美国钢结构设计手册第七章十三十四节

合集下载

美国单角钢结构设计规范(美国) eng_singleanglespec

美国单角钢结构设计规范(美国) eng_singleanglespec

When a load is transmitted by transverse weld through just one leg of the angle, Ae is the area of the connected leg and U 1.
iii
PREFACE
The intention of the AISC Specification is to cover the common everyday design criteria in routine design office usage. It is not feasible to also cover the many special and unique problems encountered within the full range of structural design practice. This separate Specification and Commentary addresses one such topic—singleangle members—to provide needed design guidance for this more complex structural shape under various load and support conditions. The revised single-angle design criteria were developed through a consensus process by the AISC Task Committee 12 on Single Angles: James M. Fisher, Chairman Leroy A. Lutz, Vice-Chairman Mohamed Elgaaly Shu-Jin Fang Theodore V. Galambos Subhash Goel Charlotte S. Harman Todd Helwig Donald W. White Sergio Zoruba, Secretary The full AISC Committee on Specifications has reviewed and approved this Specification. A non-mandatory Commentary provides background for the Specification provisions and the user is encouraged to consult it. The principal changes in this edition include: Revisions to flexural design strength criteria a. For the limit state of local buckling when the angle leg is in compression b. For the limit state of yielding when the tip of an angle leg is in tension c. For the limit state of lateral-torsional buckling d. For bending about geometric axes The reader is cautioned that professional judgment must be exercised when data or recommendations in this Specification are applied. The publication of the material contained herein is not intended as a representation or warranty on the part of the American Institute of Steel Construction, Inc.—or any other person named herein— that this information is suitable for general or particular use, or freedom from infringement of any patent or patents. Anyone making use of this information assumes all liability arising from such use. The design of structures is within the scope of expertise of a competent licensed structural engineer, architect, or other licensed professional for the application of principles to a particular structure.

AISC 360-05 美国钢结构建筑设计规范.doc

AISC 360-05 美国钢结构建筑设计规范.doc

ANSI/AISC 360-05美国国家标准钢结构建筑设计规范2005年3月9日发布本规范取代下列规范:1999年12月27日颁布的《钢结构建筑设计规范:荷载和抗力系数设计法》(LRFD)、1989年6月1日颁布的《钢结构建筑设计规范:容许应力设计法和塑性设计法》、其中包括1989年6月1日颁布的附录1《单角钢杆件的容许应力法设计规范》、2000年11月10日颁布的《单角钢杆件的荷载和抗力系数设计法设计规范》、2000年11月10日颁布的《管截面杆件的荷载和抗力系数设计法设计规范》、以及代替上述规范的所有从前使用的相关版本。

本规范由美国钢结构协会委员会(AISC)及其理事会批准发布实施。

本规范由美国钢结构协会规范委员会(AISC)审定,由美国钢结构协会董事会出版发行。

美国钢结构学会One East Wacker Drive,Suite 700芝加哥,伊利诺斯州60601-1802版权©2005美国钢结构学会拥有版权保留所有权利。

没有出版人的书面允许,不得对本书或本书的任何部分以任何形式进行复制。

本规范中所涉及到的相关信息,基本上是根据公认的工程原理和原则进行编制的,并且只提供一般通用性的相关信息内容。

虽然已经提供了这些精确的信息,但是,这些信息,在未经许可的专业工程师、设计人员或建筑工程师对其精确性、适用性和应用范围进行专业审查和验证的情况下,不得任意使用或应用于特定的具体项目中。

本规范中所包含的相关材料,并非对美国钢结构协会的部分内容进行展示或担保,或者,对其中所涉及的相关人员进行展示或担保,并且这些相关信息在适用于任何一般性的或特定的项目时,不得侵害任何相关专利权益。

任何人在侵权使用这些相关信息时,必须承担由此引起的所有相关责任。

必须注意到:在使用其它机构制订的规范和标准时,以及参照相关标准制订的其它规范和标准时,可以随时对本规范的相关内容进行修订或修改并且随后印刷发行。

本协会对未参照这些标准信息材料,以及未按照标准规定在初次出版发行时不承担由此引起的任何责任。

美联钢结构建筑系统安装手册

美联钢结构建筑系统安装手册

前言本手册的宗旨是为施工单位安装美联钢结构建筑系统(上海)股份有限公司(以下简称USAS)的钢结构产品提供技术指导。

本手册给出的是一种推荐性的通用性安装规则,并非是具体的作业规程。

对由于不正确的安装技术或其他方面疏忽造成的安装缺陷不承担任何责任。

安装质量和业主对完整建筑物的满意程度取决于安装人员的经验、安装知识、安装设备和安装技巧。

本手册仅显示一般通用性节点连接和构造方式,不能替代钢结构施工图,按施工图安装是基本原则,施工图的构造优于本手册的图示说明。

施工单位有责任按照有关国家、地方的法规采取现场安全措施,对施工安全负责。

施工单位应对本手册的技术指导作出正确判断和应用,质疑之处可咨询美联钢结构建筑系统(上海)股份有限公司。

本手册所示屋面板板型仅包含PBR1026型,墙面板板型仅包含PBR1026型。

施工中遇到本手册未提到板型须参阅相关安装手册。

本手册将随新产品、新技术的持续开发而增加、修订、更新其相关内容。

目录内容图号版本前言一、准备工作1、安装要点(一)...........................................................................1-1 02、安装要点(二)...........................................................................1-2 03、安装工具和设备推荐..................................................................1-3 04、安装前的检查工作.....................................................................1-4 05、建筑轴线确定...........................................................................1-5 06、地脚锚栓安装...........................................................................1-6 07、材料卸货及堆放........................................................................1-7 0二、主结构安装1、主体结构安装步骤(一)...............................................................2-1 02、主体结构安装步骤(二)...............................................................2-2 03、主体结构安装步骤(三)...............................................................2-3 04、主体结构安装步骤(四)...............................................................2-4 05、主体结构安装步骤(五)...............................................................2-5 06、刚架节点安装...........................................................................2-6 07、圆钢支撑安装...........................................................................2-7 08、吊车梁节点安装........................................................................2-8 0三、次结构安装1、有撑杆屋面檩条安装(一)............................................................3-1 02、有撑杆屋面檩条安装(二)............................................................3-2 03、有圆钢拉条屋面檩条安装(一)......................................................3-3 04、有圆钢拉条屋面檩条安装(二)......................................................3-4 05、无拉条屋面檩条安装..................................................................3-5 06、隅撑及双檩安装........................................................................3-6 07、有拉条的墙面檩条安装...............................................................3-7 08、通长洞口檩条与柱连接...............................................................3-8 09、门窗框架安装...........................................................................3-9 010、山墙折边角钢与墙面转角檩条安装.............................................3-10 0四、围护系统安装1、围护系统示意...........................................................................4-1 02、围护系统安装位置示意...............................................................4-2 03、自钻螺钉的安装(一)..................................................................4-3 04、自钻螺钉的安装(二)..................................................................4-4 05、屋面保温棉拼接及钢丝网铺设......................................................4-5 06、PBR1026 屋面板紧固件布置...................................................... 4-6 07、PBR1026墙面板紧固件布置.........................................................4-7 08、PBR1026采光板安装..................................................................4-8 0内容图号版本9、低檐口节点(无外天沟)...............................................................4-9 010、低檐口节点(带外天沟)............................................................4-10 011、高檐口节点...........................................................................4-11 012、山墙檐口安装........................................................................4-12 013、中天沟安装...........................................................................4-13 014、檐口内天沟安装.....................................................................4-14 015、天沟封板安装........................................................................4-15 016、彩板落水管安装(一)...............................................................4-16 017、彩板落水管安装(二)...............................................................4-17 018、UPVC落水管的安装...............................................................4-18 019、墙面安装顺序........................................................................4-19 020、外墙转角饰边........................................................................4-20 021、坎墙饰边..............................................................................4-21 022、饰边搭接安装........................................................................4-22 023、门收边(无内墙板)安装(一).........................................................4-23 024、门收边(无内墙板)安装(二).........................................................4-24 025、门收边(有内墙板)安装(一).........................................................4-25 026、门收边(有内墙板)安装(二).........................................................4-26 027、窗收边(无内墙板)安装(一).........................................................4-27 028、窗收边(无内墙板)安装(二).........................................................4-28 029、窗收边(有内墙板)安装(一).........................................................4-29 030、窗收边(有内墙板)安装(二).........................................................4-30 031、小雨蓬安装...........................................................................4-31 032、天沟与山墙檐口饰边连接方式...................................................4-32 033、有天沟大雨蓬安装..................................................................4-33 0五、DECK板安装1、DECK板安装(一).....................................................................5-1 02、DECK板安装(二).....................................................................5-2 03、DECK板安装(三).....................................................................5-3 0六、附件1、钢结构现场施工质量稽核要点......................................................6-1 02、钢结构安装质量要求及检验方法...................................................6-2 03、现场焊接.................................................................................6-3 0说明:文件正文中未注明版本号则均为0版本。

