚度2.4校核计算2.5开孔及补强三.材料选择3.1压力容器主体材料3.2压力容器零部件材料四.结构设计4.1筒体和封头设计4.2支座设计4.3法兰设计4.4液面计设计4.5人孔结构设计4.6焊接接头设计及焊条选择五.水压及气密性试验六.结束语七.参考资料一.设计条件及任务1.1设计条件储罐经常置于室外,罐内液氨的温度和压力直接受到大气温度的影响,在夏季储罐经常受太阳暴晒,随着气温的变化,储罐的操作压力也不断变化。
但大多数地区夏季最高气温也达不到50℃,因此储罐的操作温度为常温,设计温度为50℃。
1.2设计任务学习械设计的一般方法,独立完成简单化工设备储罐的设计任务,达到对复杂的化工设备施工图的识图能力的要求以及具有使用CAD绘制工程设计图的能力。
二.设计计算2.1设计温度及压力2.1.1设计温度储罐的工作压力压力随外界环境的变化而变化,大多数地区夏季最高气温也达不到50℃,因此储罐的操作温度为常温,设计温度取50℃。
2.1.2设计压力常温储存液化石油气压力容器的工作压力按照不低于50℃时液化石油气主要组分丙烯的饱和蒸汽压确定,50℃时丙烯的饱和蒸汽压为1.999(绝压).故Pw=1.899(表压),安全阀开启压力Pz=(1.05—1.1)Pw,Pz=2.0889MPa,取设计压力P≥Pz,取P=2.1MPa。
(忽略液体静压力则计算压力Pc=P=2.1MPa)2.2筒体设计及封头选择① V=30m ³,由4π=V ×2Di ×L ’(折算长度L ’=3Di)得,Di=2335㎜,取DN=2300㎜.。
② DN=2300时,查表得标准椭圆形封头V1=1.7588m ³,由V=4π×2Di ×L(L 为筒体环焊缝之间距离)得L=6380 ㎜③ 由筒体实际体积V ’=4π× 2D × L 得V ’=30.0249m ³,又V ’=4π2D × L ’得L ’=7227㎜.。
石油液化气储罐的设计
石油液化气储罐的设计摘要卧式储罐设计是以应力分析为主要途径,以材料力学为基础,对容器的各个主要受压部分进行设计。
其设计的目的主要是确定合理、经济的结构形式,并满足制造、检验、装配、运输和维修等方面要求,设计中主要从强度和刚度两方面进行设计,保证强度不失效,即材料不发生强度破坏;刚度满足要求,即材料的形变量控制在一定范围内,保证容器不因过渡变形而发生泄露失效,最终达到安全可靠的工作性能的要求。
关键词:卧式储罐、应力、刚度、强度、设计目录第1章 前言 (1)第2章 卧式储罐一般结构 (2)第3章 选材要求 (4)3.1 材料各种机械性能参数 (4)3.1.1 R的含义 (4)3.1.2 Q235系列的含义 (4)3.2 机械性能指标及符号 (5)3.2.1 强度 (5)3.2.2 塑性 (6)3.2.3 冲击韧性 (7)3.2.4 硬度 (7)3.2.5 冷弯 (8)3.2.6 断裂韧性 (8)3.3 压力容器常见的失效形式 (8)3.3.1 强度失效 (8)3.3.2 刚度失效 (8)3.3.3 稳定性失效 (9)3.3.4 腐蚀失效 (9)3.4 主要部件的选材 (10)3.4.1 筒体、封头 (10)3.4.2 接管 (10)3.4.3 法兰 (10)第4章 焊接 (12)4.1 焊接结构的特点和常用的焊接方法 (12)4.2 焊缝类型及施焊方法 (12)4.3 对接焊缝构造 (13)4.3.1 对接焊缝施工要求 (13)4.3.2 对接焊缝的构造处理 (13)4.3.3 对接焊缝的强度 (13)4.4 对接焊缝连接的计算 (14)4.5 焊条的选用 (14)第5章 液压试验 (15)5.1 试验目的和作用 (15)5.2 试验要求 (15)5.3 试验方法步骤 (16)第6章 卧式储罐校核 (17)6.1 剪力弯矩载荷计算 (17)6.2 内力分析 (19)6.2.1 弯矩计算 (19)6.2.2 剪力计算 (20)6.2.3 圆筒应力计算和强度校核 (21)参考文献 (26)致谢 (27)附录 (28)第1章 前言 第1页第1章 前言储存设备又称储罐,主要是指用于储存或盛装气体、液体、液化气体等介质的设备,在化工、石油、能源、轻工、环保、制药及食品等行业得到广泛应用,如氢气储罐、液化石油储罐、石油储罐、液氨储罐等。
液化石油气卧式储罐课程设计
