2020年全俄数学奥林匹克第三阶段 (十年级)

合集下载

2020年中国数学奥林匹克试题和详细解答word版

2020年中国数学奥林匹克试题和详细解答word版

2020年中国数学奥林匹克试题和详细解答word 版一、给定锐角三角形PBC ,PC PB ≠.设A ,D 分不是边PB ,PC 上的点,连接AC ,BD ,相交于点O. 过点O 分不作OE ⊥AB ,OF ⊥CD ,垂足分不为E ,F ,线段BC ,AD 的中点分不为M ,N .〔1〕假设A ,B ,C ,D 四点共圆,求证:EM FN EN FM ⋅=⋅;〔2〕假设 EM FN EN FM ⋅=⋅,是否一定有A ,B ,C ,D 四点共圆?证明你的结论.解〔1〕设Q ,R 分不是OB ,OC 的中点,连接EQ ,MQ ,FR ,MR ,那么11,22EQ OB RM MQ OC RF ====,又OQMR 是平行四边形,因此OQM ORM ∠=∠,由题设A ,B ,C ,D 四点共圆,因此ABD ACD ∠=∠,因此 图1 22EQO ABD ACD FRO ∠=∠=∠=∠,因此 EQM EQO OQM FRO ORM FRM ∠=∠+∠=∠+∠=∠, 故 EQM MRF ∆≅∆, 因此 EM =FM , 同理可得 EN =FN , 因此 EM FN EN FM ⋅=⋅.〔2〕答案是否定的.当AD ∥BC 时,由于B C ∠≠∠,因此A ,B ,C ,D 四点不共圆,但现在仍旧有EM FN EN FM ⋅=⋅,证明如下:如图2所示,设S ,Q 分不是OA ,OB 的中点,连接ES ,EQ ,MQ ,NS ,那么11,22NS OD EQ OB ==,CB因此NS ODEQ OB=.①又11,22ES OA MQ OC==,因此ES OAMQ OC=.②而AD∥BC,因此OA ODOC OB=,③由①,②,③得NS ES EQ MQ=.因为2NSE NSA ASE AOD AOE∠=∠+∠=∠+∠,()(1802) EQM MQO OQE AOE EOB EOB∠=∠+∠=∠+∠+︒-∠(180)2AOE EOB AOD AOE=∠+︒-∠=∠+∠,即NSE EQM∠=∠,因此NSE∆~EQM∆,故EN SE OAEM QM OC==〔由②〕.同理可得,FN OAFM OC=,因此EN FN EM FM=,从而EM FN EN FM⋅=⋅.CB二、求所有的素数对〔p ,q 〕,使得q p pq 55+.解:假设pq |2,不妨设2=p ,那么q q 55|22+,故255|+q q .由Fermat 小定理, 55|-q q ,得30|q ,即5,3,2=q .易验证素数对)2,2(不合要求,)3,2(,)5,2(合乎要求.假设pq 为奇数且pq |5,不妨设5=p ,那么q q 55|55+,故6255|1+-q q . 当5=q 时素数对)5,5(合乎要求,当5≠q 时,由Fermat 小定理有15|1--q q ,故626|q .由于q 为奇素数,而626的奇素因子只有313,因此313=q .经检验素数对)313,5(合乎要求.假设q p ,都不等于2和5,那么有1155|--+q p pq ,故)(m od 05511p q p ≡+--. ①由Fermat 小定理,得 )(m od 151p p ≡- , ② 故由①,②得)(m od 151p q -≡-. ③设)12(21-=-r p k ,)12(21-=-s q l , 其中s r l k ,,,为正整数. 假设l k ≤,那么由②,③易知)(mod 1)1()5(5)5(1112121)12)(12(2)12(21)12(2p r r q s r s p s lkl kl -≡-≡==≡=----------,这与2≠p 矛盾!因此l k >.同理有l k <,矛盾!即现在不存在合乎要求的),(q p . 综上所述,所有满足题目要求的素数对),(q p 为)3,2(,)2,3(,)5,2(,)2,5(,)5,5(,)313,5(及)5,313(.三、设m ,n 是给定的整数,n m <<4,1221+n A A A 是一个正2n +1边形,{}1221,,,+=n A A A P .求顶点属于P 且恰有两个内角是锐角的凸m 边形的个数.解 先证一个引理:顶点在P 中的凸m 边形至多有两个锐角,且有两个锐角时,这两个锐角必相邻.事实上,设那个凸m 边形为m P P P 21,只考虑至少有一个锐角的情形,现在不妨设221π<∠P P P m ,那么)13(2122-≤≤>∠-=∠m j P P P P P P m m j ππ,更有)13(211-≤≤>∠+-m j P P P j j j π.而321P P P ∠+11P P P m m -∠>π,故其中至多一个为锐角,这就证明了引理. 由引理知,假设凸m 边形中恰有两个内角是锐角,那么它们对应的顶点相邻. 在凸m 边形中,设顶点i A 与j A 为两个相邻顶点,且在这两个顶点处的内角均为锐角.设i A 与j A 的劣弧上包含了P 的r 条边〔n r ≤≤1〕,如此的),(j i 在r 固定时恰有12+n 对.〔1〕 假设凸m 边形的其余2-m 个顶点全在劣弧j i A A 上,而j i A A 劣弧上有1-r 个P 中的点,现在那个2-m 顶点的取法数为21--m r C .〔2〕 假设凸m 边形的其余2-m 个顶点全在优弧j i A A 上,取i A ,j A 的对径点i B ,j B ,由于凸m 边形在顶点i A ,j A 处的内角为锐角,因此,其余的2-m 个顶点全在劣弧j i B B 上,而劣弧j i B B 上恰有r 个P 中的点,现在那个2-m 顶点的取法数为2-m r C .因此,满足题设的凸m 边形的个数为))()()(12()12()()12(11111111121211221∑∑∑∑∑==--+---=-=--=----+-+=⎪⎭⎫⎝⎛++=++nr nr m rm r m r m r n r m r n r m r nr m rm r C C C C n C C n CCn))(12(111--+++=m nm n C C n .四、给定整数3≥n ,实数n a a a ,,,21 满足 1m in 1=-≤<≤j i nj i a a .求∑=nk k a 13的最小值.解 不妨设n a a a <<< 21,那么对n k ≤≤1,有k n a a a a k k n k n k 2111-+≥-≥++-+-,因此()∑∑=-+=+=nk kn knk ka a a13131321()()()∑=-+-+-+⎪⎭⎫ ⎝⎛++-+=n k k n k kn k k n k a a a a a a 121211414321 ()∑∑==-+-+≥+≥n k nk kn k k n a a 13131218181. 当n 为奇数时,222113313)1(412221-=⋅⋅=-+∑∑-==n i k n n i nk . 当n 为偶数时,32113)12(221∑∑==-=-+n i nk i kn⎪⎪⎪⎭⎫ ⎝⎛-=∑∑==21313)2(2ni n j i j)2(4122-=n n . 因此,当n 为奇数时,2213)1(321-≥∑=n a nk k,当n 为偶数时,)2(3212213-≥∑=n n a nk k ,等号均在n i n i a i ,,2,1,21=+-=时成立. 因此,∑=nk k a 13的最小值为22)1(321-n 〔n 为奇数〕,或者)2(32122-n n 〔n 为偶数〕.五、凸n 边形P 中的每条边和每条对角线都被染为n 种颜色中的一种颜色.咨询:对如何样的n ,存在一种染色方式,使得关于这n 种颜色中的任何3种不同颜色,都能找到一个三角形,其顶点为多边形P 的顶点,且它的3条边分不被染为这3种颜色? 解 当n 3≥为奇数时,存在合乎要求的染法;当n 4≥为偶数时,不存在所述的染法。

第44届俄罗斯数学奥林匹克(十、十一年级)

第44届俄罗斯数学奥林匹克(十、十一年级)
1+^iH
3.同十年级第3题.
4.i5=4C的情况可由对称性得出结论.
不妨设AC>AB.
在圆尸上选取一点Z,使得四边形尸胃为等腰梯形.
贝IJZ聊=z娜=Z:厦=Zc似,.
类似地,
这表明,耶//a4',ZiV/G4'.
于是,以0为中心,把线段变为线段
C5的位似变换把变为A氺Cif.
从而,点〇(即点S)在U上.
戈=1009对称,艮P
f(x)=f(2 018x).
故其在区间(a,2019]上根的个数
与区间[1,+?)上根的个数相等,即也有一
37
个根.
从而,方程①共有两个根.
2.设/为线段SC的中垂线.
如图1,注意
到,/经过点兄记
Y为点4关于Z的
对称点.
显然,点1在
圆厂上,且由对称
性知
AM//BC//MN.
由于点/>与图1
6.同九年级第6题.
7.同九年级第8题.
8.游戏板分为左右两部分.在每一部分中均有一些方格,方格之间连有一些线段,每一条线段均连接两个属于不同部分的方格?从任意一个方格均可以沿着线段到达任意一个其他的方格.开始时,在左部的一个方格里
放有一枚紫色的跳棋棋子,而在右部的一个方格里放有一枚青色的跳棋棋子.廖沙与芭莎轮流进行,芭莎先开始.每一步,游戏者均沿着一条线段将自己的棋子(芭莎是紫色的,廖沙是青色的)移动到一个空着的方格里.在此不允许出现已经出现过的场景(即相同的场景是指紫色的棋子位于相同的方格里,青色的棋子亦然).谁不能继续进行自己
8.—开始,在2 018x2018棋盘的左下
角和右下角方格里各有一枚棋子马,分别为红马和蓝马.科良和萨沙轮流移动自己的棋子,科良持红马,萨沙持蓝马,科良先开始.每一次移动均将棋子在一个坐标上移动20个格同时在另个坐标上移动17个格,棋子不能移动到已经被另枚棋子所占据的格,且不允许出现已经出现过的场景(若红 马处于同个位置,蓝马亦处于同一个位置,则称两个场景相同).谁不能继续进行自己的步骤即为输.问:在正确的玩法下,谁有取胜策略?

恒等式证明

恒等式证明

初一数学竞赛系列讲座(7)有关恒等式的证明一、知识要点恒等式的证明分为一般恒等式的证明和条件恒等式证明,对于一般恒等式的证明,常常通过恒等变形从一边证到另一边,或证两边都等于同一个数或式。

在恒等变形过程中,除了要掌握一些基本方法外,还应注意应用一些变形技巧,如:整体处理、“1”的代换等;对于条件恒等式的证明,如何处理好条件等式是关键,要认真分析条件等式的结构特征,以及它和要证明的恒等式之间的关系。

二、例题精讲例1 求证:a 1+(1-a 1)a 2+(1-a 1)(1-a 2)a 3+…+(1-a 1)(1-a 2)…(1-a n-1)a n=1-(1-a 1)(1-a 2)…(1-a n-1)(1-a n )分析:要证等式成立,只要证明1- a 1- (1-a 1)a 2- (1-a 1)(1-a 2)a 3 -…- (1-a 1)(1-a 2)…(1-a n-1)a n =(1-a 1)(1-a 2)…(1-a n-1)(1-a n )证明:1- a 1- (1-a 1)a 2- (1-a 1)(1-a 2)a 3 -…- (1-a 1)(1-a 2)…(1-a n-1)a n=(1-a 1)[ 1- a 2- (1-a 2)a 3- (1-a 2)(1-a 3)a 4 -…- (1-a 2)(1-a 3)…(1-a n-1)a n ]=(1-a 1) (1-a 2)[ 1- a 3- (1-a 3)a 4- (1-a 3)(1-a 4)a 5 -…- (1-a 3)(1-a 4)…(1-a n-1)a n ]=(1-a 1) (1-a 2) (1-a 3)[ 1- a 4- (1-a 4)a 5- (1-a 4)(1-a 5)a 6 -…- (1-a 4)(1-a 5)…(1-a n-1)a n ]=……=(1-a 1)(1-a 2)…(1-a n-1)(1-a n )∴ 原等式成立例2 证明恒等式()()()()()()11322321121132322121a a a a a a a a a a a a a a a a a a a a a a a a n n n n ++++++=++++++ (第二十届全俄数学奥林匹克九年级试题)证明评注:裂项是恒等变形中常用的一种方法()()()()()()11322321121322211113232121132322121111111111111a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a n n n n n n n ++++++=⎪⎪⎭⎫ ⎝⎛+-++⎪⎪⎭⎫ ⎝⎛+-+⎪⎪⎭⎫ ⎝⎛+-=⎪⎪⎭⎫ ⎝⎛+-++⎪⎪⎭⎫ ⎝⎛+-+⎪⎪⎭⎫ ⎝⎛+-=++++++例3 若abc=1,求证1111=++++++++c ca c b bc b a ab a 分析:所要求证的等式的左边是三个分母差异很大的式子,因而变形比较困难。

一元二次方程的整数根

一元二次方程的整数根
综上所述,当 k 值为 3,6,7,9,15时方程的解都是整数。
例 2 (2000 年全国初中数学联赛试题)设关于 x 的二次方程 (k2-6k+8)﹒x2+(2k2-6k-4)x+k2=4
的两根都是整数.求满足条件的所有实数 k 的值.
分析 此题也可通过直接求根法求出二根,但是它的条件与例 1 不同,例 1
况。 解 若 k=6, 则 x=-2; 若 k=9, 则 x=3;
若 k≠6 且 k≠9,原方程可化为 [(k-6)x-9][(k-9)x-6] = 0 ,故方程的二
根为 x1= k 9 6 ,x2= k 6 9 .为使 x1 和 x2 都是整数,则应有 k-6 = ±1,±3,± 9 , k=-3,3,5,7,9,15;还 应 有 k-9 = ± 1,± 2, ± 3,± 6, k=3,6, 7,8,10,11,12,15. 所以 k=3,7,15时,x 1 和 x 2都是整数,
当 m =1 时,方程 mx2-6x+9=0 的二根均为 1,方程 x2-4mx+4m2-4m-5=0 的
二根为-1 和 5,符合要求。 当 m =-1 时,方程 mx2-6x+9=0 的二根均不是整数,不符合要求. 所以仅当 m=1 时,方程的两根都是整数。 例 4. (1996 年上海市初中数学竞赛试题)若关于 x 的方程 ax2+2(a-3)x+(a-2)=0
a = 25, 18, 16, -9, -2, 0
因 a 为正实数,于是 a 25 或 18或 16均为所求.
例 8 (第十七届全俄数学奥林匹克十年级试题)求使方程 x2-pqx+p+q=0 有
整数根的所有正整数 p 和 q.
解 设原方程两根为 x1、x2,则 x1x2 = p+q

初中数学奥林匹克竞赛教程

初中数学奥林匹克竞赛教程

初中数学奥林匹克竞赛教程(初稿)2004年5月8日初中数学竞赛大纲(修订稿)数学竞赛对于开发学生智力,开拓视野,促进教学改革,提高教学水平,发现和培养数学人才都有着积极的作用。

目前我国中学生数学竞赛日趋规范化和正规化,为了使全国数学竞赛活动健康、持久地开展,应广大中学师生和各级数学奥林匹克教练员的要求,特制定《初中数学竞赛大纲(修订稿)》以适应当前形势的需要。

本大纲是在国家教委制定的九年义务教育制“初中数学教学大纲”精神的基础上制定的。

《教学大纲》在教学目的一栏中指出:“要培养学生对数学的兴趣,激励学生为实现四个现代化学好数学的积极性。

”具体作法是:“对学有余力的学生,要通过课外活动或开设选修课等多种方式,充分发展他们的数学才能”,“要重视能力的培养……,着重培养学生的运算能力、逻辑思维能力和空间想象能力,要使学生逐步学会分析、综合、归纳、演绎、概括、抽象、类比等重要的思想方法。