美国钢结构规范设计培训资料

美国钢结构规范设计培训资料

美国钢结构规范设计培训资料
一、美国钢结构规范设计必备基础知识
钢结构规范设计需要系统地学习、使用美国钢结构规范(AISC),以及其他方面的设计形式和计算。

1.钢材材料特性及表面处理
钢材的基本特性包括:热处理状态,钢材材料品种,交货状态,淬火状态,表面处理(包括焊接)等。

一般来说,钢材具有高强度和高刚度,更经济,能够轻松设计出更加节能的结构。

此外,AISC规范中涉及各种表面处理,例如钢筋焊接,钢结构焊接,粉末涂层等,需要根据工程实际情况设计出合理的表面处理方案。

2.结构计算
AISC规范中涵盖了结构计算内容,包括梁、柱、楼板、墙等结构的设计计算,以及框架、桁架结构等多门类的结构设计计算。

因此,必须充分掌握结构计算过程,以便正确设计出美国钢结构规范要求的结构。

3.环境要求
钢结构设计计算中,必须考虑环境要求,如温度、湿度、风速和振动等。

因此,需要根据实际工程情况合理评估环境要求,并设计出相应的结构。

4.构成构件与钢筋的连接
在AISC规范中,规定了多种构件的连接方法。

美国钢结构规范

美国钢结构规范

SECTION10COLD-FORMED STEEL DESIGNR.L.Brockenbrough,P.E.President,R.L.Brockenbrough&Associates,Inc.,Pittsburgh,PennsylvaniaThis section presents information on the design of structural members that are cold-formedto cross section shape from sheet steels.Cold-formed steel members include such productsas purlins and girts for the construction of metal buildings,studs and joists for light com-mercial and residential construction,supports for curtain wall systems,formed deck for theconstruction offloors and roofs,standing seam roof systems,and a myriad of other products.These products have enjoyed significant growth in recent years and are frequently utilizedin some shape or form in many projects today.Attributes such as strength,light weight,versatility,non-combustibility,and ease of production,make them cost effective in manyapplications.Figure10.1shows cross sections of typical products.10.1DESIGN SPECIFICATIONS AND MATERIALSCold-formed members for most application are designed in accordance with the Specificationfor the Design of Cold-Formed Steel Structural Members,American Iron and Steel Institute,Washington,DC.Generally referred to as the AISI Specification,it applies to members cold-formed to shape from carbon or low-alloy steel sheet,strip,plate,or bar,not more than1-in thick,used for load carrying purposes in buildings.With appropriate allowances,it canbe used for other applications as well.The vast majority of applications are in a thicknessrange from about0.014to0.25in.The design information presented in this section is based on the AISI Specification and its Commentary,including revisions being processed.The design equations are written indimensionless form,except as noted,so that any consistent system of units can be used.Asynopsis of key design provisions is given in this section,but reference should be made tothe complete specification and commentary for a more complete understanding.The AISI Specification lists all of the sheet and strip materials included in Table1.6(Art.1.4)as applicable steels,as well several of the plate steels included in Table1(A36,A242,A588,and A572).A283and A529plate steels are also included,as well as A500structuraltubing(Table1.7).Other steels can be used for structural members if they meet the ductilityrequirements.The basic requirement is a ratio of tensile strength to yield stress not less than1.08and a total elongation of at least10%in2in.If these requirements cannot be met,alternative criteria related to local elongation may be applicable.In addition,certain steelsthat do not meet the criteria,such as Grade80of A653or Grade E of A611,can be used10.110.2SECTION TENFIGURE10.1Typical cold-formed steel members.for multiple-web configurations(roofing,siding,decking,etc.)provided the yield stress istaken as75%of the specified minimum(or60ksi or414MPa,if less)and the tensile stressis taken as75%of the specified minimum(or62ksi or428MPa if less).Some exceptionsapply.Suitability can also be established by structural tests.10.2MANUFACTURING METHODS AND EFFECTSAs the name suggests,the cross section of a cold-formed member is achieved by a bendingoperation at room temperature,rather than the hot rolling process used for the heavier struc-tural steel shapes.The dominant cold forming process is known as roll-forming.In thisprocess,a coil of steel is fed through a series of rolls,each of which bends the sheetprogressively until thefinal shape is reached at the last roll stand.The number of roll standsmay vary from6to20,depending upon the complexity of the shape.Because the steel isfed in coil form,with successive coils weld-spliced as needed,the process can achieve speedsup to about300ft/min and is well suited for quantity production.Small quantities may beproduced on a press-brake,particularly if the shape is simple,such as an angle or channelcross section.In its simplest form,a press brake consists of a male die which presses thesteel sheet into a matching female die.In general,the cold-forming operation is beneficial in that it increases the yield strength of the material in the region of the bend.Theflat material between bends may also showan increase due to squeezing or stretching during roll forming.This increase in strength isattributable to cold working and strain aging effects as discussed in Art.1.10.The strengthincrease,which may be small for sections with few bends,can be conservatively neglected.Alternatively,subject to certain limitations,the AISI Specification includes provisions forusing a section-average design yield stress that includes the strength increase from cold-forming.Either full section tension tests,full section stub column tests,or an analyticalmethod can be employed.Important parameters include the tensile-strength-to-yield-stressCOLD-FORMED STEEL DESIGN10.3 TABLE10.1Safety Factors and Resistance Factors Adopted by the AISI SpecificationCategoryASDsafetyfactor,⍀LRFDresistancefactor,␾Tension members 1.670.95 Flexural members(a)Bending strengthSections with stiffened or partially stiffened compressionflanges 1.670.95 Sections with unstiffened compressionflanges 1.670.90 Laterally unbraced beams 1.670.90 Beams having oneflange through-fastened to deck or sheathing(C-or Z-sections) 1.670.90 Beams having oneflange fastened to a standing seam roof system 1.670.90 (b)Web designShear strength controlled by yielding(Condition a,Art.10.12.4) 1.50 1.00 Shear strength controlled by buckling(Condition b or c,Art.10.12.4) 1.670.90 Web crippling of single unreinforced webs 1.850.75 Web crippling of I-sections 2.000.80 Web crippling of two nested Z-sections 1.800.85 Stiffeners(a)Transverse stiffeners 2.000.85(b)Shear stiffeners 1.50/1.67 1.00/0.90 Concentrically loaded compression members 1.800.85 Combined axial load and bending(a)Tension component 1.670.95(b)Compression component 1.800.85(c)Bending component 1.670.90/0.95 Cylindrical tubular members(a)Bending 1.670.95(b)Axial compression 1.800.85 Wall studs(a)Compression 1.800.85(b)Bending 1.670.90/0.95 Diaphragm construction 2.00/3.000.50/0.65 Welded connections(a)Groove weldsTension or compression2500.90 Shear,welds 2.500.80 Shear,base metal 2.500.90 (b)Arc spot weldsShear,welds 2.500.60 Shear,connected part 2.500.50/0.60 Shear,minimum edge distance 2.500.60/0.70 Tension 2.500.60 (c)Arc seam weldsShear,welds 2.500.60 Shear,connected part 2.500.60 (d)Fillet weldsWelds 2.500.60 Connected part,longitudinal loadingWeld length/sheet thicknessϽ25 2.500.60 Weld length/sheet thicknessՆ25 2.500.55 Connected part,transverse loading 2.500.6010.4SECTION TENTABLE10.1Safety Factors and Resistance Factors Adopted by the AISI Specification(Continued)CategoryASDsafetyfactor,⍀LRFDresistancefactor,␾(e)Flare groove weldsWelds 2.500.60 Connected part,longitudinal loading 2.500.55 Connected part,transverse loading 2.500.55 (f)Resistance welds 2.500.65 Bolted connections(a)Minimum spacing and edge distance*When Fu /FsyՆ1.08 2.000.70When Fu /FsyϽ1.08 2.220.60(b)Tension strength on net sectionWith washers,double shear connection 2.000.65 With washers,single shear connection 2.220.55 Without washers,double or single shear 2.220.65(c)Bearing strength 2.220.55/0.70(d)Shear strength of bolts 2.400.65(e)Tensile strength of bolts 2.00/2.250.75 Screw connections 3.000.50*Fu is tensile strength and Fsyis yield stress.ratio of the virgin steel and the radius-to-thickness ratio of the bends.The forming operation may also induce residual stresses in the member but these effects are accounted for in the equations for member design.10.3NOMINAL LOADSThe nominal loads for design should be according to the applicable code or specificationunder which the structure is designed or as dictated by the conditions involved.In the absenceof a code or specification,the nominal loads should be those stipulated in the AmericanSociety of Civil Engineers Standard,Minimum Design Loads for Buildings and Other Struc-tures,ASCE7.The following loads are used for the primary load combinations in the AISISpecification:DϭDead load,which consists of the weight of the member itself,the weight of allmaterials of construction incorporated into the building which are supported by the mem-ber,including built-in partitions;and the weight of permanent equipmentEϭEarthquake loadLϭLive loads due to intended use and occupancy,including loads due to movable objectsand movable partitions and loads temporarily supported by the structure during mainte-nance.(L includes any permissible load reductions.If resistance to impact loads is takeninto account in the design,such effects should be included with the live load.)COLD-FORMED STEEL DESIGN 10.5L r ϭRoof live load S ϭSnow loadR r ϭRain load,except for ponding W ϭWind loadThe effects of other loads such as those due to ponding should be considered when signif-icant.Also,unless a roof surface is provided with sufficient slope toward points of free drainage or adequate individual drains to prevent the accumulation of rainwater,the roof system should be investigated to assure stability under ponding conditions.10.4DESIGN METHODSThe AISI Specification is structured such that nominal strength equations are given for various types of structural members such as beams and columns.For allowable stress design (ASD),the nominal strength is divided by a safety factor and compared to the required strength based on nominal loads.For Load and Resistance Factor Design (LRFD),the nominal strength is multiplied by a resistance factor and compared to the required strength based on factored loads.These procedures and pertinent load combinations to consider are set forth in the specification as follows.10.4.1ASD RequirementsASD Strength Requirements.A design satisfies the requirements of the AISI Specification when the allowable design strength of each structural component equals or exceeds the required strength,determined on the basis of the nominal loads,for all applicable load combinations.This is expressed asR ՅR /⍀(10.1)n where R ϭrequired strengthR n ϭnominal strength (specified in Chapters B through E of the Specification )⍀ϭsafety factor (see Table 10.1)R n /⍀ϭallowable design strength ASD Load Combinations.In the absence of an applicable code or specification or if the applicable code or specification does not include ASD load combinations,the structure and its components should be designed so that allowable design strengths equal or exceed the effects of the nominal loads for each of the following load combinations:1.D2.D ϩL ϩ(L r or S or R r )3.D ϩ(W or E )4.D ϩL ϩ(L r or S or R r )ϩ(W orE )Wind or Earthquake Loads for ASD.When the seismic load model specified by the applicable code or specification is limit state based,the resulting earthquake load (E )is permitted to be multiplied by 0.67.Additionally,when the specified load combinations in-clude wind or earthquake loads,the resulting forces are permitted to be multiplied by 0.75.However,no decrease in forces is permitted when designing diaphragms.10.6SECTION TENComposite Construction under ASD.For the composite construction offloors and roofs using cold-formed deck,the combined effects of the weight of the deck,the weight of thewet concrete,and construction loads(such as equipment,workmen,formwork)must beconsidered.10.4.2LRFD RequirementsLRFD Strength Requirements.A design satisfies the requirements of the AISI Specificationwhen the design strength of each structural component equals or exceeds the requiredstrength determined on the basis of the nominal loads,multiplied by the appropriate loadfactors,for all applicable load combinations.This is expressed asRϽ␾R(10.2)u nwhere Ruϭrequired strengthRnϭnominal strength(specified in chapters B through E of the Specification)␾ϭresistance factor(see Table10.1)␾R nϭdesign strengthLRFD Load Factors and Load Combinations.In the absence of an applicable code or specification,or if the applicable code or specification does not include LRFD load combi-nations and load factors,the structure and its components should be designed so that design strengths equal or exceed the effects of the factored nominal loads for each of the following combinations:1.1.4DϩL2.1.2Dϩ1.6Lϩ0.5(Lr or S or Rr)3.1.2Dϩ1.6(Lr or S or Rr)ϩ(0.5L or0.8W)4.1.2Dϩ1.3Wϩ0.5Lϩ0.5(Lr or S or Rr)5.1.2Dϩ1.5Eϩ0.5Lϩ0.2S6.0.9DϪ(1.3W or1.5E)Several exceptions apply:1.The load factor for E in combinations(5)and(6)should equal1.0when the seismic loadmodel specified by the applicable code or specification is limit state based.2.The load factor for L in combinations(3),(4),and(5)should equal1.0for garages,areasoccupied as places of public assembly,and all areas where the live load is greater than 100psf.3.For wind load on individual purlins,girts,wall panels and roof decks,multiply the loadfactor for W by0.9.4.The load factor for Lr in combination(3)should equal1.4in lieu of1.6when the rooflive load is due to the presence of workmen and materials during repair operations.Composite Construction under LRFD.For the composite construction offloors and roofs using cold-formed deck,the following additional load combination applies:1.2Dϩ1.6Cϩ1.4C(10.3)S Wwhere DSϭweight of steel deckCWϭweight of wet concreteCϭconstruction load(including equipment,workmen,and form work but excluding wet concreteCOLD-FORMED STEEL DESIGN10.7 10.5SECTION PROPERTY CALCULATIONSBecause of theflexibility of the manufacturing method and the variety of shapes that can bemanufactured,properties of cold-formed sections often must be calculated for a particularconfiguration of interest rather than relying on tables of standard values.However,propertiesof representative or typical sections are listed in the Cold-Formed Steel Design Manual,American Iron and Steel Institute,1996,Washington,DC(AISI Manual).Because the cross section of a cold-formed section is generally of a single thickness of steel,computation of section properties may be simplified by using the linear method.Withthis method,the material is considered concentrated along the centerline of the steel sheetand area elements are replaced by straight or curved line elements.Section properties arecalculated for the assembly of line elements and then multiplied by the thickness,t.Thus,the cross section area is given by AϭLϫt,where L is the total length of all line elements;the moment of inertia of the section is given by IϭIЈϫt,where IЈis the moment ofinertia determined for the line elements;and the section modulus is calculated by dividingI by the distance from the neutral axis to the extremefiber,not to the centerline of theextreme element.As subsequently discussed,it is sometimes necessary to use a reduced oreffective width rather than the full width of an element.Most sections can be divided into straight lines and circular arcs.The moments of inertia and centroid location of such elements are defined by equations from fundamental theory aspresented in Table10.2.10.6EFFECTIVE WIDTH CONCEPTThe design of cold-formed steel differs from heavier construction in that elements of mem-bers typically have large width-to-thickness(w/t)ratios and are thus subject to local buck-ling.Figure10.2illustrates local buckling in beams and columns.Flat elements in com-pression that have both edges parallel to the direction of stress stiffened by a web,flange,lip or stiffener are referred to as stiffened elements.Examples in Fig.10.2include the topflange of the channel and theflanges of the I-cross section column.To account for the effect of local buckling in design,the concept of effective width is employed for elements in compression.The background for this concept can be explainedas follows.Unlike a column,a plate does not usually attain its maximum load carrying capacity at the buckling load,but usually shows significant post buckling strength.This behavior isillustrated in Fig.10.3,where longitudinal and transverse bars represent a plate that is simplysupported along all edges.As the uniformly distributed end load is gradually increased,thelongitudinal bars are equally stressed and reach their buckling load simultaneously.However,as the longitudinal bars buckle,the transverse bars develop tension in restraining the lateraldeflection of the longitudinal bars.Thus,the longitudinal bars do not collapse when theyreach their buckling load but are able to carry additional load because of the transverserestraint.The longitudinal bars nearest the center can deflect more than the bars near theedge,and therefore,the edge bars carry higher loads after buckling than do the center bars.The post buckling behavior of a simply supported plate is similar to that of the grid model.However,the ability of a plate to resist shear strains that develop during bucklingalso contributes to its post buckling strength.Although the grid shown in Fig.10.3a buckledinto only one longitudinal half-wave,a longer plate may buckle into several waves as illus-trated in Figs.10.2and10.3b.For long plates,the half-wave length approaches the widthb.After a simply supported plate buckles,the compressive stress will vary from a maximum near the supported edges to a minimum at the mid-width of the plate as shown by line1of10.8SECTION TENTABLE10.2Moment of Inertia for Line ElementsSource:Adapted from Cold-Formed Steel Design Manual,American Iron and Steel Institute,1996,Washington,DC.COLD-FORMED STEEL DESIGN10.9FIGURE10.2Local buckling of compression elements.(a)In beams;(b)incolumns.(Source:Commentary on the Specification for the Design of Cold-Formed Steel Structural Members,American Iron and Steel Institute,Washington,DC,1996,with permission.)Fig.10.3c.As the load is increased the edge stresses will increase,but the stress in the mid-width of the plate may decrease slightly.The maximum load is reached and collapse is initiated when the edge stress reaches the yield stress—a condition indicated by line2of Fig.10.3c.The post buckling strength of a plate element can be considered by assuming that after buckling,the total load is carried by strips adjacent to the supported edges which are at a uniform stress equal to the actual maximum edge stress.These strips are indicated by the dashed lines in Fig.10.3c.The total width of the strips,which represents the effective width of the element b,is defined so that the product of b and the maximum edge stress equals the actual stresses integrated over the entire width.The effective width decreases as the applied stress increases.At maximum load,the stress on the effective width is the yield stress.Thus,an element with a small enough w/t will be able to reach the yield point and will be fully effective.Elements with larger ratios will have an effective width that is less than the full width,and that reduced width will be used in section property calculations.The behavior of elements with other edge-support conditions is generally similar to that discussed above.However,an element supported along only one edge will develop only one effective strip.Equations for calculating effective widths of elements are given in subsequent articles based on the AISI Specification.These equations are based on theoretical elastic buckling theory but modified to reflect the results of extensive physical testing.10.10SECTION TENFIGURE10.3Effective width concept.(a)Buckling of grid model;(b)buckling ofplate;(c)stress distributions.10.7MAXIMUM WIDTH-TO-THICKNESS RATIOSThe AISI Specification gives certain maximum width-to-thickness ratios that must be adhered to.For flange elements,such as in flexural members or columns,the maximum flat width-to-thickness ratio,w/t ,disregarding any intermediate stiffeners,is as follows:Stiffened compression element having one longitudinal edge connected to a web or flange element,the other stiffened by (a)a simple lip,60(b)other stiffener with I S ϽI a ,90(c)other stiffener with I S ՆI a ,90Stiffened compression element with both longitudinal edges connected to other stiffened elements,500Unstiffened compression element,60In the above,I S is the moment of inertia of the stiffener about its centroidal axis,parallel to the element to be stiffened,and I a is the moment of inertia of a stiffener adequate for the element to behave as a stiffened element.Note that,although greater ratios are permitted,stiffened compression elements with w /t Ͼ250,and unstiffened compression elements with w/t Ͼ30are likely to develop noticeable deformations at full design strength,but ability to develop required strength will be unaffected.For web elements of flexural members,the maximum web depth-to-thickness ratio,h/t ,disregarding any intermediate stiffeners,is as follows:Unreinforced webs,200Webs with qualified transverse stiffeners that include (a)bearing stiffeners only,260(b)bearing and intermediate stiffeners,30010.8EFFECTIVE WIDTHS OF STIFFENED ELEMENTS10.8.1Uniformly Compressed Stiffened ElementsThe effective width for load capacity determination depends on a slenderness factor ␭defined as1.052wƒ␭ϭ(10.4)ͩͪΊt E͙kwhere k ϭplate buckling coefficient (4.0for stiffened elements supported by a web alongeach longitudinal edge;values for other conditions are given subsequently)ƒϭmaximum compressive stress (with no safety factor applied)E ϭModulus of elasticity (29,500ksi or 203000MPa)FIGURE 10.4Illustration of uniformly compressed stiffened element.(a )Actual element;(b )stress on effective element.(Source:Specification for the Design of Cold-Formed Steel Structural Members,Amer-ican Iron and Steel Institute,Washington,DC,1996,with permission.)For flexural members,when initial yielding is in compression,ƒϭF y ,where F y is the yield stress;when the initial yielding is in tension,ƒϭthe compressive stress determined on the basis of effective section.For compression members,ƒϭcolumn buckling stress.The effective width is as follows:when ␭Յ0.673,b ϭw (10.5)when ␭Ͼ0.673,b ϭ␳w(10.6)where the reduction factor ␳is defined as␳ϭ(1Ϫ0.22/␭)/␭(10.7)Figure 10.4shows the location of the effective width on the cross section,with one-half located adjacent to each edge.Effective widths determined in this manner,based on maximum stresses (no safety factor)define the cross section used to calculate section properties for strength determination.How-ever,at service load levels,the effective widths will be greater because the stresses are smaller,and another set of section properties should be calculated.Therefore,to calculate effective width for deflection determination,use the above equations but in Eq.10.4,sub-stitute the compressive stress at design loads,ƒd .10.8.2Stiffened Elements with Stress GradientElements with stress gradients include webs subjected to compression from bending alone or from a combination of bending and uniform compression.For load capacity determination,the effective widths b 1and b 2illustrated in Fig.10.5must be determined.First,calculate the ratio of stresses␺ϭƒ/ƒ(10.8)21where ƒ1and ƒ2are the stresses as shown,calculated on the basis of effective section,with no safety factor applied.In this case ƒ1is compression and treated as ϩ,while ƒ2can be either tension (Ϫ)or compression (ϩ).Next,calculate the effective width,b e ,as if the element was in uniform compression (Art.10.8.1)using ƒ1for ƒand with k determined as follows:3k ϭ4ϩ2(1Ϫ␺)ϩ2(1Ϫ␺)(10.9)Effective widths b 1and b 2are determined from the following equations:FIGURE10.5Illustration of stiffened element with stress gradient.(a)Actual element;(b)stress on ef-fective element varying from compression to tension;(c)stress on effective element with non-uniform com-pression.(Source:Specification for the Design of Cold-Formed Steel Structural Members,American Iron and Steel Institute,Washington,DC,1996,with permission.)bϭb/(3Ϫ␺)(10.10)1ebϭb/2(10.11)2eThe sum of b1and b2must not exceed the width of the compression portion of the webcalculated on the basis of effective section.Effective width for deflection determination is calculated in the same manner except that stresses are calculated at service load levels based on the effective section at that load.FIGURE 10.6Illustration of uniformly compressed unstiffened element.(a )Actual element;(b )stress on effective element.(Source:Specification for the Design of Cold-Formed Steel Structural Members,American Iron and Steel Institute,Washington,DC,1996,with permission.)10.9EFFECTIVE WIDTHS OF UNSTIFFENED ELEMENTS10.9.1Uniformly Compressed Unstiffened ElementsThe effective widths for uniformly compressed unstiffened elements are calculated in the same manner as for stiffened elements (Art.10.8.1),except that k in Eq.10.4is taken as 0.43.Figure 10.6illustrates the location of the effective width on the cross section.10.9.2Unstiffened Elements and Edge Stiffeners with Stress GradientThe effective width for unstiffened elements (including edge stiffeners)with a stress gradient is calculated in the same manner as for uniformly loaded stiffened elements (Art.10.9.1)except that (1)k in Eq.10.4is taken as 0.43,and (2)the stress ƒ3is taken as the maximum compressive stress in the element.Figure 10.7shows the location of ƒ3and the effective width for an edge stiffener consisting of an inclined lip.(Such lips are more structurally efficient when bent at 90Њ,but inclined lips allow nesting of certain sections.)10.10EFFECTIVE WIDTHS OF UNIFORMLY COMPRESSED ELEMENTS WITH EDGE STIFFENERA commonly encountered condition is a flange with one edge stiffened by a web,the other by an edge stiffener (Fig.10.7).To determine its effective width for load capacity determi-nation,one of three cases must be considered.The case selection depends on the relation between the flange flat width-to-thickness ratio,w/t ,and the parameter S defined asS ϭ1.28͙E /ƒ(10.12)For each case an equation will be given for determining I a ,the moment of inertia required for a stiffener adequate so that the flange element behaves as a stiffened element,I S is the moment of inertia of the full section of the stiffener about its centroidal axis,parallel to the element to be stiffened.A ЈS is the effective area of a stiffener of any shape,calculated by methods previously discussed.The reduced area of the stiffener to be used in section property calculations is termed A S and its relation to A ЈS is given for each case.Note that for edge stiffeners,the rounded corner between the stiffener and the flange is not considered as part of the stiffener in calculations.The following additional definitions for a simple lip stiffener illustrated in Fig.10.7apply.The effective width d S Јis that of the stiffener calculated ac-cording to Arts.10.9.1and 10.9.2.The reduced effective width to be used in section propertyFIGURE 10.7Illustration of element with edge stiffener.(a )Actual element;(b )stress on effective element and stiffener.(Source:Specification for the Design of Cold-Formed Steel Structural Members,American Iron and Steel Institute,Washington,DC 1996,with permission.)calculations is termed d S and its relation to d S Јis given for each case.For the inclined stiffener of flat depth d at an angle ␪as shown in Fig.10.7,32I ϭ(d t sin ␪)/12(10.13)S A Јϭd Јt(10.14)S S Limit d /t to 14.Case I:w /t ՅS /3For this condition,the flange element is fully effective without an edge stiffener so b ϭw ,I a ϭ0,d S ϭd S Ј,A S ϭA ЈS .Case II:S /3Ͻw /t ϽS43I ϭ399t {[(w /t )/S ]Ϫ͙k /4}(10.15)a u where k u ϭ0.43.The effective width b is calculated according to Art.10.8.1using the following k :。

