选修4-4-第二讲-参数方程(圆锥曲线的参数方程)-教案

合集下载

高中数学 第二讲《参数方程》全部教案 新人教A版选修4-4

高中数学 第二讲《参数方程》全部教案 新人教A版选修4-4

曲线的参数方程教学目标:1.通过分析抛物运动中时间与运动物体位置的关系,写出抛物运动轨迹的参数方程,体会参数的意义。

2.分析圆的几何性质,选择适当的参数写出它的参数方程。

3.会进行参数方程和普通方程的互化。

教学重点:根据问题的条件引进适当的参数,写出参数方程,体会参数的意义。

参数方程和普通方程的互化。

教学难点:根据几何性质选取恰当的参数,建立曲线的参数方程。

参数方程和普通方程的等价互化。

教学过程一.参数方程的概念1.探究:(1)平抛运动: 为参数)t gt y tx (215001002⎪⎩⎪⎨⎧-== 练习:斜抛运动:为参数)t gt t v y t v x (21sin cos 200⎪⎩⎪⎨⎧-⋅=⋅=αα2.参数方程的概念 (见教科书第22页) 说明:(1)一般来说,参数的变化X 围是有限制的。

(2)参数是联系变量x ,y 的桥梁,可以有实际意义,也可无实际意义。

例1.(教科书第22页例1)已知曲线C 的参数方程是⎩⎨⎧+==1232t y tx (t 为参数) (1)判断点M 1(0,1),M 2(5,4)与曲线C 的位置关系; (2)已知点M 3(6,a )在曲线C 上,求a 的值。

)0,1()21,21()21,31()7,2()(2cos sin 2D C B A y x ,、,、,、的坐标是表示的曲线上的一个点为参数、方程θθθ⎩⎨⎧==A 、一个定点B 、一个椭圆C 、一条抛物线D 、一条直线二.圆的参数方程)(sin cos 为参数t t r y t r x ⎩⎨⎧==ωω)(sin cos 为参数θθθ⎩⎨⎧==r y r x说明:(1)随着选取的参数不同,参数方程形式也有不同,但表示的曲线是相同的。

(2)在建立曲线的参数方程时,要注明参数及参数的取值X 围。

例2.(教科书第24页例2)思考:你能回答教科书第25页的思考吗?三.参数方程和普通方程的互化1.阅读教科书第25页,明确参数方程和普通方程的互化的方法。

高二数学选修44教案07圆锥曲线的参数方程

高二数学选修44教案07圆锥曲线的参数方程

高二数学选修4-4教案07圆锥曲线的参数方程一、数学构建1.圆的参数方程:(1)圆222r y x =+的参数方程为 为参数)(ϕ⎩⎨⎧ϕ=ϕ=sin r y cos r x (2)圆22020r )y y ()x x (=-+-的参数方程为 为参数)(ϕ⎩⎨⎧ϕ+=ϕ+=sin r y y cos r x x 00 2.椭圆的参数方程:(1)椭圆)(0b a 1b y a x 2222>>=+的参数方程为 为参数)(ϕ⎩⎨⎧ϕ=ϕ=sin b y cos a x (1)椭圆)(0b a 1b )y y (a )x x (220220>>=-+-的参数方程为为参数)(ϕ⎩⎨⎧ϕ+=ϕ+=sin b y y cos a x x 00 3.双曲线的参数方程:(1)双曲线1b y a x 2222=-的参数方程为 为参数)(ϕ⎩⎨⎧ϕ=ϕ=cot b y sec a x (1)椭圆1b )y y (a )x x (220220=---的参数方程为 为参数)(ϕ⎩⎨⎧ϕ+=ϕ+=cot b y y sec a x x 00 上述圆、椭圆、双曲线的参数方程中,参数ϕ的几何意义为离心角。

4.抛物线px 2y 2=的参数方程为为参数)(t pt 2y pt 2x 2⎩⎨⎧== 其中t 的几何意义是抛物线px 2y 2=上除顶点外的点与原点连线的斜率的倒数。

二、知识运用【例1】点P 在圆41)2y (x 22=-+上移动,点Q 在椭圆4y 4x 22=+上移动,求|PQ|的最大值及相应的点Q 坐标。

解 设Q (2cosa ,sina )、O ′(0,2),则328328)32a (sin 3)2a (sin a cos 4|Q 'O |2222≤++-=-+=。

2132|Q 'O |≤∴,当且仅当35a cos 32a sin ±=-=,时取等号。

213221|Q 'O |21|Q 'O ||'PO ||PQ |+≤+=+≤Θ,∴|PQ|的最大值是213221+,相应的点Q 坐标为),(32532-±。

人教A版数学【选修4-4】ppt课件:2-2第二讲-参数方程

人教A版数学【选修4-4】ppt课件:2-2第二讲-参数方程

【解】
如图所示:
由动点C在该椭圆上运动,故可设C的坐标为(6cosθ,3sinθ), 点G的坐标为(x,y),由题意可知A(6,0),B(0,3),由三角形重心坐 标公式可知:
x=6+0+6cosθ=2+2cosθ, 3 0+3+3sinθ y= =1+sinθ. 3 x-22 由此,消去参数θ,得到所求的普通方程为 4 +(y-1)2= 1.
x-1=cosθ, 3 【解】 (1)由题意可设 y+2 =sinθ, 5
x=1+ 3cosθ, y=-2+ 5sinθ

(θ为参数)为所求.
2 2 x y (2)x2-y2=4变形为: 4 - 4 =1.
x=2secα, ∴参数方程为 y=2tanα
2 x = 2 pt , 2 2.抛物线y =2px(p>0)的参数方程为 y=2pt
y 1 由于 x = t ,因此参数t的几何意义是抛物线上除顶点外的点与 抛物线的顶点连线的斜率的倒数. 3.几个结论 x2 y2 (1)焦点在y轴上的椭圆的标准方程为 b2 + a2 =1(a>b>0),其参 数方程是 [0,2π).
x2 y2 a2+b2=1
x=acosφ, y=bsinφ
x2 y2 a2-b2=1
x=asecφ, y=btanφ
点的坐标
(rcosθ, rsinθ)
(acosφ,bsinφ)
(asecφ,btanφ)
这三种曲线的参数方程都是参数的三角形式.其中圆的参数θ 表示旋转角,而椭圆、双曲线的参数φ表示离心角,几何意义是不 同的,它们的参数方程主要应用价值在于: (1)通过参数(角)简明地表示曲线上任一点的坐标; (2)将解析几何中的计算问题转化为三角问题,从而运用三角 函数性质及变换公式帮助求解最值、参数的取值范围等问题.

优质课选修4-4第二讲_参数方程(圆锥曲线的参数方程)

优质课选修4-4第二讲_参数方程(圆锥曲线的参数方程)

求该椭圆的离心率e的取值范围。
1.圆心在原点,半径为r的圆的参数方程:
x y
rcos(为 rsi n
参数

2.圆心为(a, b),半径为r的圆的参数方程:
xybarrscions(为参数)
y
M(x,y)
r
o
M0 x
例、已知圆方程x2+y2 +2x-6y+9=0,将它 化为参数方程。
解: x2+y2+2x-6y+9=0化为标准方程,
例6 θ取一切实数时,连接
A(4sinθ,6cosθ)和B(-4cosθ, 6sinθ)
两点的线段的中点轨迹是
.
A. 圆 B. 椭圆 C. 直线
D. 线段
例7
已知点A在椭圆
x2 144
y2 1 36
上运动,点B(0,
9)、
点M在线段AB上,且 AM 1 ,试求动点M的轨迹方程。
MB 2
解:由题意知B(0, 9), 设A(1c2o , 6 ssin ),并且设M(x, y)
由点到直线的距 ,得离到公 M 点到 式直线的 距离为
d|3cos4sin10|
5
|5cos53s5in5410|
15|5cos010|,
其0 中 满c足 o 0s 5 3,sin 05 4.
由三角函数 ,当 性 0质 0知 ,d取最小 5.值
此 ,3 c时 o 3 s co 0 s 5 9 ,2 si n 2 si0 n 5 8 .
1.代入法:利用解方程的技巧求出参数t,然后代入消 去参数
2.三角法:利用三角恒等式消去参数 3.整体消元法:根据参数方程本身的结构特征,从
整体上消去。

选修4-4第二讲参数方程(文)

选修4-4第二讲参数方程(文)

一、学习目标1. 通过分析抛射体运动中时间与物体位置的关系,了解参数方程的概念,体会其意义。

2. 理解直线、圆、椭圆的参数方程及其参数的意义,掌握它们的参数方程与普通方程的互化,并能利用参数方程解决一些相关的应用问题(如求最值等)。

3. 了解抛物线、双曲线的参数方程,能将它们的参数方程化为普通方程。

4. 知道摆线、圆的渐开线的参数方程,体会参数在建立曲线方程中的作用。

二、重点、难点重点:直线、圆、椭圆的参数方程的建立,以及参数方程与普通方程的互化与应用。

难点:对上述三类重点参数方程中参数的意义的理解,以及熟练应用参数方程解决相关问题。

三、考点分析高考中对本讲的考查以直线、圆、椭圆的参数方程为主,有时会与极坐标方程相结合,多以选做题的形式出现在填空题或解答题中,难度不大,分值为5-10分,不同的省份在题型和分值的设定上略有差异,与普通方程的互化仍然是解决此类问题的常用策略,此外,参数方程也为解决解析几何中的最值、轨迹等问题提供了一条思路。

一、知识网络(1)圆的参数方程其中θ的几何意义为圆心角(参看图甲)(2)椭圆的参数方程其中θ为椭圆的离心角(参看图乙)乙(3)双曲线的参数方程(4)抛物线的参数方程知识点一:参数方程的建立例1 (1)经过点M (1,5)且倾斜角为3π的直线,以定点M 到动点P 的位移t 为参数的参数方程是( )A. ⎪⎪⎩⎪⎪⎨⎧+=+=t y t x 235211 B.⎪⎪⎩⎪⎪⎨⎧+=-=t y t x 235211 C. ⎪⎪⎩⎪⎪⎨⎧-=+=t y t x 235211 D. ⎪⎪⎩⎪⎪⎨⎧+=+=t x t y 215231 (2)已知椭圆1422=+yx ,点P 为椭圆上一动点,O 为坐标原点,设由x 轴逆时针旋转到OP 的角为α,则该椭圆的以α为参数的参数方程为 。

知识点一小结:参数方程的建立主要是指利用教材中的直线、圆、椭圆的参数方程的基本形式结合题中参数的意义直接写出参数方程,同时也是利用参数方程解决一些解析几何问题的知识基础。

2017-2018学年高中数学人教A版选修4-4第二讲参数方程二圆锥曲线的参数方程课堂导学案

2017-2018学年高中数学人教A版选修4-4第二讲参数方程二圆锥曲线的参数方程课堂导学案

二圆锥曲线的参数方程讲堂导学三点分析一、利用参数方程求点的轨迹【例 1】已知 A、 B 分别是椭圆x2 y2 =1 的左极点和上极点, 动点 C 在该椭圆上运动 , 求36 9△ABC的重心 G的轨迹的一般方程 .分析 : 此题有两种思虑方式, 求解时把点 C 的坐标设为一般的(x ,y ) 的形式或依据它在该椭1 1圆上运动也能够设为 (6cos θ,3sin θ ) 的形式 , 进而予以求解 .解:由动点 C 在该椭圆上运动, 故据此可设点 C 的坐标为 (6cos θ ,3sin θ ), 点 G 的坐标为(x,y), 则由题意可知点 A(-6,0) 、 B(0,3).由重心坐标公式可知6 0 6 cos2 2cos ,x 30 3 3sin1 sin .y 3由此消去θ 获得( x 2) 22即为所求 .4 +(y-1) =1,温馨提示此题的解法表现了椭圆的参数方程关于解决有关问题的优胜性, 运用参数方程显得更简单、更便利 .各个击破类题操练 1已知双曲线x2 y 2=1(a>0,b>0) 的动弦 BC平行于虚轴 ,M、N 是双曲线的左、右极点 .a 2b 2(1)求直线 MB、 CN的交点 P 的轨迹方程 ;(2)若 P(x 1,y 1),B(x 2,y 2), 求证 :a 是 x1、x2的比率中项 .(1) 解 : 由题意可设点B(asec θ ,btan θ), 则点 C(asec θ ,-btanθ ),又M(-a,0),N(a,0),∴直线 MB的方程为 y=b tan(x+a), a sec a直线 CN的方程为 y=b tana (x-a).a sec将以上两式相乘得点P 的轨迹方程为x 2 y 2a 2b 2 =1.(2) 证明 : 因为 P 既在 MB 上 , 又在 CN 上 , 由两直线方程消去 y 1 得 x 1=a, 而 x 2=asec θ , 因此sec有 x 1x 2=a 2, 即 a 是 x 1、 x 2 的比率中项 . 变式提高 1在直角坐标系 x 2t 1, xOy 中, 参数方程2t 2(t 为参数 ) 表示的曲线是 ___________.y 1分析 : t=x 1代入 y=2t 2-1 得 y=2(x 1) 2-1, 即 (x-1) 2=2(y+1).22答案 : 抛物线二、利用参数方程求坐标 【例 2】 在椭圆 短距离 .7x 2+4y 2=28 上求一点 , 使它到直线l:3x-2y-16=0的距离最短, 并求出这一最解:把椭圆方程化为x 2 y 2 4=1 的形式 ,7则可设椭圆上点 A 坐标为 (2cos α ,7sin α ),则 A 到 直 线 l的 距 离 为 d=| 6 cos27 sin 16 | | 8sin() 16|(此中13133).β=arcsin4∴当 β - α=时,d 有最小值 , 最小值为88 1313.213此时 α =β-, ∴sin α =-cos β =7 ,cos α =sin β = 3 .244 ∴A 点坐标为 3 7( ,).24温馨提示用参数方程解决一些坐标问题 , 简单易行 , 本例是很典型的 .类题操练 2椭圆x 4 cos ,y( θ 为参数 ) 的左焦点的坐标是 __________.3sin分析 : a=4,b=3, ∴c= 7 . ∴坐标为 ( 7 ,0).答案:(7 ,0)变式提高 2在椭圆x 2y 2 上求一点 P, 使四边形 OAPB 的面积最大 , 并求最a 2b 2 =1(a>b>0) 的第一象限的大面积 .分析 : 如图 , 将四边形 OAPB 切割成△ OAP 与△ OPB,则 P 点纵坐标为△ OAP 的 OA 边上的高 ,P 点横坐标为△ OPB 的 OB 边上的高 . 解: 设 P(acos θ ,bsin θ ),S四边形 OAPB=S △OAP +S △OPB = 1 absin θ + 1abcos θ22= 1ab(sin θ +cos θ )=2absin(+θ).224当 θ =时,四边形 OAPB 面积最大,最大面积为2 点坐标为ab, 此 时 ,P42(2a,2b).22三、范围及最值问题【例 3】 圆 M 的方程为 x 2+y 2-4Rxcos α -4Rysin α +3R 2=0(R>0).(1) 求该圆圆心 M 的坐标以及圆 M 的半径 ;(2) 当 R 固定 , α 变化时 , 求圆心 M 的轨迹 , 并证明此时无论 α 取什么值 , 全部的圆 M 都外切 于一个定圆 .思路分析 : 此题中所给的圆方程中的变数有多个, 此时要联合题意分清终究是哪个真实在变,而像这样的详细题目特别简单犯弄不清真实的参数的错误 .解 :(1) 由 题 意 得 圆 M 的 方 程 为 (x-2Rcos α ) 2+(y-2Rsin α) 2=R 2, 故 圆 心 为M(2Rcos α ,2Rsin α ), 半径为 R.x 2Rcos , ( 此中 α 为参数 ), 两式平方相加得(2) 当 α 变化时 , 圆心 M 的轨迹方程为2Rsiny222半径为 2R 的圆 . x +y =4R, 因此圆心 M 的轨迹是圆心在原点 ,因为(2Rcos )2(2R sin )2=2R=3R-R, (2Rcos) 2 (2Rsin )2 =2R=R+R,因此全部的圆 M 都和定圆 222222内切 .x +y =R 外切 , 和定圆 x +y =9R 类题操练 3x cos ,曲线 C:( θ 为参数 ) 的一般方程是 , 假如 C 与直线 x+y+a=0 有 ________公共y1 sin点, 那么实数 a 的取值范围是 _________. 分析: 参数方程消去 θ 得 x 2+(y+1) 2=1.曲线 C 与直线 x+y+a=0 有公共点 , 则圆心到直线的距离不超出半径长 ,即| 01a |≤1. ∴1-2 ≤a ≤1+ 2 .2答案 : x2+(y+1) 2=1 1- 2 ≤a≤1+ 2变式提高 3设 a、b∈ R,a 2+2b2=6, 则 a+b 的最小值是 ________.2 2分析 : ∵a+2b =6,∴a 2 b26 =1.3设a 6 cos ,( θ为参数 ), b 3 sin∴a+b= 6 cosθ+ 3 sinθ=3sin(θ+φ),3φ = 6此中 cos φ=,sin ,3 3 即 a+b 的最小值是 -3.答案:-3。

