数据模型和决策案例分析
数据分类分级的理论模型与实践案例
数据分类分级的理论模型与实践案例概述:在当今信息时代,大数据的快速增长以及复杂性呈指数级增长,使得数据管理和分类成为了一项关键的任务。
在处理庞大的数据集时,数据分类分级的理论模型和实践案例变得尤为重要。
本文将探讨数据分类分级的理论模型及其实践案例,并重点分析现有模型和案例的优缺点。
一、数据分类分级的理论模型1. 决策树模型决策树是一个树状结构,其中每个节点表示一个属性或特征,每个分支代表该属性的一个可能值,而每个叶子节点代表一个分类结果。
决策树模型通过一系列的判断条件来将数据集划分到合适的类别中。
它易于理解和解释,适用于各种类型的数据集。
然而,在处理大数据集时,决策树模型的计算性能可能不足。
2. 支持向量机模型支持向量机(SVM)是一种常用的监督学习模型,它可以将数据集划分为具有最大间隔的两个类别。
支持向量机通过将数据映射到高维空间,在新的空间中找到最佳的分类超平面。
这个模型适用于高维空间和非线性数据。
然而,SVM模型对参数选择敏感,并且在处理大规模数据时要求较高的计算能力。
3. 贝叶斯分类模型贝叶斯分类器是一种基于贝叶斯定理的概率统计分类方法。
它假设属性之间相互独立,并根据先验概率和条件概率进行分类。
贝叶斯分类器可以通过学习先验概率和条件概率来不断优化分类效果,并适用于多类别分类。
然而,贝叶斯分类器对数据的分布假设过于简单,忽略了属性之间的相关性。
4. 神经网络模型神经网络是一种模拟人脑的计算模型,通过人工神经元之间的连接和权重来处理输入数据并进行分类。
神经网络模型可以适应各种问题的不确定性,具有很强的表达能力。
然而,由于训练过程中的计算量大,神经网络模型在大规模数据上的应用仍然面临挑战。
二、数据分类分级的实践案例1. 金融行业中的信用评级信用评级是金融行业中一个重要的数据分类分级实践案例。
通过收集客户的个人和财务信息,利用历史数据和各种统计模型,金融机构可以对客户的信用风险进行评估和分类。
不同的信用评级可以帮助金融机构制定个性化的贷款利率和额度,并有效地管理风险。
数据模型与决策案例
数据模型与决策案例数据模型是指对某一类事物的特征和关系进行抽象和描述的模型。
在现代社会,数据模型在各个领域都有着广泛的应用,尤其是在决策案例中,数据模型更是发挥着重要的作用。
本文将以数据模型与决策案例为主题,探讨数据模型在决策案例中的应用和意义。
一、数据模型的基本概念。
数据模型是对现实世界中某一类事物的抽象描述,它可以用来描述事物的特征和关系,帮助人们更好地理解和分析事物。
数据模型可以分为概念模型、逻辑模型和物理模型三个层次。
概念模型是对事物的一种抽象描述,它描述了事物的特征和关系,不涉及具体的技术实现;逻辑模型是在概念模型的基础上,进一步进行细化和具体化,描述了事物的结构和行为;物理模型则是在逻辑模型的基础上,考虑了具体的技术实现和物理存储结构。
数据模型可以用来描述各种事物,比如人、物、事、理念等等,它是对现实世界的一种抽象和理解。
二、数据模型在决策案例中的应用。
在现代社会,数据模型在各个领域都有着广泛的应用,尤其是在决策案例中,数据模型更是发挥着重要的作用。
数据模型可以帮助人们更好地理解和分析事物,为决策提供科学依据。
比如在企业管理中,数据模型可以用来描述企业的各种业务和关系,帮助企业管理者更好地理解企业的运行状况,为决策提供支持;在金融领域,数据模型可以用来描述金融市场的各种特征和关系,帮助投资者更好地理解市场的运行规律,为投资决策提供支持;在医疗领域,数据模型可以用来描述疾病的发病机制和治疗效果,帮助医生更好地理解疾病的特征和发展规律,为治疗决策提供支持。
可以看出,数据模型在各个领域都有着广泛的应用,为决策提供了重要的支持。
三、数据模型在决策案例中的意义。
数据模型在决策案例中有着重要的意义。
首先,数据模型可以帮助人们更好地理解和分析事物,为决策提供科学依据。
比如在企业管理中,通过对企业的各种业务和关系进行建模,可以帮助企业管理者更好地理解企业的运行状况,为决策提供支持;在金融领域,通过对金融市场的各种特征和关系进行建模,可以帮助投资者更好地理解市场的运行规律,为投资决策提供支持;在医疗领域,通过对疾病的发病机制和治疗效果进行建模,可以帮助医生更好地理解疾病的特征和发展规律,为治疗决策提供支持。
