医学统计学第三章 方差分析

合集下载

医学统计学第三章--方差分析1(1)PPT课件

医学统计学第三章--方差分析1(1)PPT课件

【Contrast钮】用于 对精细趋势检验和精 确两两比较的选项进 行定义,较少使用。
点击“Post Hoc”钮
【Post Hoc Multiple Comparisons对话框】 用于选择进行各组间 两两比较的方法
【Equal Variances Assumed复选框组】 当各组方差齐时可用 的两两比较方法 (14种)
点击“Option”钮
【Statistics复选框组】 常用 【Descriptive】 统计描述 【Homogeneity-of-variance】
方差齐性检验。
【Means plot复选框】用各组均数
做图,以直观的了解它们的差异。

【Missing Values单选框组】
定义分析中对缺失值的处理方法
因素: 在试验过程中,影响试验结果的条件叫做 因素(因子) 常用大写字母A , B , C 表…示。
水平: 把因素在试验中可能处的状态称做因素的 水平.常用表示该因素的字母加上足标表示。
方差分析的适用范围
在生产和科学实验中,影响结果的因素 往往有很多。要知道哪个因素对结果有 显著的影响时用方差分析。
常用:LSD、 S-N-K Bonferroni、 Turkey、 Sheffe、 Dunnett方法。
勾选“LSD”,点击 “Continue”返回 【Equal Variances Not Assumed复选框组】
当各组方差不齐时可用的两两比较方法,共有4种.
(一般认为“Game-Howell”方法较好,但由于统计学对 此尚无定论,所以建议方差不齐时使用非参数方法。)
成两组,乙( LBP治疗组)12只,丙(戒酒组)12只,8周后测

GSH值,问三种处理方式大鼠的GSH值是否相同。

医学统计学方差分析(ANOVA)

医学统计学方差分析(ANOVA)

方差分析是为了比较多个总体样本均数是否存在差别。

该方法有RA.Fisher首先提出,后来由GW.Snedecor完善,为了纪念Fisher,故称方差分析为F检验。

组间均方:MS组间=SS组间/ v组间,SS代表离均差平方和,v代表自由度,组间变异包括处理效应和随机误差。

组内均方:MS组内=SS组内/ v组内,组内差异包括随机误差。

F=MS组间/MS组内,F接近1,说明组间差异不大。

方差分析的基本思想,首先将总变异分为组间和组内变异,然后计算两者的F 值。

F值越大,说明组间差异大,处理起作用,反之,则不起作用,是由随机误差导致的。

方差分析应用条件:1)样本独立;2)来自正态总体;3)方差齐性。

方差分析包括完全随机设计(completely random design)的方差分析,又叫单向(one-way)方差分析和随机区组设计(radomized block design)的方差分析又叫双向(two-way)方差分析。

完全随机设计的方差分析是将受试对象随机化的分配到各个处理组或对照组的方法,未考虑干扰因素的影响,各个组的样本数可以不一样多。

随机区组设计的方差分析将受试对象按照性质相同或相近组成b个区组,每个区组有g个受试对象,分别随机分配到g个处理组,这样各个处理组不仅样本个数相同,生物学特性也比较均衡。

方差分析拒绝H0,接受H1,只说明g个总体均数不全相等,如果想要进一步了解那两个组均数不等,需要进行两两比较或称多重比较,即post-hoc检验。

ANOVA与T test的关系:.。

研究生医学统计学--方差分析

研究生医学统计学--方差分析
方差分析表见表4-5。
按F 0 . 0 , ( 3 , 1 1 0) . 01 3 5. 9 6 水, 2 准. ,9 8 1 =4 F 3,0 3 . 0 , 2( 3 =, 1 1 11) , 61 P 查 附6 0 . 0 表3的F1 界值表,得
结论:按 0.0水5准,拒绝H0,接受H1,认为4个处理组患者的低密度脂
例4-4 某研究者采用随机区组设计进行实验, 比较三种抗癌药物对小白鼠肉瘤的抑瘤效果, 先将15只染有肉瘤小白鼠按体重大小配成5个 区组,每个区组内3只小白鼠随机接受三种抗 癌药物(具体分配方法见例4-3),以肉瘤的重 量为指标,试验结果见表4-9。问三种不同药物 的抑瘤效果有无差别?
表4-9 三种不同药物作用后小白鼠肉瘤
例4-1 某医师为了研究一种降血脂新药的临床疗效,按统 一纳入标准选择120名患者,采用完全随机设计方法将患 者等分为4组进行双盲试验。问如何进行分组?
分组方法:先将120名高血脂患者从1开始到120编号,见表 4-2第一行;从随机数字表中的任一行任一列开始,如第5行 第7列开始,依次读取三位数作为一个随机数录于编号下见表 4-2第二行;然后将全部随机数从小到大编序号(数据相同的 按先后顺序编序号),将每个随机数对应的序号记在表4-2第 三行;规定序号1-30为甲组,序号31-60为乙组,序号61-90 为丙组,序号91-120为丁组,见表4-2第四行。组间 n-1
1 g
n i1
n
(
j1
Xij
)2
C
1
g
ng
(
j1 i1
Xij)2
C
误差
(n-1)(g-1) SS总-SS处理-SS区组
SS处理 处理
SS区组 区组