同时,要重视培养学生的独立思考和自学的能力”。

《教学大纲》中所列出的内容,是教学的要求,也是竞赛的要求。

除教学大纲所列内容外,本大纲补充列出以下内容。

这些课外讲授的内容必须充分考虑学生的实际情况,分阶段、分层次让学生逐步地去掌握,并且要贯彻“少而精”的原则,处理好普及与提高的关系,这样才能加强基础,不断提高。

1、实数十进制整数及表示方法。

整除性,被2、3、4、5、8、9、11等数整除的判定。

素数和合数,最大公约数与最小公倍数。

奇数和偶数,奇偶性分析。

带余除法和利用余数分类。

完全平方数。

因数分解的表示法,约数个数的计算。

有理数的表示法,有理数四则运算的封闭性。

2、代数式综合除法、余式定理。

拆项、添项、配方、待定系数法。

部分分式。

对称式和轮换对称式。

3、恒等式与恒等变形恒等式,恒等变形。

整式、分式、根式的恒等变形。

恒等式的证明。

4、方程和不等式含字母系数的一元一次、二次方程的解法。

一元二次方程根的分布。

含绝对值的一元一次、二次方程的解法。

数学奥林匹克题解 代数-方程

数学奥林匹克题解 代数-方程

代数-方程如果方程x2+ax+b=0与x2+px+q=0有一个公根,求以它们的相异根为根的二次方程.【题说】1957年上海市赛高二复赛题 2.【解】设公根为α,则α2+aα+b=0α2+pα+q=0相减,得(a-p)α=q-b所以由韦达定理,另外两个相异的根为故所求方程为【注】利用两根之和等于一次项系数的相反数求出的方程为此方程与上面求出的方程仅是外形不同,事实上,a,b,p,q有关系.(b-q)2=(aq-bp)(p-a)B2-002 方程x n=1(x≥2)的n个根是1,x1,x2,…,x n-1.证明:【题说】1957年武汉市赛决赛题 2.将原方程变形为(x-1)(x n-1+x n-2+…+x+1)=0.【证】x n-1=(x-1)(x-x1)…(x-x n-1).因此,(x-x1)(x-x2)…(x-x n-1)=x n-1+x n-2+…+x+1 令x=±1得(1-x1)(1-x2)…(1-x n-1)=n所以B2-003 证明:如果整系数二次方程ax2+bx+c=0(a≠0)有有理根,那么a、b、c中至少有一个是偶数.【题说】1958年~1959年波兰数学奥林匹克三试题2.从而ap2+bpq+cq2=0若p、q均为奇数,则因此a、b、c中至少有一个偶数.若p、q中有一个偶数,则另一个为奇数.不妨设p为奇数,q为偶数,则即a为偶数.B2-004 证明:方程x5+x=10有一正根为无理数.【题说】1963年合肥市赛高三二试题 4.【证】当x=0时,x5+x<10.当x=10时,x5+x>10,因此x5+x=10必有正根(在(0,10)内).并且p、q互质)满足条件p|a0,q|a n.因此x5+x-10=0的有理根只可能是±10,±5,±2,±1.不难验证它们都不是方程的根.所以方程的正根都是无理数.B2-005 设P(x)=a0x n+a1x n-1+…+a n-1x+a n是整系数多项式,如果P(0)与P(1)都是奇数,证明P(x)没有整数根.【题说】第三届(1971年)加拿大数学奥林匹克题5.第七届(1941年)莫斯科数学奥林匹克九、十年级题8.【证】对于整数m,若它是偶数,则P(m)与P(0)奇偶性相同;若它是奇数,P(m)与P(1)奇偶性相同,故P(m)总是奇数,不为0.因此,P(x)没有整数根.B2-006 二次三项式f(x)=ax2+bx+c,如果方程f(x)=x无实根.证明:方程f(f(x))=x亦无实根.【题说】第七届(1973年)全苏数学奥林匹克十年级题1.【证】如果方程f(x)=x无实根,则对所有x的值,有f(x)>x(若a>0)或f(x)<x(或a<0)从而f(f(x))>f(x)>x或f(f(x))<f(x)<x所以f(f(x))=x,无实根.【注】结论对所有连续函数f(x)均成立.B2-007 设a和b为实数,且使方程x4+ax3+bx2+ax+1=0至少有一个实根,对所有这种数对(a,b),求出a2+b2的最小可能值.【题说】第十五届(1973年)国际数学奥林匹克题3.本题由瑞典提供.【解】设实数x使x4+ax3+bx2+ax+1=0则从而方程y2+ay+(b-2)=0此式即平方整理得2|a|≥2+b从而程x4+ax3+bx2+ax+1的实根).B2-008 若P1(x)=x2-2,P i(x)=P1[P i-1(x)],i=2,3,4,….证明:对任何自然数n,方程P n(x)=x的根都是不同的实根.【题说】第十八届(1976年)国际数学奥林匹克题2.本题由芬兰提供.【证】当|x|≥2时,P1(x)≥2,从而P n(x)≥2,故P n(x)的所有实根都在(-2,2)中.设x=2cost,则P1x(t)=4cos2t-2=2cos2t从而P n x(t)=2cos2n t即当2n t=±t+2kπ,k=0,1,…时,得P n(x)=x的2n个不同的实根,因为P n(x)次数是2n,所以它的所有根都是实根.B2-009 已知方程2x2-9x+8=0,求作一个二次方程,使它的一个根为原方程两根和的倒数,另一根为原方程两根差的平方.【题说】1978年全国联赛一试题 4.【解】设已知方程的两个根为x1、x2,所求方程为x2+px+q=0,它故所求方程为36x2-161x+34=0.B2-010 设a、b、c、d是互不相同的四个整数,r是方程(x-a)(x-b)(x-c)(x-d)-9=0【题说】1979年河南省赛一试题7.【证】由题意(r-a),(r-b),(r-c),(r-d)是互不相同的四个整数,且(r-a)(r-b)(r-c)(r-d)=9由整数的唯一分解定理知r-a,r-b,r-c,r-d只能分别是-1,1,-3,3.所以(r-a)+(r-b)+(r-c)+(r-d)=0即B2-011 设a、b、c是方程x3-x2-x-1=0的根.1.证明:a、b、c彼此不等;2.证明:下式表示一个整数【题说】第十四届(1982年)加拿大数学奥林匹克题2.第2小题中,1982换成任意自然数n均成立.【证】1.由韦达定理,有a+b+c=1,bc+ca+ab=-1,abc=1如果a、b、c中有两数相等,不妨设b=c.则有a+2b=1,b2+2ab=-1,ab2=1由前二式解得a=-1,b=1,a=5/3,b=-1/3.但它们不满足第三式.因此,a、b、c彼此不等.(a+b+c)=2都是整数,设在n≤k时A n均为整数(k≥2),则由于b k+1=b k+b k-1+b k-2等,所以b k+1-c k+1=(b k-c k)+(b k-1-c k-1)+(b k-2-c k-2).从而A k+1=A k+A k-1+A k-2也是整数,因此一切A n为整数.特别地,A1982为整数.B2-012 已知x1、x2是方程x2+(k-2)x+(k2+3k+5)=0 (k为实数)【题说】1982年全国联赛题1(6).原题为选择题.【解】由于x1、x2是实数根,所以△=(k-2)2-4(k2+3k+5)≥0B2-013 已知方程(x-19)(x-83)=p,有实根r1和r2(其中p为实数),求方程(x-r1)(x-r2)=-p的最小实根.【题说】1984年北京市赛高一题1(4).原题为选择题.【解】由题意得:(x-19)(x-83)-p=(x-r1)(x-r2)可见19与83是方程(x-r1)(x-r2)=-p仅有的两个实根,最小实根为19.B2-014 四次方程x4-18x3+kx2+200x-1984=0的四个根中的两个根的乘积为-32,试决定k的值.【题说】第十三届(1984年)美国数学奥林匹克题1.【解】设方程四根为x1、x2、x3、x4,且x1x2=-32.由根与系数关系,有x1+x2+x3+x4=18(1)x1x2+x3x4+(x1+x2)(x3+x4)=k(2)x1x2(x3+x4)+x3x4(x1+x2)=-200(3)x1x2x3x4=-1984(4)由(4)得x3x4=-1984/(-32)=62代入(3)得31(x1+x2)-16(x3+x4)=-100(5) 由(1)、(5)解得x1+x2=4,x3+x4=14代入(2)得k=-32+62+4×14=86B2-015 方程x2+ax+b+1=0的根是正整数.证明:a2+b2是合数.【题说】第二十届(1986年)全苏数学奥林匹克八年级题1.【证】设x1、x2是原方程的两根,则(1) 由(1)式得因为x1、x2都是正整数,所以a2+b2是合数.B2-016 a1,a2,…,a2n是2n个互不相等的整数.如果方程(x-a1)(x-a2)…(x-a2n)+(-1)n-1(n!)2=0有一个整数解r,求证【题说】第二届(1987)东北三省数学邀请赛题6.【解】由题设可知(r-a1)(r-a2)…(r-a2n)=(-1)n(n!)22n个整数r-a1,r-a2,…,r-a2n两两不等.2n个不同的整数r-a1,r-a2,…,r-a2n的积为(-1)n(n!)2,所以它们必为-n,-(n-1),…,-1,1,2,…,n的一个排列,从而(r-a1)+(r-a2)+…+(r-a2n)=-n-(n-1 )-…-1+1+2+…+n=0B2-017 证明:对每一整数n>1,方程无有理根.【题说】第三十届(1989年)IMO预选题4.本题由保加利亚提供.【证】首先证明对每一个整数k>0及每个素数p,p k|k!,事实上,设s≥0为整数,满足P s≤k≤P s+1,则满足p r|k!的最大整数为所以p k|k!若方程有有理根为α,则B2-018 求方程x199+10x-5=0所有199个解的199次方的和.【题说】1991年日本数学奥林匹克预选赛题2.【解】设方程的解为a1,a2,…,a199,则由韦达定理知a1+a2+…+a199=0,所以B2-019 求使方程x2-pqx+p+q=0有整数根的所有自然数p和q.【题说】第十七届(1991年)全俄数学奥林匹克十年级题1,【解】设自然数p、q,使得原方程有两根x1、x2∈Z,则x1x2=p+q>0,x1+x2=pq>O因此,这两根均为正数,且(x1-1)(x2-1)+(p-1)(q-1)=22表为两个非负整数之和,只有三种情况:(1) 0+2;(2) 1+1;(3) 2+0.由(1)得p=3,q=2或p=2,q=3;由(2)得p=q=2;由(3)得p=1,q=5,或p=5,q=1.B2-020 对多少个实数a,x的二次方程x2+ax+ba=0只有整数根?【题说】第九届(1991年)美国数学邀请赛题8.【解】设m、n是方程二整数根(m≤n).则应有a=-(m+n),6a=mn因此,a也是整数,且-6(m+n)=mn即(m+6)(n+6)=36由于36=22·32所以(m,n)有10组解:(-42,-7),(-24,-8),(-18,-9),(-15,-10),(-12,-12),(-5,30),(-4,12),(-3,6),(-2,3),(0,0)对应的a=-(m+n)也有10个值:49,32,27,25,24,-25,-8,-3,-1,0B2-021 p为整数,试证x2-2x-(10p2+10p+2)=0无整数解.【题说】第三届(1993年)澳门数学奥林匹克第二轮题1.【证】将原方程变形为x(x-2)=2[5p(p+1)+1](1)因为p(p+1)是偶数,所以(1)式右边如果x是整数,那么x必为偶数,(1)式左边矛盾.所以原方程无整数解.B2-022 设f(x)=x n+5x n-1+3,其中n是一个大于1的整数.求证:f(x)不能表示为两个多项式的乘积,其中每一个多项式都具有整数系数而且它们的次数都不低于一次.【题说】第三十四届(1993年)国际数学奥林匹克题1.【解】f(x)的有理根只可能是±1,±3.不难验证f(1)=8,f(-1)=4(-1)n-1+3,f(3)=3n+5·3n-1+3,f(-3)=2(-3)n-1+3均不为0,所以f(x)没有一次因式.若f(x)=g(x)h(x)(*) 其中g(x)=x p+a p-1x p-1+…+a1x+a0h(x)=x q+b q-1x q-1+…+b1x+b0p,q,a0,a1,…,a p-1,b0,b1,…,b q-1都是整数并且p+q=n,p≥2,q≥2,则比较(*)式两边常数项得a0b0=3.不妨设a0=±3,b0=±1.设a1,…,a p中第一个不被3整除的为a k,则k≤p=n-q<n-1.比较(*)两边x k的系数得0=a k b0+a k-1b1+…+a0b k左边被3整除,右边仅a k b0不被3整除,从而右边不被3整除,矛盾.所以f(x)不能分解为两个整系数多项式的乘积.B2-023 x的二次方程x2+z1x+z2+m=0(1)中,z1、z2、m均是复数,且(2)【题说】1994年全国联赛二试题1.【解】由韦达定理有因为(α-β)2=(α+β)2-4αβ所以m-(4+5i)|=7这表明复数m在以A(4,5)为圆心、以7为半径的圆周上.故原点在⊙A内.延长OA,交圆周于B、C两点,则B2-024 已知方程ax5+bx4+c=0有3个不同的实数根.证明:方程cx5+bx+a=0也有3个不同的实数根.【题说】第二十届(1994年)全俄数学奥林匹克九年级题5.【证】显然x=0不是方程ax5+bx4+c=0的根,否则c=0,方程只有两个不同的实数根,这与题设矛盾.B2-025 方程x2+ax+b=0有两个不同的实数根.证明:方程x4+ax3+(b-2)x2-ax+1=0有4个不同的实数根.【题说】第二十届(1994年)全俄数学奥林匹克十年级题2.【证】x4+ax3+(b-2)x2-ax+1=(x2-x1x-1)(x2-x2x-1)其中x1、x2分别是方程x2+ax+b=0的两个不同的实数根.现在只须证明:方程x2-x1x-1=0(1)及x2-x2x-1=0(2)的实数根各不相同.由判别式知它们分别有两个不同的实数根.x1≠x2矛盾.所以方程(1)、(2)没有公共根.从而本题结论成立.B2-026 求一切实数p,使得三次方程5x3-5(p+1)x2+(71p-1)x+1=66p(1)的三个根均为正整数.【题说】1995年全国联赛二试题2.【解】由观察知,x=1是(1)的一个正整数根.所以5x3-5(p+1)x2+(71p-1)x+1-66p=(x-1)Q(x),其中Q(x)=5x2-5px+66p-1.设正整数u、v是Q(x)=0的两个根,则所以p是正整数,将(2)代入(3),得5uv=66(u+v)-1(4)从而因左边是5的倍数,19、229又都是素数,故5v-66=19或229由此求得v=17或59,u=59或17,p=u+v=76,即当且仅当p=76时,方程(1)三根均是正整数:1,17,59.B2-026 求一切实数p,使得三次方程5x3-5(p+1)x2+(71p-1)x+1=66p(1)的三个根均为正整数.【题说】1995年全国联赛二试题2.【解】由观察知,x=1是(1)的一个正整数根.所以5x3-5(p+1)x2+(71p-1)x+1-66p=(x-1)Q(x),其中Q(x)=5x2-5px+66p-1.设正整数u、v是Q(x)=0的两个根,则所以p是正整数,将(2)代入(3),得5uv=66(u+v)-1(4)从而因左边是5的倍数,19、229又都是素数,故5v-66=19或229由此求得v=17或59,u=59或17,p=u+v=76,即当且仅当p=76时,方程(1)三根均是正整数:1,17,59.B2-027 已知f(x)、g(x)和h(x)都是二次三项式,方程f(g(h(x)))=0有根为1,2,3,4,5,6,7和8,这可能吗?【题说】第二十一届(1995年)全俄数学奥林匹克九年级题3.【解】设1,2,3,4,5,6,7和8是方程f(g(h(x)))=0的根.如果直线x=a是抛物线y=h(x)的对称轴,那么当且仅当x1+x2=2a时,h(x1)=h(x2).多项式f(g(x))的根不多于4个,而h(1),h(2),…,h(8)都是它的根,因此只能是a=4.5,且h(4)=h(5),h(3)=h(6),h(2)=h(7),h(1)=h(8).此外,由图像可知h(1),h(2),h(3),h(4)是单调数列.同样地,考察二次三项式f(x)及它的根g(h(1)),g(h(2)),g(h(3)),g(h(4)).我们得到h(1)+h(4)=2b,h(2)+h(3)=2b,其中直线x=b是方程y=g(x)的抛物线的对称轴.对于二次三项式h(x)=Ax2+Bx+c,由h(1)+h(4)=h(2)+h(3),得4A=0,即A=0,这与h(x)是二次三项式相矛盾,所以方程f(g(h(x)))=0不可能有根1,2,3,4,5,6,7,8.B2-028 若α、β、γ是x3-x-1=0的根,计算的值.【题说】第二十八届(1996年)加拿大数学奥林匹克题1.【解】设f(x)=x3-x-1=(x-α)(x-β)(x-γ)由多项式根与系数关系,有α+β+γ=0αβ+βγ+γα=-1αβγ=1从而其中分子 A=(1+α)(1-β)(1-γ)+(1+β)(1-α)(1-γ)+(1+γ)(1-α)(1-β)=3-(α+β+γ)-(αβ+βγ+γα)+3αβγ=7分母B=(1-α)(1-β)(1-γ)=f(1)=-1因此所求值为S=-7.B2-028 若α、β、γ是x3-x-1=0的根,计算的值.【题说】第二十八届(1996年)加拿大数学奥林匹克题1.【解】设f(x)=x3-x-1=(x-α)(x-β)(x-γ)由多项式根与系数关系,有α+β+γ=0αβ+βγ+γα=-1αβγ=1从而其中分子 A=(1+α)(1-β)(1-γ)+(1+β)(1-α)(1-γ)+(1+γ)(1-α)(1-β)=3-(α+β+γ)-(αβ+βγ+γα)+3αβγ=7分母B=(1-α)(1-β)(1-γ)=f(1)=-1因此所求值为S=-7.B2-030 设a是x3-x-1=0的解,求以a2为其解的整系数三次方程.【题说】1996年日本数学奥林匹克预选赛题4.【解】a3-a=1,两边平方得a2(a2-1)2=1所以a2是x(x-1)2=1的根,展开得x3-2x2+x-1=0这就是所求的方程.B2-031 假设x3+3x2+4x-11=0的根是a,b,c,x3+rx2+sx+t=0的根是a+b,b+c,c+a,求t.【题说】第十四届(1996年)美国数学邀请赛题5.【解】由韦达定理,r =-(a+b)(b+c)(c+a)=-(-3-c)(-3-a)(-3-b)=-((-3)3+3(-3)2+4(-3)-11)=23B2-032 设P是方程z6+z4+z3+z2+1=0的有正虚部的那些根的乘积,并设P=r(cos θ°+isinθ°),这里0<r,0≤6<360.求θ.【题说】第十四届(1996年)美国数学邀请赛题11.【解】原方程即u3-2u+1=0即(u-1)(u2+u-1)=0从而z=cos60°±isin60°,cos72°±isin72°,cos144°±isin144°θ=60+72+144=276B2-033解方程组其中a和b是已知实数,当a和b满足什么条件时,方程组的解x、y、z是互不相同的正数?【题说】第三届(1961年)国际数学奥林匹克题1.本题由匈牙利提供.【解】a2-b2=(x+y+z)2-(x2+y2+z2)=2(xy+yz+zx)=2(z2+yz+zx)=2az若a=0,则b≠0时方程组无解;b=0时,由x2+y2+z2=0得x=y=z=0.u2+(z-a)u+z2=0y>0.B2-034一时钟在某时间T1,短针指在2与3之间,长针指在4与5之间,过了某段时间之后,到时间T2,长针指在原来短针所指的位置,而短针指在原来长针所指的位置,求原来时间T1和现在时间T2各为几点钟.【题说】1963年上海市赛高三决赛题2.【解】设在时间T1,短针的度数为x,长针的度数为y.因短针走B2-035求所有能使等式x5+x2=yx1(1)x1+x2=yx2(2)x2+x4=yx3(3)x3+x5=yx4(4)x4+x1=yx5(5)成立的值x1,x2,x3,x4,x5,这里的y是一个参数.【题说】第五届(1963年)国际数学奥林匹克题4.本题由原苏联提供.【解】将五个方程相加得(x1+x2+x3+x4+x5)(y-2)=0所以x1+x2+x3+x4+x5=0或y=2.如果y=2,那么原方程组可写成x5-x1=x1-x2=x2-x3=x3-x4=x4-x5即x1=x2=x3=x4=x5=任意数是原方程组的解.如果y≠2,那么x1+x2+x3+x4+x5=0 (6)由(3)、(2)、(4)得y2x3=y(x2+x4)=(x1+x3)+(x3+x5)由上式及(3)、(6)得(y2+y-1)x3=x1+x3+x5+x2+x4=0因此,在y2+y-1=0时,x3=0.同理x1=x2=x3=x4=x5=0它显然是原方程组的解.不难验证任意x2、x1及由以上三式得出的x3、x4、x5是原方程组的解.B2-036已知方程组其系数满足下列条件:(1)a11、a22、a33都是正的;(2)所有其余系数都是负的;(3)每一方程中系数之和是正的.证明:x1=x2=x3=0是已知方程组的唯一解.【题说】第七届(1965年)国际数学奥林匹克题2.本题由波兰提供.【证】设x1、x2、x3为一组解,不妨设|x1|≥|x2|≥|x3|,则|a11x1+a12x2+a13x3|≥|a11x1|-|a12x2|-|a13x3|≥a11|x1|+a12|x1|+a13|x1|=(a11+a12+a13)|x1|≥0,等号仅在x1=x2=x3=0时成立.B2-037解方程组其中a1、a2、a3、a4是已知的两两不等的实数.【题说】第八届(1966年)国际数学奥林匹克题5.本题由捷克斯洛伐克提供.【解】在方程组中,如果将足码i换j,j换成i,原方程组不变.不失一般性,可以假定a1>a2>a3>a4,这时原方程组成为(a1-a2)x2+(a1-a3)x3+(a1-a4)x4=1 (1)(a1-a2)x1+(a2-a3)x3+(a2-a4)x4=1 (2)(a1-a3)x1+(a2-a3)x2+(a3-a4)x4=1 (3)(a1-a4)x1+(a2-a4)x2+(a3-a4)x3=1 (4)(1)-(2)、(2)-(3)、(3)-(4),分别得(a1-a2)(x2+x3+x4-x1)=0(a2-a3)(-x1-x2+x3+x4)=0(a3-a4)(-x1-x2-x3+x4)=0即有x2+x3+x4=x1(5)x1+x2=x3+x4(6)x1+x2+x3=x4(7)由(5)、(6)、(7)得x2=x3=0,x1=x4代入(1)、(4)得经检验可知,当a1>a2>a3>a4时,是原方程组的解.一般地,当a i>a j>a k>a l时,方程组的解为:B2-038给出关于x1,x2,…,x n的方程组其中a、b、c为实数,a≠0,且Δ=(b-1)2-4ac.证明:在实数范围内该方程组(i)当Δ<0时无解;(ii)当Δ=0时恰有一个解;(iii)当Δ>0时有多于一个解.【题说】第十届(1968年)国际数学奥林匹克题3.本题由保加利亚提供.【证】将n个方程相加得即所以Δ<0时,无实数解.Δ=0时,只有一个解Δ>0时,显然有两组不同的解B2-039已知p个方程q=2p个未知数x1,x2,…,x q的方程组:a11x1+a12x2+…+a1q x q=0a21x1+a22x2+…+a2q x q=0……a p1x1+a p2x2+…+a pq x q=0其中每一个系数a ij是集{-1,0,1}中一元素,i=1,2,…,p;j=1,2,…q .证明:方程组有一个解(x1,x2,…,x q)使得(i)所有x j(j=1,2,…,q)是整数;(ii)至少有一个j值使x j≠0(1≤j≤q);(iii)|x j|≤q(j=1,2,…,q).【题说】第十八届(1976年)国际数学奥林匹克题5.本题由荷兰提供.【证】考虑适合条件|y j|≤p(j=1,2,…,q)的所有整数组(y1,y2,…,y q),共有(2p+1)q个.令A i=a i1y1+…+a iq y q,i=1,2,…,p.由于a ij是-1,0,1中的一个,每个A i都是整数,并且|A i|≤|y1|+…+|y q|≤pq因此,数组(A1,A2,…,A p)至多有(2pq+1)p=(4p+1)p个.因为(2p+1)q=(2p+1)2p=(4p2+4p+1)p>(4p+1)p,由抽屉原理,一定有两个不同的数组(y1,…,y q),(y′1,…,y′q)产生同一个数组(A1,A2,…,A p),所以a i1(y1-y′1)+…+a iq(y q-y′q)= 0(i=1,2,…,p)令x j=y j-y′j,j=1,2,…,q.则x1,…,x q不全为零,满足方程组且有|x j|=|y j-y′j|≤|y j|+|y′j|≤2p=q这说明(x1,…,x q)即是所要找的一个解.B2-040正数x、y、z满足方程组试求xy+2yz+3xz的值.【题说】第十八届(1984年)全苏数学奥林匹克十年级题4.【解】考虑右图,其中∠ROP、∠POQ、∠QOR分别为150°,由已知方程组及余弦定理,RP、PQ、QR分别为25、9、16.在△PQR中,PR2=PQ2+QR2.于是∠PQR=90°.又 S PQR=S POR+S POQ+S QORB2-041若确定x2+y2+z2+w2的值.【题说】第二届(1984年)美国数学邀请赛题15.考虑t的方程【解】(1)两边乘(t-1)(t-9)(t-25)(t-49),得x2(t-9)(t-25)(t-49)+y2(t-1)(t-25)(t-49)+z2(t-1)(t-9)(t-49)+w2(t-1)(t-9)(t-25)-(t-1)(t-9)(t-25)(t-49)=0(2)它是t的四次方程,并有四个根t=4,16,36,64.故(2)即方程(t-4)(t-16)(t-36)(t-64)=0 (3)比较(2)与(3)的系数得:x2+y2+z2+w2+(1+9+25+49)=4+16+36+64从而 x2+y2+z2+w2=36B2-042求方程组的所有实数解:x1·x2·x3=x1+x2+x3(1)x2·x3·x4=x2+x3+x4(2)x3·x4·x5=x3+x4+x5……x1985·x1986·x1987=x1985+x1986+x1987x1986·x1987·x1988=x1986+x1987+x1988x1987·x1988·x1989=x1987+x1+x2【题说】第十三届(1987年第三阶段)全俄数学奥林匹克九年级题2.【解】(1)-(2)得x2·x3(x1-x4)=x1-x4于是x2·x3=1或x1=x4当x2·x3=1时,(1)式成为x2+x3=0,易知方程组x2·x3=1,x2+x3=0无实数解.所以x1=x4.同理,x2=x5;x3=x6;x1985=x1;x1986=x2;x1987=x3.于是x3=x6=…=x1986=x2=x5=…=x1985=x1=x4=…=x1984=x1987=x代入方程(1)得x3=3xB2-043解方程组xy+xz=8-x2xy+yz=12-y2yx+zx=-4-z2【题说】1990年匈牙利数学奥林匹克第二轮基本水平题1.【解】原方程组可以改写成x(x+y+z)=8y(x+y+z)=12z(x+y+z)=-4将这三个方程相加,可以得到(x+y+z)2=16,从而x+y+z=±4.由此可得到原方程组的解为(2,3,-1)与(2,-3,1).B2-044若实数a、b、x、y满足ax+by=3,ax2+by2=7,ax3+by3=16,ax4+by4=42,求ax5+by5的值.【题说】第八届(1990年)美国数学邀请赛题15.【解】由ax3+by3=(ax2+by2)(x+y)-(ax+by)xy得16=7(x+y)-3xy (1)由 ax4+by4=(ax3+by3)(x+y)-(ax2+by2)xy得42=16(x+y)-7xy (2)由(1)、(2)解得x+y=-14,xy=-38.因此,ax5+by5=(ax4+by4)(x+y)-(ax3+by3)xy=42×(-14)-16×(-38)=20B2-046求满足下列条件的关于x、y的次数最低(但不低于1次)的多项式f(x,y):【题说】1994年日本数学奥林匹克预选赛题11.【解】将f(x,y)表为i次齐次多项式之和:f(x,y)=件,则每一f i(x,y)也满足同样的条件.所以,所要求的f(x,y)是一个次数最低的齐次式.由(1)知f(y,y)=0,所以f(x,y)=(x-y)h(x,y)其中h(x,y)是关于x、y的齐次式,且h(x,y)=h(y,x),即h为对称式.由(2)得-yh(x,x+y)-xh(y,x+y)=0以y-x代y得-(y-x)h(x,y)-xh(y-x,y)=0所以,h(x,y)被x整除,由对称性知,h(x,y)也被y整除.由此得f(x,y)=(x-y)xyg(x,y)其中g(x,y)是齐次对称式,将上式代入(2)并整理,得g(x,x+y)+g(y,x+y)=0 (3)令y=-x,得g(x,0)+g(-x,0)=0(4)设g(x,y)为l次齐次式,即由(4)得c l+(-1)l c l=0故l为奇数或c l=0.若c l=0,则g(x,y)被y整除,由对称性知,它也被x整除,所以l≥2.若l=2,则g(x,y)=cxy(c≠0),不满足(3),故l≥3.若c l≠0,则l为奇数.若l=1,则g(x,y)=c(x+y)(c≠0),不满足(3),故l≥3.综上所述,g(x,y)是至少3次的齐次对称式.设g(x,y)=a(x3+y3)+bxy(x+y)代入(3)并整理,得a((x3+y3)+2(x+y)3)+b(x+y)(2x2+xy)+(xy+2y2))=0 两边同除以x+y并整理,得(3a+2b)(x2+xy+y2)=0取a=2,b=-3,则得所求的一个f(x,y)为f(x,y)=(x-y)xyg(x,y)=(x-y)xy(x+y)(2x-y)(x-2y)不难验证这个多项式符合要求。