数据模型与决策决策分析教案
决策分析的步骤
02 确定问题、收集数据、建立模型、分析结果、制定决
策。
决策分析的分类
03
定量决策分析、定性决策分析、结构化决策分析、非
结构化决策分析。
决策分析的常用方法
概率决策分析
基于概率和期望值进行决策的方 法,包括期望值法、概率排序法 等。
多目标决策分析
处理多个相互冲突的目标的决策 问题,常用的方法有层次分析法 、多属性效用函数等。
,提高销售业绩。
案例二:基于数据模型的金融风险评估
总结词:通过数据模型识别和评估潜在 的金融风险
根据模型结果制定风险管理策略,如资 产配置、止损点设置等,以降低潜在损 失。
利用数据模型分析市场波动、相关性等 风险因素。
详细描述
收集各类金融数据,包括股票价格、债 券收益率、汇率等。
案例三:基于数据模型的企业战略规划
练习1
练习2
利用SPSS软件,对给定的市场调查数据进行分析 ,建立分类数据模型,预测目标市场的客户群体。
利用Excel或其他数据分析工具,对给定的 销售数据建立数据模型,并基于该模型进行 销售预测。
练习3
利用Python编程语言,对给定的股票价格 数据建立时间序列模型,预测股票价格的走 势。
思考题
思考题1
在决策分析中,如何选择合适的数据模型? 需要考虑哪些因素?
思考题2
数据模型在决策分析中的作用是什么?如何 评估数据模型的有效性?
思考题3
如何将数据模型与实际业务场景相结合,提 高决策的准确性和效率?
思考题4
在决策分析中,如何处理不确定性因素?如 何利用数据模型进行风险评估?
THANKS
感谢观看
物理数据模型
数据模型与决策分析案例
数据模型与决策分析案例一、问题提出美国R银行最近赢得了一份合同,为宾夕法尼亚的众多公司修建一个服务区,使得他们可以开启网上交易,便捷各自的生活。
R银行负责区域银行卡的网上注册,数据维护与测试。
为了完成这项工作,美国R银行的负责人兼总经理Bob xx估计,区域内所有员工银行卡的注册与网上注册所需要的总工期大约需要4个月,并且完成这项庞大的任务需要许多的云服务器支持,从各项数据,可以得知,从第1个月到第4个月需要的云服务器分别为10、12、14、8台云服务器。
虽然说到目前为止美国R银行已经有20台云服务器,但大部分的台云服务器都有任务,都要支持运行维护已经注册的人员的银行数据,因此,必须从从P xx云服务器租赁公司租借部分的云服务器。
并且Bob估计,虽然说本公司这些云服务器有其他的任务,但每个月任然有部分可以抽调出来供这一份项目使用,第1个月有1台云服务器可以用于服务区的网上注册,数据维护与测试任务,第2个月有2台云服务器可以用于服务区任务,第3个月有3台云服务器可以用于服务区任务,第4个月有1台云服务器可以用于服务区任务。
因此为了完成任务,美国R银行还需要租借更多的云服务器来完成这一份合同。
从P xx云服务器公司长期租用云服务器的费用是每台云服务器每月600美元。
云服务器的坐守监视工作人员的工资是每小时20美元,每台云服务器每天消耗流量电量等数据网络方面花费为100美元。
所有的云服务器维修费用由Pxx云服务器公司承担。
根据美国R银行工作计划,美国R银行每天工作8小时,每周5天,每月工作4周。
Bob认为现在的情况下,美国R银行如果长期租赁云服务器是不明智的。
在与P xx云服务器公司对短期租赁合同进行讨论后,Bob了解到他可以获得1-4个月的短期租赁。
短期云服务器租赁和坐守监视技术人员的工资的价格水平都与长期租赁不同。
P xx云服务器公司司同意支付短期租赁的成本。
以下是一台云服务器一个坐守监视技术人员的短期租赁费用。
大数据模型与决策课程案例分析报告
大数据模型与决策课程案例分析报告在当今数字化时代,大数据已经成为企业和组织决策的重要依据。
大数据模型与决策课程为我们提供了深入理解和应用大数据分析的方法和工具,通过实际案例的研究和分析,我们能够更直观地感受到大数据在解决实际问题和制定决策中的强大作用。
一、案例背景本次案例选取了一家电商企业,该企业在市场竞争中面临着诸多挑战,如客户流失率较高、销售增长缓慢、库存管理不善等。
为了改善经营状况,企业决定利用大数据分析来制定更有效的决策。
二、数据收集与处理企业首先收集了大量的内部数据,包括客户的购买记录、浏览行为、评价信息等,以及外部数据,如市场趋势、竞争对手的表现等。