高中数学 第2讲 参数方程 2 圆锥曲线的参数方程学案 新人教A版选修4-4-新人教A版高中选修4-

高中数学 第2讲 参数方程 2 圆锥曲线的参数方程学案 新人教A版选修4-4-新人教A版高中选修4-

二 圆锥曲线的参数方程1.理解椭圆的参数方程及其应用.(重点) 2.了解双曲线、抛物线的参数方程.3.能够利用圆锥曲线的参数方程解决最值、有关点的轨迹问题.(难点、易错点)[基础·初探]教材整理1 椭圆的参数方程阅读教材P 27~P 29“思考”及以上部分,完成下列问题.普通方程参数方程x 2a 2+y2b 2=1(a >b >0) ⎩⎪⎨⎪⎧ x =a cos φy =b sin φ(φ为参数)y 2a 2+x2b 2=1(a >b >0) ⎩⎪⎨⎪⎧x =b cos φy =a sin φ(φ为参数)椭圆⎩⎪⎨⎪⎧x =4cos φy =5sin φ(φ为参数)的离心率为( )A.45 B.35 C.34D.15【解析】 由椭圆方程知a =5,b =4,∴c 2=9,c =3,e =35.【答案】 B教材整理2 双曲线的参数方程 阅读教材P 29~P 32,完成下列问题.普通方程参数方程x 2a 2-y2b 2=1(a >0,b >0) ⎩⎪⎨⎪⎧x =a sec φy =b tan φ(φ为参数)下列双曲线中,与双曲线⎩⎨⎧x =3sec θ,y =tan θ(θ为参数)的离心率和渐近线都相同的是( )A.y 23-x 29=1B.y 23-x 29=-1 C.y 23-x 2=1 D.y 23-x 2=-1 【解析】 由x =3sec θ得, x 2=3cos 2θ=3sin 2θ+cos 2θcos 2θ=3tan 2θ+3, 又∵y =tan θ,∴x 2=3y 2+3,即x 23-y 2=1.经验证可知,选项B 合适. 【答案】 B教材整理3 抛物线的参数方程阅读教材P 33~P 34“习题”以上部分,完成下列问题. 1.抛物线y2=2px 的参数方程是⎩⎪⎨⎪⎧x =2pt 2y =2pt(t 为参数).2.参数t 表示抛物线上除顶点外的任意一点与原点连线的斜率的倒数.若点P (3,m )在以点F 为焦点的抛物线⎩⎪⎨⎪⎧x =4t2y =4t (t 为参数)上,则|PF |=________.【解析】 抛物线为y 2=4x ,准线为x =-1, |PF |等于点P (3,m )到准线x =-1的距离,即为4. 【答案】 4[质疑·手记]预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流:疑问1: 解惑:疑问2: 解惑: 疑问3: 解惑:椭圆的参数方程及应用将参数方程⎩⎪⎨⎪⎧x =5cos θ,y =3sin θ(θ为参数)化为普通方程,并判断方程表示曲线的焦点坐标.【思路探究】 根据同角三角函数的平方关系,消去参数,化为普通方程,进而研究曲线形状和几何性质.【自主解答】 由⎩⎪⎨⎪⎧x =5cos θy =3sin θ得⎩⎪⎨⎪⎧cos θ=x5,sin θ=y3,两式平方相加,得x 252+y 232=1.∴a =5,b =3,c =4.因此方程表示焦点在x 轴上的椭圆,焦点坐标为F 1(4,0)和F 2(-4,0).椭圆的参数方程⎩⎪⎨⎪⎧x =a cos θ,y =b sin θ,(θ为参数,a ,b 为常数,且a >b >0)中,常数a ,b分别是椭圆的长半轴长和短半轴长,焦点在长轴上.[再练一题]1.若本例的参数方程为⎩⎪⎨⎪⎧x =3cos θ,y =5sin θ,(θ为参数),则如何求椭圆的普通方程和焦点坐标?【解】 将⎩⎪⎨⎪⎧x =3cos θ,y =5sin θ,化为⎩⎪⎨⎪⎧x3=cos θ,y5=sin θ,两式平方相加,得x 232+y 252=1.其中a =5,b =3,c =4.所以方程的曲线表示焦点在y 轴上的椭圆,焦点坐标为F 1(0,-4)与F 2(0,4).双曲线参数方程的应用求证:双曲线x 2a 2-y 2b2=1(a >0,b >0)上任意一点到两渐近线的距离的乘积是一个定值.【思路探究】 设出双曲线上任一点的坐标,可利用双曲线的参数方程简化运算.【自主解答】 由双曲线x 2a 2-y 2b2=1,得两条渐近线的方程是:bx +ay =0,bx -ay =0, 设双曲线上任一点的坐标为(a sec φ,b tan φ), 它到两渐近线的距离分别是d 1和d 2, 则d 1·d 2=|ab sec φ+ab tan φ|b 2+a 2·|ab sec φ-ab tan φ|b 2+-a 2=|a 2b2sec 2 φ-tan 2 φ|a 2+b 2=a 2b2a 2+b2(定值).在研究有关圆锥曲线的最值和定值问题时,使用曲线的参数方程非常简捷方便,其中点到直线的距离公式对参数形式的点的坐标仍适用,另外本题要注意公式sec 2φ-tan 2φ=1的应用.[再练一题]2.如图2­2­1,设P 为等轴双曲线x 2-y 2=1上的一点,F 1、F 2是两个焦点,证明:|PF 1|·|PF 2|=|OP |2.图2­2­1【证明】 设P (sec φ,tan φ), ∵F 1(-2,0),F 2(2,0), ∴|PF 1|=sec φ+22+tan 2φ=2sec 2φ+22sec φ+1,|PF 2|=sec φ-22+tan 2φ=2sec 2φ-22sec φ+1,|PF 1|·|PF 2|=2sec 2φ+12-8sec 2φ=2sec 2φ-1.∵|OP |2=sec 2φ+tan 2φ=2sec 2φ-1, ∴|PF 1|·|PF 2|=|OP |2.抛物线的参数方程设抛物线y 2=2px 的准线为l ,焦点为F ,顶点为O ,P 为抛物线上任一点,PQ ⊥l于Q ,求QF 与OP 的交点M 的轨迹方程.【导学号:91060021】【思路探究】 解答本题只要解两条直线方程组成的方程组得到交点的参数方程,然后化为普通方程即可.【自主解答】 设P 点的坐标为(2pt 2,2pt )(t 为参数), 当t ≠0时,直线OP 的方程为y =1tx ,QF 的方程为y =-2t ⎝⎛⎭⎪⎫x -p 2,它们的交点M (x ,y )由方程组 ⎩⎪⎨⎪⎧y =1t x y =-2t ⎝ ⎛⎭⎪⎫x -p 2确定,两式相乘,消去t ,得y 2=-2x ⎝ ⎛⎭⎪⎫x -p 2,∴点M 的轨迹方程为2x 2-px +y 2=0(x ≠0). 当t =0时,M (0,0)满足题意,且适合方程2x 2-px +y 2=0. 故所求的轨迹方程为2x 2-px +y 2=0.1.抛物线y2=2px (p >0)的参数方程为⎩⎪⎨⎪⎧x =2pt 2,y =2pt(t 为参数),参数t 为任意实数,它表示抛物线上除顶点外的任意一点与原点连线的斜率的倒数.2.用参数法求动点的轨迹方程,其基本思想是选取适当的参数作为中间变量,使动点的坐标分别与参数有关,从而得到动点的参数方程,然后再消去参数,化为普通方程.[再练一题]3.已知抛物线的参数方程为⎩⎪⎨⎪⎧x =2pt 2,y =2pt(t 为参数),其中p >0,焦点为F ,准线为l .过抛物线上一点M 作l 的垂线,垂足为E ,若|EF |=|MF |,点M 的横坐标是3,则p =________.【解析】 根据抛物线的参数方程可知抛物线的标准方程是y 2=2px ,所以y 2M =6p ,所以E ⎝ ⎛⎭⎪⎫-p 2,±6p ,F ⎝ ⎛⎭⎪⎫p 2,0,所以p2+3=p 2+6p ,所以p 2+4p -12=0,解得p =2(负值舍去).【答案】 2[构建·体系]圆锥曲线的参数方程—⎪⎪⎪—椭圆的参数方程—双曲线的参数方程—抛物线的参数方程1.参数方程⎩⎪⎨⎪⎧x =cos θ,y =2sin θ(θ为参数)化为普通方程为( )A .x 2+y 24=1 B .x 2+y 22=1C .y 2+x 24=1D .y 2+x 24=1【解析】 易知cos θ=x ,sin θ=y2,∴x 2+y 24=1,故选A.【答案】 A2.方程⎩⎪⎨⎪⎧x cos θ=a ,y =b cos θ(θ为参数,ab ≠0)表示的曲线是( )【导学号:91060022】A .圆B .椭圆C .双曲线D .双曲线的一部分【解析】 由x cos θ=a ,∴cos θ=ax, 代入y =b cos θ,得xy =ab ,又由y =b cos θ知,y ∈[-|b |,|b |], ∴曲线应为双曲线的一部分. 【答案】 D3.圆锥曲线⎩⎪⎨⎪⎧x =t 2,y =2t (t 为参数)的焦点坐标是________.【解析】 将参数方程化为普通方程为y 2=4x ,表示开口向右,焦点在x 轴正半轴上的抛物线,由2p =4⇒p =2,则焦点坐标为(1,0).【答案】 (1,0) 4.在直角坐标系xOy中,已知曲线C 1:⎩⎪⎨⎪⎧x =t +1,y =1-2t(t 为参数)与曲线C 2:⎩⎪⎨⎪⎧x =a sin θ,y =3cos θ(θ为参数,a >0)有一个公共点在x 轴上,则a =________.【解析】 ∵⎩⎪⎨⎪⎧x =t +1,y =1-2t ,消去参数t 得2x +y -3=0.又⎩⎪⎨⎪⎧x =a sin θ,y =3cos θ,消去参数θ得x 2a 2+y 29=1.方程2x +y -3=0中,令y =0得x =32,将⎝ ⎛⎭⎪⎫32,0代入x 2a 2+y 29=1,得94a 2=1. 又a >0,∴a =32.【答案】 325.已知两曲线参数方程分别为⎩⎨⎧x =5cos θ,y =sin θ(0≤θ<π)和⎩⎪⎨⎪⎧x =54t 2,y =t(t ∈R ),求它们的交点坐标.【解】 将⎩⎨⎧x =5cos θ,y =sin θ(0≤θ<π)化为普通方程得:x 25+y 2=1(0≤y ≤1,x ≠-5),将x =54t 2,y =t 代入得:516t 4+t 2-1=0,解得t 2=45,∴t =255(y =t ≥0),x =54t 2=54×45=1,∴交点坐标为⎝⎛⎭⎪⎫1,255.我还有这些不足:(1) (2) 我的课下提升方案:(1) (2)学业分层测评(七) (建议用时:45分钟)[学业达标]一、选择题1.曲线C :⎩⎨⎧x =3cos φ,y =5sin φ(φ为参数)的离心率为( )A.23B.35C.32D.53【解析】 由题设,得x 29+y 25=1,∴a 2=9,b 2=5,c 2=4,因此e =c a =23.【答案】 A 2.已知曲线⎩⎪⎨⎪⎧x =3cos θy =4sin θ(θ为参数,0≤θ≤π)上一点P ,原点为O ,直线PO 的倾斜角为π4,则P 点坐标是( )A .(3,4) B.⎝⎛⎭⎪⎫322,22 C .(-3,-4) D.⎝ ⎛⎭⎪⎫125,125 【解析】 因为y -0x -0=43tan θ=tan π4=1,所以tan θ=34,所以cos θ=45,sin θ=35,代入得P 点坐标为⎝ ⎛⎭⎪⎫125,125.【答案】 D3.参数方程⎩⎪⎨⎪⎧x =sin α2+cos α2,y =2+sin α(α为参数)的普通方程是( )A .y 2-x 2=1 B .x 2-y 2=1C .y 2-x 2=1(1≤y ≤3) D .y 2-x 2=1(|x |≤2)【解析】 因为x 2=1+sin α, 所以sin α=x 2-1.又因为y 2=2+sin α=2+(x 2-1), 所以y 2-x 2=1.∵-1≤sin α≤1,y =2+sin α, ∴1≤y ≤3,∴普通方程为y 2-x 2=1,y ∈[1,3]. 【答案】 C4.点P (1,0)到曲线⎩⎪⎨⎪⎧x =t2y =2t (参数t ∈R )上的点的最短距离为( )A .0B .1 C. 2D .2【解析】 d 2=(x -1)2+y 2=(t 2-1)2+4t 2=(t 2+1)2, 由t 2≥0得d 2≥1,故d min =1. 【答案】 B5.方程⎩⎪⎨⎪⎧x =2t-2-ty =2t +2-t(t 为参数)表示的曲线是( )【导学号:91060023】A .双曲线B .双曲线的上支C .双曲线的下支D .圆【解析】 将参数方程的两个等式两边分别平方,再相减,得:x 2-y 2=(2t -2-t )2-(2t +2-t )2=-4,即y 2-x 2=4.又注意到2t>0,2t+2-t≥22t ·2-t=2,得y ≥2. 可见与以上参数方程等价的普通方程为:y 2-x 2=4(y ≥2).显然它表示焦点在y 轴上,以原点为中心的双曲线的上支. 【答案】 B 二、填空题6.已知椭圆的参数方程⎩⎪⎨⎪⎧x =2cos t y =4sin t(t 为参数),点M 在椭圆上,对应参数t =π3,点O 为原点,则直线OM 的斜率为________.【解析】 由⎩⎪⎨⎪⎧x =2cos π3=1,y =4sin π3=23,得点M 的坐标为(1,23) 直线OM 的斜率k =231=2 3.【答案】 2 37.设曲线C 的参数方程为⎩⎪⎨⎪⎧x =t ,y =t 2(t 为参数),若以直角坐标系的原点为极点,x 轴的正半轴为极轴建立极坐标系,则曲线C 的极坐标方程为________.【解析】 ⎩⎪⎨⎪⎧x =t ,y =t2化为普通方程为y =x 2,由于ρcos θ=x ,ρsin θ=y ,所以化为极坐标方程为ρsin θ=ρ2cos 2θ,即ρcos 2θ-sin θ=0.【答案】 ρcos 2θ-sin θ=08.在平面直角坐标系xOy 中,曲线C 1和C 2的参数方程分别为⎩⎨⎧x =t ,y =t (t 为参数)和⎩⎨⎧x =2cos θ,y =2sin θ(θ为参数),则曲线C 1与C 2的交点坐标为________.【解析】 由⎩⎨⎧x =t ,y =t ,得y =x ,又由⎩⎨⎧x =2cos θ,y =2sin θ,得x 2+y 2=2.由⎩⎨⎧y =x ,x 2+y 2=2,得⎩⎪⎨⎪⎧x =1,y =1,即曲线C 1与C 2的交点坐标为(1,1). 【答案】 (1,1) 三、解答题9.如图2­2­2所示,连接原点O 和抛物线y =12x 2上的动点M ,延长OM 到点P ,使|OM |=|MP |,求P 点的轨迹方程,并说明是什么曲线?图2­2­2【解】 抛物线标准方程为x2=2y ,其参数方程为⎩⎪⎨⎪⎧x =2t ,y =2t 2,得M (2t,2t 2).设P (x ,y ),则M 是OP 中点.∴⎩⎪⎨⎪⎧2t =x +02,2t 2=y +02,∴⎩⎪⎨⎪⎧x =4t y =4t2(t 为参数),消去t 得y =14x 2,是以y 轴对称轴,焦点为(0,1)的抛物线.10.已知直线l 的极坐标方程是ρcos θ+ρsin θ-1=0.以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,椭圆C 的参数方程是⎩⎪⎨⎪⎧x =2cos θy =sin θ(θ为参数),求直线l 和椭圆C 相交所成弦的弦长.【解】 由题意知直线和椭圆方程可化为:x +y -1=0,① x 24+y 2=1,②①②联立,消去y 得:5x 2-8x =0, 解得x 1=0,x 2=85.设直线与椭圆交于A 、B 两点,则A 、B 两点直角坐标分别为(0,1),⎝ ⎛⎭⎪⎫85,-35,则|AB |=⎝ ⎛⎭⎪⎫-35-12+⎝ ⎛⎭⎪⎫852=825,故所求的弦长为825.[能力提升]1.P 为双曲线⎩⎪⎨⎪⎧x =4sec θ,y =3tan θ(θ为参数)上任意一点,F 1,F 2为其两个焦点,则△F 1PF 2重心的轨迹方程是( )A .9x 2-16y 2=16(y ≠0) B .9x 2+16y 2=16(y ≠0) C .9x 2-16y 2=1(y ≠0) D .9x 2+16y 2=1(y ≠0)【解析】 由题意知a =4,b =3,可得c =5, 故F 1(-5,0),F 2(5,0),设P (4sec θ,3tan θ),重心M (x ,y ),则x =-5+5+4sec θ3=43sec θ,y =0+0+3tan θ3=tan θ.从而有9x 2-16y 2=16(y ≠0). 【答案】 A2.若曲线⎩⎪⎨⎪⎧x =sin 2θ,y =cos θ-1(θ为参数)与直线x =m 相交于不同两点,则m 的取值范围是( )A .RB .(0,+∞)C .(0,1)D .[0,1)【解析】 将曲线⎩⎪⎨⎪⎧x =sin 2θ,y =cos θ-1化为普通方程得(y +1)2=-(x -1)(0≤x ≤1).它是抛物线的一部分,如图所示,由数形结合知0≤m <1.【答案】 D3.对任意实数,直线y =x +b 与椭圆⎩⎪⎨⎪⎧x =2cos θy =4sin θ(0≤θ≤2π),恒有公共点,则b 的取值范围是________.【解析】 将(2cos θ,4sin θ)代入y =x +b 得: 4sin θ=2cos θ+b .∵恒有公共点,∴以上方程有解.令f (θ)=4sin θ-2cos θ=25sin(θ+φ)⎝ ⎛⎭⎪⎫tan φ=12,∴-25≤f (θ)≤25, ∴-25≤b ≤2 5. 【答案】 [-25,25]4.在直角坐标系xOy 中,直线l 的方程为x -y +4=0,曲线C 的参数方程为⎩⎨⎧x =3cos αy =sin α(α为参数).(1)已知在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x轴正半轴为极轴)中,点P 的极坐标为⎝⎛⎭⎪⎫4,π2,判断点P 与直线l 的位置关系;(2)设点Q 是曲线C 上的一个动点,求它到直线l 的距离的最小值.【解】 (1)把极坐标系下的点P ⎝⎛⎭⎪⎫4,π2化为直角坐标,得点(0,4).因为点P 的直角坐标(0,4)满足直线l 的方程x -y +4=0,所以点P 在直线l 上.(2)因为点Q 在曲线C 上,故可设点Q 的坐标为(3cos α,sin α),从而点Q 到直线l 的距离为d =|3cos α-sin α+4|2=2cos ⎝⎛⎭⎪⎫α+π6+42=2cos ⎝ ⎛⎭⎪⎫α+π6+22,由此得,当cos ⎝ ⎛⎭⎪⎫α+π6=-1时,d 取得最小值,且最小值为 2.。

