材料力学实验之拉伸实验【实用参考】

合集下载

材料力学实验拉伸实验报告

材料力学实验拉伸实验报告

材料力学实验拉伸实验报告材料力学实验拉伸实验报告引言:材料力学实验是研究材料在受力作用下的变形和破坏行为的重要手段。

拉伸实验是其中一种常见的实验方法,通过对材料在受力下的延伸行为进行观察和分析,可以获得材料的力学性能参数,如屈服强度、断裂强度等。

本实验旨在探究不同材料在拉伸过程中的力学性能,并通过实验数据分析和计算得出结论。

实验装置与方法:实验所用材料为不同种类的金属样条,包括铜、铝、钢等。

实验装置主要由拉伸试验机、测力计和长度计组成。

首先,将金属样条固定在拉伸试验机上,然后逐渐增加试验机施加的拉伸力,同时记录测力计示数和长度计示数。

在拉伸过程中,要确保样条的应力均匀分布,避免出现局部应力集中导致的破坏。

实验结果与分析:通过实验数据记录和分析,我们得到了不同金属样条在拉伸过程中的力学性能参数。

首先,我们观察到在拉伸实验开始时,材料的应力-应变曲线呈现线性关系,即符合胡克定律。

随着拉伸力的增加,材料开始发生塑性变形,应力-应变曲线开始偏离线性关系,进入非线性阶段。

当拉伸力继续增加时,材料逐渐接近其屈服点,此时应力-应变曲线出现明显的拐点。

在过屈服点后,材料进入了塑性变形阶段。

我们观察到在这个阶段,材料的应力-应变曲线呈现出明显的下降趋势,即应力逐渐减小。

这是因为材料的内部结构发生了变化,晶粒开始滑移和变形,导致材料的强度下降。

在塑性变形过程中,材料的延伸率逐渐增加,直到达到最大延伸率。

然而,当材料的延伸率达到一定程度时,材料开始出现颈缩现象。

这是因为在塑性变形过程中,材料的某些部分发生了局部应力集中,导致材料在这些部分发生断裂。

我们观察到,颈缩现象对于不同材料的发生时间和程度是有差异的。

一般来说,延展性较好的材料在颈缩现象发生前能够承受更大的拉伸力。

结论:通过本次拉伸实验,我们得到了不同金属样条的力学性能参数,并对材料的拉伸行为进行了分析。

根据实验结果,我们可以得出以下结论:1. 不同材料在拉伸过程中的应力-应变曲线呈现出不同的形态,但都符合胡克定律。

材料力学性能测试实验报告

材料力学性能测试实验报告

材料基本力学性能试验—拉伸和弯曲一、实验原理拉伸实验原理拉伸试验是夹持均匀横截面样品两端,用拉伸力将试样沿轴向拉伸,一般拉至断裂为止,通过记录的力——位移曲线测定材料的基本拉伸力学性能。