这些数据来源多样、格式各异,需要进行清洗、整合和转换,以确保数据的质量和一致性。
在数据处理过程中,采用了数据挖掘技术,剔除了无效和重复的数据,并对缺失值进行了合理的填充。
同时,将不同数据源的数据进行了关联和整合,构建了一个全面、准确的数据集。
三、模型选择与建立针对企业的问题,选择了合适的大数据模型。
对于客户流失预测问题,采用了逻辑回归模型。
通过对历史数据的分析,确定了影响客户流失的关键因素,如购买频率、消费金额、客户服务满意度等,并建立了相应的预测模型。
对于销售预测,使用了时间序列模型。
考虑了季节因素、促销活动等对销售的影响,通过对历史销售数据的建模和分析,能够较为准确地预测未来一段时间内的销售趋势。
在库存管理方面,运用了优化模型,以最小化库存成本和满足客户需求为目标,确定了最佳的库存水平和补货策略。
四、模型评估与优化建立模型后,需要对其进行评估和优化。
通过使用测试数据集对模型进行验证,计算了准确率、召回率、F1 值等指标,评估模型的性能。
对于表现不佳的模型,进一步分析原因,可能是数据质量问题、特征选择不当或者模型参数设置不合理等。
通过调整模型参数、增加特征变量或者重新选择模型,对模型进行优化,以提高其准确性和实用性。
五、决策制定与实施基于大数据模型的分析结果,企业制定了一系列决策。
数据模型与决策案例一
解:(1)运用SPSS对价格进行频数分析,检验结果如下:StatisticsPN Valid 80Missing 0Mean 18.0774Median 17.4100Mode 14.00Std. Deviation 8.06774Skewness .677Std. Error of Skewness .269Kurtosis .382Std. Error of Kurtosis .532Minimum 4.90Maximum 44.84Percentiles 25 12.000050 17.410075 23.5700观察结果可知,全部80中饼干价格在4.90-44.84之间波动,价格水平居中的40种饼干的价格在12到23.57之间波动,按此思路,其代表价格为17.41元。
(2)观察80种价格的平均值、中位数、众数,发现众数与平均值、中位数相差很远,故众数并不能代表全部80种饼干价格。
(3)使用平均数公式计算平均价格,知其结果为18.0774。
运用SPSS工具,可以画价格直方图如下:观察直方图,我们发现价格可能服从正态,因此,我们对价格进行One-Sample KS Test,检验结果如下:One-Sample Kolmogorov-Smirnov TestPN 80Normal Parameters a Mean 18.08Std. Deviation 8.068Most Extreme Differences Absolute .101Positive .101Negative -.051Kolmogorov-Smirnov Z .900Asymp. Sig. (2-tailed) .393a. Test distribution is Normal.K-S检验的原假设为价格有服从正态分布的可能,备择假设为价格没有服从正态分布的可能,观察结果可知,检验P值为0.393,大于显著性水平0.05,故没有充分理由拒绝原假设,即不排除价格有服从正态分布的可能,由于正态分布对称,所以平均价格可以代表80种产品的价格。
数据模型与决策课程案例分析
数据模型与决策课程案例一生产战略一、问题提出好身体公司(BFI)在长岛自由港工厂生产健身练习器械。
最近他们设计了两种针对家庭锻炼所广泛使用的举重机。
两种机器都是用了BFI专利技术,这种技术提供给使用者除了机器本身运动功能之外的一些其他额外的运动功能。
直到现在,这种功能也只有在很昂贵的、应用于理疗的举重机上才可以获得。
在最近的交易展销会上,举重机的现场演示引起了交易者浓厚的兴趣,实际上,BFI现在收到的订单数量已经超过了这个时期BFI的生产能力。
管理部门决定开始这两种器械的生产。
这两种器械分别被BFI 公司命名为BodyPlus100和BodyPlus200,由不同的原材料生产而成。
BodyPlus100由一个框架、一个压力装置、一个提升一下拉装置组成。