医学统计学(方差分析)

医学统计学(方差分析)
03
各种变异的表示方法
04
列举存在的变异及意义
各种变异的表示方法
SS总 总 MS总
SS组内 组内 MS组内
SS组间 组间 MS组间
三者之间的关系: SS总= SS组内+ SS组间 总= 组内+ 组间
F=MS组间/MS组内
自由度: 组间=组数-1
组内=N-组数
通过这个公式计算出统计量F,查表求出对应的P值,与进行比较,以确定是否为小概率事件。
01
计算 C=(Σx) 2/N=(3309.5) 2/30=365093 SS总=Σx2-C=372974.87-365093=7881.87
α=0.05
02
SS组内=SS总-SS组间=7881.87-2384.026=5497.84
Ν总=N-1=29, Ν组间=k-1=2, Ν组内=N-k=30-3=27
159.0
111.0
115.0
合计Σxij
1160
921.5
1228
3309.5(Σx)
ni
11
9
10
30(N)
均数
105.45
102.39
122.80
110.32()
糖尿病
IGT
正常人
xij
106.5
Σ
Σxij2
123509.52
144.0
105.2
124.5
117.0
109.5
105.1
110.0
96.0
76.4
109.0
115.2
95.3
103.
95.3

医学统计学(课件)方差分析

医学统计学(课件)方差分析

要点二
原理
通过将因变量和协变量之间的关系线 性化,进行线性回归分析,并控制其 他因素的影响。
要点三
应用
医学研究中用于研究疾病与基因型、 环境因素之间的关系,社会科学中用 于研究收入和教育水平的关系等。
多重比较方法
01
定义
多重比较方法是方差分析的一种补充 方法,用于比较多个组之间的差异。
02
原理
通过比较每个组与对照组或其他组之 间的差异,推断各组之间的差异是否 具有统计学显著性。
重复测量方差分析
定义
重复测量方差分析是方差分析的另一种拓展,用于比较多次测量或重复观测的差异。
原理
通过将多次测量视为不同的观察对象,对测量误差进行控制和调整。
应用
医学研究中常用于比较不同治疗方案的效果,以及社会科学中研究时间序列数据的变化等。
协方差分析
要点一
定义
协方差分析是方差分析与其他统计方 法的结合,通过控制一个或多个协变 量对因变量的影响。
偏度检验
检查数据分布的偏斜程度。
峰度检验
检查数据分布的峰态。
正态性检验
通过图形和统计量判断数据是否符合正态分布。
方差齐性检验
• 方差齐性检验:通过Levene's Test或Bartlett's Test检验各组方差是否相等。
主效应检验
将数据按照分组变量进行分组,并 对每个分组变量的平均值进行计算 。
方差分析还可以与其他统计方法结合 使用,例如与回归分析结合可进行协 方差分析和混合线性模型分析等。
02
方差分析基本原理
数学模型
数学模型的假设
假定每个总体均数之间有差异,且每个总体均数与模型中其他变量的关系已知。

