《数值分析》课件
数值分析全册完整课件
解: 将 ex2 作Taylor展开后再积分
1 eБайду номын сангаас x2 dx
1
(1
x2
x4
x6
x8
... ) dx
0
0
2 ! 3! 4!
1 1 1 1 1 1 1 1 ... 3 2! 5 3! 7 4! 9
S4
R4
取 1 e
x
2
dx
0
S4
,
则
R4
1 1 4! 9
1 1 5! 11
...
值班军官对连长: 根据营长的命令,明晚8点哈雷彗星将 在操场上空出现。如果下雨的话,就让士兵穿着野战服列 队前往礼堂,这一罕见的现象将在那里出现。
连长对排长: 根据营长的命令,明晚8点,非凡的哈雷彗 星将身穿野战服在礼堂中出现。如果操场上下雨,营长将 下达另一个命令,这种命令每隔76年才会出现一次。
1.由实际问题应用有关知识和数学理论建立模型, -----应用数学任务
2.由数学模型提出求解的数值计算方法直到编程出结果, -----计算数学任务
计算方法是计算数学的一个主要部分,研究的即是后半 部分,将理论与计算相结合。
特点:
面向计算机,提供切实可行的算法; 有可靠的理论分析,能达到精度要求,保证近
计算方法
数值分析全册完整课件
教材和参考书
教材:
数值分析,电子科技大学应用数学学院,钟尔杰, 黄廷祝主编,高等教育出版社
参考书:
数值方法(MATLAB版)(第三版),John H. Mathews,Kurtis D. Fink 著,电子工业出版社;
数值分析(第四版),李庆扬,王能超,易大义编,清华 大学出版社;
数值分析课程课件 直接三角分解方法
u22
u11
u2n
l n1 l n2
1
unn
即
a11 a12 a 21 a22
a1n
a2n
u11 l21u11
u12 l21u12 u22
u1n
l21u1n
u2n
a n1 a n2
ann
ln1u 11
由(5.3.1)- (5.3.4)求得L和U后,解方程组Ax=b 化为求解LUx=b,若记Ux=y,则有Ly=b。于是可分两部解 方程组LUx=b,只要逐次向前代入的方法即可求得y。第
二步求解Ux=y,只要逐次用向后回代的方法即可求得x。 设 x=(x1 ,x2, ···xn) T, y=(y1, y2, ···yn) T,
n
i1
lniuin
unn
第四章方程组的直接解法
由A的第1行和第1列可计算出U的第1行和L的第1列,即
u1 j a1 j , j 1, 2, , n,
(5.3.1)
lk1
ak1 u11
,k
2, 3,
, n.
(5.3.2)
如果U的第1至k-1列和L的第1至k-1列已经算出,则由
解 设 A=LU,即
l11 a11 1, l21 a21 2, l31 a31 0
u12
a12 l11
2, u13
a13 l11
1,
l22 a22 l21u12 3, l32 a32 l31u12 1
数值分析学习课件
对任意 u ≠ 0 ∈ R n +1 ,必有 Φ u ≠ 0 。 则 u T B u = u T Φ T Φ u =|| Φ u || 2 > 0 2 若不然, 若不然,则 存在唯一解 ⇒ B为正定阵,则非奇异,所以法方程组存在唯一解。 为正定阵,则非奇异,所以法方程组存在唯一 n +1 存在一个 u ≠ 0 ∈ R 使得 Φ u = 0 … 即
则 (ϕ i , ϕ j ) =
∫
1 0
x i x j dx =
1 i + j+1
Hilbert阵! 阵
若能取函数族Φ={ ϕ0(x), ϕ1(x), … , ϕn(x), … }, , 两两( 使得任意一对ϕi(x)和ϕj(x)两两(带权)正交, 和 两两 带权)正交, 改进: 改进: 对角阵! 就化为对角阵 则 B 就化为对角阵! (ϕ k , y ) 这时直接可算出a 这时直接可算出 k = (ϕ k , ϕ k ) 正交多项式的构造: 正交多项式的构造: 多项式的构造 取为k 多项式,为简单起见, 将正交函数族中的ϕk 取为 阶多项式,为简单起见,可取 ϕk 的首项系数为 1 。
①
总体上尽可能小 尽可能小。 这时没必要取 P(xi) = yi , 而要使 P(xi) − yi 总体上尽可能小。 常见做法: 常见做法:
m
不可导, 不可导,求解困难
太复杂
使 max | P ( x i ) − y i | 最小 /* minimax problem */ 1≤ i ≤ m 使 ∑ | P ( x i ) − y i | 最小 使 ∑ | P ( x ) − y | 最小 /* Least-Squares method */ 定义 最佳平方逼近:即连续型 逼近,在 || f ||2 = 最佳平方逼近:即连续型L-S逼近 平方逼近 逼近,
数值分析课件
辛普森方法
一种基于矩形法思想的数值积分方法 ,适用于计算定积分。
自适应辛普森方法
一种基于辛普森方法和梯形法的自适 应数值积分方法,能够根据函数性质 自动选择合适的积分策略。
常微分方程的数值求解
01
欧拉方法
一种基于常微分方程初值 问题的数值求解方法,通 过逐步逼近的方式求解近 似解。
02
龙格-库塔方法
定积分是函数在区间上积分和的极限;不定积分是函数在 某个区间上的原函数。
02
应用领域
积分广泛应用于物理、工程、经济等领域,如求曲线下面 积、求解变速直线运动位移等。
03
数值计算方法
使用数值积分方法(如梯形法、辛普森法等)来近似计算 定积分和不定积分的值。这些方法将积分区间划分为若干 个小段,并使用已知的函数值和导数值来近似计算每个小 段的积分值,最后求和得到积分的近似值。
一种基于常微分方程初值 问题的数值求解方法,通 过构造龙格-库塔曲线来 逼近解。
03
阿达姆斯-图灵 方法
一种基于常微分方程初值 问题的数值求解方法,通 过构造阿达姆斯-图灵曲 线来逼近解。
04
自适应步长控制 方法
一种基于欧拉方法和龙格 -库塔方法的自适应步长 控制方法,能够根据误差 自动调整步长。
偏微分方程的数值求解
高斯消元法的步骤
1. 将方程组按照行进行排列,并将每个方程中的未知数 按照列排列。
2. 对于每个方程,选取一个未知数作为主元,并将其余 的未知数用主元表示。
3. 将主元所在的行与其他行进行交换,使得主元位于对 角线上。
4. 将主元所在的列中位于主元下方的元素消为0,从而得 到一个阶梯形矩阵。
线性方程组的解法
数值分析是一种工具,它可以帮助我 们更好地理解和解决实际问题,同时 也可以帮助我们更好地理解和应用数 学理论。
数值分析学习课件
§2.正交多项式
性质3. n次多项式 P (x)有n个互异实根,且全部(a, b)内。 n 性质4.设 P (x)的n个实根为x1 , x2 ,..., xn P + 1 (x) 的n+1 ,n n 个实根为 x1 , x2 ,..., xn1 ,则有
a x1 x1 x 2 x2 ...