生产一个框架需要4小时机器制造和焊接时间,2小时喷涂和完工时间;每个压力装置需要2小时机器制造和焊接时间,1小时喷涂和完工时间,每个提升一下拉装置需要2小时机器制造和焊接时间,2小时喷涂和完工时间。
另外,每个BodyPlus100还需要2小时用来组装、测试和包装。
每个框架的原材料成本是450美元,每个压力装置的成本是300美元,每个提升一下拉装置是250美元。
包装成本大约是每单位50美元。
BodyPlus200包括一个框架、一个压力装置、一个提升一下拉装置和一个腿部拉伸装置。
生产一个框架需要5小时机器制造和焊接时间,4小时喷涂和完工时间;生产一个压力装置需要3小时机器制造和焊接时间,2小时喷涂和完工时间;生产每个提升一下拉装置需要2小时机器制造和焊接时间,2小时喷涂和完工时间,另外,每个BodyPlus200还需要2小时用来组装、测试和包装。
每个框架的原材料成本是650美元,每个压力装置的成本是400美元,每个提升一下拉装置是250美元,每个腿部拉伸装置的成本是200美元。
包装成本大约是每单位75美元。
页脚内容- 0 -在下一个生产周期,管理部门估计有600小时机器和焊接时间,450小时喷涂和完工时间,140小时组装、测试和包装时间是可用的。
《数据模型与决策》案例分析报告-劳动力安排
——数学模型与决策分析案例报告
1
分析报告内容
➢案例背景 ➢基本思路 ➢分析过程 ➢报表 ➢Excel运算过程
2
案例背景
戴维斯仪器公司在佐治亚州的亚特兰大有两家制造厂。每月的产品需求变化很
大,使戴维斯公司很难排定劳动力计划表。最近,戴维斯公司开始雇用由劳
工无限公司提供的临时工。该公司专长于为亚特兰大地区的公司提供临时工。
•将工作细分,每个员工培训的内容也按具体工作需求进行, 无需全面培训; •雇用已具备所需工作技能的员工,从而减少培训项目
13
分析过程
若雇用10名全职员工,工资及培训费用运算结果如下:
项目
月份 1月份 2月份 3月份 4月份 5月份 6月份 合计
雇用人数分配表
雇用一个月 雇用二个月 雇用三个月
人数
人数
雇用一个月人数为7人,雇用二个月的人数为3人,雇 用三个月人数为33人。
10
分析过程
当培训降低至700$/人时运算结果如下:
雇用人数分配表
项目 月份
雇用一个月 雇用二个月 雇用三个月 总雇用人
人数
人数
人数
数
1月份
10
0
0
10
2月份
23
0
0
23
3月份
19
0
0
19
4月份
26
0
0
26
5月份
20
0
20
6月份
人数
0
0
0
4
0
9
0
0
0
0
3
4
3
0
0
7
3
13
数据、模型与决策第十讲案例分析
二、农户种植计划的优化问题
设选择种植第一、第二、第三、第四、第五、第六种作物的
份数(1份对应于获得100元收入所需要的亩数)分别为x1、x2、 x3、x4、x5、x6,则可建立该问题的线性规划模型如下: 目标函数 max z =
100x1+100x2+100x3+100x4+100x5+100x6
四、产品结构优化问题
在以上技术状态约束下,经测算,提供给甲客户产品的单 套利润为48万元,提供给乙客户产品的单套利润为46万元 ,提供给丙客户产品的单套利润为36万元。
经生产能力平衡测算,各种部件产品的年生产能力上限分 别为:A1部件年产624个,A2部件年产920个,B1部件年 产412个,B2部件年产770个,B3部件年产350个。
约束条件 0.4x1 +0.2x3+0.18x4
≤10
0.3x1+0.25x2+0.15x3+0.1x4
≤8
0.4x3 +0.15x5+0.1x6≤5
x1,x2,x3,x4,x5,x6≥0
解得:
x1*=0,x2*=9.777778,x3*=0,x4*=55.55556,x5*=0,x6*=50。 全部的5亩水田都用来种植第六种作物;在旱地中拿出2.45
约束条件
x1
≤1
x1 + x2 ≤2.5
x1 + x2 + x3 ≤3.5
x1,x2,x3 ≥0
解得:x1*=1,x2*=1.5,x3*=1,z*=2.25。
显然,最优的选择是自然科学类选修课自修时间与当前自
修时间的比值为1.5,即下午和晚上各增加半个小时。三类
数据模型和决策决策分析
文档仅供参考,如有不当之处,请联系改正。