数学奥林匹克题解 代数-不等式

数学奥林匹克题解 代数-不等式
【题说】1962年上海市赛高三决赛题4.
【解】抽出的人数必须满足
解得m=5.
故甲队有2m=10人,乙队有3m=15人,甲队抽出14-m=9(人).乙队抽出5m-11=14(人),从而参加游戏的人共有
选法.
B3-004求出所有满足不等式
的实数.
【题说】第四届(1962年)国际数学奥林匹克题2.本题由匈牙利提供.
An-1=xn-1xn-2…x0,An=xnxn-1…x0(a进制的位置表示法);
Bn-1=xn-1xn-2…x0,Bn=xnxn-1…x0(b进制的位置表示法).
其中xn≠0,xn-1≠0.证明:当a>b时,有
【题说】第十二届(1970年)国际数学奥林匹克题2.本题由罗马尼亚提供.
【证】由于a>b,故AnBn-1-An-1Bn=(xnan-1+An-1)Bn-1-(xnbn-1+Bn-1)An-1=xn[xn-1(an-1bn-2-an-2bn-1)+…+x0(an-1-bn-1)]>0
证明:这个矩阵所有元素的和不小于0.5n2.
【题说】第十三届(1971年)国际数学奥林匹克题6.本题由瑞典提供.
【证】交换A的两行或两列不改变题设的A的性质(因为行和与列和均不变、只是交换了位置),因此我们可以先通过交换两行或两列的变换,使得有尽可能大的k满足a11=a22=…=akk=0.此时对于i,j>k有aij≠0.对于i≤k,j>k,若aij=0,则aji≠0,因若不然,交换i,j行,就会使a11=a22=…=akk=ajj=0,与k的极大性矛盾.因而对于j>k,仍有
B3-015设m、n为正整数,证明存在与m、n无关的常数a
【题说】1989年瑞典数学奥林匹克题5.
【解】amax=3

【精品】数学奥林匹克竞赛高中训练题集【共36份】

【精品】数学奥林匹克竞赛高中训练题集【共36份】
两个数学奥林匹克高中训练题05按从小到大顺序排列数列各项的和记为s对于给定的自然数n若能从数列中选取一些不同位置的项使得这些项之和恰等于n便称为一种选项方案和数为n的所有选项方案的种数记为数学奥林匹克高中训练题05第一试一选择题本题满分42分每小题7分1
奥林匹克数学竞赛高中训练题集
目 录
数学奥林匹克高中训练题(01) ........................................................................................................................... 1 数学奥林匹克高中训练题(02) ........................................................................................................................... 3 数学奥林匹克高中训练题(03) .............................................................................................. 4 数学奥林匹克高中训练题(04) ........................................................................................................................... 6 数学奥林匹克高中训练题(05) ...................................................................................................