医学统计学方差分析

医学统计学方差分析
方差分析基于以下假设:观察值之间相互独立;每个组内的观察值服从正态分布;每个组内的观察值具有相同的方差。
定义与原理
方差分析适用于多个组间的均值比较。当数据不符合正态分布或方差不齐时,可以经过适当的转换或采用非参数方法进行比较。
方差分析可以用于实验设计中的多因素分析,例如研究不同药物、剂量、时间等因素对生物指标的影响。
方差分析的数学模型与假设
02
线性模型
方差分析常用于处理一个或多个分组间的均值差异,因此需要构建线性模型来描述数据。线性模型中,每个组的观察值与该组的均值呈线性关系。
随机误差项
在方差分析中,每个观察值被认为是由固定效应(组均值)和随机效应(随机误差项)组成的。随机误差项是随机变量,且独立同分布,服从正态分布。
《医学统计学方差分析》
xx年xx月xx日
CATALOGUE
目录
方差分析概述方差分析的数学模型与假设方差分析的步骤与实例方差分析的优缺点与注意事项方差分析在医学中的应用与案例方差分析的发展趋势与未来展望
方差分析概述
01
方差分析(ANOVA)是一种统计方法,用于比较三个或更多组数据的均值差异。其原理是通过将数据的总变异分解为组间变异和组内变异,然后比较这两部分的变异是否具有显著性。
要点一
要点二
精度高
方差分析通过将每个观察值与各组均值进行比较,能够更准确地确定组间差异。
适用于多因素分析
方差分析可以同时考虑多个因素对实验结果的影响,适用于多因素的研究设计。
要点三
缺点
对数据正态性和独立性要求较高
方差分析要求数据符合正态分布,且各组观察值独立,否则可能导致分析结果的偏差。
对样本含量要求较高
方差分析对样本含量要求较高,样本含量过小可能导致统计效能较低。

医学统计学PPT课件:方差分析

医学统计学PPT课件:方差分析

Ronald Fisher(1890伦敦~1962 Adleaide )
哈罗公学(Harrow School) 剑桥大学
加拿大农场,投资公司,中学老 师 , 农业试验站 伦敦大学、剑桥大学
1918: The correlation between relatives on the supposition of Mendelian inheritance (ANOVA). 1925: Statistical Methods for Research Workers 1935: The design of experiments (The lady tasting tea test)
医学统计学
Medical Statistics
方差分析 Analysis of variance
(ANOVA)
上次课小复习
t X
s X
✓ 一组样本均数与总体均数的比较(单个
样本的t检验) ✓ 两组样本均数的比较(配对设计t检验)
✓ 两组样本均数的比较(独立样本t检验)
例:21名要求持续镇痛的病人被随机分到四组,接受同 剂量的吗啡,6小时后测量血中游离吗啡水平,问四组 之间有无差别?
若F远远大于1,拒绝H0, 则可认为处理(实验)因素 对实验结果可能有影响,即各组之间有差异;否 则,接受H0, 认为因素对结果没有显著影响。
方差分析基本步骤
校正数 C ( x)2 N
总平方和
x2 C DF总 = N-1
组间平方和
DF组间=组数-1
(x )2 n (x )2 n (x )2 n C
11
22
3
3
组内平方和 = 总平方和–组间平方和
DF组内 = DF总-DF组间

北京大学医学部医学统计学基础第3讲 方差分析

北京大学医学部医学统计学基础第3讲 方差分析

作业1. 某医生为了研究一种降血脂新药的临床疗效, 按统一纳入标准选择60名高血脂患者,
采用完全随机设计方法将患者等分为三组
(对照组,降血脂药2.4g, 4.8g)。
6周后测得低密度脂蛋白作为试验结果,
问三个处理组患者的低密度脂蛋白含量总体均数 有无不同?
注意:把作业1的SPSS数据补充完整,输出结果按要求写出
MS组间反映了不同观察人群和随机误差.
3.组内变异:每组观察人群内部的
血糖值之间的变异
SS组内 ( X ij X i )
i j 2
组内 N k
MS组内 SS组内 / 组内
MS组内反映了随机误差(个体差异和随 机测量误差)。
SS总=SS组间+SS组内 总=组间+组内 F = MS组间/MS组内
染有肉瘤小白鼠按体重大小配成5个区组(对子数), 每个区组内3只小白鼠随机接受三种抗癌药物,观察 肉瘤的重量,问三种不同药物的抑瘤效果有无差别?
变量定义: 处理组 = 药物(A药,B药,C药) 区组 = 区组 (5对小鼠) 测量值 = 肉瘤重量(g)
SPSS操作:
1. Analyze General Linear Model Univariate
Multiple Comparis ons De pendent Variabl e: 血糖值 LSD Mean Di fference (I-J) Std. Erro r -.451 82* .1846 4 -1.09 818* .1846 4 .4518 2* .1846 4 -.646 36* .1846 4 1.098 18* .1846 4 .6463 6* .1846 4
n
k
( X ij ) 2