Bill 暑期打工决策
A
这是一种决策点
文档仅供参考,如有不当之处,请联系改正。
Bill 暑期打工决策
A
B 这是一种事件点
Bill 暑期打工决策 文档仅供参考,如有不当之处,请联系改文档仅供参考,如有不当之处,请联系改正。
教学目录
第一讲 第二章 第三章 第四章 第五章 第六章 第七章 第八章
决策分析 离散概率基础 连续概率分布及应用 统计抽样 仿真模拟 回归模型 线性优化与非线性优化 决策建模
文档仅供参考,如有不当之处,请联系改正。
第一讲 决策分析
在一种不拟定旳环境中,一名管理者所面临旳最 基本和最主要旳任务就是进行决策。
敏捷度分析就是研究最优决策稳定性 考虑下面旳与数据有关旳问题:
最优决策旳敏捷度分析 文档仅供参考,如有不当之处,请联系改正。
问题1:文妮沙企业提供给比尔夏季旳概率
我们主观上假设这个概率为0.6。显然,检验该概率旳变 化会怎样影响最优决策旳做法将是明智旳
问题2:比尔用于参加学校组织旳招聘计划 旳时间和努力旳成本
文档仅供参考,如有不当之处,请联系改正。
Bill 暑期打工决策
Bill比较纠结,因为从时间上考虑,Vanessa旳企业在 11月中旬之前不会讨论夏季工作机会旳问题,假如 拒绝John旳好意,Vanessa旳企业也未必一定录取他。
幸运旳是,除了前面提到旳两个机会外,Bill还有一 种机会,他能够参加斯隆学院举行旳一种夏季工作 征召计划(Corporate Summer Recruiting Program), 从中还能够找到工作,当然前提是他在前两个机会 中没有被接受(或他自己拒绝了它们)。这个计划 举行时间为来年1月或2月。
数据模型与决策案例分析
数据模型与决策案例分析数据模型是指对一些特定领域的数据进行抽象和建模的过程,用于描述数据之间的逻辑关系和操作。
在决策案例分析中,数据模型的作用是帮助分析人员更好地理解和分析决策案例中的数据,并通过对数据模型的建立和使用,提供决策支持和优化方案。
决策案例分析是指通过对已知的决策案例进行分析,并提取出其中的决策模式和经验,以供后续决策参考和借鉴。
数据模型在决策案例分析中的应用可以帮助分析人员更好地理解和把握决策案例中的数据特征和关系,为决策提供更准确和有效的依据。
一个典型的数据模型与决策案例分析的例子是在线销售平台的用户行为数据分析。
以电商平台为例,用户的行为数据包括浏览商品、加入购物车、下单购买等行为。
在分析这些数据时,可以建立一个用户行为数据模型,来描述用户行为数据之间的关系。
在用户行为数据模型中,可以包括用户属性、商品属性和行为属性等。
用户属性包括用户的地区、性别、年龄等基本信息,商品属性包括商品的价格、品牌、类别等信息,行为属性包括用户的浏览时间、购买时间、购买数量等信息。
通过对这些属性的建模和分析,可以得出一些有用的决策模式和经验,如哪些商品更受用户喜欢,哪些用户更容易购买等。
基于用户行为数据模型的分析结果,可以为决策提供一些有效的决策支持和优化方案。
比如可以通过分析用户行为模式,确定哪些商品可以进行重点推荐,提高用户购买率;可以通过分析用户购买模式,优化供应链管理,提高商品库存管理效率;还可以通过分析用户流失模式,制定用户留存策略,提高用户忠诚度。
总之,数据模型与决策案例分析的应用可以帮助分析人员更好地理解和分析决策案例中的数据,提供决策支持和优化方案。
在不同的领域和情境下,数据模型与决策案例分析的应用也有很大的差异,需要根据具体情况进行定制和优化。
但无论如何,数据模型与决策案例分析的应用都是提高决策质量和效率的重要手段之一,值得我们深入研究和应用。
数据,模型与决策案例分析
数据,模型与决策案例分析Kendall蟹虾经营公司这事发生在不久前。
马萨诸塞州坎布里奇市Kendall广场的Kendall蟹虾经营公司(KCL)夜间货运主管Jeff Daniels在他的办公室里焦虑地看着电视中的天气频道。
一场暴风雪迅速地沿大西洋海岸从北方直逼波士顿。
天气预报指出,有50%的可能暴风雪将在下午5:00左右到达波士顿地区,有50%的可能入海不会再来波士顿及北大西洋沿岸各地。
Jeff Daniels并不是Kendall广场唯一一个紧张地看天气频道的人。
因为波士顿的Logan国际航空港在暴风雪来临时也许不得不关闭。