{ j(x) = e kj x , ki kj } 对应指数多项式 /* exponential
polynomial */
§1.函数逼近的基本概念
定义 权函数:
①
离散型 /*discrete type */
根据一系列离散点 ( xi , yi ) (i 1, ... , n) 拟合时,在每一误
Pk(x)
kl kl
由 P0 1, P1 x 有递推 (k 1) Pk 1 (2k 1) xP kPk 1 k
k
0
1
2 3
P0 ( x) 1 P ( x) x 1
P2 ( x ) =
4
1 P3 ( x ) = (5 x3 - 3x) 2 1 P4 ( x ) = (35 x 4 - 30 x 2 + 3) 8
第三章
函数逼近
/* Approximation Theory */
第一讲
§1.函数逼近的基本概念
§2.正交多项式
§1.函数逼近的基本概念
已知 x1 … xm ; y1 … ym, 求一个简单易算的近 m 似函数 P(x) f(x) 使得 | P ( xi ) yi |2 最小。
i 1
已知 [a, b]上定义的 f(x),求一个简单易算的 b 近似函数 P(x) 使得 a [ P( x) f ( x)]2 dx 最小。
数值分析课件
n=20 需要运算 多少次?
➢ 存贮量 ➢ 逻辑结构
n=100?
§2 误差来源与误差分析的重要性
一、误差的来源与分类
➢ 从实际问题中抽象出数学模型—— 模型误差
例:质量为m的物体,在重力作用下,自由下落, 其下落距离s 与时间t 的关系是:
m
d 2s dt2
mg
其中 g 为重力加速度。
➢ 通过测量得到模型中参数的值—— 观测误差
S2 计算 D a11a22 a21a12
S3 如果 D 0
则输出原方程无解或有无穷多组解的信息;
否则 D 0
x1
a22b1 a12b2 D
S4 输出计算的结果
x1, x2
x2
a11b2 a21b1 D
开始
输入
a11, a12 , a21, a22 , b1 , b2
D=a11a22-a12a21
(1)如果 D 0,则令计算机计算
x1 b1a22 b2a12 D , x2 b2a11 b1a21 D
输出计算的结果x1,x2。
(2)如果D= 0,则或是无解,或有无穷多组解。
令 D a11a22 a21a12
通过求解过程,可以总结出算法步骤如下:
S1 输入 a11, a12, a21, a22,b1,b2
➢ 求近似解 —— 方法误差 (截断误差)
例如,当函数 f 用 xTaylor多项式
Pn x
f
0
f 0
x 1!
f 0 x2
2!
f (n) 0 xn
n!
近似代替时,数值方法的截断误差是
( 在 与x0之间)。
Rn x
f
x Pn x
数值分析课件 第一章 绪论
1 e 0 1 x n e 0 d I n x 1 e 0 1 x n e 1 d x e 1 1 ( ) I n n n 1 1
公式一:I n 1 e [ x n e x 1 0 n 0 1 x n 1 e x d x ] 1 n I n 1
I01 e 01exdx11 e0.63212 记为0I5 0* 6 此公式精确成
初始的小扰动 |E 0|0.51 0 8迅速积累,误差呈递增趋势。 造成这种情况的是不稳定的算法 /* unstable algorithm */ 我们有责任改变。
公式二: I n 1 n I n 1 I n 1 n 1 ( 1 I n )
方法:先估计一个IN ,再反推要求的In ( n << N )。 注 意在e此理(N 公论1 式上1)与等公价IN 式。一N 1 1
)
0 .0 6 6 8 7 0 2 2 0
I
12
1 (1 13
I
13
)
0 .0 7 1 7 7 9 2 1 4
I
11
1 (1 12
I
12
)
0 .0 7 7 3 5 1 7 3 2
I
10
1 11
(1
I
11
)
0 .0 8 3 8 7 7 1 1 5
I
1
1 2
(1
I
2
)
0 .3 6 7 8 7 9 4 4
0
2! 3! 4!
11/1e111 e1 x 2d1x11 1 3 2! 50 3! 7 4! 9
取 01ex2dxS4 ,
S4
R4 /* Remainder */
则 R 44 1 !1 9 由 留5 1 !下1 部1 分1 称为截断误差 /* Truncation Error */
数值分析-第一章ppt课件
数及其图形作出判断. 整理版课件
6
由分部积分法可得:
Ine101xndex
n=1,2,4,6, 8,10,15
e 1 x n ex|1 0 e 1 0 1 nn 1 x ex dx
1 nn 1 I (n 1 ,2 , ).
如果取 I0 = 1–e–1 = 0.63212056 (八位有效数字).
x1,2b
b24ac 2a
直接进行计算则得: x1=109, x2=0. 其中的x2=0明பைடு நூலகம்失真, 这也是由于舍入误差造成的.
整理版课件
8
§1 误差的来源
实际 问题
建立数 学模型
确定计 算方法
编程 上机
由抽象简 化产生的 模型误差 及参数的 观测误差
由计算方 法本身产 生的截断 误差或称 方法误差
er(x* )e(x x* )x xx*
同样, 由于精确值 x 经常是未知的, 所以, 需要另
外的近似表达形式. 我们注意如下公式的推导,
当
|
e ( x*) x*
|
较小时,
有
e(x* )e(x* )e(x*x )* (x)
x x*
xx*
[x*[ee((xx**))2]x] *1[e(exx(**x*)]2)
整理版课件
18
乘法相关的误差公式: 设 f (x1, x2)= x1 x2 . e ( x 1 x 2 ) x 2 e ( x 1 ) x 1 e ( x 2 ) e r ( x 1 x 2 ) e r ( x 1 ) e r ( x 2 ) |e ( x 1 x 2 ) | |e ( x 1 ) | |e ( x 2 ) | |e r ( x 1 x 2 ) | |e r ( x 1 ) | |e r ( x 2 ) |
数值分析全册完整课件
算法基本结构:顺序,分支,循环
算法描述:程序或流程图
常采用的处理方法:
构造性方法 离散化方法 递推化方法 迭代法 近似替代方法 以直代曲法 化整为零的处理方法 外推法
数学基础:
微积分的若干定理: 罗尔定理和微分中值定理; 介值定理及推论; 泰勒公式(一元、二元); 积分中值定理;
设y=f(x)为一元函数,自变量准确值x*,对应函数准确 值y*=f(x*),x误差为e(x),误差限为ε(x),函数近似值 误差e(y),误差限为ε(y)。则(可由Taylor公式推得)
( y) | f '(x) | (x)
r
(
y)
|
xf |f
'(x) (x) |
|
r
(
x)
对于多元函数 z f (x1, x2 ,, xn )
定义1.1 设x*为某一数据的准确值,x为x*的一个近 似值,称e(x)=x-x*(近似值-准确值)为近似值x的绝对 误差,简称误差。
e(x) 可正可负,当e(x) >0时近似值偏大,叫强近似值;当e(x) <0时近似值偏小,叫弱近似值。
由于x*通常无法确定,只能估计其绝对误差值 不超过某整数ε(x),即
设准确值
z* f (x1*, x2*,, xn* )
由多元函数Taylor公式,可得误差估计:
n
(z)
k 1
f xk
(xk )
相对误差限为:
r (z)
n k 1
xk
f xk
r (xk )
z
2. 算术运算的误差估计:
《数值分析教程》课件
一种适用于大规模计算的数值方法
详细描述
谱方法适用于大规模计算,通过将问题分解为较小的子问 题并利用多线程或分布式计算等技术进行并行计算,可以 有效地处理大规模的计算任务。
感谢您的观看
THANKS
具有简单、稳定和可靠的优点。
05
数值积分与微分
牛顿-莱布尼兹公式
要点一
总结词
牛顿-莱布尼兹公式是数值积分中的基本公式,用于计算定 积分。