医学统计学方差分析ppt课件

医学统计学方差分析ppt课件
24
25
方差分析步骤 :提出检验假设,确定检验水准
26
第二节 随机区组设计的方差分析
方差分析步骤 :计算检验统计量F 值
27
方差分析步骤 :确定P值,做出推断结论 对于处理因素A F0.05(2,18) =3.55 F=245.79
F> F0.05(2,18) ,P<0.05,拒绝H0
方差分析
1
方差分析由英国统计 学家R.A.Fisher在1923 年提出,为纪念Fisher,
以F命名,故方差分析又 称 F 检验
2
方差分析的用途 单因素多水平组间效应分析 多因素多水平组间效应分析 回归效应分析 方差齐性分析
3
完全随机设计的方差分析 随机区组设计的方差分析 多个样本均数的两两比较 方差齐性检验
20
基本思想:各变异的平均变异,即均方
处理均方:
MS处理

SS处理
处理
区组均方:
MS区组

SS区组
区组
组内(误差)均方:
MS误差

SS误差
误差
21
基本思想:统计量F值
F处理

MS处理 MS误差
F处理>Fα (k-1,(k-1)(m-1)),P<α ,认为比较组总体均值不 全相同
F处理<Fα (k-1,(k-1)(m-1)),P>α ,尚不能认为比较组总体 均值不同
4
例 拟探讨枸杞多糖(LBP)对酒精性脂肪肝大鼠GSH (mg/gprot)的影响,将36只大鼠随机分为甲、乙、丙 三组,其中甲(正常对照组)12只,其余24只用乙醇灌 胃10周造成大鼠慢性酒精性脂肪肝模型后,再随机分为 2组,乙(LBP治疗组)12只,丙(戒酒组)12只,8周 后测量三组GSH值。试问三种处理方式大鼠的GSH值是否 相同?

医学统计学教学课件-方差分析 PPT

医学统计学教学课件-方差分析 PPT

B 组(24h)
11.14 11.60 11.42 13.85 13.53 14.16 6.94 13.01 14.18 17.72
C 组(96h)
合计
10.85
8.58
7.19
9.36 i为组的编号,A,B,C
9.59
8.81 j为组内为个体编号,
8.22 1,2,…,10
9.95
11.26
8.68
与总均数 X 间的差别
2. 组间变异( between group variation ) 各
组的均数
X
与总均数
i
X
间的差异
3. 组内变异(within group variation )每组的
10个原始数据与该组均数X i 的差异
下面先用离均差平方和(sum of squares of
deviations from mean,SS)表示变异的大小
3. 组内变异
在同一处理组内,虽
然每个受试对象接受的处
理相同,但测量值仍各不
相同,这种变异称为组内
变异。SS组内仅仅反映了随
mi
机误差的影响。也称SS误差
k ni
k
SS组内
(XijXi)2 (ni 1)Si2
i1 j1
i1
组间 =Nk
S 组 = ( 7 S . 7 内 8 . 0 6 ) 2 ( 7 4 . 7 8 . 0 1 ) 2 4 ( 8 . 6 9 . 2 8 ) 2 1 5 . 0 1
ni
T3 X 3 j j 1
k ni
X X ij i1 j1
ni
Qi
X
2 ij
j 1
ni

医学统计学方差分析例题解答全过程

医学统计学方差分析例题解答全过程

卓越中医京华201702班刘金凤20170124004 10.28作业
对30只大鼠抑郁造模,成功后随机分到三组,每组十只,分别给予逍遥散、西药治疗和一组空白对照。

三周后测得其一小时糖水进食量,见表。

(1)问三组大鼠糖水进食量是否有差别?
(2)判断两两比较结果。

逍遥散组西药组空白对照组
20.0 20.0 20.0
17.8 19.6 16.0
19.1 16.8 19.6
21.7 29.6 16.9
18.3 22.1 12.8
27.0 15.4 14.9
14.3 16.0 13.2
23.1 13.9 16.9
26.5 14.6 15.6
15.3 25.0 15.2
答:
假设:
H0:三个组糖水进食量相同,即μ1=μ2=μ3。

H1:三个组糖水进食量不完全相同,即μ1、μ2、μ3不等或不全等。

检验水准为α=0.05
根据SPSS检验结果,方差分析如下:
变异来源SS df MS F P
总变异419.312 29
组间变异88.254 2 44.127 3.599 0.041
组内变异331.058 27 12.261
因为P=0.041<0.05,按照α=0.05的检验水准,拒绝H0,接受H1,差异有统计学意义。