前言随着我国石油化工行业的快速发展,液化石油气作为炼油化工的副产品,以其经济高效、清洁环保以及灵活方便的优势占据着城乡能源市场,储配站的液化石油气通常采用球形储罐或卧式储罐进行储存。
液化石油气是一种低碳的烃类混合物,主要由乙烷、乙烯、丙烷、丙烯、丁烷、丁烯及少量的戊烷、戊烯等组成。
常温常压下是气态,在加压和降低温度的条件下变成液体。
气态相对密度为空气的2倍,液化石油气的饱和蒸气压随温度升高而急剧增加,其膨胀系数较大,一般为水的10倍以上,气化后体积膨胀250~300倍。
液化石油气是一种极易燃烧、爆炸的石油化工原料,其储罐属于具有较大危险的储存容器之一。
因此,在满足设施功能要求下,储罐具有良好的安全性是设计的首要问题。
目前我国普遍采用的常温压力贮罐一般有两种形式:球形储罐和圆筒形储罐。
球形储罐与圆筒形储罐相比,前者具有投资少,金属耗量少,占地面积少等优点,但加工制造及安装复杂,焊接工作量大,故安装费用较高。
一般储存总量大于500m3或单罐容积大于200m3时选用球形储罐比较经济。
而圆筒形贮罐具有加工制造安装简单,安装费用少等优点,但金属耗量大占地面积大。
所以在总贮量小于500m3,单罐容积小于100m3时选用卧式贮罐比较经济。
圆筒形贮罐按安装方式可分为卧式和立式两种。
在一般中、小型液化石油气站内大多选用卧式圆筒形贮罐,,只有某些特殊情况下(站内地方受限制等)才选用立式。
本次设计对液化石油气卧式储罐进行设计计算。
主要内容包括储罐工艺参数计算、储罐的结构设计、储罐的强度计算、应力校核、绘制设备总图以及针对一些安全问题提出对策措施。
各项设计参数都正确参考了行业使用标准或国家标准,这样让设计有章可循,并考虑到结构方面的要求,合理地进行设计。
目录1 概述....................................................................1.1 设计任务及原始参数....................................................1.2 液化石油气的性质......................................................2 工艺参数计算............................................................2.1 设计压力的确定........................................................2.2 设计温度的确定........................................................2.3 设计存储量的确定......................................................3 储罐的结构设计..........................................................3.1 筒体的材料选择及结构设计..............................................3.2 封头的材料选择及结构设计..............................................3.3 法兰和接管的结构及材料选择............................................3.4 人孔的结构设计........................................................3.5 支座的材料选择及结构设计..............................................3.6 安全装置的设计........................................................3.6.1 安全阀的选用........................................................3.6.2 液位计的选用........................................................3.6.3 压力表的选用........................................................3.7 