第44届俄罗斯数学奥林匹克(十、十一年级)

第44届俄罗斯数学奥林匹克(十、十一年级)

与 水 关于 点
即直线


子 科 良 持红 马 萨 沙 持蓝 马 科 良 先 开 始 每

次 移 动均 将 棋 子 在 格 同 时在 另 个 坐 标 上 移 动
一 一

个坐标上 移 动

这表明 过点 ,
^ X




/)

尺 水 三点 共 线



20


个格 棋 子 不




_

> 1




1 .
c f

据式 ① 可 推 知



^ 9 9 => p ( A


^9


X X


X X X
从 而 便 找 到 了 无 穷 多个 时 刻 所 加 的 数 " 不 超过 9






观察某
2 00







个 时 刻 黑 板上 首 次对 某 个 R 正 现 整 设 出 不 小 于U d 的 数 假


由 此 即 可 推 出式 ① 由于

n +





V(



= 1

由 所证 的 不 等式 ①推 知

该 数是 由 数 由于 pM

国际数学奥林匹克试题分类解析―A数论_A2整数的求解汇总

国际数学奥林匹克试题分类解析―A数论_A2整数的求解汇总

A2 整数的求解A2-001 哪些连续正整数之和为1000?试求出所有的解.【题说】 1963年成都市赛高二二试题 3.【解】设这些连续正整数共n个(n>1),最小的一个数为a,则有a+(a+1)+…+(a+n-1)=1000即n(2a+n-1)=2000若n为偶数,则2a+n-1为奇数;若n为奇数,则2a+n-1为偶数.因a≥1,故2a+n-1>n.同,故只有n=5,16,25,因此可能的取法只有下列三种:若n=5,则 a=198;若n=16,则 a=55;若n=25,则 a=28.故解有三种:198+199+200+201+20255+56+…+7028+29+…+52A2-002 N是整数,它的b进制表示是777,求最小的正整数b,使得N是整数的四次方.【题说】第九届(1977年)加拿大数学奥林匹克题3.【解】设b为所求最小正整数,则7b2+7b+7=x4素数7应整除x,故可设x=7k,k为正整数.于是有b2+b+1=73k4当k=1时,(b-18)(b+19)=0.因此b=18是满足条件的最小正整数.A2-003 如果比n个连续整数的和大100的数等于其次n个连续数的和,求n.【题说】 1976年美国纽约数学竞赛题 7.s2-s1=n2=100从而求得n=10.A2-004 设a和b为正整数,当a2+b2被a+b除时,商是q而余数是r,试求出所有数对(a,b),使得q2+r=1977.【题说】第十九届(1977年)国际数学奥林匹克题 5.本题由原联邦德国提供.【解】由题设a2+b2=q(a+b)+r(0≤r<a+b),q2+r=1977,所以q2≤1977,从而q≤44.若q≤43,则r=1977-q2≥1977-432=128.即(a+b)≤88,与(a+b)>r≥128,矛盾.因此,只能有q=44,r=41,从而得a2+b2=44(a+b)+41(a-22)2+(b-22)2=1009不妨设|a-22|≥|b-22|,则1009≥(a-22)2≥504,从而45≤a≤53.经验算得两组解:a=50,b=37及a=50,b=7.由对称性,还有两组解a=37,b=50;a=7,b=50.A2-005 数1978n与1978m的最后三位数相等,试求出正整数n和m,使得m+n 取最小值,这里n>m≥1.【题说】第二十届(1978年)国际数学奥林匹克题 1.本题由古巴提供.【解】由题设1978n-1978m=1978m(1978n-m-1)≡0(mod 1000)理注解:设1978n=1000a+c 1978m=1000b+c 1978n-1978m=1000(a-b因而1978m≡2m×989m≡0(mod 8),m≥31978n-m≡1(mod 125)注解:1978m(1978n-m-1)这两式的乘积要为1000整除,显然1978m这式为8的倍数,另一式为125的倍数。

2020年国际数学奥林匹克(IMO)全部试题解答

2020年国际数学奥林匹克(IMO)全部试题解答

2020年第61届国际数学奥林匹克(IMO)全部试题解答海亮高级中学高三康榕博高二陈昶旭第一天第1题. 考虑凸四边形ABCD. 设P 是ABCD 内部一点. 且以下比例等式成立:∠PAD:∠PBA:∠DPA=1: 2 :3=∠CBP:∠BAP:∠BPC.证明: ∠ADP 的内角平分线、∠PCB 的内角平分线和线段AB 的垂直平分线三线共点.证明:如图,设∠PAD=α,∠PBC=β,则∠ABP=2α,∠BAP=2β, ∠APD=3α,∠BPC=3β,取△ABP外心O, 则∠AOP=4α=π-∠ADP∴A, O, P, D共圆.∴∠ADO=∠APO=∠PAO=∠PDO∴OD平分∠PDA.同理, OC平分∠PCB.而O为△ABP外心, 显然在AB中垂线上.故∠PDA平分线, ∠PCB平分线, AB中垂线均过点O.证毕.第2题. 设实数a, b, c, d 满足a ≥b ≥c ≥d > 0, 且 a + b + c + d = 1. 证明:(234)1a b c d a b c d a b c d +++<. 证明: 由加权AM -GM 不等式, 我们有2222a b c d a b c d a a b b c c d d a b c d <⋅+⋅+⋅+⋅=+++ 故只需证明22223(234)()()cyca b c d a b c d a ++++++<∑ (*)注意到332()36cyc cyc sym cyca a ab abc =++∑∑∑∑, 及32222cyca ab ad a a ++≥∑2232222222cyca b ab b bc bd b a ++++≥∑2222233333cyca cbc ac cd c a +++≥∑22234444cyc a d a b abd acd bcd d a ++++≥∑∴ (*)成立. 故原不等式成立.第3题. 有4n 枚小石子, 重量分别为1, 2, 3, . . . , 4n. 每一枚小石子都染了n 种颜色之一, 使得每种颜色的小石子恰有四枚. 证明: 我们可以把这些小石子分成两堆, 同时满足以下两个条件:• 两堆小石子有相同的总重量;• 每一堆恰有每种颜色的小石子各两枚.证明: 引理:将n 种颜色的点个4个两两分组, 则可取n 组使得每种颜色的点各2个.即证: n 阶4-正则图G(不一定简单)必有2-正则生成子图. n =1, G 为v 的2个自环, 成立.设0n n ≤成立, 则01n n =+时:若G 有点含两自环或有两点含4重边, 对其余部分用归纳假设,该部分取1自环或2重边即可.下设无这样的结构.若G 含三重边,设x,y 间有三条边, 且,(,)xu yv G u y v x ∈≠≠. 考虑将x,y 去掉, 并添入边uv 得到图G ’. 由归纳假设, 图G ’有2-正则生成子图, 若该图含添入的边 uv, 删去该边并加入ux, xy, yv 即可. 若不含, 加入xy, xy 即可.下设无三重边.显然G 有圈. 设最小圈为121,,...,t x x x x . 由G 无2自环,3重边知01t n <+, i x 有两边不指向12,,...t x x x . 设这两边指向,i i u v ,以下下标模t.在G 中删去点12,,...t x x x 并加入边1(1)i i i e u v i t +=≤≤得到G’. 由归纳假设, G ’有2-正则子图G 1.对1≤i ≤t, 若1i e G ∈, 则选择G 中的边11,i i i i x u x v ++, 若1i e G ∉, 则选自1i i x x +, 其余边按G 1中边选择, 则选出的边即为G 的2-正则生成子图的边集.结论成立.回到原题. 将重量为{,41}k n k +-的小石子分为一组.(12)k n ≤≤, 由引理可取n 组使每种颜色的小石子恰2个. 这2n 个分为一组, 其余分为一组, 此即满足条件的分法, 命题成立.第二天第4题. 给定整数n > 1. 在一座山上有n2个高度互不相同的缆车车站. 有两家缆车公司A和B, 各运营k辆缆车; 每辆从一个车站运行到某个更高的车站(中间不停留其他车站). A 公司的k辆缆车的k个起点互不相同,k个终点也互不相同, 并且起点较高的缆车,它的终点也较高. B公司的缆车也满足相同的条件. 我们称两个车站被某个公司连接,如果可以从其中较低的车站通过该公司的一辆或多辆缆车到达较高的车站(中间不允许在车站之间有其他移动). 确定最小的正整数k, 使得一定有两个车站被两个公司同时连接.解: 由题意得, 每个缆车与1或2个缆车相连. (否则有两辆缆车起点不同, 终点相同)∴A, B各自的缆车线路图可划分为若干个链.注意到每条链长度大于等于2, 且首尾两点不能作为终点和起点, 故恰有2n k-条链.若21k n n≥-+, 则A最多由n-1条链.由抽屉原理, 其中至少有一条链上有221nnn⎡⎤=+⎢⎥-⎢⎥个点, 设为P. 而B仅有n-1条链, 故P上一定有两个点同时在B 的一条链上, 则这两点可被两个公司同时连接.另一方面, 2k n n=-时, 记2n个车站高度排序为21,2,...n (从低到高)令A的2n n-辆缆车为2(1)i n i i n n→+≤≤-令B的2n n-辆缆车为21(11,|)i i i n n i→+≤≤-/易见此时任两个车站不能被两个公司同时相连.2 min 1k n n∴=-+.第5题. 有一叠n > 1张卡片. 在每张卡片上写有一个正整数. 这叠卡片具有如下性质:其中任意两张卡片上的数的算术平均值也等于这叠卡片中某一张或几张卡片上的数的几何平均值.确定所有的n, 使得可以推出这叠卡片上的数均相等? 解: 设这n 张卡片上的数为1212,,....(...)n n x x x x x x ≤≤. 若12gcd(,,...)1n x x x d =>, 用i x d 代替i x , 不影响结果. 故不妨设12gcd(,,...)1n x x x =.由题意得, 1,2i jx x i j n +∀≤≤≤为代数整数.则2|i j i x x x +⇒模2同余. 又12gcd(,,...)1n x x x =, 故i x 全为奇数.任取一个素数p, p ≥3.记{|1,|},{|1,|}i i i i A x i n p x B x i n p x =≤≤=≤≤/ 则对,,2x y x A y B +∀∈∈不为p 的倍数. 设121(...)2k k i i i x y x x x +=, 则121|(...)2k k i i i x y p x x x +=/ ∴对1,j i j k x B ∀≤≤∈.max 2i i x B x y x ∈+∴≤. 取max ,max i i i i x A x B x x y x ∈∈==, 则max max i i i i x A x B x x ∈∈≤若1n x ≠, 取n x 的奇素因子p, 由12gcd(,,...)1n x x x =知, i ∃, 使|i p x /.取0max{|1,|}i i i i n p x =≤≤/, 由上述结论知0n i x x ≤, 则o n i x x =. 又0|,|i n p x p x /, 矛盾!1n x ∴=. 则1,1i i n x ∀≤≤=.∴对任意n ≥2, 卡片上的所有数均相等.第6题. 证明: 存在正常数c 具有如下性质:对任意整数n > 1, 以及平面上n 个点的集合S, 若S 中任意两点之间的距离不小于1,则存在一条分离S 的直线ℓ, 使得S 中的每个点到直线ℓ 的距离不小于13cn -.(我们称直线ℓ分离点集S, 如果某条以S 中两点为端点的线段与ℓ 相交.)证明: 以每个点为圆心,12为半径作圆, 则这些圆两两公共部分面积为0.引理1: 对凸多边形P, 其内部最多由421s l π++个点在S 中,其中s,l 代表P 的面积和周长. 证明: 如图, 将P 的每条边往外侧平移12, 并以P 上每个点为圆心, 12为半径作圆, 拓展区域面积为124l π+. ∴P 内部最多1422414S l s l πππ+++=+个点. 现在对于一条直线l, 作S 中每个点在l 上的投影. 任取相邻两个投影点, 则这两点连线的中垂线分离点集S, 且所有的到该直线的距离≥12投影点距离.设S 的直径为D, 则可作一个以D 为边长的正方形覆盖S. 由引理1, 122481()D Dn D n π++≥⇒=Ω 设P,Q ∈S, PQ =D. 将PQ 作为上述l, 记我们所能做到的使每个点到一条直线的距离均不小于该数的最大值为d.由于仅与夹角有关, 故d 存在.而l 上除P,Q 外有n -2个投影点.2(1)2D D d n n∴≥>-. 又12()D n =Ω, 故12()d n -=Ω. 需证明13()d n -=Ω .取点集S 的凸包P. 若一直线过P 上一点且使得S 中所有点都在该线一侧, 我们认为其亦分离S. 称其为支撑边. 对于任一常数C, 作两条平行的距离为C 的直线, 满足这两条直线分离S. 作他们的垂线l, 设这个带状区域内有m 个S 中的点, 则11c c d m m d≥⇒≥-+. 不妨设(1)d o =, 则可以认为m 远远大于1. 为使m 尽量小, 应取两直线其中之一为支撑边.∴现在对于一条分离S 的直线l, 设l 与P 围成的区域内部有B 个点. P 中与l 距离最近的点到l 距离为0s , 则01s d B ≥+ (以下用≥代表数量级估计) 我们证明d≥从而311D d n D n ≥⋅= 则13()d n -=Ω. 如图, P 夹在这样一个区域里, 取XY 上一点Z, 使得0YZ s =. 过Z 作MN ⊥XY , 点M,N 在以X 为圆心, D 为半径的圆上. 则B ≤YMN 内S 中点的个数.不妨设XY 为x 轴, 对YMN 内任意两点1122(,),(,)x y x y , 221201212||,()()1x x s x x y y -≤-+-≥, 则12||1y y B -≥⇒≤+.而MN =02s d MN∴≥=+由于0(1)s =Θd ∴≥, 则13d n -≥, 即13()d n -=Ω证毕.。