要点二
详细描述
牛顿-莱布尼兹公式基于定积分的定义,通过选取一系列小 区间上的近似值,将定积分转化为一系列小矩形面积之和 ,从而实现了数值积分。
复化求积公式
总结词
算机实现各种算法,为各个领域的科学研究和技术开发提供了强有力的支持。
数值分析的应用领域
总结词
数值分析的应用领域非常广泛,包括科学计算、工程 、经济、金融、生物医学等。
详细描述
数值分析的应用领域非常广泛,几乎涵盖了所有的科学 和工程领域。在科学计算方面,数值分析用于模拟和预 测各种自然现象,如气候变化、生态系统和地球科学等 。在工程领域,数值分析用于解决各种复杂的工程问题 ,如航空航天、机械、土木和电子工程等。在经济和金 融领域,数值分析用于进行统计分析、预测和优化等。 在生物医学领域,数值分析用于图像处理、疾病诊断和 治疗等。总之,数值分析已经成为各个领域中不可或缺 的重要工具。
03
线性方程组的数值解法
高斯消去法
总结词
高斯消去法是一种直接求解线性方程组的方法,通过一系列 行变换将系数矩阵变为上三角矩阵,然后求解上三角方程组 得到解。
详细描述
高斯消去法的基本思想是将系数矩阵通过行变换化为上三角 矩阵,然后通过回带求解得到方程组的解。该方法具有较高 的稳定性和精度,适用于中小规模线性方程组的求解。
数值分析学习课件
n= 4
3π 5π 7π 9π , t 2 = cos , t 3 = cos , t 4 = cos 10 10 10 10 10 a+b b−a 1 x= t = ( t + 1) + 2 2 2 1 π 1 3π x0 = (cos + 1) ≈ 0.98 , x1 = (cos + 1) ≈ 0.79 2 10 2 10 1 5π 1 7π x2 = (cos + 1) ≈ 0.50 , x3 = (cos + 1) ≈ 0.21 2 10 2 10 1 9π x4 = (cos + 1) ≈ 0.02 为节点作L 以 x0, …, x4 为节点作 4(x) 2 10 , t1 = cos
Take it easy. It’s very Didn’t you say it’s anot so difficult if we consider difficult problem? polynomials only.
§1.最佳一致逼近 1.最佳一致逼近
最佳一致逼近多项式 /* optimal uniform approximating polynomial */ 的构造:求 n 阶多项式 Pn(x) 使得 || Pn − y ||∞ 最 的构造: 小。
第二讲
§1.最佳一致逼近 1.最佳一致逼近
§1.最佳一致逼近 1.最佳一致逼近
偏差
最佳一致逼近 最佳一致逼近 /* uniform approximation*/
意义下, 最小。 在 || f ||∞ = max | f ( x ) | 意义下,使得 || P − y ||∞ 最小。也称 为minimax problem。 。 偏差点。 若 P ( x0 ) − y( x0 ) = ± || P − y ||∞ ,则称 x0 为± 偏差点。
数值分析PPT
A为待定系数,利用导数条件 P3'(x1) m1 ,求出A, 但求出的 P3(x)通常为3次多项式,
一般情况下 P3(x) 也有可能为二次多项式,
原来方法更加准确。
(2)求余项: R(x)=f(x)-P3(x)
易知: x0, x2是R(x)的一重零点,x1 为R(x)的二重零点,
∴ R(x)可写为
多项式,则对任何 x a,b 有:
Rn (x)
f (n1) ( ) (n 1)!
Wn
1
(
x)
n
其中 Wn1(x) (x xi ), (a,b) ,且与x有关。 i0
证明:考虑插值节点上有 Rn (xi ) 0 (i 0,1,,n)
∴ 这些节点是 Rn (x) 的零点,
可设 Rn (x) k(x) Wn1(x)
∴ K(x) 1 f 4 ( )
4!
∴插值余项为R(x) =
1 4!
f
4 (
)(x
x0
)(x
x1 )2
(x
x2
)
在插值区间内与x有关.
4.5 埃尔米特插值(Hermite 法国数学家)
有时插值函数不仅要求在节点上与原函数相同,还要求 其导数的值与原函数的值相同,即要求
H2n+1(xi)=f (xi), H’2n+1(xi)=f ’(xi) i=0、1、…、n
1 i k lk (xi ) 0 i k
n
则插值多项式为: Ln (x) yi li (x) i0
lk (x) 构造过程:
上式表明:n 个点 x0 , x1, xk1, xk1, xn 都是 lk (x) 的零点。
lk (x) Ak (x x0 )(x x1) (x xk1)(x xk1) (x xn )
数值分析原理课件第一章
第一章 绪 论本章以误差为主线,介绍了计算方法课程的特点,并概略描述了与算法相关的基本概念,如收敛性、稳定性,其次给出了误差的度量方法以及误差的传播规律,最后,结合数值实验指出了算法设计时应注意的问题.§1.1 引 言计算方法以科学与工程等领域所建立的数学模型为求解对象,目的是在有限的时间段内利用有限的计算工具计算出模型的有效解答。
由于科学与工程问题的多样性和复杂性,所建立的数学模型也是各种各样的、复杂的. 复杂性表现在如下几个方面:求解系统的规模很大,多种因素之间的非线性耦合,海量的数据处理等等,这样就使得在其它课程中学到的分析求解方法因计算量庞大而不能得到计算结果,且更多的复杂数学模型没有分析求解方法. 这门课程则是针对从各种各样的数学模型中抽象出或转化出的典型问题,介绍有效的串行求解算法,它们包括(1)非线性方程的近似求解方法;(2)线性代数方程组的求解方法;(3)函数的插值近似和数据的拟合近似;(4)积分和微分的近似计算方法;(5)常微分方程初值问题的数值解法;(6)优化问题的近似解法;等等从如上内容可以看出,计算方法的显著特点之一是“近似”. 之所以要进行近似计算,这与我们使用的工具、追求的目标、以及参与计算的数据来源等因素有关.计算机只能处理有限数据,只能区分、存储有限信息,而实数包含有无穷多个数据,这样,当把原始数据、中间数据、以及最终计算结果用机器数表示时就不可避免的引入了误差,称之为舍入误差.我们需要在有限的时间段内得到运算结果,就需要将无穷的计算过程截断,从而产生截断误差. 如的计算是无穷过程,当用作为的 +++=!21!111e !1!21!111n e n ++++= e 近似时,则需要进行有限过程的计算,但产生了截断误差.e e n - 当用计算机计算时,因为舍入误差的存在,我们也只能得到的近似值,也就是n e n e *e 说最终用近似,该近似值既包含有舍入误差,也包含有截断误差.*e e 当参与计算的原始数据是从仪器中观测得来时,也不可避免得有观测误差.由于这些误差的大量存在,我们得到的只能是近似结果,进而对这些结果的“可靠性”进行分析就是必须的,它成为计算方法的第二个显著特点. 可靠性分析包括原问题的适定性和算法的收敛性、稳定性.所谓适定性问题是指解存在、惟一,且解对原始数据具有连续依赖性的问题. 对于非适定问题的求解,通常需要作特殊的预处理,然后才能做数值计算. 在这里,如无特殊说明,都是对适定的问题进行求解.对于给定的算法,若有限步内得不到精确解,则需研究其收敛性. 收敛性是研究当允许计算时间越来越长时,是否能够得到越来越可靠的结果,也就是研究截断误差是否能够趋于零.对于给定的算法,稳定性分析是指随着计算过程的逐步向前推进,研究观测误差、舍入对于同一类模型问题的求解算法可能不止一种,常希望从中选出高效可靠的求解算法. 如我国南宋时期著名的数学家秦九韶就提出求n 次多项式值0111a x a x a x a n n nn ++++-- 的如下快速算法;n a s =; k n a t -=t sx s +=),,2,1(n k =它通过n 次乘法和n 次加法就计算出了任意n 次多项式的值. 