高中数学 第二章 参数方程 第2节 第2课时 双曲线、抛物线的参数方程教学案 新人教A版选修4-4-

高中数学 第二章 参数方程 第2节 第2课时 双曲线、抛物线的参数方程教学案 新人教A版选修4-4-

第2课时 双曲线、抛物线的参数方程[核心必知]1.双曲线的参数方程(1)中心在原点,焦点在x 轴上的双曲线x 2a 2-y 2b 2=1的参数方程是⎩⎪⎨⎪⎧x =a sec φ,y =b tan φ,规定参数φ的取值X 围为φ∈[0,2π)且φ≠π2,φ≠3π2.(2)中心在原点,焦点在y 轴上的双曲线y 2a 2-x 2b 2=1的参数方程是⎩⎪⎨⎪⎧x =b tan φ,y =a sec φ.2.抛物线的参数方程 (1)抛物线y2=2px 的参数方程为⎩⎪⎨⎪⎧x =2pt 2,y =2pt ,t ∈R .(2)参数t 的几何意义是抛物线上除顶点外的任意一点与原点连线的斜率的倒数.[问题思考]1.在双曲线的参数方程中,φ的几何意义是什么?提示:参数φ是点M 所对应的圆的半径OA 的旋转角(称为点M 的离心角),而不是OM 的旋转角.2.如何由双曲线的参数方程判断焦点的位置?提示:如果x 对应的参数形式是a sec φ,那么焦点在x 轴上; 如果y 对应的参数形式是a sec φ,那么焦点在y 轴上.3.假设抛物线的参数方程表示为⎩⎪⎨⎪⎧x =2p tan 2α,y =2ptan α.那么参数α的几何意义是什么?提示:参数α表示抛物线上除顶点外的任意一点M ,以射线OM 为终边的角.在双曲线x 2-y 2=1上求一点P ,使P 到直线y =x 的距离为 2.[精讲详析] 此题考查双曲线的参数方程的应用,解答此题需要先求出双曲线的参数方程,设出P 点的坐标,建立方程求解.设P 的坐标为(sec φ,tan φ),由P 到直线x -y =0的距离为2得|sec φ-tan φ|2=2得|1cos φ-sin φcos φ|=2,|1-sin φ|=2|cos φ| 平方得1-2sin φ+sin 2φ=4(1-sin 2φ), 即5sin 2φ-2sin φ-3=0. 解得sin φ=1或sin φ=-35.sin φ=1时,cos φ=0(舍去). sin φ=-35时,cos φ=±45.∴P 的坐标为(54,-34)或(-54,34).——————————————————参数方程是用一个参数表示曲线上点的横纵坐标的,因而曲线的参数方程具有消元的作用,利用它可以简化某些问题的求解过程,特别是涉及到最值、定值等问题的计算时,用参数方程可将代数问题转化为三角问题,然后利用三角知识处理.1.求证:等轴双曲线平行于实轴的弦为直径的圆过双曲线的顶点. 证明:设双曲线为x 2-y 2=a 2,取顶点A (a ,0),弦B ′B ∥Ox ,B (a sec α,a tan α),那么B ′(-a sec α,a tan α).∵k B ′A =a tan α-a sec α-a ,k BA =a tan αa sec α-a,∴k B ′A ·k BA =-1.∴以BB ′为直径的圆过双曲线的顶点.连接原点O 和抛物线2y =x 2上的动点M ,延长OM 到P 点,使|OM |=|MP |,求P 点的轨迹方程,并说明它是何曲线.[精讲详析] 此题考查抛物线的参数方程的求法及其应用.解答此题需要先求出抛物线的参数方程并表示出M 、P 的坐标,然后借助中点坐标公式求解.设M (x 、y )为抛物线上的动点,P (x 0,y 0)在抛物线的延长线上,且M 为线段OP 的中点,抛物线的参数方程为⎩⎪⎨⎪⎧x =2t ,y =2t 2,由中点坐标公式得⎩⎪⎨⎪⎧x 0=4t ,y 0=4t 2, 变形为y 0=14x 20,即x 2=4y .表示的为抛物线.——————————————————在求曲线的轨迹和研究曲线及方程的相关问题时,常根据需要引入一个中间变量即参数(将x ,y 表示成关于参数的函数),然后消去参数得普通方程.这种方法是参数法,而涉及曲线上的点的坐标时,可根据曲线的参数方程表示点的坐标2.抛物线C :⎩⎪⎨⎪⎧x =2t 2,y =2t (t 为参数),设O 为坐标原点,点M 在抛物线C 上,且点M 的纵坐标为2,求点M 到抛物线焦点的距离.解:由⎩⎪⎨⎪⎧x =2t 2,y =2t得y 2=2x ,即抛物线的标准方程为y 2=2x . 又∵M 点的纵坐标为2, ∴M 点的横坐标也为2. 即M (2,2).又∵抛物线的准线方程为x =-12.∴由抛物线的定义知|MF |=2-(-12)=2+12=52.即点M 到抛物线焦点的距离为52.如果椭圆右焦点和右顶点分别是双曲线⎩⎪⎨⎪⎧x =4sec θ,y =3tan θ(θ为参数)的右顶点和右焦点,求该椭圆上的点到双曲线渐近线的最大距离.[精讲详析] 此题考查椭圆及双曲线的参数方程,解答此题需要先将双曲线化为普通方程并求得渐近线方程,然后根据条件求出椭圆的参数方程求解即可.∵x 216-y 29=1,∴右焦点(5,0),右顶点(4,0).设椭圆x 2a 2+y 2b2=1,∴a =5,c =4,b =3.∴方程为x 225+y 29=1.设椭圆上一点P (5cos θ,3sin θ), 双曲线一渐近线为3x -4y =0,∴点P 到直线的距离d =|3×5cos θ-12sin θ|5=3|41sin 〔θ-φ〕|5(tan φ=54).∴d max =3415.——————————————————对于同一个方程,确定的参数不同, 所表示的曲线就不同,当题目条件中出现多个字母时,一定要注明什么是参数,什么是常量,这一点尤其重要.3.(某某高考)两曲线参数方程分别为⎩⎨⎧x =5cos θ,y =sin θ(0≤θ≤π)和⎩⎪⎨⎪⎧x =54t 2,y =t (t ∈R ),它们的交点坐标为______________.解析:由⎩⎨⎧x =5cos θ,y =sin θ(0≤θ≤π)得x 25+y 2=1(y ≥0),由⎩⎪⎨⎪⎧x =54t 2,y =t(t ∈R )得x =54y 2.联立方程可得⎩⎪⎨⎪⎧x 25+y 2=1,x =54y2那么5y 4+16y 2-16=0,解得y 2=45或y 2=-4(舍去),那么x =54y 2=1.又y ≥0,所以其交点坐标为(1,255).答案:(1,255)本课时的考点是双曲线或抛物线的参数方程与普通方程的互化.某某高考以抛物线的参数方程为载体考查抛物线定义的应用,属低档题.[考题印证](某某高考)抛物线的参数方程为⎩⎪⎨⎪⎧x =2pt 2,y =2pt ,(t 为参数),其中p >0,焦点为F ,准线为l .过抛物线上一点M 作l 的垂线,垂足为E .假设|EF |=|MF |,点M 的横坐标是3,那么p =________.[命题立意] 此题考查抛物线的参数方程与普通方程的互化及抛物线定义的应用. [解析] 由题意知,抛物线的普通方程为y 2=2px (p >0),焦点F (p 2,0),准线x =-p2,设准线与x 轴的交点为A .由抛物线定义可得|EM |=|MF |,所以△MEF 是正三角形,在Rt △EFA 中,|EF |=2|FA |,即3+p2=2p ,得p =2.答案:2一、选择题1.以下参数方程(t 为参数)与普通方程x 2-y =0表示同一曲线的方程是( )A.⎩⎪⎨⎪⎧x =|t |,y =tB.⎩⎪⎨⎪⎧x =cos t ,y =cos2tC.⎩⎪⎨⎪⎧x =tan t ,y =1+cos 2t 1-cos 2tD.⎩⎪⎨⎪⎧x =tan t ,y =1-cos 2t 1+cos 2t解析:选D 注意参数X 围,可利用排除法.普通方程x 2-y =0中的x ∈R ,y ≥0.A 中x =|t |≥0,B 中x =cos t ∈[-1,1],故排除A 和B.而C 中y =2cos 2t 2sin 2t =cot 2t =1tan 2t =1x 2,即x 2y =1,故排除C.2.以下双曲线中,与双曲线⎩⎨⎧x =3sec θ,y =tan θ(θ为参数)的离心率和渐近线都相同的是( )A.y 23-x 29=1B.y 23-x 29=-1C.y 23-x 2=1 D.y 23-x 2=-1 解析:选B 由x =3sec θ得,x 2=3cos 2θ=3〔sin 2θ+cos 2θ〕cos 2θ=3tan 2θ+3, 又∵y =tan θ,∴x 2=3y 2+3,即x 23-y 2=1.经验证可知,选项B 合适.3.过点M (2,4)且与抛物线⎩⎪⎨⎪⎧x =2t 2,y =4t 只有一个公共点的直线有( )条( )A .0B .1C .2D .3解析:选C 由⎩⎪⎨⎪⎧x =2t 2y =4t 得y 2=8x .∴点M (2,4)在抛物线上.∴过点M (2,4)与抛物线只有一个公共点的直线有2条.4.方程⎩⎪⎨⎪⎧x =2t-2-t,y =2t +2-t(t 为参数)表示的曲线是( ) A .双曲线 B .双曲线的上支 C .双曲线下支 D .圆解析:选B 将参数方程的两个等式两边分别平方,再相减,得:x 2-y 2=(2t -2-t )2-(2t +2-t )2=-4,即y 2-x 2=4.又注意到2t>0,2t+2-t≥22t ·2-t=2,即y ≥2. 可见与以上参数方程等价的普通方程为:y 2-x 2=4(y ≥2).显然它表示焦点在y 轴上,以原点为中心的双曲线的上支.二、填空题5.(某某高考)圆锥曲线⎩⎪⎨⎪⎧x =t 2,y =2t (t 为参数)的焦点坐标是________.解析:代入法消参,得到圆锥曲线的方程为y 2=4x ,那么焦点坐标为(1,0). 答案:(1,0)6.抛物线C :⎩⎪⎨⎪⎧x =2t 2,y =2t(t 为参数)设O 为坐标原点,点M 在C 上运动(点M 与O 不重合),P (x ,y )是线段OM 的中点,那么点P 的轨迹普通方程为________.解析:抛物线的普通方程为y 2=2x ,设点P (x ,y ),点M 为(x 1,y 1)(x 1≠0),那么x 1=2x ,y 1=2y .∵点M 在抛物线上,且点M 与O 不重合, ∴4y 2=4x ⇒y 2=x .(x ≠0) 答案:y 2=x (x ≠0)7.双曲线⎩⎨⎧x =23tan α,y =6sec α(α为参数)的两焦点坐标是________.解析:双曲线⎩⎨⎧x =23tan α,y =6sec α(α为参数)的标准方程为y 236-x 212=1,焦点在y 轴上,c 2=a 2+b 2=48. ∴焦点坐标为(0,±43). 答案:(0,±43)8.(某某高考)在平面直角坐标系xOy 中,曲线C 1和C 2的参数方程分别为⎩⎨⎧x =t ,y =t(t 为参数)和⎩⎨⎧x =2cos θ,y =2sin θ(θ为参数),那么曲线C 1与C 2的交点坐标为________.解析:由⎩⎨⎧x =t ,y = t ,得y =x ,又由⎩⎨⎧x =2cos θ,y =2sin θ,得x 2+y 2=2. 由⎩⎨⎧y =x ,x 2+y 2=2,得⎩⎪⎨⎪⎧x =1,y =1, 即曲线C 1与C 2的交点坐标为(1,1). 答案:(1,1) 三、解答题9.双曲线x 2a 2-y 2b 2=1(a >0,b >0),A 、B 是双曲线同支上相异两点,线段AB 的垂直平分线与x 轴相交于点P (x 0,0),求证:|x 0|>a 2+b 2a.证明:设A 、B 坐标分别为(a sec α,b tan α),(a sec β,b tan β),那么中点为M (a2(sec α+sec β),b2(tan α+tan β)),于是线段AB 中垂线方程为y -b2(tan α+tan β)=-a 〔sec α-sec β〕b 〔tan α-tan β〕[x -a2(sec α+sec β)].将P (x 0,0)代入上式,∴x 0=a 2+b 22a(sec α+sec β).∵A 、B 是双曲线同支上的不同两点, ∴|sec α+sec β|>2.∴|x 0|>a 2+b 2a.10.过点A (1,0)的直线l 与抛物线y 2=8x 交于M 、N 两点,求线段MN 的中点的轨迹方程.解:设抛物线的参数方程为⎩⎪⎨⎪⎧x =8t 2,y =8t (t 为参数),可设M (8t 21,8t 1),N (8t 22,8t 2), 那么k MN =8t 2-8t 18t 22-8t 21=1t 1+t 2. 又设MN 的中点为P (x ,y ),那么⎩⎪⎨⎪⎧x =8t 21+8t 222,y =8t 1+8t 22.∴kAP=4〔t 1+t 2〕4〔t 21+t 22〕-1. 由k MN =k AP 知t 1·t 2=-18,又⎩⎪⎨⎪⎧x =4〔t 21+t 22〕,y =4〔t 1+t 2〕, 那么y 2=16(t 21+t 22+2t 1t 2)=16(x 4-14)=4(x -1).∴所求轨迹方程为y 2=4(x -1).11.圆O 1:x 2+(y -2)2=1上一点P 与双曲线x 2-y 2=1上一点Q ,求P 、Q 两点距离的最小值.解:设Q (sec θ,tan θ),|O 1P |=1, 又|O 1Q |2=sec 2θ+(tan θ-2)2=(tan 2θ+1)+(tan 2θ-4tan θ+4) =2tan 2θ-4tan θ+5 =2(tan θ-1)2+3.当tan θ=1,即θ=π4时,|O 1Q |2取最小值3,此时有|O 1Q |min = 3. 又|PQ |≥|O 1Q |-|O 1P | ∴|PQ |min =3-1.。