焊接接头设计..........................................................4 储罐的补强设计..........................................................5 储罐的强度计算及应力校核................................................5.1 储罐的强度计算........................................................5.1.1 圆筒轴向应力........................................................5.1.2 圆筒切向剪应力......................................................5.1.3 封头切向剪应力......................................................5.1.4 圆筒周向应力........................................................5.2 储罐的应力校核........................................................5.2.1 圆筒及封头的应力校核................................................5.2.1 支座的应力校核......................................................6 安全管理................................................................7 设计总结................................................................ 参考文献..................................................................1 概述1.1 设计任务及原始参数本次设计要求根据给定的资料和数据,设计一个液化石油气储配站使用的液化石油气卧式储罐。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
25立方液化石油气储罐一.设计背景该储罐由菏泽锅炉厂有限公司设计,是用来盛装生产用的液化石油气的容器。
设计压力为,温度在-19~52摄氏度范围内,设备空重约为5900Kg,体积为25立方米,属于中压容器。
石油液化气为易燃易爆介质,且有毒,因此选材基本采用Q345R。
此液化石油气卧式储罐是典型的重要焊接结构,焊接接头是其最重要的连接结构,焊接接头的性能会直接影响储存液化石油气的质量和安全。
二.总的技术特性:三.储气罐基本构成储气罐是一个承受内压的钢制焊接压力容器。
在规定的使用温度和对应的工作压力下,应保证安全可靠,罐体的基本结构部件应包括人孔、封头、筒体、法兰、支座。
图1储气罐的结构简图筒体本产品的简体是用钢板卷焊成筒节后组焊而成,这时的简体有纵环焊缝。
封头按几何形状不同,有椭圆形封头,球形封头,蝶形封头,锥形封头和平盖等各种形式。
封头和简体组合在一起构成一台容器壳体的主要部分,也是最主要的受压元件之一。
此储气罐选择的是椭圆形封头。
从制造方法分,封头有整体成形和分片成形后组焊成一体的两种。
当封头直径较大,超出生产能力时,多采用分片成形方法制造,分片成形控制难度大,易出现不合格产品。
对整体成形的封头尺寸、形状,虽然易控制但一般需要有大型冲压模具的压力机或大型旋压设备,工艺设备庞大,制造成本高。
从封头成形方式讲,有冷压成形、热压成形和旋压成形。
对于壁厚较薄的封头,一般采用冷压成形。
采用调质钢板制造的封头或封头瓣片,为不破坏钢板调质状态的力学性能,节省模具制造费用,往往采用多点冷压成形法制造。
当封头厚度较大时,均采用热压成形法,即将封头坯料加热至900℃~1000℃。
钢板在高温下冲压产生塑性变形而成形,此时对于有些材料(如正火态钢板),由于改变了原始状态的力学性能,为恢复和改善其力学性能,封头冲压成形后还要做正火、正火+回火或淬火+回火等相应的热处理。