国际数学奥林匹克试题分类解析―A数论_A3数字问题汇总

国际数学奥林匹克试题分类解析―A数论_A3数字问题汇总

A 整数 A3 数字问题A3-001 在数3000003中,应把它的百位数字和万位数字0换成什么数字,才能使所得的数能被13整除?【题说】 1950年~1951年波兰数学奥林匹克三试题2.【解】设所求数字为x和y,则有因为106、104、102除以13时,分别得余数1、3、9,所以n≡3+3x+9y+3=3(2+x+3y)(mod 13)当且仅当x+3y+2被13整除,即x+3y+2=13m(m为自然数)(1)时,n被13整除.由于x+3y+2≤9+3·9+2=38所以m只能取1或2.当m=1时,由方程(1)及0≤x,y≤9,解得x=8,y=1;x=5,y=2;x=2,y=3当m=2时,解得x=9,y=5;x=6,y=6;x=3,y=7;x=0,y=8.故本题共有7个解:3080103,3050203,3020303,3090503,3060603,3030703,3000803.A3-002 求出所有这样的三位数,使其被11整除后的商数等于该三位数各位数字的平方和.【题说】第二届(1960年)国际数学奥林匹克题1.本题由保加利亚提供.【解】设这个三位数除以11以后的商为10a+b,其中 a是商的十位数,b是商的个位数.若a+b≥10,则原数为100(a+1)+10(a+b-10)+b若a+b<10,则原数为100a+10(a+b)+b以下对这两种情形分别讨论.先考虑第一种情形.由题设有(a+1)2+(a+b-10)2+b2=10a+b (1)若a+b>10,则有(a+1)2+(a+b-10)2+b2≥(a+1)2+1+(11-a)2故若(1)式成立,只能有a+b=10.将b=10-a代入(1)解得唯一的一组正整数解a=7,b=3再考虑第二种情形.此时由题设有a2+(a+b)2+b2=10a+b (2)若a+b>5,则有a2+(a+b)2+b2=2(a+b)·a+2b2>10a+b故若(2)成立,只能有a+b≤5.注意在(2)式中左边和10a都是偶数;因此b 也是偶数.若a+b<5,则b只能为2,将b=2代入(2)得不到整数解,因此只能有a+b=5.将b=5-a代入(2)得唯一的一组正整数解a=5,b=0综上所述,合乎要求的三位数只有550,803.A3-003 下面是一个八位数除以一个三位数的算式,试求商,并说明理由.【题说】 1958年上海市赛高三题1.【解】原式可写成:其中所有未知数都表示数字,且下标为1的未知数都不等于零.x1x2x3等表示x1·102+x2·10+x3等.(1)因为得到商的第一个数字7后,同时移下两个数字a5、a6,所以y2=0,同理y4=0.(2)四位数a1a2a3a4与三位数b1b2b3之差为两位数c1c2,所以a1=1,a2=0,b1=9,同理,c1=1,c2=0,d1=9,于是a4=b3,b2=9,a3=0.(3)由7×x1x2x3=99b3,所以x1=1,x2=4.990-7×140=10,所以x3=2,b3=4,从而a4=b3=4.(4)由c1=1,c2=0可知y3=7.(5)y5×142是四位数,所以x5≥8.又因y5×142的末位数字是8,所以y5=9.于是商为70709,除数142,从而被除数为10040678.A3-004 证明:在任意39个连续的自然数中,总能找到一个数,它的数字之和被11整除.【题说】 1961年全俄数学奥林匹克八年级题 3.【证】在任意39个连续自然数中,一定有三个数末位数字为0,而前两个数中一定有一个十位数字不为9,设它为N,N的数字之和为n,则N,N+1,N+2,…,N+9,N+19这11个数的数字之和依次为n,n+1,n+2,…,n+9,n +10,其中必有一个是11的倍数.【注】 39不能改为38.例如999981至1000018这38个连续自然数中,每个数的数字和都不被11整除.本题曾被改编为匈牙利1986年竞赛题、北京市1988年竞赛题.A3-005 求有下列性质的最小自然数n:其十进制表示法以6结尾;当去掉最后一位6并把它写在剩下数字之前,则成为n的四倍数.【题说】第四届(1962年)国际数学奥林匹克题1.本题由波兰提供.【解】设n=10m+6,则6×10p+m=4(10m+6),其中p为m的位数.于是m =2(10p-4)/13,要使m为整数,p至少为5,此时,n=153846.A3-006 公共汽车票的号码由六个数字组成.若一张票的号码前三个数字之和等于后三个数字之和,则称它是幸运的.证明:所有幸运车票号码的和能被13整除.【题说】 1965年全俄数学奥林匹克八年级题 4.【证】设幸运车票的号码是A,则A′=999999-A也是幸运的,且A≠A′.因为A +A′=999999=999×1001含因数13.而所有幸运号码都能如此两两配对.所以所有幸运号码之和能被13 整除.A3-007 自然数k有如下性质:若n能被k整除,那末把n的数字次序颠倒后得到的数仍能被k整除.证明:k是99的因子.【题说】第一届(1967年)全苏数学奥林匹克十年级题5.【证】 k与10互质.事实上,存在首位为1且能被k整除的数,把它的数字倒过来也能被k整除,而此数的末位数字为1.取以500开头的且被k整除的数:500abc…z,(a,b,c,…,z是这个数的数字),则以下的数均被k整除:(1)z…cba005.(2)和(3)把(2)中的和倒过来z…cba00010abc…z(4)差由此看出,99能被k整除.A3-008 计算由1到109的每一个数的数字之和,得到109个新数,再求每一个新数的数字之和;这样一直进行下去,直到都是一位数为止.那么,最后得到的数中是1多,还是2多?【题说】 1964年全俄数学奥林匹克八年级题3.考虑整数被9除的余数.【解】一个正整数与其数字之和关于9是同余的,故最后所得的一位数为1者,是原数被9除余1的数,即1,10,19,…,999999991及109.同理,最后所得一位数为2者,原数被9除余2,即2,11,20, (999999992)二者相比,余1者多一个数,因此,最后得到的一位数中以1为多.A3-009 求出具有下列性质的所有三位数A:将数A的数字重新排列,得出的所有数的算术平均值等于A.【题说】第八届(1974年)全苏数学奥林匹克九年级题 5.由此可得222(a+b+c)=6(100a+10b+c),即7a=3b+4c,将这方程改写成7(a-b)=4(c-b)当0≤b≤2时,a=b=c,或a-b=4且c-b=7.当7≤b≤9时,b-a=4,b-c=7,从而A∈{111,222,…,999,407,518,629,370,481,592}显然这15个三位数都合乎要求.A3-010 当44444444写成十进制数时,它的各位数字之和是A,而B是A的各位数字之和,求B的各位数字之和(所有的数都是十进制数).【题说】第十七届(1975年)国际数学奥林匹克题4.本题由原苏联提供.【解】因为44444444的位数不超过4×4444=17776,所以A≤177760B≤1+5×9=46,B的数字和C≤4+9=13由于一个数与它的数字和mod 9同余,所以C≡B≡A≡44444444≡74444=(73)1481×7≡11781×7≡7(mod 9)故C=7,即数B的各位数字之和是7.A3-011 设n是整数,如果n2的十位数字是7,那么n2的个位数字是什么?【题说】第十届(1978年)加拿大数学奥林匹克题1.【解】设n=10x+y,x、y为整数,且0≤y≤9,则n2=100x2+20xy+y2=20A+y2(A为正整数)因20A的十位数字是偶数,所以要想使n2十位数字是7,必须要y2的十位数字是奇数,这只有y2=16或36.从而y2的个位数字,即n2的个位数字都是6.A3-013 下列整数的末位数字是否组成周期数列?其中[a]表示数a的整数部分.【题说】第十七届(1983年)全苏数学奥林匹克九年级题 4.由于不循环小数,所以{a2k+1}从而{a n}不是周期数列.在二进制中的末位数字.显然,b n为偶数时,r n=0,b n为奇数时,r n=1.仿(a)可证{r n}不是周期的,从而{b n}也不是周期数列.A3-014 设a n是12+22+…+n2的个位数字,n=1,2,3,…,试证:0.a1a2…a n…是有理数.【题说】 1984年全国联赛二试题 4.【证】将(n+1)2,(n+2)2,…,(n+100)2这100个数排成下表:(n+1)2 (n+2)2 … (n+10)2(n+11)2 (n+12)2 … (n+20)2… … … …(n+91)2 (n+92)2 … (n+100)2因k2与(k+10)2的个位数字相同,故表中每一列的10个数的个位数字皆相同.因此,将这100个数相加,和的个位数字是0.所以,a n+100=a n对任何n成立.A3-015 是否存在具有如下性质的自然数n:(十进制)数n的数字和等于1000,而数n2的数字和等于10002?【题说】第十九届(1985年)全苏数学奥林匹克八年级题 2.【解】可用归纳法证明更一般的结论:对于任意自然数m,存在由1和0组成的自然数n,它的数字和S(n)=m,而n2的数字和S(n2)=m2?当m=1,n=1时,显然满足要求.设对自然数m,存在由1和0组成的自然数n,使得S(n)=m,S(n2)=m2设n为k位数,取n1=n×10k+1+1,则n1由0,1组成并且S(n1)=S(n)+1=m+1=S(n2×102k+2)+S(2n×10k+1)+S(1)=S(n2)+2S(n)+1=m2+2m+1=(m+1)2因此命题对一切自然数m均成立.这说明0.a1a2a3…是循环小数,因而是有理数.A3-017 设自然数n是一个三位数.由它的三个非零数字任意排列成的所有三位数的和减去 n等于1990.求 n.【题说】 1989年芜湖市赛题 3.2090<222(a+b+c)=1990+n<2989而2090>222×9=1998,222×10=2220=1990+230222×11=2442×1990+452,222×12=2664=1990+674222×13=2886=1990+896,222×14=3108>2989经验证:a+b+c=11时,n=452符合题意.A3-018 定义数列{a n}如下:a1=19891989,a n等于a n-1的各位数字之和,a5等于什么?【题说】第二十一届(1989年)加拿大数学奥林匹克题 3.【解】由a1<100001989=b1,而b1的位数是4×1989+1=7957,知a2<10×8000=80000,所以a2最多是5位数,从而a3≤5×9=45,a4≤4+9=13,因此a5一定是一位数.另一方面,由9|1989,知9|a1,因而9可整除a1的数字和,即9|a2,又因此有9|a3,9|a4,9|a5.所以a5=9.A3-019 某州颁发由6个数字组成的车牌证号(由0—9的数字组成),且规定任何两个牌号至少有两个数字不同(因此,证号“027592”与“020592”不能同时使用),试确定车牌证号最多有多少个?【题说】第十九届(1990年)美国数学奥林匹克题1.【解】至多可造出不同的五位证号a1a2a3a4a5105个.令a6是a1+a1+a3+a4+a5的个位数字,所成的六位数便满足要求.因为如果两个数的前五位中只有一个数字不同,那么第6位数字必然不同.另一方面,任何105+1个6位数中,总有两个前五位数字完全相同.因此,符合题目要求的车牌证号最多有105个.A3-020 设 A=99…99(81位全为9),求A2的各位数字之和.【题说】 1991年日本数学奥林匹克预选赛题1.【解】由A=1081-1知A2=10162-2·1081+1=99...980 (01)↑ ↑162位 82位故A2各位数字之和=9×(162-82)+8+1=729.4A3-021 如果一个正整数的十进制表示中至少有两个数字,并且每个数字都比它右边的数字小,那么称它为“上升”的.这种“上升”的正整数共有多少个?【题说】第十届(1992年)美国数学邀请赛题2.【解】符合条件的正整数中的数字,都是不同的非零数码,即集合S={1,2,3,…,9}的二元或二元以上的子集.反过来,S的每个二元或二元以上的子集,将它的数码从小到大排列,也得到一个符合条件的正整数.S的子集共有29=512个,其中只含一个元素的子集有9个,一个空集.故符合条件的正整数共有512-10=502个.A3-023 求方程的各个正根的乘积的最后三位数字.【题说】第十三届(1995年)美国数学邀请赛题2.【解】令y=1og1995x.由原方程取对数得其最后三位数字为025.A3-024 一个六位数的首位数字是5,是否总能够在它的后面再添加6个数字,使得所得的十二位数恰是一个完全平方数?【题说】1995年城市数学联赛高年级普通水平题3.【解】不.若不然,105个以5为首位数字的六位数可以衍生出105个十二位的完全平方数.即有105个自然数n满足.5×1011≤n2<6×1011亦即7×105<n<8×105由于7×105与8×105之间不存在105个整数,故上式不可能成立.。

第45届俄罗斯数学奥林匹克(十、十一年级)

第45届俄罗斯数学奥林匹克(十、十一年级)

2019年第12期31第45届俄罗斯数学奥林匹克(十、十一年级)中图分类号:G424.79文献标识码:A文章编号:1005-6416(2019)12-0031-08决赛十年级1.在平面上的每个点A处均放置一个实数/■(4)•若M ABC的重心,则/'(M)=/(4)+/(B)+/(C).证明:对于一切点4,均有/(A)=0.2.芭莎和沃娃做游戏,芭莎先开始•开始时,在他们面前放着一块很大的塑料板•芭莎每一次都把某一块塑料板分割为三块(可以相同)•沃娃则从中挑出两块把它们粘合成一块•若在某一时刻,在已有的塑料块中能找到100块重量相同的,则芭莎获胜•问:沃娃能否阻止芭莎取胜?3.星际旅馆有100间客房,可分别容纳101,102,-,200位客人.在这些客房里目前共住着n位客人.现在来了一个VIP团队,需要为他们腾出一整间客房•为此,客房经理挑选出一间客房,并把原来住在里面的所有客人全安排到同一间其他的客房里•问:对于怎样的S客房经理可以以这种方式安排客人,而不会受制于客人的现在住房情况?4.在锐角A ABC中,AC<BC.经过顶点A、B的圆与线段CA、CB分别交于点41、艮.△ABC、△儿QC的外接圆的第二个交点为P,线段4Q与BA X交于点S.Q、R分别为点S关于直线CA、CB的对称点.证明:P、Q、R、C四点共圆.5.同九年级第5题.6.在锐角中作角平分线BL,D、E 分别为A ABC的外接圆厂上弧亦、辰的中点•在线段BD、BE的延长线上各取一点P、Q,使得Z APB=ZCQB=90°.证明:线段BL 的中点在直线PQ上.7.某数学小组共有24名学生•对于每个有6名学生所组成的队,负责人均给出“能配合”或“不能配合”的两类评价.为做数学擂台赛训练,负责人打算把小组里的学生分为4个队,每个队6名学生.问:能否对于任何一种分为4个队的方法,要么恰有三个队是能配合的,要么恰有一个队是能配合的,并且两种情况都会出现?8.给定非常数的整系数多项式P(x)和正整数n.令a。

全俄中学生数学奥林匹克 (第25届第Ⅳ阶段八、九年级)(Word版,含答案)

全俄中学生数学奥林匹克 (第25届第Ⅳ阶段八、九年级)(Word版,含答案)

