考研数学难度以及复习技巧
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
考研数学难度以及复习技巧
第1题考察的是极限的知识,相信大家都能拿到分数。
第2题考察我们对函数的极值点求解的掌握情况,多元函数极值。
第3题是讨论函数的性质。总体来说,选择题难度不大,没有难题,大家应该把基础题拿到分。
第10题是,考了差分方程有重根的情况。
第11题考察了经济学应用,记住公式了也不是很难。
第12题考察了全微分形式,这种题型前几年也出现过。
第15题考察的是极限问题,对于变限积分,先做变换做进行处理。
第16题是二重积分的问题,这种题目在做的时候一定要先划出
积分区域,再加上计算的时候细心一点,也不会丢分。
第17题是定积分定义,转换成分部积分。
18、19相对来说难度要大一些。
整个数学的命题我认为有以下三个特点:
第一,整体的难度相对去年来讲都有下降;
第二,没有太多复杂的、大规模的计算,主要考查的都是一些平常强调过的基本概念、基本方法;
第三,题型的重复性相当高,75%以上的题型都是以前考过的,
所以凡是好好研究过前几年真题的同学应该都是没有问题的。
一、梳理基本知识点,理顺知识点间的联系
经历了冲刺阶段大量题型的练习,同学们在做题方法和技巧上都有所提高,但是却忽略一些基本概念、定义、公式等,在这些基本
题目上丢分。这期间同学们一定把基本知识点掌握牢固,并且梳理好知识点,理顺知识点间的联系。这样做基本题和综合题目时,才能立马想到用到的知识点和方法,做起题来才能得心应手。
二、按时按计划完成真题,总结常考题型的方法和技巧
真题是最有价值的练习题。同学们做每套题时,尽量按照考试的要求,在规定的时间内完成题目,然后核对答案,估算分数。务必把不会做的题目单独拿出来弄懂,并把没掌握好的一类题目重点复习一下,对应地再做几道题目加深记忆。做完每套题,一定要总结常考题型的方法和技巧,这样才能在遇到类似题目时泰然自若。
三、巩固重点题型,做好最后的查缺补漏工作
数学三天不做题,就会没有手感。后期,同学们每天一定要定量做一些题目保持手感,可以把之前没有掌握牢固的重点题型拿出来巩固,一旦发现薄弱环节,马上弥补,不要因为觉得困难而放弃。保持稳定的情绪和良好的心态,做好最后的查缺补漏工作。
四、注意饮食,合理休息,将生物钟调整到考试的状态
最后这段时间身体和心理上都会忍受极大的折磨,同学们一定要注意饮食,合理休息,不要搞疲劳战,尤其是考前几天熬夜突击,这样往往会适得其反。同学们调理好生物钟,将做题的时间安排调整到跟考试一致,这样才能使自己是身心状态在考场上达到最佳。经过了一年艰辛的努力,这十几天只需要保持平和的心态,积极应战考试,不骄傲自满,不自卑放弃,不去想成败得失,坚持到底才能取得佳绩。
高等数学
1.函数在一点处极限存在,连续,可导,可微之间关系。对于一元函数函数连续是函数极限存在的充分条件。若函数在某点连续,则该函数在该点必有极限。若函数在某点不连续,则该函数在该点不一定无极限。若函数在某点可导,则函数在该点一定连续。但是如果函数不可导,不能推出函数在该点一定不连续,可导与可微等
价。而对于二元函数,只能又可微推连续和可导(偏导都存在),其
余都不成立。
2.基本初等函数与初等函数的连续性:基本初等函数在其定义域内是连续的,而初等函数在其定义区间上是连续的。
3.极值点,拐点。驻点与极值点的关系:在一元函数中,驻点可能是极值点,也可能不是极值点,而函数的极值点必是函数的驻点
或导数不存在的点。注意极值点和拐点的定义一充、二充、和必要
条件。
4.夹逼定理和用定积分定义求极限。这两种方法都可以用来求和式极限,注意方法的选择。还有夹逼定理的应用,特别是无穷小量
与有界量之积仍是无穷小量。
5.可导是对定义域内的点而言的,处处可导则存在导函数,只要一个函数在定义域内某一点不可导,那么就不存在导函数,即使该
函数在其它各处均可导。
6.泰勒中值定理的应用,可用于计算极限以及证明。
7.比较积分的大小。定积分比较定理的应用(常用画图法),多重积分的比较,特别注意第二类曲线积分,曲面积分不可直接比较大小。
8.抽象型的多元函数求导,反函数求导(高阶),参数方程的二阶导,以及与变限积分函数结合的求导
9.广义积分和级数的敛散性的判断。
10.介值定理和零点定理的应用。关键在于观察和变换所要证明
等式的形式,构造辅助函数。
11.保号性。极限的性质中最重要的就是保号性,注意保号性的
两种形式以及成立的条件。
12.第二类曲线积分和第二类曲面积分。在求解的过程中一般会
使用格林公式和高斯公式,大部分同学都会把精力关注在是否闭合,
偏导是否连续上,而忘记了第三个条件——方向,要引起注意。线
性代数
1、行列式的计算。行列式直接考察的概率不高,但行列式是线
代的工具,判定系数矩阵为方阵的线性方程组解的情况及特征值的
计算都会用到行列式的计算,故要引起重视。
2、矩阵的变换。矩阵是线代的研究对象,线性方程组、特征值
与特征向量、相似对角化,二次型,其实都是在研究矩阵。一定要
注意在化阶梯型时只能对矩阵做行变换,不可做列变换变换。
3、向量和秩。向量和秩比较抽象,也是线代学习的重点和难点,研究线性方程组解的情况其实就是在研究系数矩阵的秩,也是在研
究把系数矩阵按列分块得到的向量组的秩。
4、线性方程组的解。线性方程组是每年的必看知识点,要熟练
掌握线性方程组解的结构问题,核心是理解基础解系,要能够掌握
具体方程组的数列方法,更要能熟练解决抽象型方程组,一般会转
化为系数矩阵的秩或者基础解,然后解决问题。
5、特征值与特征向量。特征值与特征向量起到承前启后的作用,一特征值对应的特征向量其实就是其对应矩阵作为系数矩阵的齐次
线性方程组的基础解系,其重要应用就是相似对角化及正交相似对
角化,是后面二次型的基础。
6、相似对角化,包括相似对角化及正交相似对角化。要会判断
是否可以相似对角化,及正交相似对角化时,怎么施密特正交化和
单位化。
7、二次型。二次型是线代的一个综合型章节,会用到前面的很
多知识。要熟练掌握用正交变换化二次型为标准型,二次型正定的
判定,及惯性指数。
8、矩阵等价及向量组等价的充要条件,矩阵等价,相似,合同
的条件。
概率论与数理统计