美国冷弯薄壁型钢规范(图)

美国冷弯薄壁型钢规范(图)

简介美国冷弯薄壁型钢规范全面升级在美国钢框架联盟(Steel Framing Alliance)网站下单2个多月后,今天公司终于收到了刚刚升级完成的全套北美冷弯薄壁型钢结构设计规范((North American Standard for Cold-formed Steel Framing 2007Edition).之前据说这次升级幅度很大,反映了最近几年北美冷弯薄壁型钢结构界的最新研究成果,下班回家后大致翻了一下,果然动作很大。

先简要摘录如下:一是有更新又有新增;这是再原有基础上更新的标准:•AISI S200-07: North American Standard for Cold-Formed Steel Framing – General Provisions •AISI S211-07: North American Standard for Cold-Formed Steel Framing – Wall Stud Design •AISI S212-07: North American Standard for Cold-Formed Steel Framing – Header Design •AISI S213-07: North American Standard for Cold-Formed Steel Framing – Lateral Design •AISI S214-07: North American Standard for Cold-Formed Steel Framing – Truss Design •AISI S230-07: Standard for Cold-Formed Steel Framing –Prescriptive Method for One and Two Family Dwellings以下是这次新增的标准:•AISI S201-07: North American Standard for Cold-Formed Steel Framing – Product Data •AISI S210-07: North American Standard for Cold-Formed Steel Framing – Floor and Roof System Design二是这次将加拿大和墨西哥规范一起统一了起来,真正形成了北美标准;三是内容进行了很大的更新,特别是Lateral Design分册,有了很大的扩充;四是发现North American Specification and Commentary fo the Design of Cold-Formed Steel Structural Members 2007 Edition先于North American Standard for Cold-Formed Steel Framing 标准发布了。

美国钢结构规范中文版

美国钢结构规范中文版

美国钢结构规范中文版美国钢结构规范是指工程设计和施工过程中使用的一套标准和规范,用于确保钢结构的安全性和可靠性。

这些规范涵盖了许多方面,包括钢材的选材、结构设计、连接方式、施工质量控制等。

下面是美国钢结构规范中文版的简要介绍。

首先,美国钢结构规范中定义了各类钢材的强度等级以及机械性能要求。

该规范还详细阐述了钢材的焊接、铆接和螺栓连接等方面的设计和施工要求,确保连接的稳定和可靠。

其次,钢结构设计方面,该规范规定了各类结构的荷载计算方法和设计标准。

例如,该规范中包括了不同类型的荷载,如静载、动载、地震荷载等。

对于每个类型的荷载,规范规定了相应的计算方法和安全系数,以确保钢结构的稳定性。

此外,美国钢结构规范还包含了一些具体的设计和施工要求。

例如,在进行框架结构设计时,规范规定了框架的几何尺寸、截面形状和支撑方式等要求。

对于底座和基础的设计,规范也给出了详细的要求,包括基础尺寸、材质和强度等。

规范还详细阐述了钢结构的施工质量控制要求。

例如,规范规定了焊接和铆接接头的检验方法和标准。

每一处焊接或铆接接头都需要进行非破坏性检测,以确保其质量达到规定的要求。

在使用过程中,该规范还规定了钢结构的维护和保养要求,以确保其服务寿命和安全性。

规范给出了钢结构维护周期、维护方法、检查项目等具体要求。

最后,美国钢结构规范中还包含了一些强制性的测试和验收标准。

例如,在钢结构竣工后,工程质量验收需要进行材料检测、接头检验、连接强度测试等。

只有通过这些测试,钢结构才能正式投入使用。

总之,美国钢结构规范是确保钢结构工程质量和安全性的一套标准和规范。

其涵盖了钢材选材、结构设计、连接方式、施工质量控制等方面。

遵循该规范可以保证钢结构工程的可靠性和稳定性,在建筑和工程设计领域具有重要的指导意义。

美国钢结构建筑设计规范(ANSI-AISC-360-05)

美国钢结构建筑设计规范(ANSI-AISC-360-05)