全俄中学生数学奥林匹克(第25届第Ⅳ阶段八、九年级)======== 八年级试题 ========1、父亲带着两个儿子向离城33公里的祖母家出发,父亲有一辆摩托车,速度为25公里/小时.如果再载了另一个人,则速度为20公里/小时,(摩托车不允许带两个人,即每车至多载两人.)每个儿子如果步行,速度为5公里/小时.证明:这3个人可在3小时内同时到达祖母家.证:设第二个儿子先步行,父亲载着第一个儿子乘摩托车走了公里,这里用了小时,并且他们超过第二个儿子(公里).这时,父亲让第一个儿子步行,自己返回去接第二个儿子.到遇到第二个儿子时,用了(小时).第二个儿子遇到父亲时,步行走了(公里),这时离祖母家还有(公里).如果父亲载第二个儿子的路程与载第一个儿子的路程相同,那么,所以(公里).这样,在路上共计用的时间为(小时),或(小时).2、在正整数A的右边添上3个数字,组成一个新数,这个新数等于从1到A的所有正整数之和,求A.解:设3个数字组成的数是B,则,于是,即,因此.由左边不等式知:,由右边不等式知:,所以.3、在△ABC的边BC,CA,AB上分别取点A1,B1,C1,使得△A1B1C1的中线A1A2,B 1B2,C1C2分别平行于直线AB,BC,CA,试确定点A1,B1,C1分△ABC的边为怎样的关系?解:设M点为△A1B1C1的重心,A3,B3,C3为△A1B1C1中线的延长线分别与△ABC各边的交点(如图).由题设知MC3CB1是平行四边形,所以MC3=B1C.其次,直线C1C3经过线段A 1B1的中点且平行于AC,所以MC3是△A1A3C的中位线,因此,A3C=2MC3,即A3B1=B1C.又A2A3是△B1C1A的中位线,所以AA3=A3B1,于是AA3=A3B1=B1C.因此B1点分AC为两部分的比AB1: B1C=2:1,同理CA1:A1B=BC1:C1A=2:1.4、有40个装有气体的瓶子,各瓶内气压是未知的且可以不相同.每次允许将若干个瓶子相连接,但瓶子数均不超过给定的正整数,然后再将它们分开,这时所连接的各瓶的气压将变成相等的,都等于连接前它们气压的算术平均值,当取怎样的最小值时,能使得40个瓶子中的气压变得都相等,而与初始时各瓶中的气压数无关?解:最小值.当时,可采取下列方式,使各瓶气压变得相等.将瓶子分为8组,每组5个,可使每组中各瓶的气压相等.然后再从每组中各取1个瓶子,共8个来自不同组的瓶子组成1个新组,这样的新组有5组.只要可使新组中的各瓶气压变得相等(这也就使得所有的40个瓶子的气压相等).这是可以做到的,先在每组8瓶中,分成各有4个瓶子的两组,让每组的4个瓶子相连接而使得它们的气压变得相等,然后从这两个4瓶组中分别各取1瓶,两者相连接,这样一来便可使得所有的各瓶气压相等.下面证明:若,则找不到适当的方式会使各瓶气压相等.设40瓶有1瓶的气压值为2;而其余各的瓶的气压值为1.要使各瓶气压相等,则每瓶气压值为(2+39×1)/40=41/40.但是,每次融合后的气压值所表示的既约分数的分母都不能被5整除.事实上,如果每次融合前的每个气压值的分母不被5整除,那么它们中的两个、三个或四个分数的算术平均的分母只能是它们分母的最小公倍数,因而也不可能是5的倍数,因为40是5的倍数,所以在上述初始的气压值的条件下,不可能使各瓶气压值变得相等.5、证明:正整数1至15不能分成两组:其中A有2个数,B有13个数,而使得B组中各数之和恰等于A组中2个数之积.证:假设按题设要求的分组可能,A组中2个数是,不妨设,则B组中各数之和为1+2+…+15――=120――,依题意得=120――.上式可变为(+1)(+1)=121,因此+1=1,+1=121,或+1=11,+1=11.但是,前式=0,=120>15;后式==10,这都是不可能的,因而1至15这15个数不可能按题设要求分成两组.6、给定非钝角△ABC,点A1是A点关于BC的对称点,点C1是C点关于AB的对称点.证明:如果A1,B和C1共线,且C1B=2A1B,那么∠CA1B是直角.证:由题设知BC垂直平分线段AA1,即AB=BA1,且∠A1BC=∠ABC(如图).同理C1B=BC且∠C1BA=∠ABC,于是3∠ABC=180°,即∠ABC=60°.考察△CBA1,其中∠CBA1=60°,CB=C1B=2BA1.作CA2⊥BA1于A2,在△CA2B中,∠BCA2=30°,所以BA2=BC=BA,所以A2=A1,从而∠CA1B=90°.7、盒子里放着整副骨牌,两个游戏者依次从中选取一张骨牌,并将其摆到桌面上,并按照“接龙”的规则,将牌接在已摆成一串的骨牌两端中的任意一端,谁要是接不下去了就算输,在正确策略下,谁能获胜?解:第一个游戏者必胜.记第一个游戏者为甲,第二个游戏者为乙.甲首先摆0:0,乙以0:连接,这时甲接以:,现在乙或者接0:或者接:,对第一种情况,甲接:;对第二种情况,甲接:0,甲接完这步后,骨牌串的两端或者都是,或者都是0.这步之后,设乙接上0:(:),则甲接上:(:0).形如0:和:(0,)的骨牌是成对的,所以最后的步骤必是在甲接牌后而终止.8、由54块纸片做的相同的单位正方形串成一条非封闭的链,以正方形的顶点作为接头,任意的正方形(链端的除外)与相邻的两个正方形的接头是相对的两个顶点,这个正方形链可否完全地覆盖3×3×3的正方体的界面?解:这样的正方形链不可能覆盖3×3×3的正方体.如若不然,假设可以覆盖正方体,显然,正方体的每个侧面可分成9个单位正方形.对于链中的每个正方形,是以它的对角线两端点作为接头,于是我们在正方体的侧面上得到以单位正方形的对角线组成的折线(它可能在折线的顶点处自交).经过折线的两端点(始点和终点)的对角线段,将有奇数条,而经过折线的其它顶点的对角线段将有偶数条,如果始点和终点重合,那么经过它的对角线段将有偶数条.假设对每个单位正方形纸片的每个顶点染上两种颜色中的一种.并使得其每条边上的顶点颜色各不相同,那么折线的顶点将是由一种颜色组成的集合(例如是黑色的).所以折线段的集合即是以黑色为端点的线段的集合,但在黑色顶点中有4个在正方体的顶点处,而经过每个这样的顶点的对角线段有3条,即奇数段的对角线经过的顶点有4个,这便导致矛盾.======== 九年级试题 ========1、沿圆周按顺序依次写下从1至N(N>2)的正整数,同时每对相邻的两个数,按十进制数表示法,它们至少有1个数字相同,求N的最小值.解:N=29.因为一位数没有公共的数字,所以N>9.据书写规则,因为这列数含有9,因而它们就不能小于19,进而不能小于29,即N≥29.今考察N=29时,可举出下面的例子,按此顺序排列,可将1至29的正整数排成一个圆圈而满足题设要求:1,11,10,20,21,12,2,22,23,3,13,14,4,24,25,5,15,16,6,26,27,7,17,18,8,28,29,9,19.2、在△ABC的AC边上取点D、E,使得AD=AB,BE=EC(E在A与D之间).F 是△ABC外接圆上(不含A点的)BC弧的中点,证明:B、E、D、F四点共圆.证:设∠BDA=α,∵AB=AD,∴∠ABD=α,∠BAD=180°-2α.∠CBF的度数等于弧CF的度数,而∠CAB的度数等于弧BC即×(2弧CF)的度数,所以∠CBF=∠CAB=90°-α(如图).点E、F分别与B、C等距,所以EF垂直平分BC.因此,∠BFE=90°-∠CBF=90°-(90°-α)=α,于是∠BDE=∠BFE=α,所以B,F,D,E四点共圆.3、正实数之乘积等于1,证明:如果,那么,对任意正整数,不等式成立.证:如果,且,那么不等式,事实上,由,,及,上述两个不等式都等价于.此外,在时,数与有相同的符号,所以.4、8×8的正方格是一个迷宫,每格是1×1.每格都画出下列四种方向中的一种的箭头;向上、向下、向左、向右,右上角的格上方是迷宫的出口,棋子从左下角的格开始出发,它走的每个步是按照该格的箭头方向走了1格,走完这步后,原来所在格的箭头将沿着顺时针方向转过90°,如果棋子走到了8×8正方形的边界,而这时箭头却指向界外,那么棋子将在这格停留,该格箭头将按顺时针方向转过90°,直至棋子可以行走. 证明:棋子迟早总会走出迷宫.证:假设棋子总走不出迷宫,那么棋子落在右图中标有“1“的格只能有限次(少于4次),否则“1”格必有1次箭头是指向出口的,从而走出迷宫.同样的,棋子在最后一次到达标有“1”格前也只能有限次到达“2”格.推而广之,在棋子只能有限次地到达“”格,那么也只能有限次到达“+1”格,这与假设棋子可无限次地走步而出不了迷宫矛盾.5、将网络平面中所有的格染成5种颜色,使得任意形如图形甲的图形中,各格是不同的颜色.证明:任意形如图形乙的图形上各格也是不同的颜色.证:假设某个1×5的图形上缺某种颜色,例如蓝色(在上图中,把这部分图形离析出来)那么图中用相同字母表示的两格中必有1格染蓝色,否则这些格所在的十字形中将缺少蓝色的格,这样一来,在含有字母的两个十字形中,必有一个十字形中含有两个蓝格,这与题设矛盾,所以原命题得证.6、(见八年级第7题)7、证明:每个正整数都可表示为有相同数目质因数的两个正整数之差(每个质因数只算1次,例如12有两个质因数2和3).证:如果给定的数是偶数,即,那么所求的数是.设是奇数,是它的质因数,又设是不含在集合的最小奇质数,那么所求的数便是和.因为根据的选择,中有因数2,而中有因数.因数是它们所共有的.8、在△ABC中,AB>BC,K、M分别是边AB和AC的中点,O是△AB C的内心.设P点是直线KM和CO的交点,而Q点使得QP⊥KM且QM∥BO,证明:QO⊥AC.证:作OR⊥AC于R,过P作MK的垂线,交直线OR于Q点(如图).这样只需证Q’M∥O,因为这时Q和Q’重合.因为K,M分别为AB和AC的中点,所以KM∥BC,于是∠M PC=∠BCP=∠ACB=∠MCP.因此MP=MC=MA,这样一来,P点在以AC为直径的圆周上,且∠APC =90°.在四边形APOR中,∠APO=∠ARO=90°,所以APOR内接于圆,∠RPO =∠RAO=×∠BAC.在四形边MPQ’R中,∠MPQ’=∠MRQ’=90°,所以MPQ’R内接于圆,于是∠Q’MR=∠Q’PR=∠Q’PO+∠OPR=(90°-∠OPM)+∠BAC=(90°-∠ACB)+∠BAC.设BO交AC于D,在△BDC中,∠BDC=180°-∠ACB-∠ABC=90°+∠BAC-∠ACB=∠Q’MR,因此MQ’∥BO,于是本题得证.。