选修4-4 第2讲 参数方程

选修4-4 第2讲 参数方程

例1
(1)求直线xy= =2-+1t-,t
(t
为参数)与曲线xy= =33csions
α, α
(α 为
参数)的交点个数.
[解] 将xy= =- 2+1-t,t 消去参数 t 得直线 x+y-1=0;
将xy= =33csions
α, α
消去参数 α,得圆 x2+y2=9.
又圆心(0,0)到直线 x+y-1=0 的距离 d= 22<3. 因此直线与圆相交,故直线与曲线有 2 个交点.
[解] (1)消去参数 t 得 l1 的普通方程 l1:y=k(x-2);消去参数 m 得 l2 的普通方程 l2:y=1k(x+2).
y=kx-2 设 P(x,y),由题设得y=1kx+2 ,
消去 k 得 x2-y2=4(y≠0). 所以 C 的普通方程为 x2-y2=4(y≠0).
(2)C 的极坐标方程为 ρ2(cos2θ-sin2θ) =4(0<θ<2π,θ≠π). 联立ρρ2ccoossθ2θ+-sisninθ2θ-=42,=0 得 cos θ-sin θ=2(cos θ+sin θ). 故 tan θ=-13,从而 cos2θ=190,sin2θ=110. 代入 ρ2(cos2θ-sin2θ)=4 得 ρ2=5,所以交点 M 的极径为 5.
(t 为参数)

x2+y2=r2
x=rcos θ, y=rsin θ
(θ 为参数)
椭圆
ax22+by22=1(a>b>0)
x=acos φ, y=bsin φ
(φ 为参数)
抛物线 y2=2px(p>0)
x=2pt2, y=2pt
(t 为参数)
[知识感悟] 1.在参数方程与普通方程的互化中,必须使 x,y 的取值范围保 持一致.否则不等价. 2.直线的参数方程中,参数 t 的系数的平方和为 1 时,t 才有几 何意义且其几何意义为:|t|是直线上任一点 M(x,y)到 M0(x0,y0)的距 离,即|M0M|=|t|.

高中数学人教版选修4-4 第二讲 2.3曲线的参数方程(椭圆的参数方程)

高中数学人教版选修4-4 第二讲 2.3曲线的参数方程(椭圆的参数方程)
2设P为等轴双曲线 上的一点, , 为两个焦点,证明
【板书设计】课题:曲线的参数方程(椭圆的参数方程)
基础测试1.2.3.
巩固练习1.2.
课堂
小结
本节课学习了以下内容:利用圆锥曲线的参数方程来确定最值
【布置作业】教材46页2,3题
教学反思
亮点:
不足及改进措施:
备课组长:
教务处(教学部):
课题:曲线的参数方程(双曲线,抛物线的参数方程)
教学
目标
知识与技能:利用圆锥曲线的参数方程来确定最值,解决有关点的轨迹问题。
过程与方法:引导学生独立思考并回答问题。
情感与价值观:通过启发学生回顾已学过的知识点,培养学生回顾复习能力。
授1课时
【课 题】课题:曲线的参数方程(椭圆的参数方程)
【授课时间】2021年 月 日 班级:高三()班
【教学目标】利用圆锥曲线的参数方程来确定最值,解决有关点的轨迹问题。
【教学重点】利用圆锥曲线的参数方程来确定最值。
【教学难点】利用圆锥曲线的参数方程来确定最值。
【课 型】新授课
【教学用具】班班通
【教学方法】讲解结合法
【教学过程】
初次备课
二次备课
二、预习检测:
化下列曲线的参数方程为普通方程,并指出它是什么曲线。
(1) (t是参数)
(2) ( 是参数)
(3) (t是参数)
三、新课引入
通过参数 简明地表示曲线上任一点坐标将解析几何中以计算问题化为三角问题,从而运用三角性质及变换公式帮助求解诸如最值,参数取值范围等问题。
四、新课讲授:
例1.求椭圆的内接矩形面积的最大值。
(组织学生复习的基础上独立完成此题)
例2.AB为过椭圆 中心的弦, , 为焦点,求△ABF1面积的最大值。

2020高考数学一轮复习 坐标系与参数方程第2讲 参数方程教案 理 选修4-4

2020高考数学一轮复习 坐标系与参数方程第2讲 参数方程教案 理 选修4-4

第2讲 参数方程【2020年高考会这样考】考查直线、圆和圆锥曲线的参数方程以及简单的应用问题. 【复习指导】复习本讲时,应紧紧抓住直线的参数方程、圆的参数方程、圆锥曲线的参数方程的建立以及各参数方程中参数的几何意义,同时要熟练掌握参数方程与普通方程互化的一些方法.基础梳理1.参数方程的意义在平面直角坐标系中,如果曲线上的任意一点的坐标x ,y 都是某个变量的函数⎩⎪⎨⎪⎧x =f t ,y =ft ,并且对于t 的每个允许值,由方程组所确定的点M (x ,y )都在这条曲线上,则该方程叫曲线的参数方程,联系变数x ,y 的变数t 是参变数,简称参数.相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程. 2.常见曲线的参数方程的一般形式(1)经过点P 0(x 0,y 0),倾斜角为α的直线的参数方程为⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数).设P 是直线上的任一点,则t 表示有向线段P 0P →的数量.(2)圆的参数方程⎩⎪⎨⎪⎧x =r cos θ,y =r sin θ(θ为参数).(3)圆锥曲线的参数方程椭圆x 2a 2+y 2b 2=1的参数方程为⎩⎪⎨⎪⎧x =a cos θ,y =b sin θ(θ为参数).双曲线x 2a 2-y 2b 2=1的参数方程为⎩⎪⎨⎪⎧ x =a sec φ,y =tan φ(φ为参数).抛物线y2=2px 的参数方程为⎩⎪⎨⎪⎧x =2pt 2,y =2pt(t 为参数).双基自测1. 极坐标方程ρ=cos θ和参数方程⎩⎪⎨⎪⎧x =-1-t ,y =2+t (t 为参数)所表示的图形分别是( ).A .直线、直线B .直线、圆C .圆、圆D .圆、直线解析 ∵ρcos θ=x ,∴cos θ=xρ代入到ρ=cos θ,得ρ=x ρ,∴ρ2=x ,∴x 2+y 2=x 表示圆.又∵⎩⎪⎨⎪⎧x =-1-t ,y =2+t ,相加得x +y =1,表示直线.答案 D2.若直线⎩⎪⎨⎪⎧x =1-2t ,y =2+3t (t 为实数)与直线4x +ky =1垂直,则常数k =________.解析 参数方程⎩⎪⎨⎪⎧x =1-2t ,y =2+3t ,所表示的直线方程为3x +2y =7,由此直线与直线4x +ky =1垂直可得-32×⎝ ⎛⎭⎪⎫-4k =-1,解得k =-6.答案 -6 3.二次曲线⎩⎪⎨⎪⎧x =5cos θ,y =3sin θ(θ是参数)的左焦点的坐标是________.解析 题中二次曲线的普通方程为x 225+y 29=1左焦点为(-4,0).答案 (-4,0)4.(2020·广州调研)已知直线l的参数方程为:⎩⎪⎨⎪⎧x =2t ,y =1+4t (t 为参数),圆C 的极坐标方程为ρ=22sin θ,则直线l 与圆C 的位置关系为________.解析 将直线l的参数方程:⎩⎪⎨⎪⎧x =2t ,y =1+4t 化为普通方程得,y =1+2x ,圆ρ=22sin θ的直角坐标方程为x 2+(y -2)2=2,圆心(0,2)到直线y =1+2x 的距离为2-11+4,因为该距离小于圆的半径,所以直线l 与圆C 相交. 答案 相交5.(2020·广东)已知两曲线参数方程分别为⎩⎨⎧x =5cos θ,y =sin θ(0≤θ<π)和⎩⎪⎨⎪⎧x =54t 2,y =t(t ∈R ),它们的交点坐标为________.解析 由⎩⎨⎧x =5cos θ,y =sin θ(0≤θ<π)得,x 25+y 2=1(y ≥0)由⎩⎪⎨⎪⎧x =54t 2,y =t(t ∈R )得,x=54y 2,∴5y 4+16y 2-16=0. 解得:y 2=45或y 2=-4(舍去).则x =54y 2=1又θ≥0,得交点坐标为⎝⎛⎭⎪⎫1,255.答案 ⎝⎛⎭⎪⎫1,255考向一 参数方程与普通方程的互化【例1】►把下列参数方程化为普通方程:(1)⎩⎪⎨⎪⎧x =3+cos θ,y =2-sin θ;(2)⎩⎪⎨⎪⎧x =1+12t ,y =5+32t .[审题视点] (1)利用平方关系消参数θ; (2)代入消元法消去t .解 (1)由已知⎩⎪⎨⎪⎧cos θ=x -3,sin θ=2-y ,由三角恒等式cos 2 θ+sin 2θ=1,可知(x -3)2+(y -2)2=1,这就是它的普通方程. (2)由已知t =2x -2,代入y =5+32t 中, 得y =5+32(2x -2),即3x -y +5-3=0就是它的普通方程. 参数方程化为普通方程:化参数方程为普通方程的基本思路是消去参数,常用的消参方法有代入消去法、加减消去法、恒等式(三角的或代数的)消去法,参数方程通过代入消元或加减消元消去参数化为普通方程,不要忘了参数的范围.【训练1】 (2020·陕西)参数方程⎩⎪⎨⎪⎧x =cos α,y =1+sin α(α为参数)化成普通方程为________.解析 由⎩⎪⎨⎪⎧x =cos α,y =1+sin α,得 ⎩⎪⎨⎪⎧x =cos α, ①y -1=sin α, ②①2+②2得:x 2+(y -1)2=1. 答案 x 2+(y -1)2=1考向二 直线与圆的参数方程的应用【例2】►已知圆C :⎩⎪⎨⎪⎧x =1+cos θ,y =sin θ(θ为参数)和直线l :⎩⎨⎧x =2+t cos α,y =3+t sin α(其中t为参数,α为直线l 的倾斜角).(1)当α=2π3时,求圆上的点到直线l 距离的最小值;(2)当直线l 与圆C 有公共点时,求α的取值范围.[审题视点] (1)求圆心到直线l 的距离,这个距离减去圆的半径即为所求;(2)把圆的参数方程化为直角坐标方程,将直线的参数方程代入得关于参数t 的一元二次方程,这个方程的Δ≥0.解 (1)当α=2π3时,直线l 的直角坐标方程为3x +y -33=0,圆C 的圆心坐标为(1,0),圆心到直线的距离d =232=3,圆的半径为1,故圆上的点到直线l 距离的最小值为3-1.(2)圆C 的直角坐标方程为(x -1)2+y 2=1,将直线l 的参数方程代入圆C 的直角坐标方程,得t 2+2(cos α+3sin α)t +3=0,这个关于t 的一元二次方程有解,故Δ=4(cos α+3sin α)2-12≥0,则sin 2⎝ ⎛⎭⎪⎫α+π6≥34,即sin ⎝ ⎛⎭⎪⎫α+π6≥32或sin ⎝ ⎛⎭⎪⎫α+π6≤-32.又0≤α<π,故只能sin ⎝⎛⎭⎪⎫α+π6≥32,即π3≤α+π6≤2π3,即π6≤α≤π2. 如果问题中的方程都是参数方程,那就要至少把其中的一个化为直角坐标方程.【训练2】 已知直线l的参数方程为⎩⎪⎨⎪⎧x =1+t ,y =4-2t (参数t ∈R ),圆C 的参数方程为⎩⎪⎨⎪⎧x =2cos θ+2,y =2sin θ(参数θ∈[0,2π]),求直线l 被圆C 所截得的弦长.解 由⎩⎪⎨⎪⎧ x =1+t ,y =4-2t 消参数后得普通方程为2x +y -6=0,由⎩⎪⎨⎪⎧x =2cos θ+2,y =2sin θ消参数后得普通方程为(x -2)2+y 2=4,显然圆心坐标为(2,0),半径为2.由于圆心到直线2x +y -6=0的距离为d =|2×2+0-6|22+1=255,所以所求弦长为222-⎝⎛⎭⎪⎫2552=855. 考向三 圆锥曲线的参数方程的应用【例3】►求经过点(1,1),倾斜角为135°的直线截椭圆x 24+y 2=1所得的弦长.[审题视点] 把直线方程用参数表示,直接与椭圆联立,利用根与系数的关系及弦长公式可解决.解由条件可知直线的参数方程是⎩⎪⎨⎪⎧x =1-22t ,y =1+22t (t 为参数),代入椭圆方程可得⎝ ⎛⎭⎪⎫1-22t 24+⎝⎛⎭⎪⎫1+22t 2=1, 即52t 2+32t +1=0.设方程的两实根分别为t 1、t 2,则由二次方程的根与系数的关系可得⎩⎪⎨⎪⎧t 1+t 2=-625,t 1t 2=25,则直线截椭圆的弦长是|t 1-t 2|=t 1+t 22-4t 1t 2=⎝ ⎛⎭⎪⎫-6252-4×25= 425.普通方程化为参数方程:化普通方程为参数方程的基本思路是引入参数,即选定合适的参数t ,先确定一个关系x =f (t )(或y =φ(t )),再代入普通方程F (x ,y )=0,求得另一关系y =φ(t )(或x =f (t )).一般地,常选择的参数有角、有向线段的数量、斜率,某一点的横坐标(或纵坐标).普通方程化为参数方程需要引入参数,选择的参数不同,所得的参数方程也不一样.【训练3】 (2020·南京模拟)过点P (-3,0)且倾斜角为30°的直线和曲线⎩⎪⎨⎪⎧x =t +1t,y =t -1t (t 为参数)相交于A 、B 两点,求线段AB 的长.解 直线的参数方程为⎩⎪⎨⎪⎧x =-3+32s ,y =12s (s 为参数),又曲线⎩⎪⎨⎪⎧x =t +1t,y =t -1t (t 为参数)可以化为x 2-y 2=4,将直线的参数方程代入上式,得s2-63s +10=0,设A 、B 对应的参数分别为s 1,s 2.∴s 1+s 2=63,s 1s 2=10.∴|AB |=|s 1-s 2|=s 1+s 22-4s 1s 2=217.如何解决极坐标方程与参数方程的综合问题从近两年的新课标高考试题可以看出,对参数方程的考查重点是直线的参数方程、圆的参数方程和圆锥曲线的参数方程的简单应用,特别是利用参数方程解决弦长和最值等问题,题型为填空题和解答题.【示例】► (本题满分10分)(2020·新课标全国)在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎪⎨⎪⎧x =2cos α,y =2+2sin α(α为参数).M 是C 1上的动点,P 点满足OP →=2OM →,P 点的轨迹为曲线C 2.(1)求C 2的方程;(2)在以O 为极点,x 轴的正半轴为极轴的极坐标系中,射线θ=π3与C 1的异于极点的交点为A ,与C 2的异于极点的交点为B ,求|AB |.第(1)问:利用代入法;第(2)问把曲线C 1、曲线C 2均用极坐标表示,再求射线θ=π3与曲线C 1、C 2的交点A 、B 的极径即可. [解答示范] (1)设P (x ,y ),则由条件知M ⎝ ⎛⎭⎪⎫x 2,y2. 由于M 点在C 1上,所以⎩⎪⎨⎪⎧x 2=2cos α,y2=2+2sin α,即⎩⎪⎨⎪⎧x =4cos α,y =4+4sin α.从而C 2的参数方程为⎩⎪⎨⎪⎧x =4cos α,y =4+4sin α(α为参数).(5分)(2)曲线C 1的极坐标方程为ρ=4sin θ,曲线C 2的极坐标方程为ρ=8sin θ. 射线θ=π3与C 1的交点A 的极径为ρ1=4sin π3,射线θ=π3与C 2的交点B 的极径为ρ2=8sin π3.所以|AB |=|ρ2-ρ1|=2 3.(10分)很多自主命题的省份在选考坐标系与参数方程中的命题多以综合题的形式命题,而且通常将极坐标方程、参数方程相结合,以考查考生的转化与化归的能力.【试一试】 (2020·江苏)在平面直角坐标系xOy 中,求过椭圆⎩⎪⎨⎪⎧x =5cos φ,y =3sin φ(φ为参数)的右焦点,且与直线⎩⎪⎨⎪⎧x =4-2t ,y =3-t (t 为参数)平行的直线的普通方程.[尝试解答] 由题设知,椭圆的长半轴长a =5,短半轴长b =3,从 而c =a 2-b 2=4,所以右焦点为(4,0).将已知直线的参数方程化为普通方程:x -2y +2=0.故所求直线的斜率为12,因此其方程为y =12(x -4),即x -2y -4=0.。