所以认为三个组糖水进食量不完全相同。

按照LSD的方法进行两两比较,空白组和逍遥散组糖水进食量的差异有统计学意义,即空白对照组和逍遥散组三个组糖水进食量不同。

医学统计学方差分析

医学统计学方差分析

医学统计学方差分析方差分析是一种统计学方法,用于比较三个或三个以上的组之间的平均值是否存在显著差异。

在医学研究中,方差分析常用于比较不同治疗方法或不同个体群体之间的差异,以确定是否存在统计学上的显著差异。

方差分析的基本原理是比较组间离散程度与组内离散程度的比值,即组间均方与组内均方的比值。

组间方差表示不同组之间的差异性,组内方差表示同一组内个体之间的变异程度。

如果组间离散程度显著大于组内离散程度,即组间均方大于组内均方,就可以得出组间存在显著差异的结论。

在医学研究中,方差分析可以应用于很多不同的情况。

举例来说,我们可以使用方差分析来比较不同药物对同一疾病的治疗效果,或者比较不同药物剂量对同一疾病的治疗效果。

我们还可以使用方差分析比较不同年龄组、性别组或不同地区患者之间的其中一种疾病发病率。

方差分析的核心是比较组间差异与组内差异。

组间差异可以通过计算组间均方来得到。

组间均方的计算公式为组间平方和除以组间自由度。

组间平方和是每个组内数据与该组均值之差的平方的总和。

组间自由度等于组数减1、组内差异可以通过计算组内均方来得到。

组内均方的计算公式为组内平方和除以组内自由度。

组内平方和是每个组内数据与该组均值之差的平方的总和。

组内自由度等于总体样本量减去组数。

计算得到组间均方和组内均方之后,即可计算F值。

F值等于组间均方除以组内均方。

F值的计算结果可以与F分布的临界值进行比较,以判断组间均方是否显著大于组内均方。

如果F值大于F分布的临界值,就可以得出组间存在显著差异的结论。

除了F值,方差分析还可以计算一些其他的统计量。

例如,可以计算每个组的均值和标准差,以了解不同组之间的差异程度。

还可以计算方差分析表,其中包含了组间平方和、组间自由度、组间均方、组内平方和、总平方和、总自由度、组内自由度和组内均方等统计量。

需要注意的是,在进行方差分析之前,需要检验数据的正态性和方差齐性。

正态性检验可通过绘制正态概率图、Shapiro-Wilk检验或Kolmogorov-Smirnov检验进行。

医学统计学方差分析PPT精品课程课件讲义

医学统计学方差分析PPT精品课程课件讲义

F
将计算得到的F值与F分布的界值相比较,
F Fα, ν1, ν2, F Fα, ν1, ν2,
Pα Pα
2018/8/28
方差分析的基本思想是什么?
答:方差分析的基本思想是:根据研究资料设计的类型
及研究目的,把全部观察值总变异分解为两个或多个
组成部分,其总自由度也分解为相应的几个部分。
MS组间 F=—————— = 1 MS组内
2018/8/28
如果各组处理的效应一样,则组间均方等 于组内均方,即F=1;但由于抽样误差,F值 不正好等于1,而是接近1;如果F值较大,远 离1,说明组间均方大于误差均方,反映各处
理组的效应不一样,即各组均数差别有意义,
至于F值多大才能认为差别有意义,可查F界值 表(方差分析用)来确定。
α=0.05
2、计算F值(见课本) 3、确定P值和作出推断结论
直接计算
间接估计(查表)
注意
1、如果方差分析有差别,只说明总的有
差别,各组中哪两组间是否有差别,还要
进一步做两两比较。
2、如果方差分析无差别,分析结束。
2018/8/28
t检验与完全随机设计方差分析的关系
两样本均数比较:二者是等价的。
多样本均数间比较:只能用方差分析。不能 拆开两两作t检验,否则,犯一类错误的概率 增加。
2018/8/28
四、多个样本均数的两两比较 ( multiple comparison)
多个样本均数比较经F检验后,若得出有统 计学意义的结论后,要进一步推断哪些组之间有 差别,哪些组之间没有差别,还是所有各组之间 都有差别,要解决这些问题,就要进一步做均数 间的两两比较,又称多重比较。
MS组间
2018/8/28