再如幂函数可以通过如下64x 快速算法计算出其值;x s =;循环6次s s s ⋅=如上算法仅用了6次乘法运算,就得到运算结果.算法最终需要在计算机上运行相应程序,才能得到结果,这样就要关注算法的时间复杂度(计算机运行程序所需时间的度量)、空间复杂度(程序、数据对存储空间需求的度量)和逻辑复杂度(关联程序的开发周期、可维护性以及可扩展性). 事实上,每一种算法都有自己的局限性和优点,仅仅理论分析是很不够的,大量的实际计算也非常重要,结合理论分析以及相当的数值算例结果才有可能选择出适合自己关心问题的有效求解算法. 也正因如此,只有理论分析结合实际计算才能真正把握准算法.§1.2 误差的度量与传播一、误差的度量误差的度量方式有绝对误差、相对误差和有效数字.定义1.1 用作为量的近似,则称为近似值的绝对误差.*x x )(:**x e x x =-*x 由于量x 的真值通常未知,所以绝对误差不能依据定义求得,但根据测量工具或计算情况,可以估计出绝对误差绝对值的一个较小上界,即有ε (1.1)ε≤-=x x x e **)(称正数为近似值的绝对误差限,简称误差. 这样得到不等式ε*x εε+≤≤-**x x x 工程中常用ε±=*x x 表示近似值的精度或真值x 所在的范围.*x 误差是有量纲的,所以仅误差数值的大小不足以刻划近似的准确程度. 如量 (1.2)m m cm s μ50001230000005.023.15.0123±=±=±=为此,我们需要引入相对误差定义1.2 用作为量的近似,称为近似值的相对误差. 当0*≠x x )(:**x e xxx r =-*x 是x 的较好近似时,也可以用如下公式计算相对误差*x (1.3)***)(xx x x e r -= 显然,相对误差是一个无量纲量,它不随使用单位变化. 如式(1.2)中的量s 的近似,无论使用何种单位,它的相对误差都是同一个值.同样地,因为量x 的真值未知,我们需要引入近似值的相对误差限,它是相*x )(*x r ε对误差绝对值的较小上界. 结合式(1.1)和(1.3),相对误差限可通过绝对误差限除以近似*x 值的绝对值得到,即(1.4)***)()(xx x r εε=为给出近似数的一种表示法,使之既能表示其大小,又能体现其精确程度,需引入有效数字以及有效数的概念.定义1.3 设量的近似值有如下标准形式x *x p n ma a a a x 21*.010⨯±= (1.5)()pm p n m n m m a a a a ----⨯++⨯++⨯+⨯±101010102211 =其中且,m 为近似值的量级. 如果使不等式}9,,1,0{}{1 ⊂=pi i a 01≠a (1.6)n m x x -⨯≤-1021*成立的最大整数为n ,则称近似值具有n 位有效数字,它们分别是、、… 和 . *x 1a 2a n a 特别地,如果有,即最后一位数字也是有效数字,则称是有效数.p n =*x 从定义可以看出,近似数是有效数的充分必要条件是末位数字所在位置的单位一半是绝对误差限. 利用该定义也可以证明,对真值进行“四舍五入”得到的是有效数. 对于有效数,有效数字的位数等于从第一位非零数字开始算起,该近似数具有的位数. 注意,不能给有效数的末位之后随意添加零,否则就改变了它的精度.例1.1 设量,其近似值,,. 试回答这三个近π=x 141.3*1=x 142.3*2=x 722*3=x 似值分别有几位有效数字,它们是有效数吗?解 这三个近似值的量级,因为有1=m 312*110211021005.000059.0--⨯=⨯=≤=- x x 413*2102110210005.00004.0--⨯=⨯=≤=- x x571428571428.3*3=x 312*310211021005.0001.0--⨯=⨯=≤=- x x 所以和都有3位有效数字,但不是有效数. 具有4位有效数字,是有效数.*1x *3x *2x 二、误差的传播这里仅介绍初值误差传播,即假设自变量带有误差,函数值的计算不引入新的误差. 对于函数有近似值,利用在点处),,,(21n x x x f y =),,,(**2*1*n x x x f y =),,,(**2*1n x x x 的泰勒公式(Taylor Formula),可以得到 )(),,,()(*1**2*1**i i ni n i x x x x xf y y y e -≈-=∑=(1.7))(),,,(*1**2*1i ni n i x e x x xf ∑== 其中,是的近似值,是的绝对误差. 式(1.7)表明函ii x f f ∂∂=:*i x i x )(*i x e *i x ),,2,1(n i =数值的绝对误差近似等于自变量绝对误差的线性组合,组合系数为相应的偏导数值. 从式(1.7)也可以推得如下函数值的相对误差传播近似计算公式 (1.8))(),,,()(***1**2*1*i r i ni ni r x e yx x x x f y e ∑=≈对于一元函数,从式(1.7)和(1.8)可得到如下初值误差传播近似计算公式)(x f y = (1.9))()()(***x e x f y e '≈ (1.10))()()(*****x e yx x f y e r r '≈式(1.9)表明,当导数值的绝对值很大时,即使自变量的绝对误差比较小,函数值的绝对误差也可能很大.例1.2 试建立函数的绝对误差(限)、相对误差n n x x x x x x f y +++== 2121),,,(的近似传播公式,以及时的相对误差限传播公式.{}ni i x 1*0=> 解 由公式(1.7)和(1.8)可分别推得和的绝对误差、相对误差传播公式如下(1.11)∑∑==≈ni i ini nix e x e x x xf y e 1**1**2*1*)()(),,,()(= (1.12)∑∑==≈ni i r i i r i ni ni r x e yx x e y x x x x f y e 1******1**2*1*)()(),,,()(= 进而有∑∑∑===≤≤≈ni i n i ini ix x e xe y e 1*1*1**)()()()(ε于是有和的绝对误差限近似传播公式 ∑=≈ni ixy 1**)()(εε当时,由式(1.3)推得相对误差限的近似传播公式{}ni i x 1*=>)(max )(max )(max )()()(*11***11***11****1**i r ni ni i ir n i ni i i r n i ni i r i ni ir x yx x yx x x y x yxy εεεεεε≤≤=≤≤=≤≤====≤=≈∑∑∑∑ 例1.3使用足够长且最小刻度为1mm 的尺子,量得某桌面长的近似值3.1304*=a mm ,宽的近似值mm (数据的最后一位均为估计值). 试求桌子面积近似值的绝8.704*=b 对误差限和相对误差限.解 长和宽的近似值的最后一位都是估计位,尺子的最小刻度是毫米,故有误差限 mm ,mm 5.0)(*=a ε5.0)(*=b ε面积,由式(1.7)得到近似值的绝对误差近似为ab S =***b a S = )()()(*****b e a a e b S e +≈进而有绝对误差限 mm 255.10045.03.13045.08.704)()()(*****=⨯+⨯=+≈b a a b S εεε相对误差限 %11.00011.08.7043.130455.1004)()(***=≈⨯=≈S S S r εε§1.3 数值实验与算法性能比较本节通过几个简单算例说明解决同一个问题可以有不同的算法,但算法的性能并不完全相同,他们各自有自己的适用范围,并进而指出算法设计时应该注意的事项. 算例1.1 表达式,在计算过程中保留7位有效数字,研究对不同)1(1111+=+-x x x x 的x ,两种计算公式的计算精度的差异.说明1:Matlab 软件采用IEEE 规定的双精度浮点系统,即64位浮点系统,其中尾数占52位,阶码占10位,尾数以及阶码的符号各占1位. 