高中数学人教A版选修4-4学案 第二讲二圆锥曲线的参数方程

高中数学人教A版选修4-4学案 第二讲二圆锥曲线的参数方程

庖丁巧解牛知识·巧学一、椭圆的参数方程中心在原点,坐标轴为对称轴的椭圆的参数方程有以下两种情况:(1)椭圆=1(a>b>0)的参数方程是(θ为参数,且0≤θ<2π).(2)椭圆=1(b>a>0)的参数方程是(θ为参数,且0≤θ<2π).以(x0,y0)为中心,半长轴为a,半短轴为b,焦点连线平行于x轴的椭圆的参数方程是(θ是参数).方法点拨在利用研究椭圆问题时,椭圆上的点的坐标可记作(acosθ,bsinθ).二、双曲线的参数方程中心在原点,坐标轴为对称轴的双曲线的参数方程有以下两种情况:(1)双曲线=1的参数方程为(φ为参数);(2)双曲线=1的参数方程为(φ为参数).以(x0,y0)为中心,半实轴为a,半虚轴为b,焦点连线平行于x轴的双曲线的参数方程为(θ为参数,0≤θ<2π,θ≠,).方法点拨在利用研究双曲线问题时,双曲线上的点的坐标可记作(asecφ,btanφ).三、抛物线的参数方程顶点在坐标原点的抛物线参数方程:抛物线y2=2px(p>0)的参数方程:(p>0,t为参数,t∈R),其中参数t可视为该抛物线y2=2px(p>0)上任一点P与抛物线顶点O所连直线OP的斜率的倒数.设抛物线上任一点P(x,y),则t=.以(x0,y0)为顶点,焦参数为p,对称轴平行于x轴的抛物线的参数方程是(t是参数),其中参数t是抛物线上任意一点与顶点连线的斜率的倒数.辨析比较抛物线y2=-2px(p>0)的参数方程:x=(p>0,t为参数,t∈R);抛物线x2=2py(p>0)的参数方程:(p>0,t为参数,t∈R);抛物线x2=-2py(p>0)的参数方程:(p>0,t为参数,t∈R).问题·探究问题1 举一些现实生活中的例子,说明圆锥曲线的参数方程同圆锥曲线的普通方程相比有何特点,圆锥曲线的参数方程在解题中有什么样的作用?探究:弹道曲线是炮弹飞行的轨迹.在军事上,当炮弹发射出去后,需要知道各个时刻炮弹的位置,很显然相应的位置与炮弹发射出去后的时间有着密切的关系,通过建立适当的坐标系,选择时间作为参数,很容易建立起相应的参数方程,这比根据已知条件直接去找炮弹飞行的普通方程方便得多,并且根据实际军事需要,这样也容易知道各个时刻炮弹所处的位置,有利于为现代战争赢得时间.这正是抛物线的参数方程在实际生活中的具体应用.当然圆锥曲线的参数方程的应用还不止这些,再比如:在研究人造地球卫星的运行轨道时,常常也用其参数方程的形式来予以研究.问题2 在使用圆锥曲线的参数方程解题时,需要能够正确地把普通方程转化为参数方程.那么,在把普通方程转化为参数方程时,是否会出现不同的结果呢?探究:会.例如:椭圆=1的参数方程可以是x=的形式,也可以是的形式,它们二者只是形式上不同而已,但实质上都是表示同一个椭圆(通过消参数即可看出),同样,对于双曲线、抛物线亦是如此.典题·热题例1已知A、B分别是椭圆=1的右顶点和上顶点,动点C在该椭圆上运动,求△ABC的重心G的轨迹的普通方程.思路分析:本题有两种思考方式,求解时把点C的坐标设为一般的(x1,y1)的形式或根据它在该椭圆上运动也可以设为(6cosθ,3sinθ)的形式,从而予以求解.图2-2-1解:由动点C在该椭圆上运动,故据此可设点C的坐标为(6cosθ,3sinθ).点G的坐标为(x,y),则由题意可知点A(6,0)、B(0,3).由重心坐标公式,可知有由此消去θ,得到+(y-1)2=1即为所求.深化升华本题的解法体现了椭圆的参数方程对于解决相关问题的优越性.运用参数方程显得很简单,运算更简便.例2实数x、y满足=1,试求x-y的最大值与最小值,并指出何时取得最大值与最小值.思路分析:本题的思考方式也许容易想到由已知方程予以变形代换,但容易看到会出现开方,很不利于求x-y的最大值与最小值.这时,根据已知条件可考虑借助于相应的参数方程来求解,借助于正弦、余弦的有界性从而把问题解决.解:由已知可设则x-y=(4cosθ+1)-(3sinθ-2)=(4cosθ-3sinθ)+3=5cos(θ+α)+3,其中cosα=,sinα=.当cos(θ+α)=1,即θ+α=2kπ,k∈Z时,cosθ=cos(2kπ-α)=cosα=,sinθ=sin(2kπ-α)=-sinα=.∴x=4×+1=,y=3×()-2=时,x-y的最大值为8.同理,当x=,y=时,x-y的最小值为-2.误区警示本题易错点主要有两点:(1)对于椭圆的参数方程不会转化而直接使用普通方程;(2)在使用参数方程运算时不考虑α的实际取值.例3点P在圆x2+(y-2)2=上移动,点Q在椭圆x2+4y2=4上移动,求PQ的最大值与最小值,及相应的点Q的坐标.思路分析:点P与点Q都是动点,PQ的表达式中会有两个参变量,最大值与最小值都难求.点P在圆上,圆是一个中心对称图形.当椭圆上的点到圆心距离最远时,它到圆上的点也会是最远,故先将求PQ转化为求圆心O′与Q的距离.点Q在椭圆上,可利用椭圆的参数方程表示点P的坐标.解:设Q(2cosα,sinα),O′(0,2),则O′Q2=(2cosα)2+(sinα-2)2=4cos2α+sin2α-4sinα+4=-3(sinα+)2+8+,故当sinα=时,O′Q2取最大值为,此时,O′Q=.当sinα=1时,O′Q2取最小值为1,此时,O′Q=1.又圆的半径为,故圆上的点P与Q的最大距离为PQ=+.P与Q的最小距离为PQ=1-=.PQ取最大值时,sinα=,cosα=,Q的坐标为()或(,);PQ取最小值时,sinα=1,cosα=0,点Q的坐标为(0,1).深化升华本题的解法再次体现了椭圆的参数方程对于解决相关问题的优越性,并且对于椭圆的参数方程要求更高了,因为所给方程不是椭圆的标准方程的形式.运用参数方程显得很简单,运算更简便.例4设P是椭圆=1在第一象限部分的弧AB上的一点,求使四边形OAPB的面积最大的点P的坐标.思路分析:由于P是椭圆=1在第一象限部分的弧AB上的一动点,因此四边形OAPB的形状不定,则不能用特殊四边形的面积公式来求其最值,只能考虑把四边形分解为几个三角形,利用三角形的知识来求其面积的最大值.解:∵点P是椭圆=1在第一象限部分的弧AB上的一点,∴设P(6cosθ,2sinθ),θ∈(0,)(图略).法一:直线AB方程为=1,即x+3y-6=0.欲使S OAPB最大,只需P到AB的距离最大.∵d P-AB=θ∈(0,),∴sin(θ+)>0.∴当θ=时,d max=.∴(S△APB)max==6(-1).∴(S OAPB)max=·6·2+6(-1)=.法二:S OAPB=S△POA+S△POB=·2·6cosθ+·6·2sinθ=6(sinθ+cosθ)=sin(θ+),θ∈(0,),∴当θ=时,(S OAPB)max=,此时点P的坐标为(,2).拓展延伸分析本题所求的最值可以有几个转化方向,即转化为求S△POA+S△POB,S OAPB 的最大值或者求点P到AB的最大距离,或者求S OAPB的最大值.。

北师大版高中数学选修4-4第2讲:参数方程(教师版)

北师大版高中数学选修4-4第2讲:参数方程(教师版)