对于均匀横截面样品的拉伸过程,如图1所示,图1金属试样拉伸示意图则样品中的应力为其中A为样品横截面的面积。

应变定义为其中△l是试样拉伸变形的长度。

典型的金属拉伸实验曲线见图2所示。

图3金属拉伸的四个阶段典型的金属拉伸曲线分为四个阶段,分别如图3(a)-(d)所示。

直线部分的斜率E就是杨氏模量、σs点是屈服点。

金属拉伸达到屈服点后,开始出现颈缩现象,接着产生强化后最终断裂。

弯曲实验原理可采用三点弯曲或四点弯曲方式对试样施加弯曲力,一般直至断裂,通过实验结果测定材料弯曲力学性能。

为方便分析,样品的横截面一般为圆形或矩形。

三点弯曲的示意图如图4所示。

图4三点弯曲试验示意图据材料力学,弹性范围内三点弯曲情况下C点的总挠度和力F之间的关系是其中I为试样截面的惯性矩,E为杨氏模量。

弯曲弹性模量的测定将一定形状和尺寸的试样放置于弯曲装置上,施加横向力对样品进行弯曲,对于矩形截面的试样,具体符号及弯曲示意如图5所示。

对试样施加相当于σpb0.01。

(或σrb0.01)的10%以下的预弯应力F。

并记录此力和跨中点处的挠度,然后对试样连续施加弯曲力,直至相应于σpb0.01(或σrb0.01)的50%。

记录弯曲力的增量DF和相应挠度的增量Df,则弯曲弹性模量为对于矩形横截面试样,横截面的惯性矩I为其中b、h分别是试样横截面的宽度和高度。

也可用自动方法连续记录弯曲力——挠度曲线至超过相应的σpb0.01(或σrb0.01)的弯曲力。

宜使曲线弹性直线段与力轴的夹角不小于40o,弹性直线段的高度应超过力轴量程的3/5。

在曲线图上确定最佳弹性直线段,读取该直线段的弯曲力增量和相应的挠度增量,见图6所示。

然后利用式(4)计算弯曲弹性模量。

二、试样要求1.拉伸实验对厚、薄板材,一般采用矩形试样,其宽度根据产品厚度(通常为0.10-25mm),采用10,12.5,15,20,25和30mm六种比例试样,尽可能采用lo =5.65(F)0.5的短比例试样。

材料力学实验报告参考答案(标准版)

材料力学实验报告参考答案(标准版)

目录一、拉伸实验二、压缩实验三、拉压弹性模量E测定实验四、低碳钢剪切弹性模量G测定实验五、扭转破坏实验六、纯弯曲梁正应力实验七、弯扭组合变形时的主应力测定实验八、压杆稳定实验一、拉伸实验报告标准答案实验目的:见教材。

实验仪器见教材。

实验结果及数据处理:例:(一)低碳钢试件试验前试验后最小平均直径d=10.14mm 最小直径d= 5.70mm 截面面积A=80.71mm 2截面面积A 1=25.50mm 2计算长度L=100mm计算长度L 1=133.24mm试验前草图试验后草图强度指标:P s =__22.1___KN 屈服应力σs =P s /A __273.8___MP a P b =__33.2___KN 强度极限σb =P b /A __411.3___MP a塑性指标:1L -L100%Lδ=⨯=伸长率33.24%1100%A A Aψ-=⨯=面积收缩率68.40%低碳钢拉伸图:(二)铸铁试件试验前试验后最小平均直径d=10.16mm最小直径d=10.15mm截面面积A=81.03mm2截面面积A1=80.91mm2计算长度L=100mm计算长度L1≈100mm 试验前草图试验后草图强度指标:最大载荷Pb=__14.4___KN强度极限σb =Pb/A=_177.7__M Pa问题讨论:1、为何在拉伸试验中必须采用标准试件或比例试件,材料相同而长短不同的试件延伸率是否相同?答:拉伸实验中延伸率的大小与材料有关,同时与试件的标距长度有关.试件局部变形较大的断口部分,在不同长度的标距中所占比例也不同.因此拉伸试验中必须采用标准试件或比例试件,这样其有关性质才具可比性.材料相同而长短不同的试件通常情况下延伸率是不同的(横截面面积与长度存在某种特殊比例关系除外).2、分析比较两种材料在拉伸时的力学性能及断口特征.答:试件在拉伸时铸铁延伸率小表现为脆性,低碳钢延伸率大表现为塑性;低碳钢具有屈服现象,铸铁无.低碳钢断口为直径缩小的杯锥状,且有450的剪切唇,断口组织为暗灰色纤维状组织。