机器数的相对误差限(机器精度)eps=2-52≈2.220446×10-16,能够表示的数的绝对值在区间(2.2250739×10-308,1.797693×10308)内,该区间内的数能够近似表达,但有舍入误差,能够保留至少15位有效数字. 其原理可参阅参考文献[2, 4].分析算法1: 和算法2: 的误差时,精确解用双精111)(1+-=x x x y )1(1)(2+=x x x y 度的计算结果代替. 我们选取点集中的点作为x ,比较两种方法误差的差异.301}{=i i π 从图1.1可以看出,当x 不是很大时,两种算法的精度相当,但当x 很大时算法2的精度明显高于算法1. 这是因为,当x 很大时,和是相近数,用算法1进行计算时出x 111+x 现相近数相减,相同的有效数字相减后变成零,于是有效数字位数急剧减少,自然相对误差增大. 这一事实也可以从误差传播公式(1.12)分析出. 鉴于此,算法设计时,应该避免相近数相减.在图1.2中我们给出了当x 接近时,两种算法的精度比较,其中变量x 依次取为1-. 从图中可以看出两种方法的相对误差基本上都为,因而二者的精度相当.{}3011=--i iπ710-图1.1 算例1.1中两种算法的相对误差图()+∞→x图1.2 算例1.1中两种算法的精度比较)1(-→x 算例1.2 试用不同位数的浮点数系统求解如下线性方程组⎩⎨⎧=+=+2321200001.02121x x x x 说明2:浮点数系统中的加减法在运算时,首先按较大的阶对齐,其次对尾数实施相应的加减法运算,最后规范化存入计算机.算法1 首先用第一个方程乘以适当的系数加至第二个方程,使得第二个方程的的系1x 数为零,这时可解出;其次将带入第一个方程,进而求得(在第三章中称该方法为高2x 2x 1x 斯消元法). 当用4位和7位尾数的浮点运算实现该算法,分别记之为算法1a 和算法1b . 算法 2 首先交换两个方程的位置,其次按算法1计算未知数 (第三章中称其为选主元的高斯消元法). 当用4位和7位尾数的浮点运算实现该算法,分别记之为算法2a 和算法2b .方程组的精确解为, ,用不同的算法计算出的...25000187.01=x ...49999874.02=x 结果见表1.1.表1.1 对算例1.2用不同算法的计算结果比较算例1.2*1x )(*1x r ε*2x )(*2x r ε算法1a 0.00000.10×1010.50000.25×10-7算法2a 0.25000.75×10-70.50000.25×10-7算法1b 0.26000000.40×10-10.49999870.10×10-6算法2b0.25000200.50×10-80.50000000.25×10-7对于算例1.2,表中的数据表明,当用4位尾数计算时,算法1给出错误的结果,算法2则给出解很好的近似. 这是因为在实现算法1时,需要给第一个方程乘以加00001.0/2-至第二个方程,从而削去第二个方程中的系数,但在计算的系数时需做如下运算1x 2x(1.13)661610000003.0104.0103.0104.03200001.02⨯⨯⨯⨯=+⨯+=-+--对上式用4位尾数进行计算,其结果为. 因为舍入误差,给相对较大的数加以6104.0⨯-相对较小的数时,出现大数“吃掉”小数的现象. 计算右端项时,需做如下运算(1.14)661610000002.0102.0102.0102.02100001.02⨯⨯⨯⨯=+⨯+=-+--同样出现了大数吃小数现象,其结果为. 这样,得到的变形方程组6102.0⨯-⎩⎨⎧⨯-=⨯-⨯=⨯+⨯62612114102.0104.0101.0102.0101.0x x x 中没有原方程组中第二个方程的信息,因而其解远偏离于原方程组的解. 该算法中之所以出现较大数的原因是因为运算,因而算法设计中尽可能避免用绝对值较大的数00001.0/2-除以绝对值较小的数. 其实当分子的量级远远大于分母的量级时,除法运算还会导致溢出,计算机终止运行.虽从单纯的一步计算来看,大数吃掉小数,只是精度有所损失,但多次的大数吃小数,累计起来可能带来巨大的误差,甚至导致错误. 例如在算法1a 中出现了两次大数吃小数现象,带来严重的后果. 因而尽可能避免大数吃小数的出现在算法设计中也是非常必要的. 当用较多的尾数位数进行计算,舍入误差减小,算法1和2的结果都有所改善,算法1的改进幅度更大些.算例1.3 计算积分有递推公式,已知⎰+=1055dx x x I n ),2,1(511 =-=-n I nI n n . 采用IEEE 双精度浮点数,分别用如下两种算法计算的近似值.56ln 0=I 30I算法1 取的近似值为,按递推公式计算0I 6793950.18232155*0=I *1*51--=n n I nI *30I 算法2 因为,取的近似值为)139(5156)139(611039103939+⨯=<<=+⨯⎰⎰dx x I dx x 39I ,按递推公式计算3333330.004583332001240121*39≈⎪⎭⎫ ⎝⎛+=I ⎪⎭⎫ ⎝⎛-=-**1151n n I n I *30I 算法1和算法2 的计算结果见表1.2. 误差绝对值的对数图见图1.3.表1.2 算例1.3的计算结果算法1算法2n *nI n n I I -*n *nI nn I I -*18.8392e-002 1.9429e-01639 4.5833e-0033.9959e-0042 5.8039e-0029.8532e-016384.2115e-0037.9919e-0053 4.3139e-002 4.9197e-01537 4.4209e-003 1.5984e-0054 3.4306e-002 2.4605e-01436 4.5212e-003 3.1967e-0065 2.8468e-002 1.2304e-01335 4.6513e-003 6.3935e-0076 2.4325e-002 6.1520e-01334 4.7840e-003 1.2787e-007………33 4.9255e-003 2.5574e-00825 1.1740e+001 1.1734e+00132 5.0755e-003 5.1148e-00926-5.8664e+001 5.8670e+00131 5.2349e-003 1.0230e-00927 2.9336e+002 2.9335e+002 305.4046e-003 2.0459e-01028-1.4667e+003 1.4668e+003 297.3338e+0037.3338e+003 30-3.6669e+004 3.6669e+004图1.3 算例1.3用不同算法计算结果的误差绝对值的对数图从表1.2中的计算结果可以看出,算法1随着计算过程的推进,绝对误差几乎不断地以5的倍数增长,即有0*02*221*1*555I I I I I I I I n n n n n n n -≈≈-≈-≈----- 成立. 对于逐步向前推进的算法,若随着过程的进行,相对误差在不断增长,导致产生不可靠的结果,这种算法称之为数值不稳定的算法. 对于算法1绝对误差按5的幂次增长,但真值的绝对值却在不断变小且小于1,相对误差增长的速度快于5的幂次,导致产生错误的结果,因而算法1数值不稳定,不能使用. 而算法2随着计算过程的推进,绝对误差几乎不断地缩小为上一步的1/5,即有m m n m n n n n n n n I I I I I I I I 5/5/5/*22*21*1*++++++-≈≈-≈-≈- 成立. 绝对误差不断变小,真值的绝对值随着过程向前推进却在变大,这样相对误差也越来越小,这样的方法称之为数值稳定的算法. 算法1和算法2的误差对数示意图见图1.3. 这个算例告诉我们应该选用数值稳定的算法.