北师大版高中数学参数方程____________________________________________________________________________________________________________________________________________________________________1.了解直线参数方程,曲线参数方程的条件及参数的意义2.会选择适当的参数写出曲线的参数方程3.掌握参数方程化为普通方程几种基本方法4.了解圆锥曲线的参数方程及参数的意义5.利用圆锥曲线的参数方程来确定最值,解决有关点的轨迹问题一.参数方程的定义1.一般地,在平面直角坐标系中,如果曲线C上任一点P的坐标x和y都可以表示为某个变量t的函数:()()x f ty g t=⎧⎨=⎩;反过来,对于t的每个允许值,由函数式()()x f ty g t=⎧⎨=⎩所确定的点P(x,y)都在曲线C上,那么方程()()x f ty g t=⎧⎨=⎩叫作曲线C的参数方程,变量t是参变数,简称参数.相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程,参数方程可以转化为普通方程.2.关于参数的说明.参数方程中参数可以有物理意义、几何意义,也可以没有明显意义.3.曲线的参数方程可通过消去参数而得到普通方程;若知道变数x、y中的一个与参数t的关系,可把它代入普通方程,求另一变数与参数t的关系,则所得的()()x f ty g t=⎧⎨=⎩,就是参数方程.二.圆的参数方程点P 的横坐标x 、纵坐标y 都是t 的函数:cos sin x r ty r t=⎧⎨=⎩(t 为参数).我们把这个方程叫作以圆心为原点,半径为r 的圆的参数方程. 圆的圆心为O 1(a ,b),半径为r 的圆的参数方程为:cos sin x a r ty b r t =+⎧⎨=+⎩(t 为参数).三.椭圆x 2a 2+y 2b 2=1(a >b >0)的参数方程为cos sin x a y b θθ=⎧⎨=⎩(θ为参数).规定θ的范围为θ∈[0,2π).这是中心在原点O 、焦点在x 轴上的椭圆参数方程.四.双曲线x 2a 2-y 2b 2=1的参数方程为tan x asec y b ϕϕ=⎧⎨=⎩(φ为参数).规定φ的范围为φ∈[0,2π),且φ≠π2,φ≠3π2.这是中心在原点,焦点在x 轴上的双曲线参数方程.五.曲线C 的参数方程为⎩⎪⎨⎪⎧x =2pt 2,y =2pt (t 为参数,t ∈R)其中p 为正的常数.这是焦点在x 轴正半轴上的抛物线参数方程.六.直线的参数方程1.过定点M 0(x 0,y 0)、倾斜角为α的直线l 的参数方程为00cos sin x x t y y t αα=+⎧⎨=+⎩(t 为参数),这一形式称为直线参数方程的标准形式,直线上的动点M 到定点M 0的距离等于参数t 的绝对值.当t >0时,M 0M →的方向向上;当t <0时,M 0M →的方向向下;当点M 与点M 0重合时,t =0.2.若直线的参数方程为一般形式为:⎩⎪⎨⎪⎧x =x 0+at ,y =y 0+bt (t 为参数), 可把它化为标准形式:00cos sin t x t x y y αα=+⎧⎨='+'⎩(t′为参数).其中α是直线的倾斜角,tan α=ba ,此时参数t′才有如前所说的几何意义.类型一.参数方程与普通方程的互化例1:指出参数方程3cos 3sin x y θθ=⎧⎨=⎩⎝⎛⎭⎪⎫θ为参数,0<θ<π2表示什么曲线解析:由3cos 3sin x y θθ=⎧⎨=⎩(θ为参数)得x 2+y 2=9.又由0<θ<π2,得0<x <3,0<y <3,所以所求方程为x 2+y 2=9(0<x <3且0<y <3). 这是一段圆弧(圆x 2+y 2=9位于第一象限的部分). 答案:这是一段圆弧(圆x 2+y 2=9位于第一象限的部分).练习1:指出参数方程315cos 215sin x y θθ=+⎧⎨=+⎩(θ为参数,0≤θ<2π).表示什么曲线解析:由参数方程315cos 215sin x y θθ=+⎧⎨=+⎩(θ为参数)得(x -3)2+(y -2)2=152,由0≤θ<2π知这是一个整圆弧.答案:一个整圆弧例2:设直线l 1的参数方程为1,13x t y t =+⎧⎨=+⎩(t 为参数),直线l 2的方程为y =3x +4,则l 1与l 2间的距离为______.解析:由条件知,l 1∥l 2,在l 1中令t=0,则得坐标为(1,1). 由点到直线距离公式得l 1与l 2距离为:5=练习2:若直线112,:2x t y l kt =-⎧⎨=+⎩(t 为参数)与直线l 2:,12x s y s =⎧⎨=-⎩(s 为参数)垂直,则k =______.解析:由l 1消去参数t 得,2,22k k y x =-++斜率为-.2k由l 2消去参数s 得,12y x =-,斜率为-2.∵两直线垂直,(2)()12k ∴-⋅-=-,得k =-1. 答案:-1类型二.曲线参数方程例3:已知点P (x , y )在曲线2cos ,sin x y θθ=-+⎧⎨=⎩(θ为参数)上,则yx 的取值范围为______.解析:曲线2cos ,sin x y θθ=-+⎧⎨=⎩(θ为参数)是以(-2,0)为圆心,以1为半径的圆,设y k x =,求yx 的取值范围,即求当直线y =kx 与圆有公共点时k 的取值范围,如图22-60结合圆的几何性质可得33k -≤≤故填[33-答案:[,]33-练习1:已知点A (1,0),P 是曲线2cos ,1cos 2x y θθ=⎧⎨=+⎩(θ∈R )上任一点,设P 到直线l :y =12-的距离为d ,则|PA|+d 的最小值是______.解析:y 21cos 22cos ,θθ=+=消去22(02)x y y θ=≤≤得 其图像是一段抛物线弧,如图22-61,1(0,)2F 是它的焦点,l 是准线,d =|PF|,当A ,P ,F 三点共线时,||PA d +最小,其值是||2AF =例4:已知θ为参数,则点(3,2)到方程cossinxyθθ=⎧⎨=⎩,的距离的最小值是______.解析:把cossinxyθθ=⎧⎨=⎩,化为普通方程为221,x y+=所以点(3,2)到方程cossinxyθθ=⎧⎨=⎩,的距离的最小1.1.练习1:已知圆C的参数方程为cos1,sinxyθθ=+⎧⎨=⎩(θ为参数),则点P(4,4)与圆C上的点的最远距离是______.解析:由cos1,sinxyθθ=+⎧⎨=⎩得22(1)1x y-+=,则点P(4,4)与圆C上的点的最远距离是16=答案:6例5:已知双曲线方程为x2-y2=1,M为双曲线上任意一点,点M到两条渐近线的距离分别为d1和d2,求证:d1与d2的乘积是常数.答案:设d1为点M到渐近线y=x的距离,d2为点M到渐近线y=-x的距离,因为点M在双曲线x2-y2=1,则可设点M坐标为(secα,tanα).d1=|sec α-tan α|2,d2=|sec α+tan α|2,d1·d2=|sec2α-tan2α|2=12,故d1与d2的乘积是常数.练习1:将参数方程⎩⎪⎨⎪⎧x=a2⎝ ⎛⎭⎪⎫t+1t,y=b2⎝⎛⎭⎪⎫t-1t(t为参数,a>0,b>0)化为普通方程.解析:∵t+1t=2xa,t-1t=2yb,又⎝ ⎛⎭⎪⎫t +1t 2=t 2+1t 2+2=4x 2a 2,⎝ ⎛⎭⎪⎫t -1t 2=t 2+1t 2-2=4y 2b 2,∴⎝ ⎛⎭⎪⎫t +1t 2-⎝ ⎛⎭⎪⎫t -1t 2=4=4x 2a 2-4y 2b 2,即x 2a 2-y2b2=1. 答案:x 2a 2-y2b 2=1类型三.直线参数方程例6:曲线C 1:1cos ,sin ,x y θθ=+⎧⎨=⎩(θ为参数)上的点到曲线C 2:1,2112x t y t⎧=-⎪⎪⎨⎪=-⎪⎩(t 为参数)上的点的最短距离为______.解析:C 1:221cos ,(1)1;sin x x y y θθ=+⎧⇒-+=⎨=⎩则圆心坐标为(1,0).21,2:112x t C y t⎧=-⎪⎪⇒⎨⎪=-⎪⎩10.x y ++=由点到直线的距离公式得圆心到直线的距离为d=2=,所以要求的最短距离为d -1=1.答案:1练习1:直线⎩⎪⎨⎪⎧x =2+3t ,y =-1+t (t 为参数)上对应t =0,t =1两点间的距离是( )A .1 B.10 C .10 D .2 2解析:根据点到直线的距离公式可以得出结果. 答案:B类型四.曲线参数方程的应用例7:在直角坐标系xOy 中,直线l 的方程为x -y +4=0,曲线C 的参数方程为sin x y αα⎧=⎪⎨=⎪⎩(α为参数).(1)已知在极坐标(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,点P 的极坐标为⎝⎛⎭⎪⎫4,π2,判断点P 与直线l 的位置关系;(2)设点Q 是曲线C 上的一个动点,求它到直线l 的距离的最小值.解析:(1)把极坐标系下的点P ⎝⎛⎭⎪⎫4,π2化为直角坐标,得P(0,4).因为点P 的直角坐标(0,4)满足直线l 的方程x -y +4=0,所以点P 在直线l 上. (2)因为点Q 在曲线C 上,故可设点Q 的坐标为(3cos α,sin α), 从而点Q 到直线l 的距离d =|3cos α-sin α+4|2=2cos ⎝⎛⎭⎪⎫α+π6+42=2cos ⎝⎛⎭⎪⎫α+π6+2 2.由此得,当cos⎝ ⎛⎭⎪⎫α+π6=-1时,d 取得最小值,且最小值为 2.答案:(1)点P 在直线l 上. (2)最小值为 2.练习1:已知曲线C 的方程为⎩⎪⎨⎪⎧x =12(e t +e -t )cos θ,y =12(e t-e-t)sin θ.当t 是非零常数,θ为参数时,C 是什么曲线?当θ为不等于k π2(k ∈Z)的常数,t 为参数时,C 是什么曲线?两曲线有何共同特征?答案:当θ为参数时,将原参数方程记为①, 将参数方程①化为 ⎩⎪⎨⎪⎧2x e t +e -t=cos θ,2y e t-e-t =sin θ,平方相加消去θ,得x2⎝ ⎛⎭⎪⎫e t +e -t 22+y2⎝ ⎛⎭⎪⎫e t -e -t 22=1.②∵(e t +e -t )2>(e t -e -t )2>0, ∴方程②表示的曲线为椭圆. 当t 为参数时,将方程①化为⎩⎪⎨⎪⎧2x cos θ=e t +e -t,2y sin θ=e t -e -t.平方相减,消去t ,得x 2cos 2θ-y2sin 2θ=1.③ ∴方程③表示的曲线为双曲线,即C 为双曲线.又在方程②中⎝ ⎛⎭⎪⎫e t +e -t22-⎝ ⎛⎭⎪⎫e t -e -t22=1,则c =1,椭圆②的焦点为(-1,0),(1,0).因此椭圆和双曲线有共同的焦点.类型五.极坐标与参数方程的综合应用例8:(2015·广东卷Ⅱ,数学文14)在平面直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.曲线C 1的极坐标方程为ρ(cos θ+sin θ)=-2,曲线C 2的参数方程为⎩⎨⎧x =t2y =22t(t 为参数),则C 1与C 2交点的直角坐标为________. 解析:曲线C 1的直角坐标方程为x +y =-2,曲线C 2的普通方程为y 2=8x ,由⎩⎪⎨⎪⎧x +y =-2y 2=8x 得:⎩⎪⎨⎪⎧x =2y =-4,所以C 1与C 2交点的直角坐标为(2,-4). 答案:(2,-4)练习1:求圆3cos ρθ=被直线22,14x t y t =+⎧⎨=+⎩(t 是参数)截得的弦长.解析:将极坐标方程转化成直角坐标方程:223cos ,3,x y x ρθ=+=可得即2239()24x y -+=,22,14,x t y t =+⎧⎨=+⎩可得23,x y -=所以圆心到直线的距离0,d ==即直线经过圆心,所以直线截得的弦长为3.答案:31.将参数方程⎩⎪⎨⎪⎧x =2+sin 2θ,y =sin 2θ(θ为参数)化为普通方程是( ) A .y =x -2 B .y =x +2C .y =x -2(2≤x≤3)D .y =x +2(0≤y≤1)答案:C 2.椭圆42cos 15sin x y θθ=+⎧⎨=+⎩(θ为参数)的焦距为( )A.21 B .221C.29D .229答案:B3.参数方程⎩⎪⎨⎪⎧x =e t -e -t,y =e t +e -t(t 为参数)表示的曲线是( ) A .双曲线 B .双曲线的下支 C .双曲线的上支D .圆答案:C 4.双曲线23tan sec x y θθ=+⎧⎨=⎩,(θφ为参数)的渐近线方程为答案:y =±13(x -2)5.(2015·惠州市高三第二次调研考试)在直角坐标系xOy 中,直线l的参数方程为⎩⎪⎨⎪⎧x =t ,y =4+t (t为参数).以原点O 为极点,以x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρ=42sin ⎝⎛⎭⎪⎫θ+π4,则直线l 和曲线C 的公共点有________个. 答案:16.若直线3x +4y +m =0与圆1cos ,2sin x y θθ=+⎧⎨=-+⎩(θ为参数),没有公共点,则实数m 的取值范围是______.答案:(,0)(10,)-∞+∞7.在直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.若极坐标方程为ρcos θ=4的直线与曲线⎩⎪⎨⎪⎧x =t 2,y =t 3(t 为参数)相交于A ,B 两点,则|AB|=________. 答案:168.已知直线l :34120x y +-=与圆C :12cos ,22sin x y θθ=-+⎧⎨=+⎩(θ为参数),试判断它们的公共点的个数.答案:圆的方程可化为22(1)(2)4,x y ++-=其圆心为C (-1,2),半径为2. 由于圆心到直线l 的距离72,5d ==< 故直线l 与圆C 的公共点个数为2.9.求直线2,,x t y =+⎧⎪⎨=⎪⎩(t 为参数)被双曲线x 2-y 2=1截得的弦长答案:把直线2,x t y =+⎧⎪⎨=⎪⎩(t 为参数)化为普通方程为y =+把它代入双曲线方程并整理得,2212130,x x -+=设直线交双曲线于1122(,),(,)A x y B x y 两点, 则1212136,,2x x x x +=⋅=则直线被双曲线截得的弦长||AB ==_________________________________________________________________________________ _________________________________________________________________________________基础巩固1.当参数θ变化时,动点P (2cos θ,3sin θ)所确定的曲线必过( ) A .点(2,3) B .点(2,0)C .点(1,3)D .点⎝⎛⎭⎪⎫0,π2答案:B2.双曲线6sec x y αα⎧=⎪⎨=⎪⎩(α为参数)的两焦点坐标是( )A .(0,-43),(0,43)B .(-43,0),(43,0)C .(0,-3),(0,3)D .(-3,0),(3,0)答案:A3.参数方程⎩⎪⎨⎪⎧x =sin α2+cos α2,y =2+sin α(α为参数)的普通方程为( )A .y 2-x 2=1B .x 2-y 2=1C .y 2-x 2=1(|x |≤2) D .x 2-y 2=1(|x |≤2)答案:C4.参数方程⎩⎪⎨⎪⎧x =cos 2θ,y =sin 2θ(θ为参数)表示的曲线是( ) A .直线 B .圆 C .线段 D .射线答案:C5.设O 是椭圆3cos 2sin x y αα=⎧⎨=⎩(α为参数)的中心,P 是椭圆上对应于α=π6的点,那么直线OP 的斜率为( )A.33B. 3C.332D.239答案:D6.将参数方程12cos 2sin x y θθ=+⎧⎨=⎩(θ为参数)化为普通方程是____________.答案:(x -1)2+y 2=47.点P(x ,y)在椭圆4x 2+y 2=4上,则x +y 的最大值为______,最小值为________. 答案: 5- 58.在平面直角坐标系中,已知直线l 与曲线C 的参数方程分别为l :⎩⎪⎨⎪⎧x =1+s ,y =1-s (s 为参数)和C :⎩⎪⎨⎪⎧x =t +2,y =t 2(t 为参数),若l 与C 相交于A 、B 两点,则|AB|=________. 答案:2能力提升9.点(2,33)对应曲线4cos 6sin x y θθ=⎧⎨=⎩(θ为参数)中参数θ的值为( )A .k π+π6(k∈Z)B .k π+π3(k∈Z)C .2k π+π6(k∈Z)D .2k π+π3(k∈Z)答案:D10.椭圆x 29+y24=1的点到直线x +2y -4=0的距离的最小值为( )A.55B. 5C.655D .0答案:A11.(2015·湛江市高三(上)调考)直线⎩⎪⎨⎪⎧x =2-12t ,y =-1+12t(t 为参数)被圆x 2+y 2=4截得的弦长为________.答案:1412.在平面直角坐标系xOy 中,若l :⎩⎪⎨⎪⎧x =t ,y =t -a (t 为参数)过椭圆C :3cos 2sin x y θθ=⎧⎨=⎩(θ为参数)的右顶点,则常数a 的值为________.答案:313.(2015·惠州市高三第一次调研考试)已知在平面直角坐标系xOy 中圆C 的参数方程为:3cos 13sin x y θθ⎧=⎪⎨=+⎪⎩(θ为参数),以Ox 为极轴建立极坐标系,直线极坐标方程为:ρcos ⎝ ⎛⎭⎪⎫θ+π6=0,则圆C 截直线所得弦长为________.解析:圆C 3cos 13sin x y θθ⎧=⎪⎨=+⎪⎩(θ为参数)表示的曲线是以点(3,1)为圆心,以3为半径的圆,将直线ρcos ⎝ ⎛⎭⎪⎫θ+π6=0的方程化为3x -y =0,圆心(3,1)到直线3x -y =0的距离: d =|3×3-1|(3)+12=1,故圆C 截直线所得弦长为232-12=4 2.答案:4 214.(2014·辽宁卷)将圆x 2+y 2=1上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C.(1)写出C 的参数方程;(2)设直线l :2x +y -2=0与C 的交点为P 1,P 2,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求过线段P 1P 2的中点且与l 垂直的直线的极坐标方程.答案:(1)设(x 1,y 1)为圆上的点,经变换为C 上点(x ,y),依题意,得⎩⎪⎨⎪⎧x =x 1,y =2y 1,由x 21+y 21=1得x 2+⎝ ⎛⎭⎪⎫y 22=1,即曲线C 的方程为x 2+y 24=1.故C 的参数方程为⎩⎪⎨⎪⎧x =cos t ,y =2sin t (t 为参数).(2)由⎩⎪⎨⎪⎧x 2+y 24=1,2x +y -2=0解得⎩⎪⎨⎪⎧x =1,y =0或⎩⎪⎨⎪⎧x =0,y =2.不妨设P 1(1,0),P 2(0,2),则线段P 1P 2的中点坐标为⎝ ⎛⎭⎪⎫12,1,所求直线斜率为k =12,于是所求直线方程为y -1=12⎝ ⎛⎭⎪⎫x -12,化为极坐标方程并整理得2ρcos θ-4ρsin θ=-3,即ρ=34sin θ-2cos θ.。

参数方程 教案

参数方程 教案
三、教学重难点分析
教学重点:掌握参数方程与普通方程互相转化的原理和应用.
教学难点:掌握圆锥曲线和直线的参数方程在计算中的应用.
四、学法指导
本节课是在学习了参数方程的概念、初步了解圆锥曲线和直线的参数方程的基础上的运用,学生已经了解了一些解题的基本思想和方法,应用曲线的参数方程来解题对学生来说已不陌生,所以对本节的学习应让学生能够多参与、多思考,培养他们分析问题和解决问题的能力,提高应用所学知识的能力.
典例剖析
【例3】已知直线 的参数方程为 ,圆 的参数方程为
,求直线 被圆 所截得的弦长.
课堂检测
(备用题)
【例4】求经过点 ,倾斜角为 的直线截椭圆 所得的弦长.
【例5】已知圆 和直线
⑴当 时,求圆上的点到直线 距离的最小值;
⑵当直线 与圆 有公共点时,求 的取值范围.
课堂小结
1.掌握参数方程与普通方程互相转化的原理和应用;
参数方程
课题名称
参数方程
时间
学生年级
高二11班
课时
1课时
教师
指导教师
一、教材分析
本节是人教A版选修4-4第二讲.参数方程是高考的选考内容,其中直线的参数方程与圆、椭圆的参数方程的考察较为频繁.利用参数方程解题有时比用普通方程解题更为便捷.因此,熟练掌握参数方程的相关知识与技巧,能帮助我们高效解决部分题目.
在课堂教学中,应该把以教师为中心转向以学生为中心,把学生自身的发展置于教育的中心位置,为学生创设宽容的课堂气氛,指导学生形成良好的学习习惯,激发学生的学习动机,培养学习兴趣,充分调动学生的学习积极性,倡导学生采用自主、合作、探究的方式学习.
五、教法指导
数学是一门培养人的思维、发展人的思维的重要学科,本节课的主要内容是参数方程的综合运用,所以应让学生多参与,让其自主探究分析问题、解决问题,尝试归纳总结,然后由老师启发、总结、提炼,升华为分析和解决问题的能力.