关于钢结构建筑设计规范的条文说明(本条文说明不是《钢结构建筑设计规范》(ANSI/AISC 360-05)的一部分,而只是为该规范使用人员提供相关信息。

)序言本设计规范旨在提供完善的标准设计之用。

本条文说明是为该规范使用人员提供规范条文的编制背景、文献出处等信息帮助,以进一步加深使用人员对规范条文的基础来源、公式推导和使用限制的了解。

本设计规范和条文说明旨在供具有杰出工程能力的专业设计员使用。

术语表本条文说明使用的下列术语不包含在设计规范的词汇表中。

在本条文说明文本中首次出现的术语使用了斜体。

准线图。

用于决定某些柱体计算长度系数K的列线图解。

双轴弯曲。

某一构件在两垂直轴同时弯曲。

脆性断裂。

在没有或是只有轻微柔性变形的情况下突然断裂。

柱体弧线。

表达砥柱强度和直径长度比之间关系的弧线。

临界负荷。

根据理论稳定性分析,一根笔直的构件在压力下可能弯曲,也可能保持笔直状态时的负荷;或者一根梁在压力下可能弯曲,平截面发生扭曲或者其平截面状态时的负荷。

循环负荷。

重复地使用可以让结构体变得脆弱的额外负荷。

位移残损索引。

用于测量由内部位移引起的潜性损坏的参变量。

有效惯性矩。

构件横截面的惯性矩在该横截面发生部分逆性化的情况下(通常是在内应力和外加应力共同作用下),仍然保持其弹性。

同理,基于局部歪曲构件的有效宽度的惯性矩。

同理,用于设计部分组合构件的惯性矩。

有效劲度。

通过构件横截面有效惯性矩计算而得的构件劲度。

疲劳界限。

不计载荷循环次数,不发生疲劳断裂的压力范围。

一阶逆性分析。

基于刚逆性行为假设的结构分析,而未变形结构体的平衡条件便是基于此分析而归纳出来的——换言之,平衡是在结构体和压力等于或是低于屈服应力条件下实现的。

柔性连接。

连接中,允许构件末端简支梁的一部分发生旋转,而非全部。

挠曲。

受压构件同时发生弯曲和扭转而没有横截面变形的弯曲状态。

非弹性作用。

移除促生作用力后,材料变形仍然不消退的现象。

非弹性强度。

当材料充分达到屈服应力时,结构体或是构件所具有的强度。

美国轻钢结构ADU产品手册

美国轻钢结构ADU产品手册

ADU市场推广产品手册ADU Product Manuals For Marketing爱的湾区系列LOVE BAY目录Part1产品说明Description of Products (3)Part2 平面布置图Floor plan (4)Part3 装配式房屋节能保温Energy-saving Prefabricated house (6)Part4房屋生产House production (8)Part5房屋运输House transportation (9)Part6房屋安装House assembly (10)Part7房屋内部展示Interior display (12)Part8房屋集成功能Housing integration (15)Part9房屋配置Housing allocation (16)Part10建设计划及成本表Construction Tentative & Cost Schedule (18)Part11 ADU预定流程 Reservation process (20)Part1产品说明Description of Products爱的湾区1 LOVE BAY V1.0设计理念DESIGN PHILOSOPHY装配式轻钢结构与装配式装修,是品质的最大保证,Prefabricated light steel structure and decoration is the greatest assurance of quality 片墙快速组装与稳定的厂家供应链,极大程度节省费用The Prefabricated wall assembled quickly and Materials supplied steady Great cost savingsPart2 平面布置图Floor plan房间配置 Housing allocation沙发、电视、电视柜、橱柜、洗衣机、冰箱、窗、收纳柜、卫生间、淋浴房Sofa, TV, TV cabinet, cabinet, washing machine, refrigerator, window, storage cabinet, toilet, shower room实用面积 Home Area 48㎡建筑面积 Total Area 60㎡阳台面积 balcony size 15㎡宽度和长度 W&L 4mX12m楼层数量 Number of floor 1平面图Floor Plan正立面图Front Elevation左立面图Left Elevation后立面图Back ElevationPart3 装配式房屋节能保温Energy-saving Prefabricated house建谊的房子为每一个家庭提供高品质的节能房屋JianYi house provides high quality and energy-saving house for every family地面Floor外墙Exterior Wall内隔墙Partition Wall屋面RoofHouse production全产业链服务One-stop Service产业链工厂采用模型进行一体化构件全自动制作体现在速度快,标准,精度高,质量可控Industrial chain factory adopts model to make integrated component fully automatic, which is reflected in fast speed, standard, high precision and controllable quality!House transportation构件运输覆盖全球 Component transportation covers the world. 采用集装箱运输预制构件Prefabricated components for container transportation.House assembly全球安装团队 Global installation team指派经验丰富的工程师现场指导安装。

美规 钢结构设计手册

美规 钢结构设计手册

美规钢结构设计手册
美国规范中的钢结构设计手册是指《美国钢结构设计手册》(AISC Manual)和《美国建筑规范》(IBC)等文件。

钢结构设计
手册是针对在建筑和工程领域中使用钢结构的设计师、工程师和建
筑师编写的一本权威指南。

这些手册包含了关于钢结构设计的详细
规范、标准和建议,旨在确保建筑物的结构安全、稳定和符合相关
法规。

在美国,钢结构设计手册通常由美国钢结构协会(AISC)发布。

这些手册涵盖了钢结构设计的各个方面,包括材料性能、构件设计、连接设计、焊接和螺栓连接、防火设计等内容。

此外,手册还包括
了钢结构设计的相关规范和标准,例如ASCE、AWS、ASTM等。

钢结构设计手册中的内容通常是根据工程实践和相关研究成果
编写的,因此具有较高的权威性和实用性。

设计师和工程师在进行
钢结构设计时,可以根据这些手册提供的指导和规范进行设计计算
和结构分析,以确保所设计的钢结构满足安全和性能要求。

除了AISC手册之外,美国建筑规范(IBC)也包含了关于钢结
构设计的规定和要求。

这些规定通常涉及到建筑物的结构等级、荷
载标准、设计方法等方面的内容,设计师需要结合这些规定来进行
钢结构设计,以确保建筑物的结构安全可靠。

总之,美国规范中的钢结构设计手册是针对钢结构设计师和工
程师编写的权威指南,包含了丰富的规范、标准和建议,用于指导
钢结构设计的实践工作,确保所设计的钢结构满足安全和性能要求。

美规 钢结构设计手册

美规 钢结构设计手册

美规钢结构设计手册《美规钢结构设计手册》(AISC Steel Construction Manual)是由美国钢结构协会(American Institute of Steel Construction,简称AISC)编制的权威技术规范,旨在为工程师、设计师和建筑专业人员提供有关钢结构设计和建造的详尽指导。

该手册对于美国境内的钢结构工程具有广泛适用性,并且在国际上也有一定的影响力。

以下是该手册的主要内容和特点的简要概述:1. 结构设计基本原则:介绍了结构设计的基本原则,包括荷载计算、结构体系选择、弹性和稳定性分析等方面,为读者提供了结构设计的理论基础。

2. 钢材性能和规格:对各类结构用钢材的性能进行详细介绍,包括弹性模量、屈服点、抗拉强度等力学性质,以及各类构件的尺寸和形状规格。

3. 结构连接设计:针对结构中的各种连接,提供了详细的设计原则和规范,包括螺栓连接、焊接、螺纹连接等。

强调连接在整个结构中的重要性。

4. 结构构件设计:涵盖了梁、柱、框架、横梁、斜撑等常见的结构构件的设计原则和规范,包括截面尺寸的选取、受力性能的分析等。

5. 钢结构施工:对钢结构的制造和施工过程进行了详细的描述,包括焊接工艺、螺栓预紧力的控制、构件的运输和安装等。

6. 结构稳定性设计:针对不同类型的结构,提供了稳定性设计的相关准则和计算方法,确保结构在各种荷载作用下的稳定性。

7. 规范更新和最新技术:由于结构设计领域的不断发展,该手册定期进行更新,吸纳最新的研究成果和技术进展,以确保设计符合最新的标准和规范。

美规钢结构设计手册以其权威性、系统性和实用性受到广泛认可,被视为美国及其他地区从事钢结构设计的从业人员和相关专业机构的重要参考文献。

在使用该手册时,设计者应当根据具体项目的要求和适用标准进行综合分析,确保设计方案符合相关法规和技术规范。

美国钢结构桥梁设计规范(ANSI-AISC-360-05)

美国钢结构桥梁设计规范(ANSI-AISC-360-05)