知识结构图⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧⎩⎨⎧算法设计要点数值方法的稳定性数值方法的收敛性算法多元函数一元函数传播有效数字相对误差(限)绝对误差(限)度量截断误差舍入误差误差的产生误差误差与算法习题一1 已知有效数,,. 试给出各个近似值的绝对误105.3*1-=x 4*210125.0⨯=x 010.0*3=x 差限和相对误差限,并指出它们各有几位有效数字.2 证明当近似值是x 的较好近似时,计算相对误差的计算公式和相差一个*x x x x -***xxx -和同阶的无穷小量.2*⎪⎪⎭⎫⎝⎛-x x x 3 设x 的近似值具有如式(1.5)的表示形式,试证明*x 1)若具有n 位有效数字,则相对误差;*x n r a x e -⨯≤11*1021)(2)若相对误差,则至少具有n 位有效数字.n r a x e -⨯+≤11*10)1(21)(*x 4 试建立二元算术运算的绝对误差限传播近似计算公式.5 试建立如下表达式的相对误差限近似传播公式,并针对第1题中数据,求下列各近似值的相对误差限.1) ; 2) ; 3) *3*2*1*1x x x y +=3*2*2x y =*3*2*3/x x y =6若例题1.3中使用的尺子长度是80mm ,最小刻度为1mm ,量得某桌面长的近似值mm ,宽的近似值mm . 试估计桌子长度、宽度的绝对误差限,并3.1304*=a 8.704*=b 求用该近似数据计算出的桌子面积的绝对误差限和相对误差限.7 改变如下计算公式,使其计算结果更为精确.1) 且0,cos 1≠-x xx1<<x 2)1,1ln )1ln()1(ln 1>>--++=⎰+N N N N N xdx N N3) 1,133>>-+x x x 8 (数值试验)试通过分析和数值试验两种手段,比较如下三种计算近似值算法的可靠性.1-e 算法1 ;∑=--≈mn nn e 01!)1( 算法2 ;101!1-=-⎪⎭⎫ ⎝⎛≈∑m n n e算法3 ;101)!(1-=-⎪⎪⎭⎫ ⎝⎛-≈∑m n n m e9 (数值试验)设某应用问题归结为如下递推计算公式 ,,72.280=y 251-=-n n y y,2,1=n 在计算时取为具有5位有效数字的有效数. 试分析近似计算公式的2*c **1*5c y y n n -=-绝对误差传播以及相对误差传播情况,并通过数值实验验证 (准确值可以用IEEE 双精度浮点运算结果代替),该算法可靠可用吗?。
《数值分析》》课件
遗传算法
模拟生物进化过程的搜索算法,通过优胜略汰 的方式找到最优解。
模拟退火法
模拟金属退火过程的搜索算法,通过随机性和 温度控制来逼近最优解。
粒子群优化
模拟粒子群行为的算法,通过粒子之间的合作 和个体经验找到最优解。
截断误差
使用有限项进行级数展开时未考虑所有无穷项导致的误差。
舍入误差
由于数学运算符的近似计算和截取,导致了计算结果与真实结果之间的差距。
插值和拟合方法
插值和拟合方法是数值分析中常用的技术,用于根据已知数据点推导出未知数据点的值或找到拟合曲线或曲面。
插值方法
利用已知数据点之间的关系推导出处于数据点之间 位置的值。
2 物理学
求解量子力学方程、天体力学模拟和粒子物 理实验结果分析。
3 金融
风险评估、期权定价和投资组合优化。
4 医学
数值模拟手术、疾病预测和药物研发。
数值分析的历史和趋势
数值分析起源于古代文明对数学问题的解决方案。如今,随着计算机技术进步,数值分析在各个领域的 应用呈指数级增长。
1
古代
古埃及的巴比伦人使用分段直线插值法求解方程。
《数值分析》PPT课件
本课程介绍《数值分析》的学习目标,定义和应用领域。深入探讨数值分析 的历史、发展和误差分析。了解插值和拟合方法,数值微积分和数值积分。
数值分析的应用价值
数值分析在工程、物理学、金融等领域扮演着重要角色。通过数值模拟和优化算法,我们能够解决复杂问题并 做出准确的预测。
1 工程
计算结构力学、流体力学和电磁场分析,优 化设计和仿真。
2
20世纪
计算机的发明使数值分析成为可能,并发展了更高精度和快速的算法。
数值分析学习课件
三次样条插值
例:已知函数y=f(x)的数表如下表所示。 已知函数y=f(x)的数表如下表所示。 y=f(x)的数表如下表所示 x f(x)
0 1
0.15
0.30
0.45
0.60
0.97800 0.91743 0.83160 0.73529
求满足边界条件
s′(0) = 0, s′(0.60) = −0.64879
已知端点二阶导数
s′′( x0 ) = f ′′( x0 ) = M 0 s′′( xn ) = f ′′( xn ) = M n
当M 0 = M n = 0 为自然边界条件 已知周期边界条件
s ( x0 ) = s ( xn ) s′( x0 + 0) = s′( x0 − 0) s′′( x = 0) = s′′( x − 0) n n
则称 s ( x ) 为区间[a, b] 对应于划分∆ 的三次样条函数。 的三次样条函数。
三次样条插值
设三次样条函数s(x) 在每个子区间[xj−1, xj ]上有表达式
s(x) = sj (x) = aj x3 + bj x2 + cj x + d j x ∈(xj−1, xj ), j =1,2...n
三次样条插值
利用三弯矩阵构造三次样条插值函数 令 S ′′( xi ) = M i (i = 0,1, 2,...n) 因为S ( x) 在[ xi , xi +1 ] 在 上是三次多项式, 上是三次多项式,所以 S ′′( x)
xi +1 − x x − xi + M i +1 hi hi
[ xi , xi +1 ] 上是线性函数, 上是线性函数,故有
数值分析全套课件
Ln n si n
ˆ L2n (4L2n Ln ) / 3
n L error 192 3.1414524 1.4e-004 384 3.1415576 3.5e-005 3.1415926 4.6e-010
3/16
通信卫星覆盖地球面积
将地球考虑成一 个球体, 设R为地 球半径,h为卫星 高度,D为覆盖面 在切痕平面上的 投影(积分区域)
( x1 x2 ) | x1 | ( x2 ) | x2 | ( x1 )
15/16
例3.二次方程 x2 – 16 x + 1 = 0, 取
求 x1 8 63 使具有4位有效数
63 7.937
解:直接计算 x1≈8 – 7.937 = 0.063
( x1 ) (8) (7.937) 0.0005
5/16
误差的有关概念
假设某一数据的准确值为 x*,其近似值 为 x,则称
e(x)= x - x*
为 x 的绝对误差 而称
e( x) x x er ( x ) , x x
*
( x 0)
为 x 的相对误差
6/16
如果存在一个适当小的正数ε
,使得
e( x) x x
计算出的x1 具有两位有效数
1 0.062747 修改算法 x1 8 63 15.937 4位有效数 (15.937) 0.0005 ( x1 ) 0.000005 2 2 (15.937) (15.937)
16/16
1
参考文献
[1]李庆扬 关治 白峰杉, 数值计算原理(清华) [2]蔡大用 白峰杉, 现代科学计算 [3]蔡大用, 数值分析与实验学习指导 [4]孙志忠,计算方法典型例题分析 [5]车刚明等, 数值分析典型题解析(西北工大) [6]David Kincaid,数值分析(第三版) [7] John H. Mathews,数值方法(MATLAB版)
数值分析第一章PPT课件
= f ’( )(x* x)
x* 与 x 非常接近时,可认为 f ’( ) f ’(x*) ,则有:
|e*(y)| | f ’(x*)|·|e*(x)|
即:x*产生的误差经过 f 作用后被放大/缩小了| f ’(x*)| 倍。故称| f ’(x*)|为放大因子 /* amplification factor */ 或 绝对条件数 /* absolute condition number */.