医学统计学方差分析课件

医学统计学方差分析课件

协方差分析
实验设计
协方差分析用于研究两个独立变量对因变量的影响,同时控制一个或多个协变量对结果的影响。
数据要求
各组样本量需相等,且满足方差齐性和正态性假设。
统计软件实现
一般使用SPSS、SAS、R等统计软件进行计算和分析。
01
02
03
区别
方差分析主要研究独立变量对因变量的影响,而相关性分析主要研究两个变量之间的相关关系;方差分析需要满足随机化和对照原则,而相关性分析不需要;方差分析可以控制协变量对结果的影响,而相关性分析不能。
方差分析的基本思想是将数据的总变异分解为不同来源的变异,包括组间变异和组内变异。
组间变异是由于不同因素或分组的影响导致的,可以用方差来度量;组内变异是由于随机误差或其他未知因素导致的,可以用组内均方来度量。
方差分析的目的是比较不同因素或分组对因变量的影响是否显著,即组间变异与组内变异之间的差异是否有统计学意义。
方差分析在药物疗效研究中的应用
总结词
医学遗传学研究中应用方差分析可以研究基因型与表型之间的关系,分析遗传因素对疾病等表型特征的影响。
详细描述
通过收集患者的基因型和表型数据,研究人员可以使用方差分析来比较不同基因型患者之间的表型特征是否存在显著性差异。例如,研究人员可以比较不同基因型精神分裂症患者的症状严重程度是否有所不同。
效应大小
效应大小是指各因素对结果的影响程度。在方差分析中,应注意效应大小的评估,以便更好地了解各因素对结果的贡献程度。通常,可以通过计算因素贡献率、标准化均方差等指标来评估效应大小。
样本量大小与效应大小
VS
在方差分析中,如果因素水平存在差异,会对结果产生影响。因此,需要对因素水平进行调整,以消除其对结果的影响。例如,可以通过采用配对或配伍设计来平衡各组间的因素水平。

医学统计学方差分析

医学统计学方差分析
拒绝H0 ,接受H1 ,即不同处理的总体均数 不同或不全相同(有待多重比较进一步分 析)。
21
表2
变异来源 组间 组内 总变异 SS
例1 的方差分析表
DF MS F值 14.32 P值 <0.05
119.8314 2 59.916 112.9712 27 4.184 232.8026 29
按=0.05水准,拒绝H0,接受H1,认为三组 的差别具有统计学意义,不同时期切痂对大鼠 肝脏的ATP含量有影响。
B(75) E(81) A(81) D(87) E(73) B(74) F(68) C(69)
C(64) F(72) D(77) A(82)
35
3. 假设检验 例3
变异来源 药液( B ) 家兔( R ) 部位( C ) 误差( E ) 总( T)
方差分析表
df
5 5 5
SS
657.336 251.663 65.337
脏三磷酸腺苷(ATP)的影响,将30只雄 性大鼠随机分为3组,每组10只:A组 为烫伤组,B组为烫伤后24h(休克期) 切痂组,C组为烫伤后96h(非休克期) 切痂组。全部动物统一在烫伤后168h 处死并测量其肝脏的ATP含量,结果见 下表。试问三组的ATP总体均数是否有 差别?
3
表1 大鼠烫伤后肝脏ATP 的测量结果(m g )
A
X1
●●●●●●
B
X
●●●●●●
X2
●●●●●●
X3
●●●●●●
X4
●●●●●●
X5
13
组间变异<组内变异
B X A
● ● ● ● ● ●
X1
● ● ● ● ● ●
X2
● ● ● ● ● ●

医学统计学(课件)方差分析

医学统计学(课件)方差分析
医学统计学(课件)方 差分析
汇报人:
日期:
目录
• 方差分析概述 • 方差分析的数学模型与步骤 • 方差分析在医学中的应用 • 方差分析的局限性及注意事项 • 方差分析的软件实现 • 方差分析案例解析
01
方差分析概述
定义与原理
方差分析(ANOVA)是一种统计方法,用于比较三个或更多组间的均值差异,以此确定因素对 因变量的影响。
案例三
总结词
通过方差分析,可以比较不同品牌疫苗接种后不良反 应发生率的差异,为选择安全可靠的疫苗提供参考。
详细描述
在疫苗接种研究中,不同品牌疫苗接种后不良反应发 生率可能存在差异。方差分析可以用于比较不同品牌 疫苗接种后不良反应发生率的差异,以评估不同疫苗 的安全性。结果可以为疫苗选择提供参考依据,以最 大程度地减少不良反应的发生。
VS
例如,研究不同治疗方案对某疾病患 者疗效的影响、不同地区居民收入差 异等。
02
方差分析的数学模型与步骤
数学模型
方差分析(ANOVA)的数学模型
F = MS组间 / MS组内。其中,MS组间是各组间的均方,MS组内是各组内的均方。
方差分析的基本思想
将总的变异分解为组间变异和组内变异两部分,并计算它们的比值,即F值。
03 多重比较
在多个因素之间进行多重比较,确定各因素之间 的差异以及治疗效果的差异。
方差分析的局限性及注意事
04