美国钢结构桥梁设计规范(ANSI-AISC-
360-05)
该文档旨在为美国的钢结构桥梁设计提供指导和规范。

在美国,桥梁的设计必须遵循一系列的规定和标准,以确保其安全性和可靠性。

概述
本文档基于美国国家标准协会(ANSI)发布的“美国钢结构桥
梁设计规范(ANSI-AISC-360-05)”。

该规范提供了详细的设计准则,包括荷载计算、结构分析、材料规范、构件设计等方面内容。

设计准则
1. 荷载计算:根据桥梁所承受的不同荷载类型(如车辆荷载、
风荷载等),进行准确的荷载计算。

该规范提供了相应的荷载系数
和计算方法。

2. 结构分析:进行静力和动力分析,以评估桥梁在不同荷载情
况下的响应和变形。

该规范提供了结构分析的方法和要求。

3. 材料规范:规定了适用于钢结构桥梁的材料要求,包括钢材
的强度、可塑性和耐久性等方面。

4. 构件设计:根据荷载计算和结构分析的结果,进行桥梁各构
件的设计。

该规范提供了构件设计的准则和建议。

安全性和可靠性
该规范的设计准则旨在确保桥梁的安全性和可靠性。

通过合理
的荷载计算、强度评估和结构分析,可以预测和控制桥梁在使用过
程中可能发生的变形、破坏和失效情况,从而保证桥梁的安全使用。

结论
美国钢结构桥梁设计规范(ANSI-AISC-360-05)是美国桥梁设计
的重要参考依据。

它提供了全面的设计准则,确保桥梁的结构安全
和可靠性。

设计人员应严格按照该规范进行设计,以确保桥梁的功能和性能符合要求。

美国 AISC 钢结构工程项目管理手册 01

美国 AISC 钢结构工程项目管理手册 01

Tim Mrozowski, A.I.A., Professor Building Construction Management Program Michigan State UniversityMatt Syal, Ph.D., CPC, Associate Professor Building Construction Management Program Michigan State UniversitySyed Aqeel Kakakhel, Research Assistant Building Construction Management Program Michigan State universityCopyright 1999byAmerican Institute of Steel Construction, Inc.All rights reserved. This book or any part thereofmust not be reproduced in any form without thewritten permission of the published.The information presented in this publication has been prepared in accordance with recognized engineering principles and is for general information only. While it is believed to be accurate, this information should not be used or relied upon for any specific application without competent professional examination and verification of its accuracy, suitability, and applicability by a licensed professional engineer, designer, or architect. The publication of the material contained herein is not intended as a representation or warranty on the part of the America Institute of Steel Construction or of any other person or entity named herein, that this information is suitable for any general or particular use or of freedom from infringement of any patent or patents. Anyone making use of this information assumes all liability arising from such use.Caution must be exercised when relying upon specifications and codes developed by other bodies and incorporated by reference herein since such material may be modified or amended from time to time subsequent to the printing of this edition. The Institute bears no responsibility for such material other than to refer to it and incorporate it by reference at the time of the initial publication of this edition.Printed in the United States of America.American Institute of Steel Construction, Inc.One East Wacker Drive, Suite 3100, Chicago, IL 60601-2001INDUSTRY TECHNICAL COMMITTEE MEMBERSWilliam Davidson, Project Manager, Turner Construction, Chicago, IL.Fred Haas, P.E., Project Manger, Dannys Construction Co., Inc, Gary, IN.Frank Hatfield, P.E., Professor of Civil and Environmental Engineering, Michigan State University, East Lansing, MI.Lawrence F. Kruth, P.E., Engineering and Safety Manager, Douglas Steel Fabricating Corp., Lansing, MI.Gary Larsen, Project Manager, Zalk Joseph Fabricators, Inc., Stoughton, WI.Gordon Moore, Vice President, Project Management, Kline Iron & Steel Company, Inc., Columbia, SC.Fromy Rosenberg, P.E., Assistant Director of Education, American Institute of Steel Construction, Chicago, IL.EDUCATIONAL ADVISORY COMMITTEE MEMBERSCharles Bissey, Professor, Department of Architectural Engineering and Construction Science, Kansas State University, Manhattan, KA.Mark Federle, Professor, Department of Civil and Construction Engineering, Iowa State University, Ames, IA.Donn Hancher, Professor, Department of Civil Engineering, University of Kentucky, Lexington, KY.Dave Hanna, Professor, Construction and Facilities Department, Ferris State University, Big Rapids, MI.Stephen Krone, Professor, Department of Technology Systems, Bowling Green State University, Bowling Green, OH.Jeff Russell, Professor, Civil and Environmental Engineering, Chair, Construction Engineering and Management, University of Wisconsin-Madison, WI.Mickey Spencer, Professor, Construction Program, University of Wisconsin-Stout, WI.INDEX1PROJECT MANAGEMENT MODULEIntroduction1.1Manual Overview 1 1.2Case Study Description 2 1.3Introduction 4Project Management1.4Stages of Procurement and Implementation of Structural Steel for Buildings 6 1.5Responsibilities of Industry Participants in Steel Construction11 1.6Contract Documents Overview15 1.7Specifications18 1.8Steel Fabrication and Erection Subcontracts21 1.9Structural Steel Workscopes23 1.10Overview of Scheduling24 1.11Site Organization, Logistics, and Equipment25 1.12Safety28 1.13Coordination and Reporting30 1.14Payment31 1.15Changes and Modifications32 1.16Quality Assurance33 1.17Project Closeout34 1.18Summary35Questions for Classroom Discussion36 2SCHEDULING AND ESTIMATING MODULE39 2.1Overview43Scheduling2.2Introduction to Scheduling43 2.3Project Delivery Participants and Coordination44 2.4Project Phases44 2.5Overview of Steel Construction Activities45 2.6Fabrication Related Activities45 2.7Erection Related Activities48 2.8Work Breakdown Structure50 2.9Activity Durations52 2.10Critical Path Method Network Diagrams53 2.11Bar Charts58 2.12Steel Schedule vs Overall Project Schedule62 2.13Items Impacting the Schedule62 2.14Areas Requiring Special Attention64 2.15Summary66Questions for Classroom Discussion67INDEX continuedEstimating2.16Introduction69 2.17Introduction to Estimation69 2.18Preliminary Conceptual Estimating70 2.19Bidding: The Subcontractor’s Role70 2.20Quantity Takeoff Methods72 2.21Costs Included in the Fabricator’s Estimate74 2.22Special Estimating Issues for Fabrication77 2.23Costs Included in the Erector’s Estimate82 2.24Special Estimating Issues Concerning Erection83 2.25Economy of Steel Construction and Methods for Reducing Costs84 2.26Published Sources of Estimating Information85 2.27Summary85Questions for Classroom Discussion86 Reference Sources88 AppendicesA.Case Study Documents89B.Sample Specifications96C.Fabricator Inventory 105D.AISC Services 106Project Management ModuleINTRODUCTION1.1 Manual OverviewThis educational manual was developed for the American Institute of Steel Construction (AISC) to present the principal project management activities and issues for procuring and implementing steel construction. The manual was developed for use in undergraduate university level construction management programs. It should also be useful in project management courses in construction engineering, civil engineering, architectural engineering, and architecture programs.The manual is intended as a supplemental text which may be incorporated into junior and senior level project management, estimating, and scheduling courses. The manual was developed in two educational modules: Module One addresses project management activities and Module Two examines scheduling and estimating issues that pertain to steel construction.Both educational modules have been designed to help students understand the unique roles and relationships of the general contractor, steel fabricator, erector, specialty contractors, suppliers, architect, structural engineer, and owner in the construction of a structural steel building frame. While the manual has been specifically developed to address steel construction, many of the issues presented are also applicable to the management of other construction subcontracts. Therefore, this manual may serve as a detailed case study of steel construction which will help students achieve a broader understanding of construction project management, estimating, and scheduling practices. It is hoped that faculty teaching this material, will find this steel case study useful as they present the principles of project management, estimating, and scheduling in their courses.Most construction management and construction related programs require students to take courses in construction science, technology, materials, and structural design. It is assumed that by the time students are enrolled in project management, estimating, and scheduling courses, they will have obtained sufficient understanding of the technical terminology and also have a general understanding of steel design and construction practices. This manual is not intended as a technical guide to steel, but focuses instead on the project management aspects of steel construction. Students may wish to consult other general texts on structural design and construction methods should they need additional technical information. AISC has developed numerous publications which address the technical and design aspects of steel. These publications may be obtained by contacting the AISC publication’s department. See Appendix D for a listing of AISC services.To help students gain a better understanding of the text, a steel construction project case study has been included. This building is a steel framed seven-story midrise medical office building. This project is described below under the case study description. Project documents from the case study are included in Appendix A.To assist faculty in using this manual as a supplemental text in their courses, several open-ended questions are provided at the end of the two modules. These questions are intended to be used for in-class discussion.The development of this manual was sponsored by a grant from the AISC Education Committee and was prepared by Mr. Tim Mrozowski, A.I.A., Dr. Matt Syal, CPC, and Mr. Syed Aqeel Kakakhel1of the Building Construction Management Program at Michigan State University. AISC appointed two advisory committees to provide input and oversee the development of the manual. The Industry Technical Committee included fabricators, erectors, contractors, and educators who provided input into industry practices. The Educational Advisory Committee consisted of construction management and engineering faculty who advised and reviewed the manual for both industry practice and educational use.1.2 Case Study DescriptionThis text uses a steel framed midrise office building as a case study. The building is a seven-story structure and is approximately 240 ft long by 150 ft wide. It contains approximately 256,900 sq ft of floor area and required 1,330 tons of structural steel, exclusive of the metal deck and metal stairs. The project was completed in 1998.The case study project has a 30 ft x 30 ft typical bay size. Floor framing consists of W24 x 68 primary beams and W16 x 26 secondary beams. First floor interior columns are W14 x 159 and are reduced in size for upper floors. Columns are spliced at every other level. The floors are constructed of metal decking and concrete. Composite action is achieved by utilizing shear studs. Connections for the project are a combination of simply framed and moment connections. Exterior walls consist of panalized brick with metal stud backup and glass.The project is located in an urban setting and is part of a large hospital complex. Site access was limited on the north, west, and east sides of the structure because of adjacent roads and buildings. Steel was delivered to the project on trucks, unloaded by crawler crane and erected immediately. Only limited minor steel components were stored on the site. A single 230 ton crawler crane was used to erect the steel and was repositioned as necessary during erection.The steel was erected in three sections, each having multiple erection sequences. The building was roughly divided into three sections with all structural steel erected from foundation to roof for a section. At the completion of one frame section, the erector began the next section. Metal deck was purchased by the fabricator and erected by a separate metal deck installer hired by the steel erector. Project documents are included in Appendix A and are referenced throughout the text.2Photos of Case Study Project31.3 IntroductionSteel has been an important component of buildings, bridges, and other structures for more than a century. Its use has allowed designers and contractors to construct both simple and complex structures in efficient, time saving, orderly, and economical ways. While procurement and construction management of structural steel have many similarities to the procurement of other building materials, steel construction has some unique characteristics. For example, structural steel is largely fabricated off-site. On-site erection and assembly are done rapidly. Coordination of all parties is important in achieving the potential schedule advantages of steel construction. Steel construction also requires that the fabricated components fit properly at the site. Close dimensional tolerances require dimensional accuracy, review, and approval by several parties. The purposes of this manual are 1) to give students interested in construction management an understanding of the roles of the various participants, 2) to provide an understanding of the various steps in the process and, 3) to provide an understanding of project management activities including scheduling and estimating of steel construction.Steel is used in many different components of buildings such as doors, equipment, reinforcement for concrete, and structural steel. This manual focuses on the management and use of structural steel framing systems for buildings. Structural steel is typically acquired, fabricated and erected by the steel contractor. The steel contractor may be a single contractor, but more typically is a lead company such as a fabricator who subcontracts portions of the steel construction to lower tier subcontractors, such as steel erectors or metal deck installers.While the steel contractor is responsible for fabrication and erection of the structural steel frame, the steel contractor may also be required to furnish and install other miscellaneous metal items which are attached to the frame, but not classified as structural steel by AISC. The AISC Code of Standard Practice defines the elements included in the broad categories of “Structural Steel” plus “Other Steel and Metal Items” and is reprinted below in Figure 1-1.Definition of Structural Steel (AISC 1994)“Structural Steel,” as used to define the scope of work in the contract documents, consists of the steel elements of the structural steel frame essential to support the design loads. Unless otherwise specified in the contract documents, these elements consist of material as shown on the structural steel plans and described as:Anchor bolts for structural steelBase or bearing platesBeams, girders, purlins and girtsBearings of steel for girders, trusses or bridgesBracingColumns, postsConnecting materials for framing structural steel to structural steelCrane rails, splices, stops, bolts and clampsDoor frames constituting part of the structural steel frameExpansion joints connected to structural steel frameFasteners for connecting structural steel items:Shop rivets4Definition of Structural Steel (AISC)cont’dPermanent shop boltsShop bolts for shipmentField rivets for permanent connectionsField bolts for permanent connectionsPermanent pinsFloor Plates (checkered or plain) attached to structural steel frameGrillage beams and girdersHangers essential to the structural steel frameLeveling plates, wedges, shims & leveling screwsLintels, if attached to the structural steel frameMarquee or canopy framingMachinery foundations of rolled steel sections and/or plate attached to the structural frame Monorail elements of standard structural shapes when attached to the structural frame Roof frames of standard structural shapesShear connectors–if specified shop attachedStruts, tie rods and sag rods forming part of the structural frameTrussesOther Steel or Metal ItemsThe classification “Structural Steel,” does not include steel, iron or other metal items not generally described in Paragraph 2.1, even when such items are shown on the structural steel plans or are attached to the structural frame. These items include but are not limited to: Cables for permanent bracing or suspension systemsChutes and hoppersCold-formed steel productsConcrete or masonry reinforcing steelDoor and corner guardsEmbedded steel parts in precast or poured concreteFlagpole support steelFloor plates (checkered or plain) not attached to the structural steel frameGrating and metal deckItems required for the assembly or erection of materials supplied by trades other than structural steel fabricators or erectorsLadders and safety cagesLintels over wall recessesMiscellaneous metalNon-steel bearingsOpen-web, long-span joists and joist girdersOrnamental metal framingShear connectors if specified to be field installedStacks, tanks and pressure vesselsStairs, catwalks, handrail and toeplatesTrench or pit covers.Figure 1-1 Definition of structural steel and other metal items. AISC Code of Standard Practice (AISC 1994)5There are many potential benefits in the use of structural steel for the owner. Some of these include: 1.Steel construction can substantially reduce construction time for the frame because of off-sitefabrication and the ability to construct in all seasons. This savings reduces on-sitemanagement and overhead costs, and improves cash flow.2.Structural steel can be designed with large spans and bay sizes, thereby providing moreflexibility in space arrangement and rearrangement for the owner.3.Steel can be easily modified and reinforced if the owner chooses to expand the facility, or ifarchitectural changes are made.4.Relative to other structural systems, steel is lightweight and can reduce foundation costs.5.Steel is a durable, long-lasting material and is recyclable.Careful project management and design of structural steel construction can help to ensure that these benefits are achieved. Section 1.4 below outlines the principal steps in the project delivery process for structural steel.PROJECT MANAGEMENT1.4 Stages of Procurement and Implementation of Structural Steel for Buildings Initial Decision. The procurement and implementation of structural steel for buildings begins with the owner’s decision to use steel as the primary structural system for the building. This decision is generally made early in the design process in conjunction with the architect and structural engineer for the project. In projects which use the services of a construction manager, or in design-build projects, the construction entity may play a strong role in recommending the structural system. The construction manager or design-build firm advises the owner on material availability, costs, suitability, and scheduling aspects of the structural frame types. In many cases, the construction manager or design-build firm consults with steel fabricators for preliminary pricing, scheduling, and layout information that is used in deciding which structural system to utilize. Refer to figure 1.2 at the end of this section for an illustration of the development and management steps for structural steel construction.Schematic Design. Once the decision is made to use a structural steel frame, the architect and structural engineer proceed with schematic design layouts for the building. The architect and structural engineer work closely to coordinate the functional spaces of the building with the structural components. The architect develops the overall building concept and also determines locations and sizes of spaces. The structural engineer develops the structural concept in consideration of the architectural layout and examines many factors such as structural loads, material strength, economy of beam span, lateral stability, and repetitiveness to determine column and beam spacings.Contract Documents. Upon completion of the schematic design studies, the architect and structural engineer proceed with design development and contract documents for the project. The structural engineer is primarily responsible for engineering of the structural steel frame and development of the detailed structural contract documents. The structural documents include: foundation plans and details, structural floor framing plans, roof framing plans, column schedules, structural details,6structural notes, and design loads, as well as the structural specifications. The specifications are typically bound into the architect’s project manual, which includes the specifications for all materials and processes for the entire project.Bidding. After completion of the contract documents, the owner and architect prepare the bidding documents. Bidding documents are used together with contract documents to obtain bids from contractors for the construction of the building. The owner and architect solicit bids from qualified contractors, using these documents. Bids for structural steel may be in the form of subcontract prices, which are included in the general contractor’s lump sum proposal, or the owner may divide the project into separate prime contracts with the steel contractor bidding directly to the owner. When the owner employs a construction manager or design-build firm, the construction entity usually takes the lead role in preparing the bidding documents and managing the bidding process for the owner.During the bidding process, the general contractor defines the subcontract workscopes and solicits subcontract prices from steel fabricators, erectors, and specialty contractors. The general contractor may wish to subcontract the complete structural steel package to a single steel subcontractor, or may choose to divide the steel portion of the project into multiple subcontracts. In the case of a single subcontract, the general contractor will identify a qualified steel fabricator or erector to obtain a bid for the complete structural steel package. Refer to Section 1.9 for a discussion of subcontract workscopes.The steel contractor (fabricator or erector) will solicit lower tier subcontract prices for the various portions of the steel package. Typically the fabricator, (who is not also an erector) would seek lower tier subcontract prices for steel erection, metal deck supply and installation, and shear studs, as well as other specialized aspects of the steel portion of the project. The steel contractor may also be charged by the general contractor with furnishing the miscellaneous fabricated steel items used throughout the project. Examples of these items are loose lintels, plates, and bolts installed by the mason, or steel pipe railings and metal stairs. If these items are to be included in the steel contractor’s subcontract, the general contractor should specifically include these in the subcontract workscope.The bidding steel contractor needs to obtain the bidding documents, construction drawings, and specifications in order to determine the requirements for the project. The steel contractor reviews the contract documents and contractual conditions to determine the scope of the work. The steel contractor always needs to be provided with the complete contract documents.The bidding steel estimator conducts a quantity takeoff to determine the quantities of the various shapes and sizes of steel elements to be used for the project. Special conditions, connections, finishes, and fabrication requirements are noted. The steel fabricator will frequently consult with steel mills and/or steel service centers on pricing, availability and time of delivery of steel shapes to be used in the project. Steel joist and metal deck suppliers will also be consulted. The steel contractor will have a systematic approach for taking off and recording the quantities. The material takeoffs are frequently computerized with specialized industry spreadsheets. Refer to Module Two for a discussion of steel estimating.The bidding steel contractor is often required to provide input into the preliminary project schedule by the general contractor. The steel contractor evaluates ordering and delivery times from the mill, fabrication durations, erection sequence, and erection duration. Other elements considered are shop7drawing and approval times, shop capacity, delivery times for purchased items such as metal deck and steel joists, and project conditions. As necessary, the steel contractor consults with lower tier subcontractors in preparing recommendations. The steel contractor makes recommendations to the general contractor regarding the schedule for steel construction. The general contractor incorporates these recommendations into the overall project schedule.The steel contractor compiles pricing and scheduling information for the specified workscope and submits this information to the bidding general contractor. The general contractor evaluates competitive pricing from various steel subcontractors based on price, quality, and schedule, incorporating the selected steel subcontractor pricing into the lump sum bid.Contract Award and Subcontracts. If the general contractor is awarded the contract by the owner, the detailed subcontract for steel construction will be prepared. The steel subcontract will specify the detailed terms of the building’s steel portion. Workscopes, pricing, and scheduling requirements must be well-defined and based on the original workscope, along with any negotiated changes in the building or project conditions.Ordering Steel. Under normal conditions, upon execution of the steel subcontract, the steel fabricator immediately places an order with the steel mill for production and furnishing of the structural steel shapes. On expedited projects, the steel fabricator may purchase shapes directly from a steel service center, (which warehouses common steel shapes), or may fabricate from shapes stocked in the fabricator’s inventory.Erection Drawings and Shop Drawings. When ordering steel, the fabricator simultaneously begins to prepare anchor rod setting plans, shop drawings, and erection drawings for approval by the structural engineer. The shop drawings may be prepared in-house or the steel fabricator may subcontract their preparation to a steel detailing firm. The shop drawings are used to illustrate how the steel fabricator intends to comply with the contract documents, as well as the dimensional and detailed aspects of the fabrication. The erection drawings indicate the detailed configuration of the steel frame and locate each member of steel with piece marks.Shop drawings are typically submitted to the general contractor who reviews and then transmits them to the architect and structural engineer for review of compliance with the original design concept. While shop and erection drawings are generally required by the contract documents and serve the architect, structural engineer and owner, they are also essential documents used by the steel fabricator for fabrication and erection of steel. Development and approval of shop drawings are detailed and tedious processes for all parties involved with the project, but are also extremely important and beneficial in making certain that the building is properly fabricated and fits together smoothly during the erection process. Generally, the contractor, architect and engineer will “redline” or mark required changes to the original shop drawings and return them to the fabricator. The length of time for approval of shop and erection drawings is normally specified in the contract, and typically is two weeks. After any necessary modifications are made by the fabricator’s detailer, shop drawings are resubmitted for final approval by the fabricator. To streamline the shop drawing process, the steel fabricator frequently issues the steel shop drawings in stages. Anchor rods and setting plans, along with a preliminary set of nonstandard AISC connections usually come first, followed by column and beam submittals. The general contractor or construction manager will typically require a drawing submittal schedule. The contractor, architect, and structural engineer are8usually able to approve these partial elements of the steel frame. This process of partial submission allows the fabricator to begin fabrication of early structural elements and main members, which can expedite delivery of the finished steel members.Simultaneously during the shop drawing process, the steel fabricator manages and coordinates the shop drawing process for the purchased or subcontracted items, such as steel joists, metal deck, shear studs, and metal fabrications. It is important that the shop drawing process is coordinated by all parties and the drawing submittal schedule and “approval turn around” are well defined so that the project is not delayed.Fabrication and Delivery. Following approval of the initial batch of shop drawings and delivery of the mill steel, the fabricator will begin to fabricate and finish the steel elements. The time and sequence of fabrication will be a function of the fabricator’s shop practice and capacity, other fabrication projects, and the erection sequence for the building. Fabrication involves handling of the stock members, cutting them to size, punching and drilling for connections, and preparing the connections, as well as shop painting or finishes when required. Though each project is unique, the fabricator will frequently have fabricated adequate portions of the steel for the building before erection begins. During fabrication or at the drill line, each piece is marked and identified for its precise location in the structural frame and stored or readied for delivery to the project site. Under normal conditions, steel items should be delivered to the site in the sequential order in which the steel will be installed by the erector.Erection. Steel erection begins when the steel has been fabricated and the foundation is completed to a point where it is ready to receive steel. Steel erection is conducted by the steel erector. Some fabricators may have their own erection crews or subsidiary companies; others will subcontract this work to a separate erection company. The erection company works closely with the general contractor and the fabricator to erect the steel in accordance with the established sequence of erection and delivery.The order of erection is typically shown on the erection drawings or on a separate sequence diagram. The erector typically prepares an erection plan which specifies the erection practices and safety measures which will be employed for the approval of the general contractor. The erection contractor usually furnishes equipment and cranes for erecting the frame; in some instances, the general contractor may furnish a crane and receive a credit from the erection company for its use. Erection of steel is generally fast paced and requires careful planning. Steel is fabricated to close tolerances. Precise layout and accuracy are important in making certain that the frame fits together properly. The steel erector may subcontract installation of a metal deck and shear studs to separate lower tier subcontractors, as these specialty firms may be more efficient at installing these items. Safety is an extremely important aspect of steel construction. Safety issues are discussed in Section 1.12.During the erection process the frame will be plumbed; temporary bracing and guy cables may be installed to maintain structural stability during erection. Erection will continue until all of the structural steel members have been installed and the structural frame is essentially complete. Metal fabrications and miscellaneous steel items, if included in the steel subcontract, are installed as necessary, based on the overall project schedule and applicable safety standards. With the completion of the frame, the steel subcontract is ready for contract closeout.9。