r* (x ) ln x * r* (y )
11 0n1lnx*0.1% 2a1
n4
.
10
1.3 避免误差危害的若干原则
算法的数值稳定性
用一个算法进行计算,如果初始数据误差在计算中 传播使计算结果的误差增长很快,这个算法就是数值不 稳定的.
.
11
1.3 避免误差危害的若干原则
病态问题与条件数
Cp
x f (x) f (x)
x nxn1 xn
n,
它表示相对误差可能放大 n倍.
如 n10,有 f(1 ) 1 ,f(1 .0)2 1 .2,4 若取 x 1, x*1.02, 自变量相对误差为 2% ,函数值相对误差为 24%, 这时问题可以认为是病态的.
一般情况下,条件数
Cp
10就认为是病态,
εr*21 a11 0n10.0 0% 1
已知 a1 = 3,则从以上不等式可解得 n > 6 log6,即
n 6,应取 * = 3.14159。
.
8
1.2 数值计算的误差
问题:对于y = f (x),若用x* 取代x,将对y 产生什么影响?
分析:e*(y) = f (x*) f (x)
e*(x) = x* x
数值分析学习课件
所以有
π π 1 3 π = 0.258768616 H3 ( ) = + − 12 48 4 96
sin (12 ) =0.258819045
方法2 方法2: 直接用待定系数法求解: 直接用待定系数法求解:
π
由 f (0) = 0,f ( ) =
6
π
1 2
,可有 y = L1 ( x ) =
3
3
H 3 ( x) =
2
f ( 4 ) (ξ x ) R3 ( x ) = f ( x ) − P3 ( x ) = K ( x )( x − x0 )( x − x1 ) ( x − x 2 ), K ( x ) = 4!
可解。 又: h1’(x1) = 1 ⇒ C1 可解。
一般地, 一般地,已知 x0 , …, xn 处有 y0 , …, yn 和 y0’ , …, yn’ ,求 H2n+1(x) 满足 H2n+1(xi) = yi , H’2n+1(xi) = yi’。 。 解:设 H2n+1( x ) = Σ yi hi ( x ) + Σ yi’ h i ( x )
∧
(x − xj ) ( xi − x j )
一 可解A 由余下条件 hi(xi) = 1 和 hi’(xi) = 0 可解 i 和 Bi ⇒
hi ( x ) = [1 − 2l i′( xi )( x − xi )] l i2 ( x )
∧ ∧
hi (x) 有根 x0 , …, xn, 除了xi 外都是 重根 ⇒ hi( x) = Ci ( x − xi ) li2(x) 外都是2重根
一致
易证: 记 h = max | xi +1 − xi | ,易证:当 h → 0 时,P1h ( x ) → f ( x ) 失去了原函数的光滑性。 失去了原函数的光滑性。 缺点:I(x)连续,但不光滑,精度较低, 缺点:I(x)连续,但不光滑,精度较低,仅在 连续
《数值分析》ppt课件
7.
er
a b
er
(a)
er
(b)
30
例4
ε(p)
设有三个近似数
p ≈ 6.6332
≈0.02585
a=2.31,b=1.93,c=2.24
它们都有三位有效数字,试计算p=a+bc,e ( p)和e r ( p) 并问:p的计算结果能有几位有效数字?
2位
例5
设f (x, y) cos y , x 1.30 0.005, y 0.871 0.0005. x
er
e x
x x x
.
由于精确值 x 未知, 实际上总把
e x
作为x*的
相对误差,并且仍记为er , 即
er
e x
.
❖定义 近似值 x* 的相对误差上限(界) (relative accuracy)
εr
|
ε x
|.
注:相对误差一般用百分比表示.
17
例1 用最小刻度为毫米的卡尺测量直杆甲和直杆
注:理论上讲,e 是唯一确定的, 可能取正, 也可能取负.
e > 0 不唯一,当然 e 越小越具有参考价值。
15
提问:绝对误差限的大小能否完全地 表示近似值的好坏? 例如:有两个量
x 10 1 , y 1000 5
思考
问:谁的近似程度要好一些?
16
❖定义 近似值 x* 的相对误差 (relative error)
a 2.18
e r(b) e (b) 0.00005 0.0024%
b 2.1200
19
➢有效数字 ( significant digits)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.
e a
b
a e (b) b e (a)
, b2
b0
设a,b 分别是准确值x,y 的近似值,则
4.
er
(a
b)
e (a)
a
e (b)
b
5.
er
(a
b)
e (a)
a
e (b)
b
6. e r (ab) e r (a) e r (b)
7.
er
a b
er
(a)
er
(b)
例4
ε(p)
设有三个近似数
p ≈ 6.6332
≈0.02585
a=2.31,b=1.93,c=2.24
它们都有三位有效数字,试计算p=a+bc,e ( p)和e r ( p) 并问:p的计算结果能有几位有效数字?
2位
例5
设f (x, y) cos y , x 1.30 0.005, y 0.871 0.0005. x
➢截断误差
求解数学模型所用的数值计算方法,如果是一种 近似的方法,只能得到模型的近似解,由此产生 的误差称为截断误差或方法误差。
➢舍入误差
由于计算机的字长有限,参加运算的数据及其 运算结果在计算机中存放会产生误差。这种误 差叫舍入误差或计算误差。
例如 在 16 位微机上计算,单精度实数存放仅有 7 位有效数字。在其上运算,会有 1 3 0.333 333 3, (1.000 002)2 1.000 004 0, 后者的准确结果是 4 1012。
分析 x x *
= f '( )(x x *)
x* 与 x 非常接近时,可认为 f '( ) f '(x*) ,则有:
|e(y)| | f '(x*)|·|e(x)|
(1)
e ( y) f ' (x*) e (x)
(2)
即:x*产生的误差经过 f 作用后被放大/缩小了| f '(x*)|
注: 1、同一个准确值的不同近似值,有效数字 越多,其绝对误差和相对误差都越小.