对于直径大且厚度薄的封头,采用旋压成形法制造是最经济最合理的选择。
接管和法兰接管和法兰作用是连接或供人进入容器内部的,是容器的主要组成部分。
接管与壳体间的焊接接头一般为角接接头或T形接头,但对于连接二者之间的焊缝,如果是壳体上开坡口时,则称为对接焊缝,壳体上不开坡口时称为角接焊缝。
密封元件密封元件是两法兰之间保证容器内部介质不发生泄漏的关键元件。
对于不同的工件条件要求有不同的密封结构形式和不同材质及形式的垫片,在制造时对于密封垫材料和形式不得随意更改。
2.1.6支座立式容器主要采用鞍式支座。
25立方液化石油气储罐(25立方液化气储罐--25立方石油液化气储罐)菏泽锅炉厂有限公司联系方式:400-0767-110,四.技术要求(1)本设备按照GB150-1998《钢制压力容器》进行制造,检测与验收,并接受《压力容器安全技术监察规程》的监督。
(2)制造筒体、封头、人孔接管、用Q345R钢板符合GB6654-1996及第二次改造通知单的规定,人孔法兰盖用钢板正火状态供货。
帯颈对焊法兰、接管用Q345R应符合JB4726-2000,壳体用Q345R钢板应逐张进行冲击试验,方法按照GB/T229的规定,三个试样的平均值大于等于54J。
(3)设备焊接工艺规程按照JB/T4709-2000,焊接工艺评定按照JB4708-2000.所有角接接头的焊接表面须打磨圆滑过渡。
(4)设备中每条A、B类焊接接头应进行100%射线检测,按照JB/的规定,二级合格。
所用D类焊剂接头、DN<250的接管与法兰的B类焊接接头及所有与承压件相焊接的角接接头,应进行100%表面磁粉检测,按照JB/的规定,一级合格。
(5)设备应进行整体焊后消除应力热处理,热处理后不得在设备本体上进行施焊。
(6)最终热处理后,对设备中A。
B、D类焊接接头进行硬度检测,其硬度应小于等于200HB。
检测数量按照每条A、D类焊接接头测一组,每条B类焊接接头每隔120度测一组,每组包括母材、热影响区和焊缝各一处。
(7)未注明角接接头焊脚高度均等于两相焊件中之较薄件的厚度,且须为连续焊。
(8)设备制造完毕后进行水压试验。
水压试验应力见技术要求表。
水压试验合格后应将积水排净吹干。
菏泽锅炉厂有限公司联系方式:400-0767-110,(9)水压试验合格后,应进行气密性试验,试验应力见技术特性表。
(10)设备制造完毕后除锈涂铁红醇酸底漆一遍,再涂银粉醇酸清漆一遍,沿罐体水平中心线用红漆刷一道红色色带,宽度为150mm,在筒体两侧的重心处用红色油漆喷印重新标志,应在重心标志上方喷印LPG字样,重心标志的左侧喷应严禁烟火字样,右侧喷应禁止施焊的字样,标志、字样高度不得小于200mm。
(11)设备的油漆、包装、运输按照JB/T4711-2003《压力容器涂覆与运输包装》的规定。
(12)本储罐安装时,其纵轴应向排污方向倾斜千分之三。
(13)固定支座的连接采用一个螺母拧紧;活动支座用两个螺母,第一个螺母不拧紧,与支座的距离为1至3毫米,用第二个螺母锁紧。
(14)本储罐必须在有遮阳和水喷淋装置的条件下适用。
4.焊接工艺规程:此液化石油气卧式储罐是典型的重要焊接结构,焊接接头是其最重要的连接结构,焊接接头的性能会直接影响储存液化石油气的质量和安全。
因此合理地制定焊接工艺规程非常必要。
根据GB150-1998《钢制压力容器》对压力容器主要受压部位的焊接接头分为以下四类,结合实际工程的需要,分类如下:焊缝编号和分布位置示意图其中A、B、D分别表示焊接接头的形式五.材料选择Q345R钢是屈服强度为340MPa级的压力容器专用板,它具有良好的综合力学性能和工艺性能。
磷、硫含量略低于低合金高强度钢板Q345(Q345R)钢,除抗拉强度、延伸率要求比Q345(Q345R)钢有所提高外,还要求保证冲击韧性。
它是目前我国用途最广、用量最大的压力容器专用钢板。
Q345R材料性能分析:Q345R钢的基体组织为铁素体+珠光体,是低合金高强钢中应用最广泛的钢,有比较成熟的经验,屈服强度为294~343MPa,基本属于热轧的低合金钢,其综合性能、焊接性及加工工艺性能均优于普通碳素钏,且质量稳定,其使用温度在-40~452℃范刖内,Q345R钢作为低温压力容器时,为改善低温性能,可以在正火处理后使用。
Q345R钢是在低碳钢的基础上加入了少量合金,其加工性能.与低碳钢相似,具有较好的塑性和焊接性。