材料的 拉伸 与 压缩 实验

材料的 拉伸 与 压缩 实验

材料的拉伸与压缩实验实验目的:一、拉伸实验1. 观察材料在拉伸过程中所表现的各种现象。

2. 确定低碳钢的流动极限(屈服极限)、强度极限、延伸率和面积收缩率;确定铸铁的强度极限。

3. 比较低碳钢(塑性材料)和铸铁(脆性材料)机械性质的特点及破坏情况。

4. 学习电子万能实验机的构造原理,并进行操作练习。

二、压缩实验1.确定压缩时低碳钢的流动极限和铸铁的强度极限。

2.观察低碳钢、铸铁压缩时的变形和破坏现象。

3.学习电子万能实验机的构造原理,并进行操作练习。

实验设备与仪器:微机控制电子万能试验机、应变仪、三相变压器、游标卡尺等。

实验原理:塑性材料和脆性材料在拉伸时的力学性能。

(参考材料力学课本)实验步骤:一、拉伸实验1、试验前的准备工作对低碳钢试样打标距,用试样打点机或手工的方法在试样工作段确定L0=100mm的标记。

试样越短,局部变形所占比例越大,δ也就越大。

2、测量试样尺寸测量方法:测量两端标据点内侧及中间这三个截面处的直径,在每一横截面内沿相互垂直的两个直径方向各测量一次取平均值。

用测得的三个平均值中最小值计算试件的原始横截面积S0 。

3、实验操作步骤1) 接好电源,开启电源开关。

2) 根据低碳钢的抗拉刚度Rm(σb)和原始横截面积S0 估计试件的最大载荷Fm 。

3) 调整试验力为“零”。

4)安装试样。

先上后下5) 输入试验编号并回车确认。

6) 试件参数的设定。

点击“试样”键进入试样参数输入区。

输入:试样截面形状:圆形;ID:学号;标距:100mm;直径:测量值的最小平均值mm。

输入后点击“完成并返回”键。

7)开始试验。

点击“开始试验”键,实验开始。

试验时注意观察显示屏上曲线的变化和荷载的变化,观察相应试验现象的变化。

8)试样断裂后立刻点击停止实验。

9)读取在屏幕上的图像曲线上,找出F eH上屈服点(力)、F eL下屈服点(力)、F m最大荷载(力)及对应的荷载数值。

并保存数据,填写记录表。

二、压缩实验1、测量试样尺寸用游标卡尺测量直径d0。

材料力学实验参考

材料力学实验参考

实验一、测定金属材料拉伸时的力学性能一、实验目的1、测定低碳钢的屈服极限s σ,强度极限b σ,延伸率δ和面积收缩率ψ。

2、测定铸铁的强度极限b σ。

3、观察拉伸过程中的各种现象,并绘制拉伸图(l F ∆-曲线)。

二、仪器设备1、液压式万能试验机。

2、游标卡尺。

三、实验原理简要材料的力学性质s σ、b σ、δ和ψ是由拉伸破坏试验来确定的。

试验时,利用试验机自动绘出低碳钢拉伸图和铸铁拉伸图。

对于低碳材料,确定屈服载荷s F 时,必须缓慢而均匀地使试件产生变形,同时还需要注意观察。

测力回转后所指示的最小载荷即为屈服载荷s F ,继续加载,测得最大载荷b F 。

试件在达到最大载荷前,伸长变形在标距范围内均匀分布。

从最大载荷开始,产生局部伸长和颈缩。

颈缩出现后,截面面积迅速减小,继续拉伸所需的载荷也变小了,直至断裂。

铸铁试件在极小变形时,就达到最大载荷,而突然发生断裂。

没有流动和颈缩现象,其强度极限远低于碳钢的强度极限。

四、实验过程和步骤1、用游标卡尺在试件的标距范围内测量三个截面的直径,取其平均值,填入记录表内。

取三处中最小值作为计算试件横截面积的直径。

2、 按要求装夹试样(先选其中一根),并保持上下对中。

3、 按要求选择“试验方案”→“新建实验”→“金属圆棒拉伸实验”进行试验,详细操作要求见万能试验机使用说明。

4、 试样拉断后拆下试样,根据试验机使用说明把试样的l F ∆-曲线显示在微机显示屏上。

从低碳钢的l F ∆-曲线上读取s F 、b F 值,从铸铁的l F ∆-曲线上读取b F 值。

5、 测量低碳钢(铸铁)拉断后的断口最小直径及横截面面积。

6、 根据低碳钢(铸铁)断口的位置选择直接测量或移位方法测量标距段长度1l 。

7、 比较低碳钢和铸铁的断口特征。

8横截面面积A1=25.50 mm伸长率=⨯-=%1001lllδ断面收缩率=⨯-=%1001AAAψ试样草图拉伸图实验前:d..l实验后:FO l∆灰铸铁试件试样尺寸实验数据实验前:标距=l100 mm直径=d10.16mm横截面面积A =81.03 mm2实验后:标距l1≈100 mm最小直径d1=10.15mm横截面面积A=80.91 mm2最大载荷=bF14.4kN抗拉强度==AFbbσMPa 实验前草图实验后草图六、实验结论分析与讨论分析比较两种材料在拉伸时的力学性能及断口特征。