人教版高中选修4-4二圆锥曲线的参数方程课程设计

人教版高中选修4-4二圆锥曲线的参数方程课程设计

人教版高中选修4-4二圆锥曲线的参数方程课程设计一、课程设计背景及意义本次课程设计是为了帮助高中选修4学科的学生更深入地学习二圆锥曲线的参数方程,并能够在实践中灵活应用。

在高中数学教学中,二圆锥曲线是一个非常重要的知识点,是建立高中数学基础的一部分。

掌握二圆锥曲线的参数方程可以帮助学生更好地理解二圆锥曲线的性质和图像,同时也是高中数学考试和数学竞赛中的重点内容。

二、课程设计目标1.掌握二圆锥曲线的基本概念和性质;2.理解二圆锥曲线的参数方程;3.学会在实践中应用二圆锥曲线的参数方程。

三、课程设计内容和方法3.1 课程内容本次课程设计主要包括以下内容:1.二圆锥曲线的基本概念和性质;2.二圆锥曲线的参数方程;3.应用二圆锥曲线的参数方程绘制图像;4.实际问题中的应用。

3.2 课程方法本课程将采用以下教学方法:1.讲授理论知识,重点讲解二圆锥曲线的基本概念、性质和参数方程;2.示范绘制二圆锥曲线的图像,并引导学生进行实践操作;3.让学生进行练习和自主探究,巩固和提高理解能力;4.引导学生通过练习和实践来应用知识,解决实际问题。

四、课程设计步骤4.1 第一步:学习二圆锥曲线的基本概念和性质1.引导学生了解二圆锥曲线的概念和分类;2.讲解二圆锥曲线的性质,如对称性、切线和法线等。

4.2 第二步:理解二圆锥曲线的参数方程1.引导学生逐步理解二圆锥曲线的参数方程及其原理;2.讲解二圆锥曲线的各种形式的参数方程,并进行比较。

4.3 第三步:应用二圆锥曲线的参数方程绘制图像1.示范绘制各种形式的二圆锥曲线;2.引导学生进行实践操作,并提供相关练习题供学生练习。

4.4 第四步:实际问题中的应用1.引导学生进行实际问题解析,如抛物线、双曲线等相关问题;2.让学生在实验室中进行实践操作,实现对参数方程的应用。

五、课程设计评价本课程设计以实践应用为主要教学内容,采用了多种教学方法和手段,能够有效帮助学生掌握二圆锥曲线的参数方程的知识和技能,操作简单、易于理解和掌握,能够提高学生的学习兴趣,并激发他们学习数学的热情。

选修4-4-第二讲-参数方程(圆锥曲线的参数方程)-教案

选修4-4-第二讲-参数方程(圆锥曲线的参数方程)-教案

焦点在y 轴上的椭圆的参数方程:2222y 1,b ax +=练习:已知椭圆4922y x +=1,点M 是椭圆上位于第一象限的弧上一点,且∠xOM =60°。

(1)求点M 的坐标;(2)如何表示椭圆在第一象限的弧?错解:由已知可得a =3,b =2,θ=600,∴x =acos θ=3cos60°=23,y =bsin θ=2sin60°=3。

从而,点M 的坐标为)3,23(。

正解:设点M 的坐标为(x,y),则由已知可得y =3x,与4922y x +=1联立, 解得x =31316, y =93316。

所以点M 的坐标为(31316,93316)。

另解:∵∠xOM=60°,∴可设点M 的坐标为(|OM|cos60°,|OM|sin60°)。

代入椭圆方程解出|OM|,进而得到点M 的坐标(略)。

例1 求椭圆)0b a (1by a x 2222>>=+的内接矩形的面积及周长的最大值。

解:如图,设椭圆1by a x 2222=+的内接矩形在第一象限的顶点是A )sin cos (ααb a ,)20(πα<<,矩形的面积和周长分别是S 、L 。

ab 22sin ab 2sin b cos a 4|EA ||FA |4S ≤α=α⋅α=⨯=,当且仅当4a π=时,22max b a 4sin b 4cos a 4|)EA ||FA (|4L ab 2S +≤α+α=+==,,cos y a sin x b ϕϕ=⎧⎨=⎩53arcsin 23-π=α时,距离d 有最大值2。

例4 θ取一切实数时,连接A(4sin θ,6cos θ)和B(-4cos θ, 6sin θ)两点的线段的中点轨迹是 . A. 圆 B. 椭圆 C. 直线 D. 线段例5 已知点A 在椭圆136y 144x 22=+上运动,点B (0,9)、点M 在线段AB 上,且21MB AM =,试求动点M 的轨迹方程。

人教课标版高中数学选修4-4《圆锥曲线的参数方程》教案-新版

人教课标版高中数学选修4-4《圆锥曲线的参数方程》教案-新版

第二讲 参数方程 2.2 圆锥曲线的参数方程一、教学目标 (一)核心素养通过这节课学习,了解圆锥曲线的参数方程及参数的意义、体会参数方程的应用,会选择适当的参数写出曲线的参数方程,通过观察、探索、发现的创造性过程,培养创新意识. (二)学习目标1.借助于圆的参数方程,理解椭圆的参数方程及其应用. 2.了解双曲线、抛物线的参数方程.3.能够利用圆锥曲线的参数方程解决最值、有关点的轨迹问题. (三)学习重点1.椭圆的参数方程及其应用. 2.双曲线、抛物线的参数方程.3.通过具体问题,体会某些曲线用参数方程表示比用普通方程表示更方便,感受参数方程的优越性. (四)学习难点1.椭圆参数方程的参数几何意义的理解.2.利用圆锥曲线的参数方程解决最值、有关点的轨迹问题. 3.选择适当的圆锥曲线的参数方程. 二、教学设计 (一)课前设计 1.预习任务(1)读一读:阅读教材第27页至第33页,填空:椭圆12222=+by a x )0(>>b a 参数方程⎩⎨⎧==θθsin cos b y a x (θ为参数),参数θ的几何意义是以a 为半径所作圆上一点和椭圆中心的连线与X 轴正半轴的夹角.双曲线的参数方程的推导:双曲线12222=-b y a x )0(>>b a 参数方程⎩⎨⎧==θθtan sec b y a x (θ为参数)抛物线的参数方程:抛物线)0(22>=p px y 参数方程⎩⎨⎧==pty pt x 222(t 为参数),t 为以抛物线上一点),(y x 与其顶点连线斜率的倒数. (2)写一写:圆锥曲线上点的坐标怎么设置?2.预习自测(1)参数方程)(sin 2cos 为参数θθθ⎩⎨⎧==y x 表示的曲线为( )【知识点】椭圆的参数方程【解题过程】消去参数得椭圆的普通方程为1422=+y x ,所以选B【思路点拨】消去参数化为普通方程来判定 【答案】B(2)椭圆⎩⎨⎧==θθsin 2cos 5y x (θ为参数)的焦距为( )A .21B .29C .221D .229【知识点】椭圆的参数方程、椭圆的性质【解题过程】消去参数得椭圆的普通方程为142522=+y x ,所以21,4,25222===c b a ,故焦距2122=c【思路点拨】消去参数化为普通方程求解 【答案】C(3)圆锥曲线⎩⎨⎧x =t 2,y =2t(t 为参数)的焦点坐标是________.【知识点】抛物线的参数方程【解题过程】消去参数得曲线的普通方程为x y 42=,所以为抛物线,根据抛物线的定义得焦点坐标为(1,0)【思路点拨】消去参数化为普通方程求解 【答案】(1,0). (4)曲线⎩⎪⎨⎪⎧x =t +1t,y =2t -2t(t 为参数)的顶点坐标是________.【知识点】双曲线的参数方程 【解题过程】方程变形为⎩⎪⎨⎪⎧x =t +1t ,y 2=t -1t ,两式平方相减,得x 2-y 24=4,即x 24-y 216=1,∴曲线是焦点在x 轴上的双曲线,顶点坐标为(±2,0). 【思路点拨】消去参数化为普通方程求解 【答案】(±2,0) (二)课堂设计 1.知识回顾(1)写出圆方程的标准式和对应的参数方程.圆222r y x =+参数方程⎩⎨⎧==θθsin cos r y r x (θ为参数),圆22020)()(r y y x x =-+-参数方程为:⎩⎨⎧+=+=θθsin cos 00r y y r x x (θ为参数)2.问题探究探究一 结合旧知,类比探究椭圆参数方程★ ●活动① 归纳提炼公式上一节我们学习了圆的参数方程以及参数方程中参数的意义,那么椭圆)0(12222>>=+b a b y a x 的参数方程是什么呢,参数方程中的参数有何意义?如右图,以原点O 为圆心,分别以b a ,(a >b >0)为半径作两个同心圆,设A 为大圆上的任意一点,连接OA,与小圆交于点B ,过点A 作Ox AN ⊥,垂足为N ,过点B 作AN BM ⊥,垂足为M .设ϕ=∠xOA ,由三角函数的定义有:)sin ,cos (),sin ,cos (ϕϕϕϕb b B a a A设),(y x M ,依题意可得:)(sin cos 为参数ϕϕϕ⎩⎨⎧==b y a x 当OA 绕原点旋转一周时,就可以得到点M 的轨迹方程了。

高中数学人教A版选修4-4学案:第二讲二圆锥曲线的参数方程

高中数学人教A版选修4-4学案:第二讲二圆锥曲线的参数方程

二 圆锥曲线的参数方程1.理解椭圆的参数方程,了解参数的意义,会用椭圆的参数方程解决简单问题. 2.理解双曲线的参数方程,了解参数的意义,会用双曲线的参数方程解决简单问题. 3.理解抛物线的参数方程,了解参数的意义,会用抛物线的参数方程解决简单的相关问题.4.通过具体问题,体会某些曲线用参数方程表示比用普通方程表示更方便,感受参数方程的优越性.1.椭圆的参数方程中心在原点,焦点在x 轴上的椭圆x2a2+y2b2=1的参数方程是__________.规定参数φ的取值范围为________.(1)圆的参数方程:⎩⎪⎨⎪⎧x =rcos θ,y =rsin θ(θ为参数)中的参数θ是动点M (x ,y )的旋转角,但在椭圆的参数方程⎩⎪⎨⎪⎧x =acos φ,y =bsin φ(φ为参数)中的参数φ不是动点M (x ,y )的旋转角,它是点M 所对应的圆的半径OA (或OB )的旋转角,称为离心角,不是OM 的旋转角.(2)通常规定φ∈[0,2π).(3)当椭圆的普通方程不是标准形式时,也可以表示为参数方程的形式.如错误!+错误!=1(a >b >0)可表示为⎩⎪⎨⎪⎧x =m +acos φ,y =n +bsin φ(φ为参数).【做一做1-1】 椭圆⎩⎪⎨⎪⎧x =acos θ,y =bsin θ(θ为参数),若θ∈[0,2π),则椭圆上的点(-a,0)对应的θ为( ).A .π B.π2 C .2π D.3π2【做一做1-2】A ,B 分别是椭圆x236+y29=1的右顶点和上顶点,动点C 在该椭圆上运动,求△ABC 的重心G 的轨迹的普通方程.2.双曲线的参数方程中心在原点,焦点在x 轴上的双曲线x2a2-y2b2=1的参数方程是__________规定参数φ的取值范围为__________.【做一做2】 参数方程⎩⎪⎨⎪⎧x =sin α2+cos α2,y =2+sin α(α为参数)的普通方程是( ).A .y 2-x 2=1B .x 2-y 2=1C .y 2-x 2=1(|x |≤2)D .x 2-y 2=1(|x |≤2)3.抛物线的参数方程(1)抛物线y 2=2px 的参数方程为____________. (2)参数t 的几何意义是________________.答案:1.⎩⎪⎨⎪⎧x =acos φ,y =bsin φ(a >b >0) [0,2π)【做一做1-1】 A【做一做1-2】 解:由于动点C 在该椭圆上运动,所以可设点C 的坐标为(6cos θ,3sin θ),点G 的坐标为(x ,y ),则由题意可知点A (6,0),B (0,3).由重心坐标公式可知⎩⎪⎨⎪⎧x =6+0+6cos θ3=2+2cos θ,y =0+3+3sin θ3=1+sin θ.由此可得错误!+(y -1)2=1即为所求.2.⎩⎪⎨⎪⎧x =asec φ,y =btan φ. φ∈[0,2π)且φ≠π2,φ≠3π2【做一做2】 C 因为x 2=1+sin α,所以sin α=x 2-1. 又因为y 2=2+sin α=2+(x 2-1),所以y 2-x 2=1. 而x =sin α2+cos α2=2sin(α2+π4),故x ∈[-2,2].3.(1)⎩⎪⎨⎪⎧x =2pt2,y =2pt ,t ∈(-∞,+∞)(2)抛物线上除顶点外的任意一点与原点连线的斜率的倒数1.椭圆的参数方程中参数φ的几何意义剖析:从几何变换的角度看,通过伸缩变换,令⎩⎪⎨⎪⎧x′=1ax ,y′=1by ,椭圆x2a2+y2b2=1可以变成圆x ′2+y ′2=1,利用圆x ′2+y ′2=1的参数方程⎩⎪⎨⎪⎧x′=cos φ,y′=sin φ(φ是参数),可以得到椭圆x2a2+y2b2=1的参数方程⎩⎪⎨⎪⎧x =acos φ,y =bsin φ(φ是参数),因此,参数φ的几何意义是椭圆上任意一点M 所对应的圆的半径OA (或OB )的旋转角(称为点M 的离心角),而不是OM 的旋转角.2.圆锥曲线的参数方程不是惟一的剖析:同一条圆锥曲线的参数方程形式是不惟一的.例如,椭圆x2a2+y2b2=1的参数方程可以是⎩⎪⎨⎪⎧x =acos θ,y =bsin θ的形式,也可以是⎩⎪⎨⎪⎧x =asin θ,y =bcos θ的形式,二者只是形式上不同而已,实质上都是表示同一个椭圆.同样对于双曲线、抛物线也可以用其他形式的参数方程来表示,只是选取的参数不同,参数的几何意义也不同.题型一 求圆锥曲线的参数方程 【例1】 椭圆中心在原点,焦点在x 轴上,椭圆上的一点到两个焦点的距离之和是6,焦距是25,求椭圆的参数方程.分析:可先根据题目条件求出椭圆的普通方程,然后化为参数方程.反思:求参数方程的关键是选准参数,有时可选的参数并不惟一,这时要选择一个恰当的.另外求参数方程比较困难时,也可以先求出它的普通方程,再化为参数方程.题型二 圆锥曲线普通方程与参数方程的互化 【例2】 参数方程错误!(θ为参数)表示什么曲线?分析:消去参数,化为普通方程再判断.反思:有些参数方程很难直接看出它所表示的曲线类型,这时只需先把它化为普通方程再作研究即可.题型三 圆锥曲线参数方程的应用 【例3】 设M 为抛物线y 2=2x 上的动点,给定点M 0(-1,0),点P 为线段M 0M 的中点,求点P 的轨迹方程.分析:合理选取参数,将抛物线方程转化为参数方程,再寻求解题方法. 题型四 易错辨析【例4】 已知P 为椭圆x216+y212=1上一点,且∠POx =π3,求点P 的坐标.错解:设点P 的坐标为(x ,y ),如图所示, 由椭圆的参数方程得⎩⎪⎨⎪⎧x =4cos π3,y =23sin π3,即P 的坐标为(2,3).答案:【例1】 解:由题意,设椭圆的方程为x2a2+y2b2=1,则a =3,c =5,∴b =2,∴椭圆的普通方程为x232+y222=1,化为参数方程得⎩⎪⎨⎪⎧x =3cos φ,y =2sin φ(φ为参数).【例2】 解:∵x =cos θ·sin θ+cos 2θ=sin 2θ+cos 2θ+12,∴x -12=sin 2θ+cos 2θ2.∵y =sin 2θ+sin θcos θ=sin 2θ-cos 2θ+12,∴y -12=sin 2θ-cos 2θ2.∴(x -12)2+(y -12)2=1+2sin 2θcos 2θ+1-2sin 2θcos 2θ4=12.∴原参数方程表示的曲线是圆心为(12,12),半径为22的圆.【例3】 解:令y =2t ,则x =y22=2t 2,得抛物线的参数方程为⎩⎪⎨⎪⎧x =2t2,y =2t(t 为参数),则设动点M (2t 2,2t ),定点M 0(-1,0).设点P 的坐标为(x ,y ),由中点坐标公式得错误!即⎩⎪⎨⎪⎧x =-12+t2,y =t(t 为参数),这就是点P 的轨迹的参数方程.化为普通方程是y 2=x +12.这是以x 轴为对称轴,顶点在(-12,0)的抛物线.【例4】 错因分析:椭圆⎩⎪⎨⎪⎧x =acos φ,y =bsin φ和圆⎩⎪⎨⎪⎧x =rcos φ,y =rsin φ中,参数φ的意义是不同的.在圆的方程中,φ是圆周上的动点M (x ,y )所对应的角∠xOM ,而椭圆方程中的φ,其意义却不是这样,上述解答把椭圆方程中φ的意义错混为圆的方程中φ的意义,从而导致了解答的错误.正解:设|OP |=t ,点P 的坐标为(t cos π3,t sin π3),代入椭圆方程得错误!+错误!=1,即t =855,所以点P 的坐标为(455,4515).1椭圆(θ为参数)的焦距为( ).A. B . C. D .2椭圆(φ为参数)的焦点坐标为( ).A .(0,0),(0,-8)B .(0,0),(-8,0)C .(0,0),(0,8)D .(0,0),(8,0) 3参数方程(θ为参数)所表示的曲线为( ).A .抛物线的一部分B .抛物线C .双曲线的一部分D .双曲线 4实数x ,y 满足,则z =x -y 的最大值为________,最小值为________.5如图,由椭圆=1上的点M 向x 轴作垂线,交x 轴于点N ,设P 是MN 的中点,求点P 的轨迹方程.答案:1.B2.D 利用平方关系化为普通方程:=1.3.A4.5 -5 由椭圆的参数方程,可设x=4cos θ,y=3sin θ,∴z=x-y=4cos θ-3sin θ=5cos (θ+φ),其中φ为锐角,且tan φ=.∴-5≤z≤5.5.解:椭圆=1的参数方程为(θ为参数),∴设M(2cos θ,3sin θ),P(x,y),则N(2cos θ,0),∴.消去θ,得=1,即点P的轨迹方程为=1.。