2、准确值的有效数字可看做有无限多位.
例 3.1415926535897932 ; * 3.1416
问: * 有几位有效数字?请证明你的结论。
证明:
0.31416 101 and 0.5104 0.51015 有 5 位有效数字 , 精确到小数点后第 4 位。
经过四舍五入而得到的近似值,
问: e(a),e(b),e r(a),er(b) 各是多少?
解: e (a) 0.005 , e (b) 0.000 05 e r(a) e (a) 0.005 0.23%,
a 2.18
e r(b) e (b) 0.00005 0.0024%
b 2.1200
例:近似计算 1 ex2 dx = 0.747… … 0
解法之01一e大:x2 d家将x 一1e/1起x0e12作(1猜13T?axy212l!or01展215xe4!开x312后!dx3!x6再71积x4!分481!119
)
dx
取
1
e
x
2
dx
0
S4
,
S4
R4 ( Remainder )
倍。故称| f '(x*)|为放大因子 ( amplification factor ) 或
绝对条件数 ( absolute condition number ).
| er ( y) |
e( y) f (x*)
f (x) f (x*) x * x x * x x * f (x*) x *
e x x 其中 x 为精确值,x* 为 x 的近似值。|e|的上界
记为e , 称为绝对误差限 (accuracy),工程上常记为
x = x* ± e .
例如: 1 ex2 dx 0.743 0.006 0
注:理论上讲,e 是唯一确定的, 可能取正, 也可能取负.
e > 0 不唯一,当然 e 越小越具有参考价值。
x * f (x*) f (x*)
er (x)
| er (x) |
e(x) x*
相对误差条件数
( relative condition number)
f 的条件数在某一点是小\大,则称 f 在该点是好条件的 ( well-conditioned ) \坏条件的 ( ill-conditioned )。
s0
s1
sn
n
p(x) ai xi i0
算法二(秦九韶法)
Tn an Tk xTk1 ak , (k n 1, n 2, ,1, 0) p(x) T0
秦九韶法原理
p(x) an xn an1xn1 a2 x2 a1x a0 =(an xn1 an1xn2 a2 x1 a1)x a0
= (an xn2 an1xn3 a2 x0 )x a1 x a0
❖定义算法的计算复杂性 是指在达到给定精度时, 该算法所需的计算量和所占的内存空间. 前者叫时 间复杂性,后者叫空间复杂性.
例子 计算下面多项式的值。输入数据为ai和x, 输出数据为 p(x) 的值。
n
p(x) ai xi i0
算法一
s0 a0
sk
ak xk
, (k
1, 2,
, n)
p(x)
数值分析
理学院
刘秀娟
第1章 绪论
§1.1 数值分析的研究对象
提问:数值分析是做什么用的?
数值分析是近代数学的一个重要分支,它是研究 各种数学问题的数值解法,包括方法的构造和求 解过程的理论分析。
在电子计算机成为数值计算的主要工具之后,则 要求研究适合于计算机使用的数值计算方法,为 了更好地说明数值分析的研究对象,我们考察用 计算机解决科学计算问题时经历的几个过程:
➢有效数字 ( significant digits)
❖四舍五入带来的绝对误差限
凡是由准确值 x 经四舍五入而得到近似值 x*,其绝对误差 限等于该近似值末位的半个单位。
❖定义 有效数字
设 x* 是数 x 的近似值,如果 x* 的绝对误差限是它的某一 位的半个单位,并且从该位到它的第一位非零数字共有 n 位,则称用 x* 近似 x 时,具有 n 位有效数字。
实际长度 x 和 y 在什么范围内?
解: e (a) e (b) 0.5mm , e r(a) e (a) 0.5 0.16%,
a 312
e r(b) e (b) 0.5 2.08%,
b 24
311.5mm x 312.5mm, 23.5mm y 24.5mm
例2 设 a=-2.18 , b=2.1200 是分别由准确值x和y
1、采用“构造性”方法; 2、采用“离散化”方法; 3、采用“递推化”方法; 4、采用“近似代替”方法等等。
• 研究内容
线性方程组的数值解 矩阵特征值与特征向量计算 非线性方程的数值解 数值逼近 数值积分 常微、偏微的数值解
• 研究方法
理论分析 算法分析 误差分析 收敛性分析 收敛速度
例如
y 5x 6 sin x8, 0 x 106
是实际问题的解,而若数学模型的解是
y 5x 6, 0 x 106, 由此产生的误差叫作模型误差。
➢观测误差
数学模型中包含某些变量,如时间、长度、电压 等,它们一般是通过观测来获得。由于观测得到 的数据与实际数据之间有误差,这种误差叫观测 误差。
—— 观测误差 ( Measurement Error )
➢ 求近似解 —— 方法误差 (截断误差 ( Truncation Error ) )
➢ 机器字长有限 —— 舍入误差 ( Roundoff Error )
➢模型误差
处理实际问题时,要建立数学模型,通常模型只 是近似的。由此产生的数学模型解与实际问题的 解 之间的误差叫模型误差。
如果有f ' (a) f '' (a) f (k1) (a), f (k ) (a) 0, 则有
e( y) f (k ) (a) [e(a)]k
(3)
k!
f (k) (a)
e (y)
[e (a)]k
(4)
k!
问题二:对于n 元函数 u f (x1, x2 ,, xn ), ai是xi的近似值 , 用a将i 代对替uxi产,生什么影响?
提问:绝对误差限的大小能否完全地 表示近似值的好坏?
例如:有两个量
x 10 1 , y 1000 5
思考
问:谁的近似程度要好一些?
❖定义 近似值 x* 的相对误差 (relative error)
er
e x
x x x
.
由于精确值 x 未知, 实际上总把
e x
作为x*的
相对误差,并且仍记为er , 即
§1.2 误差知识与算法知识
1.2.1 误差的来源与分类
在工程技术的计算中,估计计算结 果的精确度是十分重要的工作,而影响 精确度的是各种各样的误差。误差的来 源是复杂的,但主要有以下四种:
➢ 从实际问题中抽象出数学模型
—— 模型误差 ( Modeling Error )
➢ 通过测量得到模型中参数的值
➢有效数字的确定方法
用科学计数法,记
x* 0.a1a2 an 10m (其中 a1 0 ), 若| x x* | 0.510mn (即 an 的截取按四舍五入规则),
则 x* 至少有n 位有效数字,且精确到10mn.
有效数字的位数 n = 近似数科学记数法的幂指 数-绝对误差限科学记数法的幂指数.
注:1、由准确值经过四舍五入得到的近似值,从它的末位 数字到第一位非零数字都是有效数字。 2、0.2300有4位有效数字,而0.23只有2位有效数字。 12300有5位有效数字,如果写成0.123105,则表示只有 3位有效数字。 数字末尾的0不可随意省去!