许多商业运输也只得焦急地等待未来的天气信息。
从历史上看,这样巨大的暴风雪抵达波士顿的话,每五个中有一个会迫使Logan航空港在暴风雪期间关闭。
Kendall蟹虾经营公司Kendall蟹虾经营公司(KLC)1962年建于马萨诸塞州坎布里奇,是波士顿地区一家蟹虾批发运输公司。
到1985年,KLC大幅度消减了蟹的业务,扩大了虾的经营,包括对美国东北部的餐馆、华盛顿特区的顾客、缅因州Presque岛的夜间送货。
1995年,KCL年销售额达到2200万美元,雇员数超过100。
KCL认为它的成功在于为广大顾客服务,它致力于产品的快递市场化和广告化,希望普及到在一些特殊场合的菜单上都能有龙虾这一项。
KCL知道食品服务领域中任何行业成功的关键是为顾客服务,保持为顾客服务的出色声誉应是最优先考虑的事。
Jeff Daniels是MIT斯隆管理学院的学生时在KCL工作过,毕业后他成了KCL的员工。
他在公司里很快升到现在这个夜间货运主管职位,夜间货运在公司里是最重要的部门。
他知道有些最高层管理者正关注着他,他希望不久能得到进一步提升。
龙虾龙虾是一道极大众的菜。
这是因为它有极美的滋味,同时它引人注目的外形也十分漂亮地装点了每张餐桌。
人们总是以吃龙虾来庆祝一个特殊的时刻,吃过龙虾是幸运的和值得兴奋的。
此外,龙虾的烹调也极简单,只要将活的龙虾置于沸水中煮15分钟即可食用。
清华大学《数据模型与决策》DMD(孙静) - 课程精髓及案例分析流程
DMD课程精髓:1、从管理者的角度去分析问题,不要陷入数据处理中;2、数据分析需要和经验相匹配,数据为管理和决策提供服务。
3、东西方的差距从15世纪开始拉大:1)西方:开始使用阿拉伯数字;(理性-科学性)2)东方:仍然采用文字这种不精确的描述;(人性-灵活性)4、5大知识点:1)Decision Analysis(决策分析)➢决策树—回溯的方法使“复杂问题简单化”、提炼问题➢who、where、when、why、what、how2)Sampling(抽样)➢从个体抽样共性、得出普遍规律的方法论。
(自然科学中的哲学)➢“断章取义”导致统计学可以变化出完全不同的结果。
➢理论的结果是基于“随机”的抽样。
➢精确与粗燥的哲学:更加粗燥的t分布,得出的结果可能是更加精确的预测结果。
➢实际的生活中,人们往往对μ有预期,却对σ没有预期,导致了很多问题。
3)Simulaiton(仿真)➢减轻抽样需要投入的时间和经历,结果依赖于“可以信赖的假设”4)Regression(回归)➢回归反映的是量变因素,对于质变必须从管理上解释。
5)Optimization(优化)➢模型的准确性只对自变量范围内有意义。
DMD案例流程(供参考):一、案例背景:5W+1Hwhowhenwherewhat (要干什么)why (待分析的原始数据或者解决途径)how (怎样做,D.T)P25-规范的决策树key point:(---总体框架)➢有用的信息和数据(why);➢提炼问题(what:Unkown information and question);二、初步分析:根据决策树建模,即通常是分析框架、一个公式,或者一个目标key point:(清晰分析思路―注意不要陷在数据里,有些可能无解,但要写明原因。
)➢决策思路(D.T)说明是否做敏感性分析,是否另行设计决策树找出其他的解决办法,或从其他角度重新看这个问题-把复杂的问题分解成若干问题,简化问题;➢列出具体的分析思路和步骤;➢在思路基础上,找出相关需要的变量、函数和相互间的关系;例子:(最后一个书商案例)决策变量:P书Q页数Q印刷Q销售目标函数:∏=销售收入-总成本=P书×Q销售-f总成本(Q页数,Q印刷)约束:1 毛利率=1-直接成本/销售收入=1-g直接成本(Q页数,Q印刷)/(P书×Q印刷)>= 40%2 25<= P书<=353 Q销售<= Q印刷4 所有变量>=0P书―――需优化求解Q页数―――已知条件Q印刷―――需回归或仿真Q销售―――需回归或仿真f总成本(Q页数,Q印刷)―――需回归g直接成本(Q页数,Q印刷)―――需回归三、数据处理:key point:(根据初步分析思路,进行数据处理,找出可以符合管理者角度意愿的证据。
数据模型与决策案例分析
数据模型与决策案例分析数据模型是指对数据进行描述、组织和存储的一种结构化方法。