材料力学实验之拉伸实验

材料力学实验之拉伸实验
用增量法,计算弹性模量E。
用增量法,计算式为:
E DF l0
D(Dl) A0
a
上式中,
DFFbFa (力增量)
O
D(Dl)DlbDla(伸长量增量)
l0 50mm
A 0 为原始截面积
精选课件
b
DF
D(Dl)
Dl
6
2、铸铁拉伸时的力学性能:
试样装在试验机上,受到轴向拉力
F 作用,试样标距产生伸长量 D。l 两者
低碳钢
颈缩现象,“杯口”
拉伸实验
低碳钢试样拉伸破坏后,断口呈“杯口”状。
铸铁
平面断口,正应力引起
铸铁试样拉伸破坏后,断口在横截面上,呈平口状。
精选课件
8
拉伸实验
四、实验步骤
1.测量拉伸试样原始尺寸:直径d0,长度l0。 2.安装试样,进行加载,测出材料的屈服载荷Fs、最大载荷Fb。 3.测量试样断后尺寸:直径d1,长度l1。 4.观察并描述试样破坏后断口特点。
化阶段、局部变形阶段。
O
拉伸实验
Fb Fs
Dl
低碳钢拉伸曲线
屈服点
s
F s (强度指标) A0
断后伸长率 l1 l0 100%(塑性指标)
l0
抗拉强度 b
F b(强度指标) A0
断面收缩率 A0 A1 10% 0(塑性指标)
精选课件
A0
4
拉伸实验
低碳钢拉伸弹性模量E
材料在弹性范围内服从虎克定律,其应力、应变成正比关系:E
实验报告要求(按实验目的完成报告)
1.计算材料强度指标、塑性指标和低碳钢拉伸弹性模量E(GPa)。
2.描述拉伸断口特点。
3.比较两种材料的拉伸力学性能。

材料力学拉伸实验实验报告

材料力学拉伸实验实验报告

金属材料的拉伸实验(电子)一. 实验目的1.测定低碳钢材料在常温、静载条件下的屈服极限。

s,强度极限Ob,延伸率5和断面收缩率w。

2.测定铸铁材料在常温静载下的强度极限ob。

3.观察低碳钢、铸铁在拉伸过程中出现的各种现象,分析P-△图的特征。

4.比较低碳钢与铸铁力学性能的特点和试件断口情况分析其破坏原因。

5.了解微机控制电子万能材料试验机的构造原理,学习其使用方法。

二. 仪器设备1.微机控制电子万能材料试验机2.游标卡尺三. 试件在测试某一力学性能参数时,为了避免试件的尺寸和形状对实验结果的影响,便于各种材料力学性能的测试结果的互相比较,采用国家标准规定的比例试件。

国家标准规定比例试件应符合以下关系:L0=K。

对于圆形截面试件,K值通常取5.65或11.3。

即直径为d0的圆形截面试件标距长度分别为5d0和10d0。

本试验采用L0=10d0的比例试件。

图3-4-1四. 测试原理实验时,实验软件能够实时的绘出实验时力与变形的关系曲线,如图3-4-2所示。

图3-4-21.低碳钢拉伸(1).弹性阶段弹性阶段为拉伸曲线中的OB段。

在此阶段,试件上的变形为弹性变形。

OA段直线为线弹性阶段,表明载荷与变形之间满足正比例关系。

接下来的AB段是一非线弹性阶段,但仍满足弹性变形的性质。

⑵.屈服阶段过弹性阶段后,试件进入屈服阶段,其力与曲线为锯齿状曲线BC段。

此时,材料丧失了抵抗变形的能力。

从图形可看出此阶段载荷虽没明显的增加,但变形继续增加;如果试件足够光亮,在试件表面可看到与试件轴线成45°方向的条纹,即滑移线。

在此阶段试件上的最小载荷即为屈服载荷Ps.⑶强化阶段材料经过屈服后,要使试件继续变形,必须增加拉力,这是因为晶体滑移后增加了抗剪能力,同时散乱的晶体开始变得细长,并以长轴向试件纵向转动,趋于纤维状呈现方向性,从而增加了变形的抵抗力,使材料处于强化状态,我们称此阶段为材料的强化阶段(曲线CD部分)。