2005版美国钢结构设计规范

2005版美国钢结构设计规范

2005版美国钢结构设计规范2005版美国钢结构设计规范摘要美国钢结构协会成立于1921年,在1923年发行了第一版美国钢结构建筑设计规范.这本规范基于容许应力设计原则,长达十页,后来又发行了其他版本,一直到1989年的第九版本,但自从第八版本(1978)以后就没什么实质性的变化了。

极限状态设计,在美国又被称为荷载和抗力分项系数设计(LRFD),在第一版本的LRFD规范中被正式介绍,它基于超过15年的大量研究和改进,又被修改过两次,现在使用的是第三版本(1999)。

两本规范的同时存在对美国的设计人员和工业发展都带来了麻烦,AISC因此同意制定一部唯一并且标准统一的钢结构设计规范。

这部规范直到2005年8月13日才被审核通过,介绍了很多重要的概念,包括名义强度准则的使用与适当措施结合以提高可靠性的方法。

在许多其他方面的改进中,框架体系稳定性和支护设计有重大的进步,包括采用塑性准则的新设计方法。

关键词规范可靠性名义强度稳定性标准塑性连接设计组合设计论文纲要1介绍2基本设计理念2.1容许应力设计2.2荷载与阻力因素设计2.2.1强度不足和超载3 2005年AISC说明书3.1 背景3.2 格式规范3.3 基本设计要求4 新规范内容布置4.1内容概述4.2总则4.3设计要求B1 总则B3.6连接点B3.6.1简单连接B3.6.2弯矩连接4.4稳定性设计分析4.4.1稳定性设计要求4.4.2需求强度计算4.5 构件抗拉设计4.6 构件抗压设计4.7 构件抗弯设计4.8 构件抗剪设计4.9 构件组合受力设计和抗扭设计4.10 组合构件设计4.11 连接设计4.12高速钢和箱形构件连接设计5 注释6 摘要参考文献1.介绍1923版美国钢结构设计规范制定的目的是解决那个时候设计人员所面临的一系列问题。

虽然美国材料试验协会(ASTM)制定的钢材和其他材料性能标准是可用的,但仍然没有全国统一的建筑设计规范。

因此,个别州或城市有自己的要求,并且有时候设计特定的建筑甚至有多种规则可以使用,比如,那时候建造的一些桥梁必须遵守由桥梁当局制定的详细的规定,而当局又常常和杰出的设计者或制造商勾结。

美国ANSI/AISC SSPEC-2002《钢结构建筑抗震设计规定》介绍(1)

美国ANSI/AISC SSPEC-2002《钢结构建筑抗震设计规定》介绍(1)

美国ANSIAISC SSPEC-2002《钢结构建筑抗震设计规定》介绍(1)李志明【摘要】2002年1月31日,美国钢结构协会(AISC)和AISC规范委员会正式批准发布<钢结构建筑抗震设计规定>.在此,重点介绍该"规定"中"钢结构建筑"部分的第1、3~7各个章节的主要内容,包括"规定"适用的范围、荷载、材料及节点连接等,对有关内容做了必要的说明.其他章节内容将在后续介绍中与读者共飨.【期刊名称】《钢结构》【年(卷),期】2003(018)002【总页数】4页(P62-64,27)【关键词】LRFD规范地震荷载抗力体系放大地震荷载结构超强系数【作者】李志明【作者单位】中冶集团建筑研究总院,北京,100088【正文语种】中文【中图分类】工业技术国际科技交流美国A N S I/ A I S C S S P E C - 2 0 0 2《钢结构建筑抗震设计规定》介绍 ( 1 )李志明(中冶集团建筑研究总院北京 1 0 0 0 8 8)摘要 2 0 0 2 年 1 月 3 1 日,美国钢结构协会( A I S C ) 和 A I S C 规范委员会正式批准发布(钢结构建筑抗震设计规定)。

在此,重点介绍该“ 规定” 中“ 钢结构建筑” 部分的第 1 、3 ~7 各个章节的主要内容,包括“ 规定” 适用的范围、荷载、材料及节点连接等,对有关内容做了必要的说明。

其他章节内容将在后续介绍中与读者共飨。

关键词 L R F ' D 规范地震荷载抗力体系放大地震荷载结构超强系数IN T R O D U C T I O N T O " S E I S M I C P R O V I S I O N S F O R S T R U C T U R A L S T E E L BU I L D I N G S " ( A N S I/ A I S C S S P E C - 2 0 02 )( 1 )Li Z hi m i n g (C e n t r al R e s e a r c h I n s tit u t e of B u i ldi ng an d C o n s t r u c ti o n , M C C G r o u p B ei ji n g 1 0 0 0 8 8 )A B S T R AC T " S eis m i c P r o v i si o n s f o r S t r u c t u r al S t e el B u i ldi n g s " ( A N S I/ A I S C S S P E C - 2 0 0 2 ) w a s i s s u e d b y A I S C a n d AI S C C o d e C o m m i t t e e o n J a n u a r y 3 1 , 2 0 0 2.T hi s p a p e r i n t r o d u c e s m ai nl y t h e k e y c o n t e n t s o f S e c ti o n s l a n d 3 ~ 7 i nP a r t l, i n cl u d i n g t h e a p pli c a ble s c o p e , Io ad s , m a t e rials a nd j oi n ts c o n n e cti o n s et c of th e p r o visio n s , w h e r e th e r el ev a n t o o n t e n tsa r e e x pl ai n e d.T h e c o n t e n t s of o t h e r s e c ti o n s w i l l b e i r.L r o d u c e d l a t e r.KE Y W O R D S L R F ' D c o d e r e sist a n c e s y s t e m o f s ei s m i c l o a d a m plified s ei s m i c l o a d o v e r s t r e n g t h c o efficie n t o f st r u c l u r el 适用范围本规定条款适用于建筑物地震荷载抗力体系中的钢结构构件及连接节点的设计和施.L 。

钢结构 第七章20131119

钢结构 第七章20131119

第七章拉弯、压弯构件1、拉弯、压弯构件的应用和截面形式2、拉弯、压弯构件的强度3、实腹式压弯构件在弯矩作用平面内的稳定计算4、实腹式压弯构件在弯矩作用平面外的稳定计算5、实腹式压弯构件的局部稳定6、实腹式压弯构件的截面设计7、格构式压弯构件的计算§7.1拉弯、压弯构件的应用和截面形式1、拉弯、压弯构件的应用构件同时承受轴心压(拉)力和绕截面形心主轴的弯矩作用,称为压弯(拉弯)构件。

根据绕截面形心主轴的弯矩,有单向压(拉)弯构件;双向压(拉)弯构件。

弯矩由偏心轴力引起时,也称作偏压(或拉)构件。

图7.1.1 压弯、拉弯构件钢结构中压弯和拉弯构件的应用广泛,例如有节间荷载作用的桁架上下弦杆、受风荷载作用的墙架柱、工作平台柱、支架柱、单层厂房结构及多高层框架结构中的柱等等。

2、截面形式实腹式和格构式图7.1.2 压弯构件的截面形式压弯构件的截面通常做成在弯矩作用方向具有较大的截面尺寸。

实腹式截面:热轧型钢截面、冷弯薄壁型钢截面和组合截面。

当构件计算长度较大且受力较大时,为了提高截面的抗弯刚度,还常常采用格构式截面。

3、拉弯、压弯构件的设计内容拉弯构件:承载能力极限状态:强度正常使用极限状态:刚度强度稳定实腹式格构式弯矩绕实轴作用弯矩绕虚轴作用整体稳定局部稳定平面内稳定平面外稳定承载能力极限状态正常使用极限状态{}取值同轴压构件。

--≤=][][,max max λλλλλy x 刚度压弯构件:§7.2 拉弯、压弯构件的强度7.2.1 拉弯、压弯构件的强度计算准则对拉弯构件、截面有削弱或构件端部弯矩大于跨间弯矩的压弯构件,需要进行强度计算。

图7.2.1 压弯构件截面应力的发展过程A w =h w t wM x h wxx yyhf yf yf yf yHHN ηh ηh(1-2η)h f y f y (a)(b)(c)(d)A f =bt边缘纤维屈服准则以构件截面边缘纤维屈服的弹性受力阶段极限状态作为强度计算的承载能力极限状态。

汽车工程手册(美国版)

汽车工程手册(美国版)