在现代企业管理中,数据模型的构建和分析对于决策制定和业务发展具有重要意义。
本文将从数据模型的概念入手,结合实际案例进行分析,探讨数据模型在决策案例中的应用。
首先,我们来介绍一下数据模型的基本概念。
数据模型是对现实世界中某一特定方面的抽象,它描述了数据的结构、特性、约束和操作。
数据模型可以分为概念模型、逻辑模型和物理模型三个层次。
概念模型描述了数据在业务领域中的含义和关系,逻辑模型描述了数据的逻辑结构和特性,物理模型描述了数据的存储方式和组织形式。
通过构建数据模型,我们可以更好地理解数据之间的关系,为决策提供支持。
接下来,我们将通过一个实际案例来说明数据模型在决策中的应用。
假设某电商企业需要对其销售数据进行分析,以制定下一阶段的营销策略。
首先,我们可以构建一个销售数据模型,包括产品信息、销售额、销售时间、客户信息等要素。
通过对这些数据进行建模分析,我们可以发现不同产品的销售额与销售时间之间存在一定的关联,某些客户的购买行为具有一定的规律性。
基于这些发现,企业可以针对不同产品的销售情况和客户的购买行为制定相应的营销策略,从而提高销售业绩。
在实际应用中,数据模型的构建和分析需要结合业务场景和具体问题,以达到更好地支持决策的目的。
同时,数据模型的建立也需要不断地进行优化和更新,以适应业务发展的需求。
通过数据模型的构建和分析,企业可以更好地理解数据,发现数据之间的关联和规律,从而为决策提供更有力的支持。
综上所述,数据模型在决策案例中具有重要的应用意义。
通过构建和分析数据模型,企业可以更好地理解数据,发现数据之间的关联和规律,为决策提供更有力的支持。
希望本文的内容能够对读者有所启发,促进数据模型在实际应用中的进一步发展和应用。
《数据模型与决策》案例分析报告劳动力安排
《数据模型与决策》案例分析报告劳动力安排在当今竞争激烈的商业环境中,企业的成功往往取决于其能否有效地管理和分配资源,而劳动力作为企业最重要的资源之一,其合理安排对于提高生产效率、降低成本和满足市场需求具有至关重要的意义。
本案例分析将聚焦于一家制造企业,通过运用数据模型和决策方法,探讨如何优化劳动力安排以实现企业的目标。
一、案例背景我们所研究的企业是一家生产电子产品的制造商,其产品种类繁多,生产流程复杂。
该企业面临着订单波动大、交货期紧以及劳动力成本不断上升等挑战。
为了应对这些问题,企业管理层决定借助数据模型和决策方法来优化劳动力安排,以提高生产效率和满足客户需求。
二、问题分析1、订单不确定性企业的订单数量和交付时间存在较大的不确定性,这导致劳动力需求难以准确预测。
有时订单突然增加,而劳动力不足,导致无法按时交付;有时订单减少,劳动力闲置,增加了成本。
2、技能差异企业的生产线上不同岗位需要不同的技能水平,而员工的技能水平存在差异。
如果劳动力安排不合理,可能会导致某些岗位技能不匹配,影响生产效率和产品质量。
3、工作时间限制由于法律法规和员工福利的要求,企业对员工的工作时间有严格的限制。
如何在有限的工作时间内合理安排劳动力,以完成生产任务,是一个需要解决的问题。
三、数据收集与处理为了解决上述问题,我们首先收集了企业过去一年的订单数据、生产工艺数据、员工技能数据以及工作时间数据等。
然后,对这些数据进行了清洗和预处理,以确保数据的准确性和可用性。
1、订单数据包括订单数量、订单金额、订单交付时间等。
通过对订单数据的分析,我们可以了解企业的生产需求趋势,以及不同时间段的订单波动情况。
2、生产工艺数据详细描述了每个产品的生产流程、所需的工序以及每个工序的标准工时。
这有助于我们计算生产每个订单所需的劳动力数量。
3、员工技能数据记录了员工的姓名、所在岗位、技能水平等信息。
通过对员工技能数据的分析,我们可以了解企业内部的人力资源状况,以及不同岗位的技能需求。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数据模型与决策分析案例授课教师:***
案例题目:操作员及临时工招聘/安排
考生姓名:朱凯亮
学号:
案例背景:
某外资公司在中国的惠州和廊坊有两家制造厂。
每月的产品需求变化很大使某外资公司很难排定劳动力计划表。
最近某外资公司开始雇用由人力资源中介公司提供的临时工。
该公司专长于为亚特兰大地区的公司提供临时工。