材料力学拉伸与压缩实验报告

材料力学拉伸与压缩实验报告

材料力学拉伸与压缩实验报告一、实验目的本实验旨在通过拉伸与压缩实验,探讨材料在受力下的力学性能,了解材料的强度、延展性和变形特点,为材料的工程应用提供理论依据。

二、实验原理1. 拉伸实验原理:拉伸试验是通过对试样施加拉力,使其发生长度方向的拉伸变形,以研究材料的强度、延展性和断裂特性。

在拉伸过程中,可以通过载荷和位移数据来绘制应力-应变曲线,从而得到材料的力学性能参数。

2. 压缩实验原理:压缩试验是通过对试样施加压力,使其产生长度方向的压缩变形,以研究材料在受压状态下的变形特性和抗压性能。

通过测量载荷和位移数据,可以得到材料的应力-应变关系,并分析其力学性能。

三、实验装置及试样1. 实验装置:拉伸试验机、压缩试验机、数据采集系统等。

2. 试样:常用的拉伸试样为标准圆柱形试样,常用的压缩试样为标准方形试样。

四、实验步骤1. 拉伸实验:a. 准备好拉伸试样,安装在拉伸试验机上。

b. 设置合适的加载速率和采样频率,开始施加拉力。

c. 记录载荷和位移数据,绘制应力-应变曲线。

d. 观察试样的变形情况,记录拉伸过程中的各阶段特征。

2. 压缩实验:a. 准备好压缩试样,安装在压缩试验机上。

b. 设置合适的加载速率和采样频率,开始施加压力。

c. 记录载荷和位移数据,得到应力-应变关系曲线。

d. 观察试样的变形情况,记录压缩过程中的各阶段特征。

五、实验结果及分析1. 拉伸试验结果分析:根据绘制的应力-应变曲线,分析材料的屈服点、最大强度、断裂点等力学性能参数,并观察材料的断裂形态和变形特点。

2. 压缩试验结果分析:根据得到的应力-应变关系曲线,分析材料在受压状态下的变形和抗压性能,并观察材料的压缩断裂形态。

六、实验结论通过拉伸与压缩实验,我们得到了材料在拉伸和压缩条件下的力学性能参数,并对其力学性能进行了分析。

实验结果表明,材料在拉伸状态下具有较好的延展性和韧性,而在受压状态下表现出良好的抗压性能。

这些结果为材料的工程应用提供了重要参考。

拉伸实验

拉伸实验

拉伸试件要求 拉伸试件要求
S0=πd2/4
S0=ab
比例试件要求(国家标准规定使用短比例试件)
圆试样
矩形试样
短比例试件: L0=5d 短比例试件: L0=5.65√S0 长比例试件: L0=10d 长比例试件: L0=11.3√S0
σ
力学性能指标 ReH
Rm
强度指标:
上屈服强度
E
R eH
下屈服强度
某种金属拉伸曲线
高分子材料拉伸曲线和力学特性
高分子材料力学性能特性 高分子材料也叫高聚物,具有大分子链结构和特有的热运动。这决定了它的力学特
性——低强度(几十MPa)、高弹性低刚度(1~5GPa),粘弹性(变形与时间有关)、重 量轻、绝缘、耐腐蚀。有热塑性材料(受热软化冷却变硬再受热又软化,成型方便)和 热固性材料(一次成形,不再软化)两种。
实验设备
1、材料试验机
3104教室:WDW-100电子万能试验机 3106教室:CSS2210电子万能试验机
2、标距50mm引伸计 3、 0.02mm游标卡尺
试件:
低碳钢φ10圆试件,铝合金φ10圆试件 ,铸铁 φ12圆试件
实验要求及安排
一.每组完成一根金属塑性材料拉伸实验
1、按要求在试件上画标距线,测量试件原始数据 2、完成拉伸实验。实验分两步进行:
=
F eH S0
抗拉强度
R eL
=
F eL S0
塑性指标:
Rm
=
Fm S0
断后伸长率 A = Lu − L0 ×100%
L0
ReL
P
ε
σ
断面收缩率 Z = S0 − Su ×100%
σ
S0

材料力学实验之拉伸实验

材料力学实验之拉伸实验

拉伸实验
1.测量拉伸试样原始尺寸:直径d0,长度l0。 2.安装试样,进行加载,测出材料的屈服载荷Fs、最大载荷Fb。 3.测量试样断后尺寸:直径d1,长度l1。 4.观察并描述试样破坏后断口特点。
实验报告要求(按实验目的完成报告)
1.计算材料强度指标、塑性指标和低碳钢拉伸弹性模量E(GPa)。
2.描述拉伸断口特点。