国际数学奥林匹克试题分类解析—A数论_A5整数综合问题

国际数学奥林匹克试题分类解析—A数论_A5整数综合问题

A5 整数综合问题A5-002在n³n(n为奇数)的方格表里的每一个方格中,任意填上一个+1或-1,在每一列的下面写上该列所有数的乘积;在每行的右边写上该行所有数的乘积,证明:这2n个乘积的和不等于0.【题说】1962年全俄数学奥林匹克八、九年级题5.【证】设p1,p2,…,p n是各行数字乘积,q1,q2,…,q n是各列数字乘积,它们都是+1或-1,而应有p1p2…p n=q1q2…q n,所以p1、p2、…、p n、q1、q2…、q n中应有偶数个-1.设为2k个,则其中+1的个数为2(n-k).由于n为奇数,k≠n-k,所以p1+p2+…+p n+q1+q2+…+q n≠0A5-003已知任意n个整数a1,a2,…,a n,由此得到一列新的数.由这n个数依同样法则又得到一列新数,并如此做下去.假如所有这些新数都是整数,证明原来所给各数a i(i=1,2,…,n)都相等.【题说】1964年全俄数学奥林匹克八年级题4.n为偶数时有一种例外情况使结论不成立.【证】对于任给的n个数x i(1≢i≢n),如果它们不全相等,那么施行如上运算若干次后得的新数中,最大值要变小,最小值要变大,因此,如若不能得出一组n个相同的数的话,其中最大数不能永远是整数.假设从一组n个数z1,z2,…,z n得到n个相同的数那么,当n是奇数时,易知z1=z2=…=z n;当n是偶数时,z1,…,z n中奇数项相等,偶数项相等.若z i(1≢i≢n)由y i(1≢i≢n)经运算得出,且设则有 2(y1+y2+…+y n)=2na及 2(y2+y3+…+y n+y1)=2nb从而 2na=2nb,a=b由此得出z1=z2=…=z n=a因此,我们的命题成立.仅当n为偶数时,有一种例外情况:n个整数a,b,a,b,…,a,b,(a与b的奇偶性相同,a ≠b)满足题中条件,但结论不成立.A5-004某整数集合A既含有正整数,也含有负整数,而且如果a和b是它的元素,那么2a 和a+b也是它的元素,证明:集合A包含它的任意两个元素之差.【题说】1967年匈牙利数学奥林匹克题1.【证】不难证明:如果整数c是集合A的元素,而n是自然数,那么nc也属于集合A.因为集合A既含有正整数,也含有负整数,根据最小数原理,集合A存在最小的正整数a和绝对值最小的负整数b.这两个数的和a+b也应该属于集合A,而且满足不等式.b<a+b<a但是集合A不含有小于a的正数和大于b的负数,所以a+b只能等于0.因此,数0属于集合A,且b=-a.根据前面所证,集合A包含数a的所有整数倍.设x∈A,则由带余数除法,存在整数q、r,使x=qa+r(0≢r<a).于是r=x+(-qa)∈A.由于0≢r<a,必有r=0.即A中的数均为a的整数倍.既然集合A的元素都是a的整数倍,因此集合A的任意两个元素之差也是元素a的整数倍,因而属于集合A.A5-005证明:任何不大于n!的自然数,都能表示成不多于n个数的和,在这些加数中,没有两个是相同的,而且任何一个都是n!的因数.【题说】第二届(1968年)全苏数学奥林匹克九年级题5.【证】对n用数学归纳法,n=1时,显然.设n时结论真.对a≢(n+1)!,将a除以n+1得a=d(n+1)+r,这里d≢n!,0≢r<n+1.由归纳假设,d=d1+d2+…+d l,l≢n.且所有d i是n!的不同因数(i=1,2,…,l).于是 a=d1(n+1)+…+d l(n+1)+r这个和中的加数不多于n+1个,其中每一个都是(n+1)!的因数,且全不相等.A5-006找出具有下列性质的所有正整数n:设集合{n,n+1,n+2,n+3,n+4,n+5}可以划分成两个无公共元素的非空子集,使得一个子集中所有元素的乘积等于另一子集中所有元素的乘积.【题说】第十二届(1970年)国际数学奥林匹克题4.本题由捷克斯洛伐克提供.【解】假定n具有所述性质,那么六个数n,n+1,n+2,n+3,n+4,n+5中任一个素因数p 必定还整除另一个数(在另一个子集中).因而p整除这两个数的差,所以p只能为2,3,5.再考虑数n+1,n+2,n+3,n+4.它们的素因数不能为5(否则上面的六个数中只有一个被5整除),因此只能为2与3.这四个数中有两个为连续奇数.它们必须是3的正整数幂(因为没有其它因数),但这样两个幂的差被3整除,决不能等于2.矛盾!这就说明具有所述性质的n是不存在的.A5-007证明:任何一个正的既约真分数m/n可以表示成两两互异的自然数的倒数之和.【题说】1972年~1973年波兰数学奥林匹克三试题5.【证】对m用数学归纳法.m=1时,显然成立.假设对小于m的自然数命题成立,我们证明它对m>1也成立.为此,设n=qm+r(0≢r<m) (1)因为m/n是正的既约真分数,所以q>0,r>0.又因0<m-r<m,所以由归纳假设,其中t1<t2<…<t k为自然数.因为n>m,所以由(3)知:t1>q+1,将(3)代入(2)得所以,命题对任何自然数m都成立.A5-008 8分和15分的邮票可以无限制地取用.某些邮资额数,例如7分、29分,不能够刚好凑成.求不能凑成的最大额数n,即大于n的额数都能够凑成,并证明你的答案.【题说】第六届(1974年)加拿大数学奥林匹克题6.【解】因为98=8²1+15²699=8²3+15²5100=8²5+15²4101=8²7+15²3102=8²9+15²2103=8²11+15²1104=8²13+15²0105=8²0+15²7比105大的数,可用以上8数加上8的适当倍数而得到.而97不能用8与15凑成.故所求的n 值为97.【注】一般地,当正整数p、q互质时,不能用p、q凑成的最大整数pq-p-q.A5-009若整数n可表示成n=a1+a2+…+a k (1)其中a1,a2,…,a k是满足的正整数(不一定相异),那么,我们称n是好数,已知整数33至73是好数,证明:每一个不小于33的整数都是好数.【题说】第七届(1978年)英国数学奥林匹克题3.【证】我们改证命题p n:整数n,n+1,…,2n+7都是好数.已知p33为真.假设p n成立,那么n是好数,即存在正整数a1,a2,…,a k使(1)、从而这表明 2(a1+a2+…+a k)+4+4=2n+82(a1+a2+…+a k)+3+6=2n+9也是好数,因此P n成立.根据数学归纳法,对所有正整数n≣33,P n成立,原命题因而得证.A5-010设f(x)=x2-x+1.证明:对任意的m个自然数(m>1),f(m),f(f(m)),…两两互素.【题说】第十二届(1978年)全苏数学奥林匹克十年级题1.【证】因f(0)=1,所以多项式的常数项p n(0)=1.因而,对于任意的整数m,p n(m)除以m,余数等于1.用m'=p k(m)代替m,就得到p n+k(m)=p n(m')与m'=p k(m)互素.A5-011自然数n的数字和用S(n)来表示.(1)是否存在一个自然数n,使得n+s(n)=1980;(2)证明:在任意两个连续的自然数之中,至少有一个能表示成n+S(n)的形式,其中n为某个自然数.【题说】第十四届(1980年)全苏数学奥林匹克八年级题6.【解】(1)当n=1962时,n+S(n)=1980.(2)令S n=n+S(n),如果n的末位数字是9,则S n+1<S n;否则S n+1=S n+2.对任意两个连续的自然数m(m≣2),m+1,在S n<m的n中,选择最大的,并用N表示.这时S N+1≣m>S N,所以N 的末位数字不是9,从而S N+1=S N+2.由m≢S N+1=S N+2<m+2,即得S N+1=m或S N+1=m+1.A5-012设n为≣2的自然数.证明方程x n+1=y n+1在x与n+1互质时无正整数解.【题说】1980年芬兰等四国国际数学竞赛题3.本题由匈牙利提供.【证】x n=y n+1-1=(y-1)(y n+y n-1+…+1).如果质数p是y-1与y n+y n-1+…+1的公因数,则p整除x n,从而p是x的因数.但y除以p余1,所以y n+y n-1+…+1除以p与n+1除以p 的余数相同,即n+1也被p整除,这与x、n+1互质矛盾.因此y-1与y n+y n-1+…+1互质,从而y-1=s n,y n+y n-1+…+1=t n,其中s、t为自然数,st=x.但y n<y n+y n-1+…+1<(y +1)n,所以y n+y n-1+…+1≠t n,矛盾,原方程无解.A5-013设a、b、c是两两互素的正整数,证明:2abc-be-ac-ab是不能表示为xbc+yac +zab形式的最大整数(其中x、y、z是非负整数).【题说】第二十四届(1983年)国际数学奥林匹克题3.【证】熟知在a、b互素时,对任意整数n有整数x、y,使ax+by=n.当n>ab-a-b时,首先取0≢x<b(若x>b则用x-b、y+a代替x、y),我们有by=n-ax>ab-a-b-ax≣ab-a-b-a(b-1)=-b所以y>-1也是非负整数.即n>ab-a-b时,有非负整数x、y使ax+by=n.因为a、b、c两两互素,所以(bc,ac,ab)=1.令(bc,ac)=d.则(ab,d)=1,所以方程abz+dt=n (1)有整数解,并且0≢z<d(若z>d则用z-d、t+ab代替z、t).设 bc=da1,ac=db1,那么(a1,b1)=1.在n>2abc-bc-ca-ab时,即 t>a1b1-a1-b1从而方程a1x+b1y=t (2)有非负整数解(x,y).由(1)与(2)消去t可得bcx+acy+abz=n有非负整数解.另一方面,若有非负整数x、y、z使2abc-bc-ac-ah=xbc+yac+zab则 bc(x+1)+ac(y+1)+ab(z+1)=2abc于是应有,a整除bc(x+1),因(a,bc)=1.所以,a整除x+1,从而c≢x+1.同理有,b≢y+1,c≢z+1.因此3abc=bca+acb+abc≢bc(x+1)+ac(y+1)+ab(z+1)=2abc由于a、b、c都是正整数,这是不可能的,故2abc-bc-ca-ab不能表成xbc+yca+zab(x、y、z为非负整数)的形式.A5-014能否选择1983个不同的正整数都不大于105,且其中没有三个正整数是算术级数中的连续项,并证明你的论断.【题说】第二十四届(1983年)国际数学奥林匹克题5.本题由波兰提供.【解】考虑三进制表示中,不含数字2并且位数≢11的数所成的集合M.显然|M|=211-1>1983.M中最大的数为若x、y、z∈M并且x+z=2y,则由于2y的各位数字为0或2,所以x+z的各位数字也为0或2.从而x、z在同一位上的数字同为0或同为2,即x=z.因此M中任三个互不相同的数不成等差数列.于是回答是肯定的,M即是一例.A5-015将19分成若干个正整数之和,使其积为最大.【题说】1984年上海市赛一试题2(9).【解】由于分法只有有限种,其中必有一种分法,分成的各数的积最大.我们证明这时必有:(1)分成的正整数只能是2和3.因为4=2+2,且4=2³2,若分出的数中有4,拆成两个2其积不变;若分出的数中有数a≣5.则只要把a拆成2与a-2,由2(a-2)>a知道积将增大.(2)分成的正整数中,2最多两个.若2至少有3个,则由3+3=2+2+2及3³3>2³2³2可知,将3个2换成2个3,积将增大.所以,将19分成5个3与2个2的和,这些数的积35³22=972是最大的.A5-016设a、b、c、d是奇整数,0<a<b<c<d,且ad=bc.证明:如果对某整数k和m有a+d=2k和b+c=2m,那末a=1.【题说】第二十五届(1984年)国际数学奥林匹克题6.【证】因为a[(a+d)-(b+c)]=a2+ad-ab-ac=a2+bc-ab-ac=(a-b)(a-c)>0所以a+d>b+c,即2k>2m,k>m.又由ad=bc,有 a(2k-a)=b(2m-b)2m(b-2k-m a)=b2-a2=(b+a)(b-a)可知2m整除(b+a)(b-a).但b+a和b-a不能都被4整除(因为它们的和是2b,而b是奇数),所以2m-1必整除b+a或b-a之一.因为b+a<b+c=2m,所以b+a=2m-1或b-a=2m-1.因为a、b是奇数,它们的公因数也是奇数,且是b+a和b-a的因数,从而是2m-1的奇因数,即1.所以a与b互质,同理a与c也互质.但由ad=bc,知a能整除bc,故a=1.A5-017对正整数n≣1的一个划分π,是指将n分成一个或若干个正整数之和,且按非减顺序排列(如n=4,划分π有1+1+1+1,1+1+2,1+3,2+2及4共5种).对任一划分π,定义A(π)为划分π中数1出现的个数;B(π)为π中出现不同的数的个数(如对n=13的一个划分π:1+1+2+2+2+5而言,A(π)=2,B(π)=3).求证:对任意正整数n,其所有划分π的A(π)之和等于B(π)之和.【题说】第十五届(1986年)美国数学奥林匹克题5.【证】设p(n)表示n划分的个数.那么第一个位置是1的划分有p(n-1)个,第二个位置上是1的(当然它第一个位置上也是1)的划分有p(n-2)个.等等.第n-1个位置上是1的划分有P(1)=1个,第n个位置上是1的只有1种.若令P(0)=1.则所有划分中含1的数A(π)之和等于P(n-1)+P(n-2)+…+P(1)+P(0).另一方面,从含有1的每个划分中拿去一个1,都成为一个(n-1)的划分,共拿去P(n-1)个1.再从含有2的每个划分中拿去一个2,都成为n-2的划分,共拿去P(n-2)个2.…从含有(n-1)的划分(只有一个:1+(n-1),拿去(n-1),即拿去了P(1)=1个1.再加上含有n的一个划分,n为P(0)=1个,故B(π)总和也等于P(n-1)+P(n-2)+…+P(1)+P(0).因此,A(π)=B(π).A5-018在直角坐标系xoy中,点A(x1,y1)和点B(x2,y2)的坐标均为一位正整数.OA与x轴正方向的夹角大于45°,OB与x轴正方向的夹角小于45°,B在x轴上的射影为B',A在y轴上的射影为A',△OB'B的面积比△OA'A的面积大33.5.由x1、求出所有这样的四位数,并写出求解过程.【题说】1985年全国联赛二试题1.>67.又由于x2、y2均为一位正整数,所以x2y2=72或x2y2=81.因为∠BCB'<45°,所以x2>y2.故由x2y2=72可知x2=9,y2=8.此时x1y1=5.同样可求得x1=1,y1=5.综上可知,1985为符合条件的唯一的四位数.A5-019设n、k为互素自然数,0<k<n,在集合M={1,2,…,n-1}(n≣3)中的各数,要么着蓝色,要么着白色,已知(1)对于各i∈M,i和n-i同色;(2)对于各i∈M,i≠k, i和|i-k|同色.证明:在M中的所有数均同色.【题说】第二十六届(1985年)国际数学奥林匹克题2.本题由澳大利亚提供.【证】设lk=nq l+r l(l=1,2,…,n-1;1≢r l≢n-1).若r l=r l',则(l-l')k被n整除,但n、k互素,所以n|(l-l')这表明在l=1,2…,n-1时,r1,r2,…,r n-1互不相同,所以M={r1,r2,…,r n-1}.若r l<n-k,即r l+k<n,则r l+1=r l+k,由条件(2),r l+1与r l+1-k=r l同色.若r l≣n-k,即r l+k≣n,则r l+1=r l+k-n,于是r l+1与k-r l+1=n-r l同色.再由条件(1)n-r l与r l同色.综上所述,r i+1与r l同色(l=1,2,…,n-2),因此M中所有数同色.A5-020如n是不小于3的自然数,以f(n)表示不是n的因数的最小自然数(例如f(12)=5).如果f(n)≣3,又可作f(f(n)).类似地,如果f(f(n))≣3,又可作f(f(f(n)))果用L n表示n的长度,试对任意的自然数n(n≣3),求L n并证明你的结论.【题说】第三届(1988年)全国冬令营赛题6.【解】很明显,若奇数n≣3,那么f(n)=2,因此只须讨论n为偶数的情况,我们首先证明,对任何n≣3,f(n)=p s,这里P是素数,s为正整数.假若不然,若f(n)有两个不同的素因子,这时总可以将f(n)表为f(n)=ab,其中a、b是大于1的互素的正整数.由f的定义知,a与b都应能整除n,因(a,b)=1,故ab也应整除n,这与f(n)=ab矛盾.所以f(n)=p s.由此可以得出以下结论:(1)当n为大于1的奇数时,f(n)=2,故L n=1;(2)设n为大于2的偶数,如果f(n)=奇数,那么f(f(n))=2,这时L n=2;如果f(n)=2s,其中自然数s≣2,那么f(f(n))=f(2s)=3,从而f(f(f(n)))=f(3)=2,这时L n=3.A5-021一个正整数,若它的每个质因数都至少是两重的(即在这数的分解式中每个质因数的幂指数都不小于2),则称该正整数为“漂亮数”.相邻两个正整数皆为“漂亮数”,就称它们是一对“孪生漂亮数”,例如8与9就是一对“孪生漂亮数”.请你再找出两对“孪生漂亮数”来.【题说】1989年北京市赛高一题5.【解】设(n,n+1)是一对“孪生漂亮数”,则4n(n+1)是漂亮数,并且4n(n+1)+1=4n2+4n+1=(2n+1)2是平方数,而平方数必为漂亮数.所以,(4n(n+1)、4n(n+1)+1)也是一对“孪生漂亮数”.于是,取n=8,得一对“孪生漂亮数”(288,289).再取n=288,得另一对“孪生漂亮数”(332928,332929).两个自然数的平方差,则称这个自然数为“智慧数”比如16=52-32,16就是一个“智慧数”.在自然数列中从1开始数起,试问第1990个“智慧数”是哪个数?并请你说明理由.【题说】1990年北京市赛高一复赛题4.【解】显然1不是“智慧数”,而大于1的奇数2k+1=(k+1)2-k2,都是“智慧数”.4k=(k+1)2-(k-1)2可见大于4且能被4整除的数都是“智慧数”而4不是“智慧数”,由于x2-y2=(x+y)(x-y)(其中x、y∈N),当x,y奇偶性相同时,(x+y)(x-y)被4整除.当x,y奇偶性相异时,(x+y)(x -y)为奇数,所以形如4k+2的数不是“智慧数”在自然数列中前四个自然数中只有3是“智慧数”.此后每连续四个数中有三个“智慧数”.由于1989=3³663,所以2656=4³664是第1990个“智慧数”.A5-023有n(≣2)名选手参加一项为期k天的比赛,每天比赛中,选手的可能得分数为1,2,3,…,n,且没有两人的得分数相同,当k天比赛结束时,发现每名选手的总分都是26分.试确定数对(n,k)的所有可能情况.【题说】第二十二届(1990年)加拿大数学奥林匹克题1.【解】所有选手得分总和为kn(n+1)/2=26n,即k(n+1)=52(n,k)取值可以是(3,13),(12,4),(25,2)及(51,1),但最后一种选择不满足要求.当(n,k)=(3,13)时,3名选手13天得分配置为(1,2,3)+2(2,3,1)+2(3,1,2)+3(1,3,2)+2(3,2,1)+3(2,1,3)=(26,26,26).当(n,k)=(12,4)时,12名选手4天得分配置为2(1,2,…,11,12)+2(12,11,…,2,1)=(26,26,…,26).当(n,k)=(25,2)时,25名选手两天得分配置为(1,2,…,24,25)+(25,24,…,2,1)=(26,26,…,26).A5-024设x是一个自然数.若一串自然数x0=1,x1,x2,…,x t-1,x t=x,满足x i-1<x i,x i -1|x i,i=1,2,…,t.则称{x0,x1,x2,…x t}为x的一条因子链,t为该因子链的长度.T(x)与R(x)分别表示x的最长因子链的长度和最长因子链的条数.对于x=5k³31m³1990n(k,m,n是自然数)试求T(x)与R(x).【题说】第五届(1990年)全国冬令营赛题2.【解】设x的质因数分解式为其中p1、p2、…、p n为互不相同的质数,α1、α2、…、αn为正整数.由于因子链上,每一项至少比前一项多一个质因数,所以T(x)≢α1+α2+…+αn.将α1+α2+…+αn个质因数(其中α1个p1,α2个p2,…,αn个p n)依任意顺序排列,每个排列产生一个长为α1+α2+…+αn的因子链(x1为排列的第一项,x2为x1乘排列的第二项,x3为x2乘第三项,…),因此T(x)=α1+α2+…+αn,R(x)即排列对于x=5k³31m³1990n=2n³5k+n³31m³199n,T(x)=3n+k+mA5-025证明:若则为整数.【题说】1990年匈牙利阿拉尼²丹尼尔数学竞赛低年级普通水平题1.【证】若x+y+z+t=0,则由题设条件可得于是此时(1)式的值等于-4.若x+y+z+t≠0,则由此可得x=y=z=t.于是(1)式的值等于4.A5-026课间休息时,n个学生围着老师坐成一圈做游戏,老师按顺时针方向并按下列规则给学生们发糖:他选择一个学生并给一块糖,隔一个学生给下一个学生一块,再隔2个学生给下一个学生一块,再隔3个学生给下一个学生一块….试确定n的值,使最后(也许绕许多圈)所有学生每人至少有一块糖.【题说】1991年亚太地区数学奥林匹克题4.【解】问题等价于确定正整数n,使同余式1+2+3+…+x=a(modn) (1)对任意正整数a都有解.我们证明当且仅当n是2的方幂时,(1)式总有解.若n不是2的方幂,则n有奇素因数p.由于1,1+2,1+2+3,…,1+2+…+(p-1),1+2+…+p至多表示mod p的p-1个剩余类(最后两个数在同一个剩余类中),所以1+2+…+x也至多表示mod p的p-1个剩余类,从而总有a使1+2+…+x≡a(mod p)无解,这时(1)也无解.若n=2k(k≣1),考察下列各数:0³1,1³2,2³3,…,(2k-1)2k (2)设x(x+1)≡y(y+1)、(mod 2k+1),其中0≢x,y≢2k-1,则x2-y2+x-y≡(x-y)(x+y+1)≡0(mod 2k+1)因为x-y,x+y+1中,一个是奇数,一个是偶数,所以x-y≡0(mod2k+1)或x+y+1≡0(mod 2k +1)由后者得:2k+1≢x+y+1≢2k-1+2k-1+1=2k+1-1矛盾.故 x≡y(mod 2k+1),即x=y.因此(2)中的2k个偶数mod 2k+1互不同余,从而对任意整数a,方程x(x+1)≡2a(mod 2n)有解,即(1)有解.A5-027设S={1,2,3,…,280}.求最小的自然数n使得S的每个有n个元素的子集都含有5个两两互素的数.【题说】第三十二届(1991年)国际数学奥林匹克题3.本题由中国提供.【解】令A i={S中一切可被i整除的自然数},i=2,3,5,7.记A=A2∪A3∪A5∪A7,利用容斥原理,容易算出A中元素的个数是216.由于在A中任取5个数必有两个数在同一个A i之中,从而他们不互素.于是n≣217.另一方面,令B1=(1和S中的一切素数}B2=(22,32,52,72,112,132}B3={2³131,3³89,5³53,7³37,11³23,13³19}B4={2³127,3³83,5³47,7³31,11³19,13³17}B5={2³113,3³79,5³43,7³29,11³17}B6={2³109,3³73,5³41,7³23,11³13}易知B1中元素的个数为60.令B=B1∪B2∪B3∪B4∪B5∪B6,则B中元素的个数为88,S-B中元素的个数为192.在S中任取217个数,由于217-192=25>4³6,于是存在i(1≢i≢6),使得这217个数中有5个数在Bi中.显然这5个数是两两互素的,所以n≢217.于是n=217.A5-028对于每个正整数n,以s(n)表示满足如下条件的最大正整数:对于每个正整数k≢s(n),n2都可以表示成k个正整数的平方之和.1.证明:对于每个正整数n≣4,都有s(n)≢n2-14;2.试找出一个正整数n,使得s(n)=n2-14;3.证明:存在无限多个正整数n,使得s(n)=n2-14.【题说】第三十三届(1992年)国际数学奥林匹克题6.本题由英国提供.【解】用反证法证明如下:假设对某个n≣4,有s(n)≣n2-14,则存在k=n2-13个正整数a1,a2,…,a k,使得于是就有从而3b+8c=13 这表明c=0或1;但相应的b不为整数,矛盾.2.每个大于13的正整数m可以表为3b+8c,其中b、c为非负整数.事实上,若m=3s+1,则s≣5,m=3(s-5)+2³8.若m=3s+2,则s≣4,m=3(s-2)+8.由即知n2可表为n2-m个平方和,从而n2可表为n2-14,n2-15,…,对于n=13,有n2=122+52=122+42+32=82+82+52+42由于82可表为4个42的和,42可表为4个22的和,22可表为4个12的和,所以132=82+82+52+42可表为4,7,10,...,43个平方的和,又由于52=42+32,132可表为5,8,11, (44)平方的和.由于122可表为4个62的和,62可表为4个32的和,所以132=122+42+32可表为3,6,9,…,33个平方的和.为18+2³9=36,18+2³12=42个平方的和.再由42为4个22的和,132也可表为39个平方的和.综上所述,132可表为1,2,…,44个平方的和.3.令n=2k³13.因为132可表为1,2,…,155个平方的和,22可表为4个平方的和,所以132³22可表为1,2,…,155³4个平方的和,132³24可表为1,2,…,155³42个平方的和,…,n2=132³22k可表为1,2,…,155³4k个平方的和.s(n)=n2-14A5-029每个正整数都可以表示成一个或者多个连续正整数的和.试对每个正整数n,求n有多少种不同的方法表示成这样的和.【题说】第一届(1992年)中国台北数学奥林匹克题2.【解】设m为n的正的奇因数,m=nd,则若(1)的每一项都是正的,则它就是n的一种表示(表成连续正整数的和).若(1)式右边有负数与0,则这些负数与它们的相反数抵消(因以略去,这样剩下的项是连续的正整数,仍然得到n的一种表示,其项数为偶数(例如7=(-2)+(-1)+0+1+2+3+4=3+4)于是n的每一个正奇因数产生一个表示.反过来,若n有一个表示,项数为奇数m,则它就是(1)的形式,而m是n的奇因数,若n有一个表示,项数为偶数,最小一项为k+1,则可将这表示向负的方向“延长”,增加2k+1项,这些项中有0及±1,±2,…,±k.这样仍成为(1)的形式,项数是n的奇因数.因此,n的表示法正好是n的正奇因数的个数,如果n的标准分解A5-030 x、y为正整数,x4+y4除以x+y的商是97,求余数.【题说】1992年日本数学奥林匹克预选赛题7.【解】由题知x4+y4<98(x+y),不妨设x≣y,则x4<98³2x,所以x≢5.注意到14=1,24=16,34=81,44=256,54=625.对x,y∈{1,2,3,4,5},x4+y4>97(x+y)的仅有54+44=881=(5+4)³97+8,所以所求的余数为8.A5-031设p=(a1,a2,…,a17)是1,2,…,17的任一排列,令k p是满足不等式a1+a2+…+a k<a k+1+…+a17的最大下标k,求k p的最大值和最小值,并求所有不同的排列p相应的k p的和.【题说】1992年捷克和斯洛伐克数学奥林匹克(最后一轮)题1.【解】若k p≣12,则这与k p的定义相矛盾,所以k p≢11.又当p=(1,2,…,17)时,1+2+…+11=66<87=12+13+…+17,故此时k p=11.所以,k p的最大值为11,并且kp的最小值为5,此时p=(17,16,…,2,1).设p=(a1,a2,…,a17)是1,2,…,17的任一排列,由kp的定义,知且但(2)的等号不可能成立,否则矛盾.所以由(1)和(3)可知,对排列p=(a1,a2,…,a17)的反向排列p'=(a17,a16,…,a1),k p'=17-(k p+2)+1=16-k p所以k p+k p'=16.于是可把1,2,…,17的17!个不同排列与它的反向排列一一配对.所求之和为A5-032确定所有正整数n,使方程x n+(2+x)n+(2-x)n=0有整数解.【题说】1993年亚太地区数学奥林匹克题4.【解】显然,n只能为奇数.当n=1时,x=-4.当n为不小于3的奇数时,方程左边是首项系数为1的非负整系数多项式,常数项是2n+1,所以它的整数解只能具有-2t的形式,其中t为非负整数.若t=0,则x=-1,它不是方程的解;若t=1,则x=-2,也不是方程的解;当t≣2时,方程左边=2n[-2n(t-1)+(1-2t-1)n+(1+2t -1)n],而-2n(t-1)+(1-2t-1)n+(1+2t-1)n≡2(mod 4),从而方程左边不等于零.综上所述,当且仅当n=1时,原方程有一个整数解x=-4.A5-033每一个大于2的自然数n都可以表示为若干个两两不等的正整数之和.记这些相加数个数的最大值为A(n),求A(n).【题说】1993年德国数学奥林匹克(第一轮)题1.【解】对任意自然数n(n≣3),存在自然数m,使-1)之和,所以A(n)=m.A5-034完全平方数对(a,b)满足:(1)a和b的十进制表示位数相同;(2)将b的十进制表示续写在a的十进制表示之后,恰好构成一个新的完全平方数的十进制表示,例如a=16,b=81,1681=412.求证:这样的数对(a,b)有无穷多对.【题说】1993年德国数学奥林匹克(第一轮)题3.【证】取a1=42,a2=492,…,a n=(5³10n-1-1)2,…;b1=92,b2=992,…,b n=(10n-1)2,….其中n为正整数.显然,a n,b n均为2n位数,且=25³104n-2-103n+2³102n-2³102n+1=(5³102n-1-10n+1)2即对任意正整数n,(a n,b n)均满足条件.A5-035证明:对于任意整数x,是一个整数.【题说】1994年澳大利亚数学奥林匹克一试题2.由于连续n个整数中必有一个是n的倍数,所以上式为整数.A5-037设n=231²319.n2有多少个小于n,但不能整除n的正整数因子?【题说】第十三届(1995年)美国数学邀请赛题6.【解】n2的因子必为2α²3β形,其中0≢α≢62,0≢β≢38.于是(α,β)是属于图中矩形的格点,显然对I、IV中的格点(α,β),2α.3β不满足要求(2α²3β|n 或2α²3β≣n),II中任一格点(约定β=19或α=31的点属于I或IV,不属于II或III)(α,β),若2α²3β≣n,则对III中格点(62-α,31-β),有262-α²331-β<n.反之,对III中格点(α,β),若2α²3β≣n,则对II中格点(62-α,31-β),有262-α²331-β<n.因此II、III 中恰有一半的格点(α,β),使2α²3β满足要求.即所求的正整数因子个数为19³31=589A5-038在满足y<x≢100的有序正整数对(x,y)中,有【题说】第十三届(1995年)美国数学邀请赛题8.=49+16+8+4+3+2+1+1+1=85A5-039对于每个正整数n,将n表示成2的非负整数次方的和,令f(n)为正整数n的不同表示法的个数.如果两个表示法的差别仅在于它们中各个数相加的次序不同,这两个表示法就被视为是相同的.例如,f(4)=4,因为4恰有下列四种表示法:4;2+2;2+1+1;1+1+1+1.【题说】第三十八届(1997年)国际数学奥林匹克题6.本题由立陶宛提供.【证】对于任意一个大于1的奇数n=2k+1,n的任一表示中必含一个1.去掉这个1就得到2k 的一个表示.反之,给2k的任一表示加上一个1就得到2k+1的一个表示.这显然是2k+1和2k的表示之间的一个一一对应.从而有如下递归式:f(2k+1)=f(2k) (1)对于任意正偶数n=2k,其表示可以分为两类:含有1的与不含1的.对于前者,去掉一个1就得到2k-1的一个表示;对于后者,将每一项除以2,就得到k的一个表示.这两种变换都是可逆的,从而都是一一对应.于是得到第二个递归式:f(2k)=f(2k-1)+f(k) (2)(1)、(2)式对于任意k≣1都成立.显然f(1)=1.定义f(0)=1,则(1)式对于k=0也成立.根据(1)、(2)式,函数f是不减的.由(1)式,可以将(2)式中的f(2k-1)换成f(2k-2),得到f(2k)-f(2k-2)=f(k),k=1,2,3,…,给定任一正整数n≣1,将上式对于k=1,2,…,n求和,得到f(2n)=f(0)+f(1)+...+f(n),n=1,2,3, (3)下面先证明上界,在(3)式中,右端所有的项都不大于最后一项,对于n≣2,2=f(2)≢f(n).于是有f(2n)=2+(f(2)+…+f(n))≢2+(n-1)f(n)≢f(n)+(n-1)f(n)=nf(n)n=2,3,4,…从而得到f(2n)≢2n-1²f(2n-1)≢2n-1²2n-2²f(2n-1)≢2n-1²2n-2²2n-3²f(2n-3)≢…≢2(n-1)+(n-2)+…+1²f(2)=2n(n-1)/2²2为了证明下界,我们先证明对于具有相同奇偶性的正整数b≣a≣0,有如下不等式成立:f(b+1)-f(b)≣f(a+1)-f(a) (4)事实上,如果a、b同为偶数,则由(1)式知上式两端均等于0.而当a、b同为奇数时,由(2)式知f(b+1)-f(b)=f(b+1)/2),f(a+1)-f(a)=f((a+1)/2).由函数f是不减的即得不等式(4)成立.任取正整数r≣k≣1,其中r为偶数,在(4)式中依次令a=r-j,b=r+j,j=0,1,…,k-1.然后将这些不等式加起来,得到f(r+k)-f(r)≣f(r+1)-f(r-k+1)因为r是偶数,所以f(r+1)=f(r).从而f(r+k)+f(r-k+1)≣2f(r),k=1,…,r对于k=1,…,r,将上述不等式相加,即得f(1)+f(2)+…+f(2r)≣2rf(r)根据(3)式,上式左端等于f(4r)-1.从而对于任意偶数r≣2,f(4r)>2rf(r)+1>2rf(r).取r=2m-2即得f(2m)≣2m-1f(2m-2) (5)要使r=2m-2为偶数,m须为大于2的整数,但是(5)式对于m=2也成立.因此对一切n≣2下界成立.。