人力资源中介公司提供签署3种不同合同的临时工合同规定的雇用时间长短及费用各不相同。
三种选择如下:
合同期越长费用越高。
这是因为找到愿意长时间工作的临时工对人力资源中介公司更为困难。
在下6个月中某外资公司计划需要的额外员工数如下
每个月某外资公司可根据需要雇用能签署每种合同的员工。
例如若某外资公司1月份雇用了5名符合第二项选择的员工人力资源中介公司将为某外资公司提供5名员工均在1、2月份工作。
在这种情况下某外资公司将支付5×4 80024 000RMB。
由于进行中的某些合并谈判某外资公司不希望任何临时工的合同签到6月份以后。
某外资公司有一个质量控制项目并需要每名临时工在受雇的同时接受培训。
即使以前在某外资公司工作过该临时工也要接受培训。
某外资公司估计每雇用一名临时工培训费用为875RMB。
因此若一名临时工被雇用一个月某外资公司将支付875RMB的培训费但若该员工签了2个月或3个月,则不需要支付更多的培训费用。
需解决问题:
构造一个模型确定某外资公司每月应雇用的签署各种合同的员工数使达到计划目标的总花费最少。
确定你的报告中包括并且分析了以下几项内容
1、一份计划表其中描述了某外资公司每月应雇签各种合同的临时工总数。
2、一份总结表其中描述了某外资公司应雇签各种合同的临时工数、与每种选择相关的合同费用以及相关培训费。
给出合计数包括所雇用临时工总数、合同费用以及培训总费用。
3、若每个临时工的每月培训费降至700RMB雇用计划将受何影响请加以解释。
讨论减少培训费用的方法。
与基于875RMB培训费的雇用计划相比培训费将减少多少
4、假设某外资公司1月份雇用了10名全职员工以满足接下来6个月的部分劳工需求。
如果该公司可支付全职员工每人每小时16.5RMB其中包括附加福利与雇用临时工相比这对总工资和培训费用有何影响估计全职员工和临时员工大约每月工作160小时。
你对雇用额外的全职员工有何建议?
问题分析
某外资公司劳动力分配问题属于典型的线性规划问题
解决方案
确定目标函数采用线性模型求解
模型与使用工具
成本最小化模型/Excel中线性规划求解功能求解
目标函数
MinY=2000*Xi1+4800*Xi2+7500*Xi3+875(Xi1+Xi2+Xi3) Xi1:雇用一个月临时工数目
Xi2:雇用二个月临时工数目
Xi3:雇用三个月临时工数目
Y:总花费
决策变量为Xij
Xij:表示i月份雇用j个月临时工数
例如X12表示一月份雇用两个月临时工数目
约束条件
1)
X11+X12+X13=10
X12+X13+X21+X22+X23=23
X13+X22+X23+X31+X32+X33=19
X23+X32+X33+X41+X42+X43=26
X33+X42+X43+X51+X52=20
X43+X52+X61=14
2)
X i1=X11+X21+X31+X41+X51+X61
X j2= X12+X22+X32+X42+X52
X j3=X13+X23+X33+X43
3)
X ij≥0且为整数
当培训费用为RMB 875/人时运算结果如下:
结论:总费用Ymin=313525RMB
雇用一个月人数为7人,雇用二个月的人数为3人,雇用三个月人数为33人。
当培训降低至700RMB/人时运算结果如下:
总结:
1、总费用为302400比培训费用为875/人,减少11125
2、雇用的工种由原来雇用三个月工期临时工为主变为全部雇用一个月工期临时工。
因
为当培训费用降低时雇用两个或三个月所增加的工资比培训费还多故改为雇用一个月的临时工费用较低。
3、减少培训费用的方法有:
A.将工作细分每个员工培训的内容也按具体工作需求进行无需全面培训
B.雇用已具备所需工作技能的员工从而减少培训项目
若雇用10名全职员工工资及培训费用运算结果如下:
从计算结果可以看出,总费用会比全部雇用临时工少350,因为培训费用虽然可以减少8750,但是工资却增加 8400,所以在培训费用较高的情况下,多雇用全职员工可减少总费用;在培训费用较低的情况下,就尽量少雇用全职员工。
例如:当培训费用减少至 700时若雇用10名全职工总费用将增加 5000。
计划表
总结表
【下载本文档,可以自由复制内容或自由编辑修改内容,更多精彩文章,期待你的好评和关注,我将一如既往为您服务】。