样本量与效应指标的选择
样本量
方差分析对样本量有一定的要求,过小的样本量可能导致统计结果不稳定。在实验设计时,应充分考虑样本量对 结果的影响,并合理选取样本量。
效应指标
方差分析主要关注多个组间的均值差异,因此应选择合适的效应指标,如均数、中位数等,来反映各组的平均水 平。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

LSD-t法(最小显著性差异法(事前多重比较检验法)):
H0:μi=μj, 检验

是否相同的多重比较检验法
Dunnett-t法(新复极差法): H0:μi= 多个实验组与一个对 照组比较的多重比较 检验法
SNK-q法:(Student,Newma,Keuls姓氏缩写) (事后多重比较检验法)
H0:μi=μj 检验μi与μj是否相 同的多重比较检验法
N 报纸 广播 宣传品 体验 Total 36 36 36 36 144
Mean 73.2222 70.8889 56.5556 66.6111 66.8194
Std. Error 1.62232 2.16127 1.93647 2.24961 1.12732
Minimum 54.00 33.00 33.00 37.00 33.00
【Equal Variances Assumed复选框组】 当各组方差齐时可用 的两两比较方法
【Equal Variances Assumed复选框组】 当各组方差齐时可用 的两两比较方法 (14种
常用:LSD、 S-N-K Bonferroni、 Turkey、 Sheffe、 Dunnett方法。
3.2 SPSS实现单因素方差分析的方法
【菜单 “Analyze”|“Compare Means”】
※ One-Way ANOVA过程(单因素简单方差分析)
【菜单 “Analyze” | “General Linear Model”】 Univariate过程(单变量多因素方差分析) Multivariate过程(多变量多因素方差分析) Repeated Measure 过程(重复测量方差分析) Variance Component 过程(方差估计分析) One-Way ANOVA过程 (单因素简单方差分析) 用于进行两组以上样本均数的比较,即成组设计的方差分 析。如果做了相应选择,还可进行随后的两两比较。
【菜单 “Analyze” | “General Linear Model”| Univariate子过程(单变量多因素方差分析)】 基本原理:
SS ( x ij X ) 2 =SSe+SSA+SSB
i 1 j 1 r s
或 =SSe+SSA+SSB + SSA×B
H0A:μ1· =μ2· =…=μr·
( s 1) SS A FA SS e
H0B:μ· 1=μ· 2=…=μ· s
( r 1) SS B FB SS e
案例2: 对8窝小白鼠,每窝各取同体重的3只,分别 喂A, B,C三种不同的营养素,三周后体重增量结果 如表所示,试判断不同营养素和不同窝的小白鼠体 重增量是否不同 。
勾选“LSD”,点击 “Continue”返回 【Equal Variances Not Assumed复选框组】
当各组方差不齐时可用的两两比较方法,共有 4种.
(一般认为“Game-Howell”方法较好,但由于统计学对 此尚无定论,所以建议方差不齐时使用非参数方法。 )
点击“Option”钮
【Statistics复选框组】 常用 【Descriptive】 统计描述 【Homogeneity-of-variance】 方差齐性检验。
将“销售额[sale]”加入“Depedent”框;“广告形式[ad 加入“Factor List”框。 选择“Normality ….”(正态性检验)
结果输出和讨论:
T e s t s o f N o r ma l i t y 广告形式 报纸 广播 宣传品 体验 Kolmogorov-Smirnova Shapiro-Wilk Statistic df Sig. Statistic df .128 36 .144 .982 36 .103 36 .200* .964 36 .101 36 .200* .977 36 .117 36 .200* .948 36 Sig. .809 .276 .629 .092
在生产和科学实验中,影响结果的因素
往往有很多。要知道哪个因素对结果有
显著的影响时用方差分析。 方差分析用于两个及两个以上总体均值
差异的显著性检验。
H 0 : 1 2 k H1 : 1 , 2 ,
k不全相同
方差分析的步骤
1.先进行正态性检验 2.进行方差齐性检验(Bartlett卡方检验法、 Levene检验) 3.进行方差分析,给出方差分析表 方差分析表
方差来源 组间 组内 总和 离差平方和 自由度
方差
F值
拒绝域
4.若拒绝了原假设进一步作两两间多重比较:
LSD-t检验,Dunnett-t检验,SNK-q检验。
称为组间离差平方和 称为组内离差平方和 组内方差 和组间方差 分别为
结论:当统计量