汽车工程手册(美国版)目录译者的话第1章发动机设计简介Heinz Heisler1.1内燃机1.1.1发动机组成部件和术语1.1.2四冲程火花点火式(汽油)发动机1.1.3配气相位图1.2二冲程汽油机1.2.1回流扫气1.2.2曲轴箱盘形阀和簧片阀进气控制1.2.3二冲程和四冲程汽油机比较1.3四冲程压燃式(柴油)发动机1.4二冲程柴油机1.5汽油发动机和柴油发动机的比较1.6发动机性能术语1.6.1活塞排量或气缸工作容积1.6.2平均有效压力1.6.3发动机转矩1.6.4发动机功率1.6.5发动机排量1.7压缩比第2章发动机测试A.J.MartyrM.A.Plint2.1引言2.2转矩测量用耳轴式(托架式)测功机2.3使用串联轴或转矩测量凸缘测量转矩2.4转矩测量的误差校正和估算2.5加速和减速条件下的转矩测量2.6转速测量2.7测功机选择概述2.8测功机分类2.8.1串联混合测功机2.8.2一、二或四象限测功机2.9发动机与测功机性能的匹配2.10发动机的起动2.10.1发动机的起动(无起动机)2.10.2发动机的起动(有起动机)2.10.3非电起动系统2.11测功机的选择2.12选用测功机应考虑的其他问题2.13发动机与测功机的连接2.13.1引言2.13.2连接问题的实质2.13.3辅助阅读材料2.13.4扭转振动与临界转速2.13.5连接轴的设计2.13.6应力集中、键槽和无键毂连接2.13.7轴的振颤2.13.8联轴器2.13.9挠性联轴器的减振作用2.13.10传动轴设计举例2.13.11发动机与测功机连接:设计程序概述2.13.12飞轮2.13.13符号与单位参考文献其他阅读材料第3章发动机排放控制T.K.GarrettK.NewtonW.Steels 3.1早期的排放控制措施3.2美国联邦测试循环的演变3.3催化转化3.4二元催化转化3.5催化转化器3.6催化剂载体3.7用于整体式催化转化器的金属基体3.8福特用来预热催化剂的废气点火系统3.9三元催化转化器3.10电控系统3.11热空气进气系统3.12蒸发排放物3.13曲轴箱排放物的控制3.14空气喷射和补气阀3.15空气控制阀3.16一些结构更复杂的阀的布置情况3.17蒸气回收与炭罐清污系统3.18柴油机排放3.19降低排放:相互矛盾的要求3.20氮氧化物(NOx)3.21未燃碳氢化合物3.22一氧化碳3.23颗粒物3.24颗粒物捕集器3.25燃油质量对柴油机废气排放的影响3.26黑烟3.27白烟第4章发动机数字控制系统W.Ribbens4.1简介4.2发动机数字控制4.3发动机数字控制特征4.4燃油控制模式4.4.1起动4.4.2暖机4.4.3开环控制4.4.4闭环控制4.4.5加速加浓4.4.6减速减稀4.4.7怠速控制4.5废气再循环控制4.6可变配气正时控制4.7电子点火控制4.7.1点火正时的闭环控制4.7.2SA修正方案4.8发动机集中控制系统4.8.1二次空气喷射控制4.8.2炭罐清污控制4.8.3系统自动调节4.8.4系统诊断4.9控制模式小结4.9.1起动4.9.2暖机4.9.3开环控制4.9.4闭环控制4.9.5急加速4.9.6减速和怠速4.10发动机电子控制系统的改进4.10.1发动机集中控制系统4.10.2EGO传感器的改进4.10.3喷油正时4.10.4自动变速器控制4.10.5液力变矩器锁止控制4.10.6牵引控制4.10.7HV动力传动系控制第5章变速器J.Happian?Smith5.1绪论5.2汽车对变速器的要求5.2.1汽车布置5.2.2汽车起步5.2.3车辆要求——动力传动系功能5.2.4改变传动比——变速器和汽车的匹配5.3手动变速器5.3.1前轮驱动汽车变速器(乘用车)5.3.2后轮驱动汽车变速器(乘用车和商用车)5.3.3换档和同步器5.3.4各档传动比——如何实现5.3.5离合器5.3.6自动控制手动变速器5.4自动变速器5.4.1Jatco JF506E高级变速器5.4.2流体动力变矩器5.4.3行星齿轮机构——自动变速器的关键部件5.4.4JF 506E自动变速器工作原理5.4.5换档策略5.4.6自动变速器控制器(ATCU)5.5连续可变无级变速器(CVT)5.5.1无级变速器(CVT)的理论基础5.5.2液力变速器5.5.3带式无级变速原理5.5.4带式无级变速器5.5.5牵引式环面无级变速原理5.5.6牵引式环面无级变速器5.6变速器应用问题5.6.1工作环境5.6.2效率5.6.3其他变速器部件参考书目深入学习材料其他有价值的参考资料第6章电动汽车J.FentonR.Hodkinson6.1引言6.2蓄电池6.2.1先进铅蓄电池6.2.2钠—硫蓄电池6.2.3镍—金属氢化物蓄电池6.2.4氯化钠/镍蓄电池6.2.5太阳能电池6.2.6锂电池6.2.7超级电容器6.2.8飞轮储能6.3蓄电池汽车改装技术6.3.1改装案例研究6.3.2电动机控制方案的选择6.4电动汽车发展历史6.5当代电动汽车技术6.5.1本田“EV”6.5.2通用汽车公司的“EVi”6.5.3交流驱动6.5.4福特e?Ka:锂电池电源6.6电动厢式车和货车设计6.6.1厢式货车向车队汽车的改装6.6.2福特EXT Ⅱ6.6.3英国EV A对CVS的建议6.6.4晶闸管控制6.6.5福特Ecostar6.6.6Bradshaw Envirovan环保厢式车6.7燃料电池电动汽车6.7.1通用公司的Zafira项目6.7.2福特P6.7.3液态氢或燃料重整6.7.4戴姆勒?克莱斯勒的燃料电池样车参考文献其他阅读资料第7章混合动力汽车J.FentonR.Hodkinson7.1引言7.2混合动力的前景7.2.1图谱控制驱动管理7.2.2开发混合动力车的合理性7.2.3混合型混合动力驱动的配置7.3混合动力技术案例研究7.3.1小型汽车的混合动力解决方案7.3.2更好的混合动力组合解决方案7.3.3转子发动机与永磁电动机的动力组合及原理概述7.3.4汪克尔转子发动机7.3.5混合动力小客车7.3.6出租车混合驱动7.3.7复合式混合动力系统7.3.8混合驱动加装飞轮7.4量产混合动力汽车7.4.1丰田普锐斯系统7.4.2量产混合动力汽车的新成员7.5混合动力客运车和商用车7.5.1混合动力公共汽车7.5.2压缩天然气—电动混合动力车7.5.3先进的混合动力客车7.5.4先进的混合动力货车参考文献第8章悬架类型和驱动型式J.ReimpellH.StollJ.Betzler 8.1车辆悬架的一般特性8.2独立车轮悬架——概述8.2.1对悬架的要求8.2.2双横臂式悬架8.2.3麦弗逊式滑柱和滑柱式减振器8.2.4后桥纵臂式悬架8.2.5半纵臂式后悬架8.2.6多连杆式悬架8.3非独立悬架和半独立悬架8.3.1非独立悬架8.3.2半独立曲柄悬架8.4前置发动机后轮驱动8.4.1前置发动机后轮驱动设计优缺点8.4.2非驱动前桥8.4.3后驱动桥8.5发动机后置和发动机中置的驱动型式8.6前轮驱动8.6.1结构类型8.6.2前轮驱动优缺点8.6.3前驱动桥8.6.4非驱动后桥8.7四轮驱动8.7.1全时四轮驱动优缺点8.7.2带超速档的四轮驱动车辆8.7.3商用和全地形车辆的手动可分离式四轮驱动8.7.4全时四轮驱动,四轮驱动乘用车基本型8.7.5全时四轮驱动,基本型为标准设计乘用车8.7.6各种四轮驱动总结第9章转向系统J.ReimpellH.StollJ.Betzler 9.1转向系统概述9.1.1转向系统的要求9.1.2独立悬架上的转向系统9.1.3非独立悬架上的转向系统9.2齿轮齿条式转向器9.2.1优点和缺点9.2.2结构型式9.2.3转向横拉杆铰接在转向器的齿条侧端9.2.4转向横拉杆中部取下的机械转向器9.3循环球式转向器9.3.1优点和缺点9.3.2结构型式9.4助力转向系统9.4.1液压助力转向系统9.4.2电动液压式助力转向系统9.4.3电动助力转向系统9.5转向管柱9.6转向减振器9.7转向运动学9.7.1转向器的类型和位置影响9.7.2转向连杆配置9.7.3转向横拉杆的长度和位置第10章轮胎J.ReimpellH.StollJ.Betzler 10.1对轮胎的要求10.1.1可互换性10.1.2对轿车轮胎的要求10.1.3对商用车轮胎的要求10.2轮胎设计10.2.1斜交轮胎10.2.2子午线轮胎10.2.3无内胎轮胎和有内胎轮胎10.2.4高宽比10.2.5轮胎规格和标志10.2.6轮胎承载能力和充气压力10.2.7胎侧标志10.2.8滚动周长和行驶速度10.2.9轮胎对车速表的影响10.2.10轮胎花纹10.3车轮10.3.1概念10.3.2轿车、轻型商用车及其挂车的轮辋10.3.3轿车、轻型商用车及其挂车的车轮10.3.4车轮安装10.4轮胎弹性10.5轮胎不均匀度10.6滚动阻力10.6.1直线行驶时的滚动阻力10.6.2转弯时的滚动阻力10.6.3其他影响因素10.7纵向附着摩擦与滑动摩擦10.7.1滑动率10.7.2摩擦系数10.7.3路面影响10.8侧向力和摩擦系数10.8.1侧向力、侧偏角和摩擦系数10.8.2车辆的自转向特性10.8.3摩擦系数和滑动率10.8.4干燥路面上的侧偏特性10.8.5影响因素10.9合成附着系数10.10轮胎回正力矩和轮胎拖距10.10.1轮胎回正力矩概述10.10.2轮胎拖距10.10.3前轮上的影响因素10.11轮胎倾覆力矩和力作用点偏移10.12转矩转向10.12.1由于法向力变化产生的转矩转向10.12.2轮胎回正力矩引起的转矩转向10.12.3运动学和弹性动力学影响第11章操纵性Hans Pacejka11.1引言11.2轮胎和车桥特性11.2.1轮胎特性的介绍11.2.2有效车桥侧偏特性11.3车辆操纵稳定性11.3.1汽车运动平面的微分方程11.3.2两自由度模型的线性分析11.3.3非线性稳态转向解11.3.4制动或驱动时的车辆11.3.5力矩方法11.3.6汽车—挂车组合11.3.7在较复杂轮胎侧偏条件下的车辆动力学第12章制动系统J.Happian?Smith 12.1概述12.1.1制动系统的功能和使用条件12.1.2制动系统设计方法12.1.3制动系统部件和结构12.2法规12.3制动基础知识12.3.1汽车制动运动学12.3.2汽车制动动力学12.3.3轮胎与路面之间的摩擦力12.4制动力比例关系与附着力利用率12.4.1静力学分析12.4.2使用恒定制动比进行制动12.4.3制动效率12.4.4附着力利用率12.4.5车轮抱死12.4.6车桥抱死对汽车稳定性的影响12.4.7汽车车身在制动时的俯仰运动12.4.8可变制动比的制动12.5材料特性12.5.1对制动系统的材料要求12.5.2铸铁制动盘金相分析12.5.3制动盘替代材料12.5.4制动盘材料/设计评价12.6先进的制动技术12.6.1驾驶人行为分析模型12.6.2线传制动12.6.3防抱死制动系统12.6.4牵引力控制系统参考书目和深入学习材料第13章车辆控制系统W.Ribbens13.1引言13.2典型巡航控制系统13.2.1速度响应曲线13.2.2数字巡航控制13.2.3节气门执行器13.3巡航控制电子技术13.3.1基于步进电动机的执行器13.3.2真空操纵的执行器13.3.3高级巡航控制13.4防抱死制动系统13.5电子悬架系统13.5.1通过可变滑柱液体粘度改变阻尼13.5.2可变弹簧刚度13.5.3电子悬架控制系统13.6电子转向控制第14章智能交通系统L.VlacicM.Parent 14.1全球定位技术14.1.1GPS历史14.1.2NA VSTARGPS系统14.1.3卫星定位基础14.1.4GPS接收器技术14.1.5GPS应用技术14.1.6结论参考文献(1)14.2决策架构14.2.1引言14.2.2机器人控制架构及自主运动14.2.3用于自动汽车的Sharp控制决策架构14.2.4试验结果14.2.5车辆运动规划参考文献(2)第15章汽车建模M.Blundell D.Harty15.1引言15.2车身15.3测量输出15.4悬架系统表示15.4.1概述15.4.2集中质量模型15.4.3等效侧倾刚度模型15.4.4摆臂模型15.4.5杆系模型15.4.6概念悬架方法15.5弹簧和减振器建模15.5.1简单模型的处理15.5.2钢板弹簧建模15.6防侧倾杆15.7确定等效侧倾刚度模型中的侧倾刚度15.8空气动力学效应15.9车辆制动建模15.10牵引建模15.11其他传动部件15.12转向系统15.12.1转向系统机构建模15.12.2转向比15.12.3车辆机动操作的转向输入15.13驾驶人行为15.13.1转向控制器15.13.2路径跟踪控制器模型15.13.3车身侧偏角控制15.13.4双回路驾驶人模型15.14案例研究7——整车操纵模型比较15.15总结第16章结构设计J.Brown A.J.Robertson S.Serpento 16.1车辆结构类型术语和概述16.1.1刚度和强度的基本要求16.1.2车辆结构类型历史和概述16.2标准轿车——基本负荷路径16.2.1引言16.2.2标准轿车的弯曲负荷工况16.2.3标准轿车的扭转负荷16.2.4侧向负荷情况16.2.5制动(纵向)负荷16.2.6总结和讨论第17章车辆安全性T.K.Garrett K.Newton W.Steels 17.1碰撞试验17.2乘员保护17.3乘员安全试验17.4保护行人免受严重伤害17.5主动安全17.6结构安全和安全气囊17.7乘员室的完整性17.8小型车的问题17.9侧面碰撞17.10智能安全气囊17.11座椅安全带17.12主动安全的改进措施17.13轮胎、悬架和转向17.14一般电子控制系统17.15电动助力转向17.16制动器17.17自动制动和牵引力控制17.18新近出现的先进系统17.19悬架控制17.20人机工程与安全性17.21座椅17.22踏板的控制第18章材料G.Davies18.1车身结构设计与材料选用18.1.1引言18.1.2历史视角和不断演变的材料工艺学18.1.3有限元分析18.1.4宝马采用的现代设计方法18.1.5板件耐冲击性与刚度试验18.1.6疲劳18.1.7其他车身结构18.1.8材料与设计的融合18.1.9塑料与复合材料部件的工程要求18.1.10成本分析18.1.11要点总结(1)参考文献(1)18.2车身结构材料的考虑因素与使用18.2.1引言18.2.2可选材料与选择依据18.2.3铝18.2.4镁18.2.5聚合物与复合材料18.2.6要点总结(2)参考文献(2)第19章空气动力学J.Happian?Smith19.1概述19.2空气动力19.3气动阻力19.4降低气动阻力19.5稳定性和横向风19.6噪声19.7发动机室的通风19.8乘员室的通风19.9风洞测试19.10计算流体动力学参考书目深入学习材料第20章声振精细化M.Harrison20.1引言和定义20.2本章覆盖的范围20.3汽车声振精细化的目的20.4在汽车制造领域中如何实现声振精细化20.5汽车声振精细化历史:一个典型汽车品牌20年的历程20.6声振精细化目标20.6.1整车外部噪声指标20.6.2单个零部件外部噪声指标20.6.3整车内部噪声指标20.6.4乘坐品质指标(包括振动感受指标)参考文献第21章内部噪声M.Harrison21.1噪声的主观和客观评价方法21.1.1背景知识21.1.2空气噪声和结构噪声之间的平衡21.1.3有关车辆内部噪声的测量21.1.4内部噪声的主观评价21.2噪声路径分析21.2.1背景知识21.2.2噪声路径分析的相干方法21.2.3噪声路径分析的标准方法21.2.4噪声路径分析的非侵入方法21.3测量内燃机和其他汽车噪声源的声功率21.3.1近声场和远声场21.3.2测量声功率的各种方法21.3.3在自由声场中采用声压技术测量声功率21.3.4扩散声场中声功率的测量21.3.5半混响远声场中声功率的测量21.3.6近声场中声功率测量21.3.7用表面振速测量确定声功率21.3.8用声强仪确定声功率21.3.9不同环境下测量声功率的标准方法21.4发动机噪声21.4.1发动机噪声介绍21.4.2燃烧噪声21.4.3机械噪声21.4.4发动机转速和负载对噪声的影响21.4.5测量发动机噪声21.4.6发动机噪声分级21.4.7发动机噪声控制21.5道路噪声21.5.1道路噪声简介21.5.2内部道路噪声21.5.3分析道路结构噪声21.5.4控制内部道路噪声21.6气动(风)噪声21.7制动噪声21.8“吱吱”、“咯咯”、“嘶嘶”声21.9通过多孔材料的吸声来控制噪声21.9.1实用方法21.9.2多孔材料吸声的物理过程21.9.3流动阻抗21.9.4多孔性21.9.5结构因子21.9.6改进的一维线性平面波动方程21.10通过面板的声传递最小化来控制噪声21.10.1方法介绍21.10.2隔声罩声学性能测量21.10.3解读由隔声罩和面板制造商提供的声学特性数据21.10.4声学密封条的重要性及侧向传声的控制21.10.5穿过面板的声传递21.10.6大隔声罩内外的声音21.10.7贴近安装的隔声罩内部和外部噪声附录21.A有关系统的一些背景信息附录21.B卷积附录21.C协方差函数、相关和相干附录21.D频率响应函数附录21.E带有终端阻抗的管中的平面波附录21.F线性质量守恒方程的求导本附录内部引自Fahy和Walker(1998)附录21.G非线性(和线性)无粘性流体运动欧拉方参考文献第22章外部噪声M.Harrison22.1汽车噪声认证22.1.1认证背景22.1.2EC噪声认证22.1.3车辙和大气的影响22.1.4EC内噪声认证的未来发展22.1.5美国和其他非欧盟国家的噪声认证22.1.6满足认证噪声限制的结果22.2噪声源分级22.3进气系统和排气系统:性能和噪声影响22.3.1介绍22.3.2进气噪声——目标22.3.3有关进气系统设计的问题22.3.4进气系统22.3.5进气系统设计者22.3.6进气系统研发周期22.3.7主要进气系统部件22.3.8进气口位置22.3.9进气管和滤清器壳尺寸22.3.10为改进发动机性能而进行的进气和排气系统设计22.3.11进气及排气噪声源22.3.12流动管路声学22.3.13进气噪声控制:案例研究22.3.14排气噪声控制22.4轮胎噪声22.4.1轮胎空气噪声源22.4.2路面对轮胎空气噪声的影响22.4.3测量轮胎空气噪声22.4.4通过设计控制轮胎空气噪声附录22.A气门和气门口几何形状参考文献第23章汽车仪表及远程信息处理W.Ribbens 23.1现代汽车仪表23.2输入输出信号转换23.3采样23.4燃油量测量23.5冷却液温度测量23.6机油压力测量23.7车速测量23.8显示设备23.9LED23.11VFD23.12CRT23.12.1扫描电路23.12.2CAN总线23.13玻璃驾驶舱23.14行程信息计算机23.15远程信息处理23.16汽车诊断附录常用法定计量单位及其换算。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