由于加入了少量合金元素,其强度增加,淬硬倾向比低碳钢大,所以在较低温度下或刚性大、壁厚结构的焊接时,需要考虑采取预热措施,预防冷裂纹的产生,本设计中板厚18mm,壁厚较薄,小于30mm,均不用预热焊后亦不必作消除应力处理。
25立方液化石油气储罐(25立方液化气储罐--25立方石油液化气储罐)菏泽锅炉厂有限公司联系方式:400-0767-110,六.焊接技术特性及要求技术特性:液化石油气储罐材料Q345R,工作压力在 MPa,属于第三类压力容器,工作温度-19~52℃,设计温度52℃,腐蚀裕度,焊接接头系数,液压试验压力(卧放),全容积10m3,充装系数,安全阀开启压力技术要求:1)设备的施工应符合GB150-1998《钢制压力容器》,验收应接受《压力容器安全技术监督规程》中的相关规定2)焊接采用电弧焊,焊条型号,低合金钢之间E5016,碳钢间E43033)焊接接头的形式及尺寸按图要求,角焊缝的焊脚高度为较薄件的厚度,法兰的焊接按相应的法兰标准规定,对接接头与角接接头需全焊透,接管焊缝成形表面均应圆滑过渡,不得有裂纹、咬边、及棱角. 4)壳体钢板按GB6654-1996《压力容器钢板》及修改单中正火状态供货,且逐张进行超声检测,质量标准应不低于JB/T4730. 3-2005中规定的II级,壳体的A类纵向焊接接头制备产品焊接试板,按《容规》第25条进行材料复验,坡口表面进行IOO%磁粉检测,并符合JB4730. 4-2005中规定的I级5)筒体长度小于15m,塔体直线度允差偏差不大于1000+8,12mm,安装垂直度允差为12mm6)裙座螺栓孔中心圆直径允差以及任意两孔弦长允差均为2mm7)壳体用钢板轧制,逐张进行-19℃夏比(V型缺口)冲击试验(横向),三个试样冲击平均值不得低于20J,允许其中一个试样冲击功小于平均值,但不得小于14J8)钢管应逐根按JB/T4730. 3-2005中I级为合格9)支座简体与封头的焊接接头必须采用全焊透连续焊,并进行磁粉检测,符合JB/T4730. 4-2005中I级为合格10)设备压力试验合格后对全部焊缝按JB/T4730. 4-2005进行磁粉检测,符合I级为合格,复验焊缝 II)热处理后,设备本体不得再行施焊25立方液化石油气储罐(25立方液化气储罐--25立方石油液化气储罐)菏泽锅炉厂有限公司联系方式:400-0767-110,七.焊接工艺设计焊缝编号及示意图其中A、B、C、D分别表示焊接接头的形式接管与壳体.封头的焊接(D1,,D2A3B3)由GB150-1998《钢制压力容器》规定,接管,人孔,凸缘补强圈等与壳体连接的接头。
为D类焊缝。
由此选择焊缝类型为D类焊缝。
金属牌号及规格:Q345R7.2.1焊接方法的选择手工电弧焊的优点①焊接设备价格低.简单。
②焊条品种齐全,可以焊接多种不同的金属,包括最常用的金属和合金。
③在狭窄空问焊接的场合,采用手工电弧焊比较方便、实用。
④对于同样的焊接设备,采用不同的电流设置,获得满足使用要求的焊缝。
⑤适合各种位置的焊接。
⑥与气体保护焊相比,不易受到风的影响。
⑦对焊接金属的最大厚度没有限制⑧在大多数天气情况下都可以进行焊接。
手工电弧焊的缺点①不适合焊接厚度小于1. 5mm的薄板。
②负载率和总的熔敷效率一般比送丝焊接方法低,当焊条消耗完毕或需要更换焊条时,焊接过程也暂时中断。
③并非整根焊条都可以充分利用,焊钳中被夹持的部分必须丢弃,一般要浪费25~50mm长度的焊条。
④频繁地更换焊条也增加了焊接缺陷的产生埋弧自动焊的优点是:①生产效率高。
埋弧自动焊的生产率可比手工焊提高5~10倍。
因为埋弧自动焊时焊丝上无药皮,焊丝可很长,并能连续送进而无需更换焊条。
故可采用大电流焊接(比手工焊大6~8倍),电弧热量大,焊丝熔化快,熔深也大,焊接速度比手工焊快的多。
板厚30毫米以下的自动焊可1不开坡口,而且焊接变形小。
②焊剂层对焊缝金属的保护好,所以焊缝质量好。
③节约钢材和电能。
钢板厚度一般在30毫米以下时,埋弧自动焊可不开坡口,这就大大节省了钢材,而且由于电弧被焊剂保护着,使电弧的热得到充分利用,从而节省了电能。
④改善了劳动条件。
除减少劳动量以外,由于自动焊看不到弧光,焊接过程中发出的气体量少,这对保护焊工眼睛和身体健康是有益的。
埋弧自动焊的缺点是适应能力差,只能在水平位置焊接长直焊缝或大直径的环焊缝。