时,则拒绝假设
,
认为在显著水平
下,因素各水平间差异有显著
意义,否则,不拒绝假设,认为水平间差异没有显 著意义。
(I) 广告形式 报纸
广播
宣传品
ห้องสมุดไป่ตู้
体验
(J) 广告形式 广播 宣传品 体验 报纸 宣传品 体验 报纸 广播 体验 报纸 广播 宣传品
Sig. .412 .000 .021 .412 .000 .134 .000 .000 .001 .021 .134 .001
95% Confidence Interval Lower Bound Upper Bound -3.2784 7.9451 11.0549 22.2784 .9993 12.2229 -7.9451 3.2784 8.7216 19.9451 -1.3340 9.8896 -22.2784 -11.0549 -19.9451 -8.7216 -15.6673 -4.4438 -12.2229 -.9993 -9.8896 1.3340 4.4438 15.6673
例3-1某药厂在制定某药品的广告策略时,收集了该药 品在不同地区采用不同广告形式(报纸、广播、宣传品、 体验)促销后的销售额数据,希望对广告形式是否对 于该药品销售额产生影响进行分析,该例数据在数据文件 “药品广告对销售额影响.sav”中。 目的:检验 问题: 数据是否服从正态分布(需提前进行)?方差是否齐? 否 是 参数检验
Maximum 94.00 100.00 86.00 87.00 100.00
分析:得出各广告形式的销售额均数、标准差、均数标准误、均数 的95%的置信区间,还有最小值、最大值。
方差齐性检验
T e s t o f H o m og e n e i t y o f V a r i an c e s 销售额 Levene Statistic .765
观测值
67 69 64 70 96
55 42 50 35 81 70 79 88 91 66
因素: 在试验过程中,影响试验结果的条件叫做 … 因素(因子) 常用大写字母A , B , C 表示。 水平: 把因素在试验中可能处的状态称做因素的 水平.常用表示该因素的字母加上足标表示。
方差分析的适用范围
销售额
*. This is a lower bound of the true significance. a. Lilliefors Significance Correction
分析:可见无论是K.S检验还是S.W检验各广告形式 P>0.05,所以各广告形式数据均服从正态分布
(3)One-Way ANOVA过程(单因素方差分析)
第三章
3.1 单方差分析原理
方差分析
3.2 单因素的方差分析One-Way ANOVA过程 3.3 两因素的方差分析(Two-way ANOVA)过程
例 为研究乙醇浓度对提取浸膏量的影响,某中药 厂取乙醇50%、60%、70%、90%、95%五个浓度作试 验,判断五个浓度所得浸膏量是否不同。
水平 50% 60% 70% 90% 95% 67 60 79 90 98
【Factor框】
选入需要比较的分组因素, 只能选入一个。
将“销售额[sale]”加入上方“Depedent List”框;“广告 形式[ad]”加入下方“Factor”框。
【Contrast钮】用于 对精细趋势检验和精 确两两比较的选项进 行定义,较少使用。 点击“Post Hoc”钮
【Post Hoc Multiple Comparisons对话框】 用于选择进行各组间 两两比较的方法
df1 3
df2 140
Sig. .515
分析:统计量值为0.765, P=0.515>0.5, 不拒绝原假设, 即可以认为方差齐的。
(因为已证明了各水平既服从正态分布又是方差齐的,所以可以进 行方差分析)
方差分析表
A N O VA 销售额 Sum of Squares 5866.083 20303.222 26169.306 df 3 140 143 Mean Square 1955.361 145.023 F 13.483 Sig. .000
Between Groups Within Groups Total
分析:F=13.483,P=0.000<0.05,拒绝原假设,即可以 认为各广告方式的销售平均额不全相等。
LSD-t法进行多重检验
M u l t ip l e C o m pa r i s o n s Dependent Variable: 销售额 LSD Mean Difference (I-J) Std. Error 2.33333 2.83846 16.66667* 2.83846 6.61111* 2.83846 -2.33333 2.83846 14.33333* 2.83846 4.27778 2.83846 -16.66667* 2.83846 -14.33333* 2.83846 -10.05556* 2.83846 -6.61111* 2.83846 -4.27778 2.83846 10.05556* 2.83846
相关文档
最新文档