第34届俄罗斯数学奥林匹克(九年级)

第34届俄罗斯数学奥林匹克(九年级)

(0 , ( ≤ 10 )0 ≤10 . 0)
考虑到 A、 C距 离 都 为 5 B、 O的小 方格
20 年 第 l 期 08 1
3 3
则 它 的横 坐标 必 为 5( O 否则 , ( , >5 d A) 0 或 d , >5 ) ( B) 0 .

引理 的证 明 : k用 归 纳法 . 对
线 G和A 重合 . 。
令 G 是 点 关 于 点 的 对 称 点 . 则
△ A M和 △ A GM 关于 对 称 . H . 因此 ,
8(/ ) :2_ / 一f:S f 2 ( 1
, ,

A G f^ B H C. f
故点 G位于直 线 4G上 . 类似可 得点 G位 于 直 线 G上 , 而 , 从 G与 G重 合 .
A A 于 点 、 , 是 △ A C 外 接 圆A B、 C y B B ( 不含 点 C 的 中点 , 线 X ) 直 Y平 分 线 段 A .
求 B C 的大小 . A 9 7 在 一个 已写 有一 个 正整数 的黑 板 上 ..
11… ,,, , ,5 ,, 14 4 4 20就 是 满 足 条 件 的
个三 次方 程 至少有 一个 根属 于 区 间 [,] 02 .
93 令 、 分别为一个非等腰 △ A C .. B 的垂心 、 心 . 明 : 别 过 点 A、 C且 分 重 证 分 B、 别 垂直 于 A 、M 、M 的 三条 直 线 所 围 成 的 M B C 三角形 的 重心位 于 直线 MH上 . 94 一群科学家在一 个研究 所工作 . .. 在 某 天 的 8小 时 工作 期 问 , 位 科 学 家 都 至 少 每
或 :p+q ,

初中数学奥林匹克竞赛方法与试题大全

初中数学奥林匹克竞赛方法与试题大全

初中数学奥林匹克竞赛教程初中数学竞赛大纲(修订稿)数学竞赛对于开发学生智力,开拓视野,促进教学改革,提高教学水平,发现和培养数学人才都有着积极的作用。

目前我国中学生数学竞赛日趋规范化和正规化,为了使全国数学竞赛活动健康、持久地开展,应广大中学师生和各级数学奥林匹克教练员的要求,特制定《初中数学竞赛大纲(修订稿)》以适应当前形势的需要。

本大纲是在国家教委制定的九年义务教育制“初中数学教学大纲”精神的基础上制定的。

《教学大纲》在教学目的一栏中指出:“要培养学生对数学的兴趣,激励学生为实现四个现代化学好数学的积极性。

”具体作法是:“对学有余力的学生,要通过课外活动或开设选修课等多种方式,充分发展他们的数学才能”,“要重视能力的培养……,着重培养学生的运算能力、逻辑思维能力和空间想象能力,要使学生逐步学会分析、综合、归纳、演绎、概括、抽象、类比等重要的思想方法。

同时,要重视培养学生的独立思考和自学的能力”。

《教学大纲》中所列出的内容,是教学的要求,也是竞赛的要求。

除教学大纲所列内容外,本大纲补充列出以下内容。

这些课外讲授的内容必须充分考虑学生的实际情况,分阶段、分层次让学生逐步地去掌握,并且要贯彻“少而精”的原则,处理好普及与提高的关系,这样才能加强基础,不断提高。

1、实数十进制整数及表示方法。

整除性,被2、3、4、5、8、9、11等数整除的判定。

素数和合数,最大公约数与最小公倍数。

奇数和偶数,奇偶性分析。

带余除法和利用余数分类。

完全平方数。

因数分解的表示法,约数个数的计算。

有理数的表示法,有理数四则运算的封闭性。

2、代数式综合除法、余式定理。

拆项、添项、配方、待定系数法。

部分分式。

对称式和轮换对称式。

3、恒等式与恒等变形恒等式,恒等变形。

整式、分式、根式的恒等变形。

恒等式的证明。

4、方程和不等式含字母系数的一元一次、二次方程的解法。

一元二次方程根的分布。

含绝对值的一元一次、二次方程的解法。

含字母系数的一元一次不等式的解法,一元一次不等式的解法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档