电 子 引
用双侧电子引伸计
测量变形量 Dl


l为0 引伸计刀口间
距离 l0 50mm
拉伸实验
试验方法: 将引伸计安装在试样上,受拉力后所产生的伸长量与力之间的
线性关系由计算机显示,如下图。
求出直线上 a、b 两点的力和伸长量, F
用增量法,计算弹性模量E。
b
用增量法,ቤተ መጻሕፍቲ ባይዱ算式为:
E DF l0 D(Dl) A0
一、实验目的
拉伸实验
1、测定低碳钢拉伸弹性模量E、屈服点σs、 抗拉强度σb、断后伸长率δ、断面收缩率ψ。
2、测定铸铁抗拉强度σb,断后伸长率δ。
二、实验设备及仪器
1. 电子万能材料试验机; 2. 0.02mm游标卡尺; 3. 双侧电子引伸计。
实验试样
拉伸试样 —— 试验采用标准圆形试样
拉伸实验
长试样 l0=10d0
短试样 l0= 5d0
l0
d0
三、实验原理
1、低碳钢拉伸时的力学性能:
F
试样装在试验机上,受到轴向拉力
F 作用,试样标距产生伸长量 D。l 两者
之间的关系如图。
低碳钢试样的变形过程,大致可分为四
个变形阶段——弹性阶段、屈服阶段、强
化阶段、局部变形阶段。

材料力学实验

材料力学实验

试验一、拉伸试验报告1-1、由实验现象和结果比较低碳钢和铸铁拉伸时的力学性能有什么不同?答:低碳钢在拉伸过程有明显的四个阶段,弹性阶段、屈服阶段、强化阶段和颈缩阶段。

低碳钢具有屈服种材料在拉伸时的力学性能及断口特征。

低碳钢断口为直径缩小的杯锥状,其延伸率大表现为塑性。

铸铁在拉伸时延伸率小表现为脆性,没有明显的四个阶段,其断口为横断面。

1-2、由拉伸实验所确定的材料的力学性能数值有什么实用价值?答:1)会对企业的生产选材有直接的影响,这直接关系到企业的成本和产品的质量。

2)对于好多恶劣工作环境的金属工件,都要求要出具检测报告。

3)企业根据不同的力学性能参数,可以安排较为合理的加工工艺。

除以上这些外,出口的产品都要经过这方面的检测的,这也是一个企业质量意识的侧面反映。

1-3、为何在拉伸试验中必须采用标准试件或比例试件,材料相同而长短不同的试件延伸率是否相同?答:拉伸实验中延伸率的大小与材料有关,同时与试件的标距长度有关。

试件局部变形较大的断口部分,在不同长度的标距中所占比例也不同。

因此拉伸试验中必须采用标准试件或比例试件,这样其有关性质才具可比性。

材料相同而长短不同的试件通常情况下延伸率是不同的(横截面面积与长度存在某种特殊比例关系除外)。

延伸率的大小与试件尺寸有关,为了便于进行比较,须将试件标准化。

断面收缩率的大小与试件尺寸无关。

试验二、低碳钢弹性模量E的测定报告2-1、测E时为何要加初始载荷并限制最高载荷?使用分级等量加载的目的是什么?答:测E时为何要加初始载荷并最高载荷是为了保证低碳钢处于弹性状态,以保证实验结果的可靠性。

分级等量加载的目的是为了保证所求的弹性模量减少误差。

2-2、试件的尺寸和形状对测定弹性模量有无影响?为什么?答: 弹性模量是材料的固有性质,与试件的尺寸和形状无关。

2-3逐级加载方法所求出的弹性模量与一次加载到最终值所求出的弹性模量是否相同?为什么必须用逐级加载的方法测弹性模量?答: 逐级加载方法所求出的弹性模量与一次加载到最终值所求出的弹性模量不相同,采用逐级加载方法所求出的弹性模量可降低误差,同时可以验证材料此时是否处于弹性状态,以保证实验结果的可靠性。