7.13 LRFD FOR COMPOSITE BEAM WITH UNIFORM LOADSThe typical floor construction of a multistory building is to have composite framing. The floor consists of 31⁄4-in-thick lightweight concrete over a 2-in-deep steel deck. The concrete weighs 115 lb/ft3and has a compressive strength of 3.0 ksi. An additional 30% of the dead load is assumed for equipment load during construction. The deck is to be supported onsteel beams with stud shear connectors on the top flange for composite action (Art. 7.12).Unshored construction is assumed. Therefore, the beams must be capable of carrying their own weight, the weight of the concrete before it hardens, deck weight, and construction loads. Shear connectors will be3⁄4 in in diameter and 31⁄2 in long. The floor system should be investigated for vibration, assuming a damping ratio of 5%.FIGURE 7.6 Seven locations of the plastic neutral axis used for determining the strength of a composite beam.(a) For cases 6 and 7, the PNA lies in the web. (b) For cases 1 through 5, the PNA lies in the steel flange.A typical beam supporting the deck is 30 ft long. The distance to adjacent beams is 10 ft. Ribs of the deck are perpendicular to the beam. Uniform dead loads on the beam are construction, 0.50 kips per ft, plus 30% for equipment loads, and superimposed load, 0.25 kips per ft. Uniform live load is 0.50 kipsper ft.Q for Partial Composite Design(kips)TABLE 7.3nLocation of PNA n Q and concrete compression(1)y x F A (2)to (5)*2y f y s F A F A ∆- (6) 0.5[C(5)+C(7)] †(7)0.25y s F A* A ƒ area of the segment of the steel flange above the plastic neutral axis (PNA). †C (n ) compressive force at location (n ). Beam Selection. Initially, a beam of A36 steel that can support the construction loads is selected. It is assumed to weigh 26 lb /ft. Thus the beam is to be designed for a service dead load of 0.5×1.3+0.026=0.676 kips per ft.Factored load=0.676*1.4=0.946 kips per ftFactored moment = u M =0.946×302/8=106.5 kip-ftThe plastic section modulus required therefore isZ=369.0125.106⨯⨯=y u F M φ=39.43in Use a W16 ×26 (Z =44.2 3in and moment of inertia I =301 4in ).The beam should be cambered to offset the deflection due to a dead load of 0.50 +0.026 =0.526 kips per ft.Camber =1.1301000,293841230526.0534=⨯⨯⨯⨯⨯in Camber can be specified on the drawings as 1 in.Strength of Fully Composite Section.Next, the composite steel section is designed to support the total loads. The live load may be reduced in accordance with area supported (Art. 7.9). The reduction factor is R = 0.0008(300-150) =0.12. Hence the reduced live load is 0.5(1 - 0.12) = 0.44 kips per ft. The factored load is the larger of the following:1.2(0.50 + 0.25 + 0.026) × 1.6 +0.44= 1.635 kips per ft1.4(0.5 + 0.25 + 0.026) =1.086 kips per ftHence the factored moment is9.1838/30635.12=⨯=u M kip-ftThe concrete-flange width is the smaller of b = 10 ×12 = 120 in or b = 2(30 ×12⁄8) =90 in (governs).The compressive force in the concrete C is the smaller of the values computed from Eqs. (7.24) and (7.25).=⨯⨯⨯==25.390385.085.0'c c c A f C 745.9kips==y s t F A C 7.68×36=276.5 kips (governs)The depth of the concrete compressive-stress block (Fig. 7.5) isa==⨯⨯=900.385.02760585.0'b f C c 1.205in Since t c C C >,the plastic neutral axis will line in the concrete slab (case 3, Art.7.12). The distance between the compression and tension forces on the W16 ×26 (Fig.7.5d) ise =0.5d + 5.25 - 0.5a= 0.5 × 15.69 + 5.25- 0.5 ×1.205 =12.493 inThe design strength of the W16 × 26 is==e C M t n 85.0φ0.85×276.5×12.493/12=244.7 kip-ft >183.9 kip-ft —OKPartial Composite Design. Since the capacity of the full composite section is more than required, a partial composite section may be satisfactory. Seven values of the composite section (Fig. 7.6) are calculated as follows, with the flange area f A = 5.5 ×0.345 = 1.8982in .1.Full composite:y s n F A Q =∑= 276.5 kips=n M φ 276.5 kips2.Plastic neutral axis f f A A =∆/4 = 0.4745 in below the top of the top flange. From Table7.3,y f y s n F A F A Q ∆-=∑2∑n Q =276.5 -2 × 0.4745 ×36 = 242.3a =242.3/(0.85 × 3.0 × 90) = 1.0558 ine = 15.69/2 × 5.25 - 1.0558/2 = 12.567 inn M =242.3 × 12.567 +0.5(276.5-242.3)×(15.69 - 0.34536898.123.2425.276⨯⨯-)= 3,312 kip-in =n M φ 0.85 × 3312/12 ? 234.6 kip-ft3.PNA 2/f A Af =∆=0.949 in below the top of the top flange:=∑n Q 208.2 kips=n M φ 224.0 kip-ft4. PN f f A A 3=∆/4 =1.4235 in below the top of the top flange:=∑n Q 174.0 kips=n M φ 212.8 kip-ft5. PNA at the bottom of the top flange (f f A A =∆):=∑n Q 139.9 kips=n M φ201.0 kip-ft6. Plastic neutral axis within the web.∑n Q is the average of items 5 and 7. (See Table 7.3.) =∑n Q (139.9 ? 69.1)/2 ? 104.5 kips=n M φ186.4 kip-ft7. =∑n Q 0.25 ? 276.5 ? 69.1 kips=n M φ166.7 kip-ftFrom the partial composite values 2 to 7, value 6 is just greater than =u M 183.9 kip-ft. The AISC ‘‘Manual of Steel Construction ’’ includes design tables for composite beams that greatly simplify the calculations. For example, the table for the W16 × 26, grade 36, composite beam gives n M φfor the seven positions of the PNA and for several values of the distance 2Y (in) from the concrete compressive force C to the top of the steel beam. For the preceding example,con Y Y =2-a/2 (7.31)where con Y = total thickness of floor slab, ina=depth of the concrete compressive-stress block, inFrom the table for case 6,∑n Q =104 kips. a=900.385.0104⨯⨯=0.453 in Substitution of a and =con Y 5.25 in in Eq. (7.31) gives=2Y 5.25-0.453/2 =5.02 inThe manual table gives the corresponding moment capacity for case 6 and =2Y 5.02 in as =n M φ186 kip-ft > 183.9 kip-ft —OKThe number of shear studs is based on C=104.5 kips. The nominal strength n Q of one stud is given by Eq. (7.28). For a 3⁄4-in stud, with shearing area sc A = 0.442 2in and tensile strength u F =60 ksi, the limiting strength is u sc F A = 0.442× 60 = 26.5 kips. With concrete unit weight w=115 lb/3ft and compressive strength 'c f =3.0 ksi, and modulus of elasticity c E = 2136 ksi, the nominal strength given by Eq. (7.28) isn Q =0.5 ×0.442 21360.3⨯= 17.7 kips < 26.5 kipsThe number of shear studs required is 2 × 104.5/17.7 =11.8. Use 12. The total number of metal deck ribs supported on the steel beam is 30. Therefore, only one row of shear studs is required, and no reduction factor is needed.Deflection Calculations. Deflections are calculated based on the partial composite properties of the beam. First, the properties of the transformed full composite section (Fig. 7.7) are determined. The modular ratio n s E E is n = 29,000/2136 = 13.6. This is used to determine the transformed concrete area 1A = 3.25 × 90/13.6 = 21.52 in2. The area of the W16 × 26 is 7.68 2in , and its moment of inertia s I = 301 4in . The location of the elastic neutral axis is determined by taking moments of the transformed concrete area and the steel area about the top of the concrete slab: X=68.752.21)25.569.155.0(68.72/25.352.21++⨯+⨯=4.64 in The elastic transformed moment of inertia for full composite action is1065301)64.425.5269.15(68.7)225.364.4(52.21126.1325.390223=+-++-+⨯⨯=tr I 4in Since partial composite construction is used, the effective moment of inertia is determined from 47.7705.276/5.104)3011065(301in I eff =-+=eff I is used to calculate the immediate deflection under service loads (without long-term effects). For long-term effect on deflections due to creep of the concrete, the moment of inertia is reduced to correspond to a 50% reduction in c E . Accordingly, the transformed moment of inertia with full composite action and 50% reduction in c E is tr I = 900.34in and is based on a modular ratio 2n =27.2. The corresponding transformed concrete area is 1A =10.76 2in .FIGURE 7.7 Transformed section of a composite beam.The reduced effective moment of inertia for partial composite construction with long- term effect is determined from Eq. (7.32):。

相关文档
最新文档