圆锥曲线的参数方程

圆锥曲线的参数方程
3、典型例题:
例1.设炮弹发射角为 ,发射速度为 ,
(1)求子弹弹道曲线的参数方程(不计空气阻力)
(2)若 , ,当炮弹发出2秒时,
1求炮弹高度②求出材)
变式训练1.已知椭圆 ( 为参数)
求(1) 时对应的点P的坐标(2)直线OP的倾斜角
变式训练2 A点椭圆长轴一个端点,若椭圆上存在一点P,使∠OPA=90°,其中O为椭圆中心,求椭圆离心率 的取值范围。
3、参数方程的意义:
参数方程是曲线点的位置的另一种表示形式,它借助于中间变量把曲线上的动点的两个坐标间接地联系起来,参数方程与变通方程同等地描述,了解曲线,参数方程实际上是一个方程组,其中 , 分别为曲线上点M的横坐标和纵坐标。
4、参数方程求法
(1)建立直角坐标系,设曲线上任一点P坐标为
(2)选取适当的参数
(3)根据已知条件和图形的几何性质,物理意义,建立点P坐标与参数的函数式
(4)证明这个参数方程就是所由于的曲线的方程
a)关于参数方程中参数的选取
选取参数的原则是曲线上任一点坐标当参数的关系比较明显关系相对简单。
与运动有关的问题选取时间 做参数
与旋转的有关问题选取角 做参数
或选取有向线段的数量、长度、直线的倾斜斜角、斜率等。
1.椭圆的推导:椭圆 参数方程 ( 为参数)
2.双曲线的参数方程:双曲线 参数方程 ( 为参数)
3.抛物线的参数方程:抛物线 参数方程 (t为参数)
2、关于参数几点说明:
(1)参数方程中参数可以是有物理意义,几何意义,也可以没有明显意义。
(2)同一曲线选取的参数不同,曲线的参数方程形式也不一样
(3)在实际问题中要确定参数的取值范围
例3.把圆 化为参数方程
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

焦点在y 轴上的椭圆的参数方程:2222y 1,b ax +=练习:已知椭圆4922y x +=1,点M 是椭圆上位于第一象限的弧上一点,且∠xOM =60°。

(1)求点M 的坐标;(2)如何表示椭圆在第一象限的弧?错解:由已知可得a =3,b =2,θ=600,∴x =acos θ=3cos60°=23,y =bsin θ=2sin60°=3。

从而,点M 的坐标为)3,23(。

正解:设点M 的坐标为(x,y),则由已知可得y =3x,与4922y x +=1联立, 解得x =31316, y =93316。

所以点M 的坐标为(31316,93316)。

另解:∵∠xOM=60°,∴可设点M 的坐标为(|OM|cos60°,|OM|sin60°)。

代入椭圆方程解出|OM|,进而得到点M 的坐标(略)。

例1 求椭圆)0b a (1by a x 2222>>=+的内接矩形的面积及周长的最大值。

解:如图,设椭圆1by a x 2222=+的内接矩形在第一象限的顶点是A )sin cos (ααb a ,)20(πα<<,矩形的面积和周长分别是S 、L 。

ab 22sin ab 2sin b cos a 4|EA ||FA |4S ≤α=α⋅α=⨯=,当且仅当4a π=时,22max b a 4sin b 4cos a 4|)EA ||FA (|4L ab 2S +≤α+α=+==,,cos y a sin x b ϕϕ=⎧⎨=⎩53arcsin 23-π=α时,距离d 有最大值2。

例4 θ取一切实数时,连接A(4sin θ,6cos θ)和B(-4cos θ, 6sin θ)两点的线段的中点轨迹是 . A. 圆 B. 椭圆 C. 直线 D. 线段例5 已知点A 在椭圆136y 144x 22=+上运动,点B (0,9)、点M 在线段AB 上,且21MB AM =,试求动点M 的轨迹方程。

解:由题意知B (0,9),设A (ααsin 6cos 12,),并且设M (x ,y )。

则,α=+⨯+α=++=cos 8211021cos 12211x 21x x B A 3sin 4211921sin 6211y 21y y B A +α=+⨯+α=++=, 动点M 的轨迹的参数方程是⎩⎨⎧+α=α=3sin 4y cos 8x (α是参数),消去参数得116)3y (64x 22=-+。

例6 椭圆)0b a (1by a x 2222>>=+与x 轴的正向相交于点A ,O 为坐标原点,若这个椭圆上存在点P ,使得OP ⊥AP 。

求该椭圆的离心率e 的取值范围。

解:设椭圆)0b a (1by a x 2222>>=+上的点P 的坐标是(ααsin b cos a ,)(α≠0且α≠π),A(a ,0)。

则acos a 0sin b k cos a sin b k AP OP -α-α=αα=,。

而OP ⊥AP , 于是1acos a 0sin b cos a sin b -=-α-α⋅αα,整理得0b cos a cos )b a (22222=+α-α- 解得1cos =α(舍去),或222ba b cos -=α。

因为1cos 1<α<-,所以1b a b 1222<-<-。

可转化为1ee 1122<-<-,解得21e 2>,于是1e 22<<。

故离心率e 的取值范围是⎪⎪⎭⎫⎝⎛122,。

例7 四边形ABCD 内接于椭圆16922y x +=1,其中点A(3,0),C(0,4),B 、D 分别位于椭圆第一象限与第三象限的弧上。

求四边形ABCD 面积的最大值。

双曲线的参数方程与研究椭圆参数方程的方法类似,我们来研究双曲线②)0,0(12222>>=-b a b y a x的参数方程。

如图, 以原点O 为圆心, a, b(a>0, b>0)为半径分别作同心圆C 1、C 2。

设A 为圆C 1上任一点, 作直线OA, 过A 作圆C 1的切线AA'与x 轴交于点A', 过圆C 2与x 轴的交点B 作圆C 2的切线BB'与直线OA 交于点B'。

过点A',B'分别作y 轴, x 轴的平行线A'M, B'M 交于点M,设OA 与OX 所成的角为φ(φ∈[0, 2π)且φ≠π/2,φ≠3π/2), 求点M 的轨迹方程, 并说出点M 的轨迹。

设Ox 为始边,OA 为终边的角为ϕ,点M 的坐标是),(y x .那么点1A 的坐标为)0,(x ,点1B 的坐标为),(y b .因为点A 在圆1C 上,由圆的参数方程得点A 的坐标为(ϕϕsin ,cos a a ),所以,)sin ,cos (,)sin ,cos (1ϕϕϕϕa a x AA a a OA --==.因为1AA OA ⊥,所以01=•AA OA ,从而0)sin ()cos (cos 2=--ϕϕϕa a x a ,解得ϕcos a x =.记ϕϕsec cos 1=,(ϕsec 是正割函数,它表示余弦函数的倒数,现在只是为推导参数方程才引入,所以不要求引入,仅供同学们学习了解使用)则ϕsec =x .因为点1B 在角ϕ的终边上,由三角函数的定义有by=ϕtan ,即ϕtan b y =.所以,点M 的轨迹的参数方程为⎩⎨⎧==ϕϕtan sec b y a x (ϕ为参数)(2) 因为1cos sin cos 1222=-ϕϕϕ,即1tan sec 22=-ϕϕ,所以,从(2)方程中消去参数ϕ后得到点M 的轨迹的普通方程(1).这是中心在原点,焦点在x 轴上的双曲线.所以(2)就是双曲线(1)的参数方程.此时的参数ϕ的范围为[)πϕ2,0∈,且23,2πϕπϕ≠≠. 由图可知,参数φ是点M 所对应的圆的半径OA 的旋转角(称为点M 的离心角),而不是OM 的旋转角.与椭圆类似,12222=-by a x 双曲线上任意一点的坐标可以设为()ϕϕtan ,sec b a ,这是解决与双曲线有关的问题的重要方法.例1.求点M 0(0, 2)到双曲线x 2-y 2=1的最小距离。

例3 求证:等轴双曲线平行于实轴的弦在两顶点所张的角均为直角. 分析:(1)实轴和虚轴等长的双曲线,叫等轴双曲线,所以等轴双曲线的渐近线,方程为x y ±=,两渐近线的夹角为直角.(2)此题求证:221π=∠=∠B AA A BA证明:设双曲线方程为222a y x =-,取顶点A 2(0,a ),弦AB ∥Ox ,),tan ,sec (ααa a B 则)tan ,sec (ααa a A -.∵,sec tan ,sec tan 22aa a k a a a k BA A A -=--=αααα∴122-=•BA A A k k∴弦AB 对1A 张直角,同理对2A 也张直角.经验:①掌握等轴双曲线的定义和等轴双曲线方程的设法222a y x =-.②根据题义要能化出较标准的图象.③证明是直角,实际是证明所在直线的斜率积为-1.例4 已知双曲线)0,0(12222>>=-b a b y a x ,A ,B 是双曲线同支上相异两点,线段AB 的垂直平分线与x 轴相交于点P )0,(0x ,求证:ab a x 220||+>.分析:证明题是学生学习较困难的部分,而不等式是更困难的部分,所以在证明前学会分析条件和结论之间的联系是解题的关键.解:设A ,B 坐标分别为)tan ,sec (ααb a ,)tan ,sec (ββb a ,则中点为M ))sec (sec 2(βα+a ,))tan (tan 2βα+b,于是线段AB 中垂线方程为⎥⎦⎤⎢⎣⎡+----=+-)sec (sec 2)tan (tan )sec (sec )tan (tan 2βαβαβαβαa x b a b y 将)0(,0x P 代入上式,∴)sec (sec 2220βα++=ab a x .∵2|sec sec |>+βα(∵A ,B 相异),∴ab a x 220||+>.经验:①中垂线的特点是直线过AB 中点且与线段AB 垂直.②关键点是2|sec sec |>+βα,由此得出结论.抛物线的参数方程前面曾经得到以时刻t 为参数的抛物线的参数方程:)10000(215001002g t t gt y tx ≤≤⎪⎩⎪⎨⎧-==为参数,且对于一般抛物线,怎样建立参数方程呢?以抛物线的普通方程px y 22=为例,其中p 为焦点到准线的距离。

设M(x, y)为抛物线上除顶点外的任意一点,以射线OM 为终边的角记作α。

显然,当α在)2,2(ππ-内变化时,点M 在抛物线上运动,并且对于α的每一个值,在抛物线上都有唯一的点M 与之对应,因此,可以取α为参数来探求抛物线的参数方程.因为点M 在α的终边上,根据三角函数定义可得αtan =x y ,由方程px y 22=,αtan =xy联立,得到⎪⎪⎩⎪⎪⎨⎧==ααtan 2tan 22p y p x (α为参数),这是抛物线(不包括顶点)的参数方程.如果令αtan 1=t ,),0()0,(+∞⋃-∞∈t ,则有⎩⎨⎧==pt y pt x 222(t 为参数).当t=0时,由参数方程⎩⎨⎧==pt y pt x 222(t 为参数)表示的点正好就是抛物线的顶点(0,0),因此,当),(+∞-∞∈t 时,参数方程⎩⎨⎧==pt y pt x 222(t 为参数)就表示整条抛物线.参数t 表示抛物线上除顶点外的任意一点与原点连线的斜率的倒数.说明:1、抛物线的参数方程因参数选择的不同会有不同的形式,要注意所选参数的几何意义.(例如:抛物线的参数方程为⎪⎪⎩⎪⎪⎨⎧==ααtan 2tan 22p y p x 时(α为参数),这是不包括顶点的抛物线的参数方程,α是X轴正半轴到OM (M 为抛物线上的点)所成的角.抛物线的参数方程为⎩⎨⎧==pt y pt x 222时(t 为参数),参数t 表示抛物线上除顶点外的任意一点与原点连线的斜率的倒数).2、抛物线参数方程要注意和普通方程的等价性,要注意抛物线的完整性.例1 如图,O 为原点,A,B 为抛物线)0(22>=p px y 异于顶点的两动点,且OA ⊥OB ,OM ⊥AB 于M ,求点M 的轨迹方程.又当点A,B 在什么位置时,ΔAOB 面积最小?最小值是多少?分析:①注意直线垂直时的条件,斜率积为-1或向量的数量积为0,引出参数间的关系.②注意挖掘三点共线的条件:01221=-y x y x解:根据条件,设点M ,A ,B 的坐标分别为),(y x ,)2,2(121pt pt ,(2222,2pt pt )(21t t ≠,且021≠•t t ),则),(y x OM =,)2,2(121pt pt OA =,)2,2(222pt pt OB =,))(2),(2(122122t t p t t p AB --=.因为OB OA ⊥,所以0=•AB OA ,即 0)2()2(212221=+t t p t pt ,所以121-=t t ①因为AB OM ⊥,所以0=•AB OM ,即0)(2))(2(1221221=-+-t t py t t px所以0)(21=++y t t x ,即)0(21≠-=+x xyt t . ②因为)2,2(),2,2(222121y pt x pt MB pt y pt x AM --=--=,且A ,M ,B 三点共线, 所以)2)(2()2)(2(221221x pt pt y y pt pt x --=--,化简,得02)(2121=--+x t pt t t y ③ 将①和②代入02)(2121=--+x t pt t t y 得到02)(=-+-x p xyy ,即)0(0222≠=-+x px y x ,这就是点M 的轨迹方程.(2).4,44)(222)1()1(212)2()2(12)2()2(221222122221222212122222222*********p AOB x B A t t p t t p t t p t t t t p S AOB t t p pt pt OB t t p pt pt OA AOB 的面积最小,最小值为轴对称时,关于,即当点当且仅当的面积为所以,,=∆-=≥++=++=+⋅+=∆+=+=+=+∆经验:①此题的重点是向量垂直,向量的数量积为0.由此找到参数之间的关系. ②三点共线得到01221=-y x y x ,消去参数21,t t 得到点M 的轨迹方程.③此出用关系式①②③得到方程)0(0222≠=-+x px y x ,采用的方法是整体消元,方法不多见,但不可忽视,目的告诉学生在解题过程中注意分析规律,注意观察综合应用.例2 过点)4,2(M 且与抛物线⎩⎨⎧==ty t x 422只有一个公共点的直线有( )条A 0B 1C 2D 3分析:如图,当只有一个公共点时,直线与抛物线相切或与对称轴平行,所以直线有两条,答案选C .经验:①抛物线的普通方程为x y 82=,顶点在原点,开口向右;且点M 在抛物线上. ②判断椭圆和双曲线与直线交点个数时,一般联立方程,方程组有两解时,有两个交点;有惟一解时,有一个交点;无解时,没有交点.但抛物线例外,因为直线与对称轴平行时,直线与抛物线有一个交点.所以,判断抛物线与直线的交点个数时,把直线方程与抛物线方程联立,方程组两解时有两个交点;有一解时,如直线所过的点在抛物线内,则一条直线;若点在抛物线上,则两条直线,一条是切线,另一条是平行于对称轴的直线;若在抛物线外,且直线不过抛物线的顶点时,有三条直线于抛物线有一个公共点,其中两条切线,一条与对称轴平行;当直线过抛物线外一点,且过抛物线顶点时,与抛物线有一个交点的直线有一条.此题直线过点)4,2(M (且点在抛物线上,)所以与抛物线只有一个交点的直线有两条,所以选项为C .例3 过抛物曲线⎩⎨⎧==22at y atx (t 为参数)的焦点F 作直线交抛物线于A ,B ,设ΔAOB(O 为原点)的面积为S ,求证:|:|2AB S 为定值.分析:求面积的平方与弦长的比为定值,需要求出面积的表达式和弦长的表达式,此时再用参数方程表示未知数太多,不易表示,所以采用参数方程转化为普通方程形式,用直线方程与抛物线方程联立,一元二次方程求弦长方式即求.解:抛物线ay x 42=的焦点为),0(a F ,(不妨设a>0),过焦点的直线AB 方程a kx y +=,代入抛物线方程得04422=--a akx x .设),(11y x A ,),(22y x B ,则221214,4a x x ak x x -==+.)1(44)(1||2212212k a x x x x k AB +=-++=.又点O 到直线的距离21ka d +=∴2222121)1(421||21k a k ak a d AB S +=+•+⋅=•=∴32242)1(4:)1(4|:|a k a k a AB S =++=为定值.经验:①解题方法不是千篇一律的,有时要参数方程化为普通方程,有时要普通方程化为参数方程,此题即要求把参数方程化为普通方程,且抛物线的开口向上,焦点在y 轴上.,,.O OA OB OA k AB M 的顶点任作两条互相垂直的线段和以直线的斜率为参数求线段的中点的轨迹的参数方程2P Q OP OQ x x a ⋅=⋅= 所以为定值。

相关文档
最新文档