拉伸试验

拉伸试验
拉伸实验 拉伸实验是检验材料力学性能的最基本的实验。 一、实验目的 1.了解试验设备——微机控制电子万能试验机的构造和工作原理,掌握其操作规程及使用时的注意事项。 2.测定钢筋的屈服极限s、强度极限b、延伸率、断面收缩率。 4.观察钢筋在拉伸过程中的各种现象,并利用自动绘图装置绘制拉伸图(P一L曲线)。 二、实验设备和量具 1.量具:游标卡尺。 2.设备:WNW-10微机控制电子万能试验机。
0 SFRsel
0 SFRmm (单位:牛顿 /平方毫米) 2断后伸长率A的测量及计算 将拉断后的试样在断裂处紧密对接在一起,使其轴线位于一条直线上,用游标卡尺测量标距两端点间的距离Lu 。 2.1 断裂位置到邻近标距端点距离大于1/3Lo时,可直接测量两标距间的长度。
图1-1 WNW-10微机控制电子万能试验机 下面将WNW-10微机控制电子万能试验机的构造、工作原理及操作规程介绍如下:
试验机主要用于金属材料和非金属材料的拉伸、压缩、弯曲等性能试验,除常规试验外,配备相应附件还可以进行蠕变、持久、应力松弛、低周循环试验及在高温或低温环境下拉伸性能试验。 机构与原理及特点 WDW系列电子式万能试验机,由主机、全数字测量控制系统、用户软件包、功能附件等部件组成。 主机:主机为门式预应力框架,轴向刚度高,采用圆弧同步带轮减速,滚珠丝杠副传动,传动无间隙,使试验力和变形速度精密控制得到保证;采用了双空间结构,上空间用于拉伸试验,下空间做压缩、弯曲试验。
测量控制系统:采用品牌计算机并配有Windows电子万能试验机专用软件,根据国家标准或用户提供的标准测量材料的性能 参数,对试验数据进行统计和处理,输出打印各种要求的试验曲线及试验报告:可选择应力一应变、负荷一应变、负荷一时间、负荷一位移、位移一时间、变形一时 间等多种试验曲线的显示、放大、比较及对试验过程的监控、智能、方便。计算机闭环控制,对试验结果自动存储,试验结果可任意存取,随时模拟再现。

拉伸实验报告

拉伸实验报告

拉伸实验报告
实验目的,通过拉伸实验,了解材料在受力作用下的力学性能,掌握拉伸实验的基本操作技能。

实验仪器,拉伸试验机、标尺、试样。

实验原理,拉伸试验是通过对试样施加拉伸力,使其在拉伸过程中产生应力和应变,从而研究材料的力学性能。

拉伸试验的基本参数包括抗拉强度、屈服强度、断裂伸长率等。

实验步骤:
1. 准备试样,根据实验要求,选择合适的试样,对其尺寸进行测量,并在试样上标记好测量点。

2. 安装试样,将试样安装到拉伸试验机上,并调整好试验机的参数。

3. 进行拉伸实验,启动拉伸试验机,施加拉伸力,记录试验过程中的拉伸力和试样的变形情况。

4. 数据处理,根据实验记录的数据,计算出试样的抗拉强度、屈服强度等力学性能参数。

实验结果:
经过拉伸实验,我们得到了试样的拉伸力-应变曲线。

从曲线上可以看出,试样在拉伸过程中出现了线性阶段和非线性阶段。

在线性阶段,试样的应变随拉伸力的增加呈线性增长,而在非线性阶段,试样的应变增长速度加快,最终导致试样的断裂。

根据拉伸力-应变曲线,我们计算出了试样的抗拉强度为XXX,屈服强度为XXX,断裂伸长率为XXX。

这些数据反映了材料在拉伸过程中的力学性能,为材料的工程应用提供了重要参考。

实验总结:
通过本次拉伸实验,我们深入了解了材料在受力作用下的力学性能,掌握了拉伸实验的基本操作技能。

同时,我们也发现了材料在拉伸过程中的一些特点,对材料的工程应用具有重要的指导意义。

在今后的学习和工作中,我们将继续深入研究材料的力学性能,不断提高实验操作技能,为材料工程领域的发展做出更大的贡献。

拉伸实验报告到此结束。

材料拉伸实验

材料拉伸实验
圆截面试件
标距与直径的比例为: l0 5d0 l0 10d0
对于板的材料拉伸实验,按国家标准做成矩形截面试件。
截面面积和试件标距关系为:
l0 5.65 A0 l0 11.3 A0
四、实验原理 1.夹头形式 圆形和矩形截面试件所用夹板分别如图1—3(a)(b)
夹板表面制成凸纹, 以夹牢试件。
取这三处截面直径的最小值d0作为计算试件横截面面积 A0的依据。
2.试验机的准备:首先了解电子万能试验机的基本 构造原理,学习试验机的操作规程。
(1)旋开钥匙开关,启动试验机。第一步:连接好试 验机电源线及各通讯线缆;第二步:打开空气开关; 第三步:打开钥匙开关。
(2)连接试验机与计算机。打开计算机显示器与主机, 运行实验程序,进入实验主界面,单击主菜单上“联 机”,连接试验机与计算机。
般要求 1h0/d。0 3
四、实验原理
1.低碳钢的压缩曲线
F
压缩过程中产生屈服以前的
基本情况与拉伸时相同,载
B
荷到达B点时,实验力值不变 或下降,材料产生屈服,当 FS
载荷超过B点后,塑性变形逐
渐增加,试件横截面积逐渐 增大,试件最后被压成鼓形 O
而不断裂,只能测出产生屈
服时的载荷 F S,由 S FS/ A0
实验采用半桥单臂、公共补偿、多点测量方法。加载
采用增量法,即每增加等量的载荷△F,测出各点的应
变增量 实,i 分别取各点应变增量的平均值 , 实 i
依次求出各点的应变增量 实i E实i,将实测应力
值与理论应力值 应力公式。
i
Miy1进/2行F比ai较y,以验证弯曲正
得出材料受压时的屈服极限。
F L
2.铸铁的压缩曲线

材料范文之材料力学拉伸实验报告

材料范文之材料力学拉伸实验报告

材料力学拉伸实验报告【篇一:材料力学拉伸试验】1-1 轴向拉伸实验一、实验目的1、测定低碳钢的屈服强度rel(?s)、抗拉强度rm(?b)、断后伸长率a11.3(?10)和断面收缩率z(?)。

2、测定铸铁的抗拉强度rm(?b)。

3、比较低碳钢?5(塑性材料)和铸铁?5(脆性材料)在拉伸时的力学性能和断口特征。

注:括号内为gb/t228-2002《金属材料室温拉伸试验方法》发布前的旧标准引用符号。

二、设备及试样1、电液伺服万能试验机(自行改造)。

2、 0.02mm游标卡尺。

3、低碳钢圆形横截面比例长试样一根。

把原始标距段l0十等分,并刻画出圆周等分线。

4、铸铁圆形横截面非比例试样一根。

注:gb/t228-2002规定,拉伸试样分比例试样和非比例试样两种。

比例试样的原始标距l0和原始横截面积s0的关系满足l0?ks0。

比例系数k取5.65时称为短比例试样,k取11.3时称为长比例试样,国际上使用的比例系数k取5.65。

非比例试样l0和s0无关。

三、实验原理及方法低碳钢是指含碳量在0.3%以下的碳素钢。

这类钢材在工程中使用较广,在拉伸时表现出的力学性能也最为典型。

(工程应变)(2)屈服阶段ab:在超过弹性阶段后出现明显的屈服过程,即曲线沿一水平段上下波动,即应力增加很少,变形快速增加。

这表明材料在此载荷作用下,宏观上表现为暂时丧失抵抗继续变形的能力,微观上表现为材料内部结构发生急剧变化。

从微观结构解释这一现象,是由于构成金属晶体材料结构晶格间的位错,在外力作用下发生有规律的移动造成的。

如果试样表面足够光滑、材料杂质含量少,可以清楚地看出试样表面有450方向的滑移线。

根据gb/t228-2002标准规定,试样发生屈服而力首次下降前的最大应力称为上屈服强度,记为“reh”;在屈服期间,不计初始瞬时效应时的最低应力称为下屈服强度,记为“rel”,若试样发生屈服而力首次下降的最小应力是屈服期间的最小应力时,该最小应力称为初始瞬时效应,不作为下屈服强度。

工程力学实验

工程力学实验
⑵游标卡尺。
⑶试件:按国标规定,扭转试件一般为圆截面如图3-8所示。推荐采用直径为10mm,标距L为100mm的圆形试件。
三、实验原理
圆轴扭转时,试件表面为纯剪应力状态。试件的断裂方式为分析材料的破坏原因和抗断能力提供了直接有效的依据。
材料扭转过程可用试件的变形(扭转角ψ)和载荷(扭矩T)的关系,即T-ψ曲线来描述。图3-9为两种曲型材料的扭转曲线。
(2)测定低碳钢的屈服极限σS、强度极限σb、延伸率δ和截面收缩率ψ。
(3)测定铸铁的强度极限σb、延伸率δ和截面收缩率ψ
(4)比较低碳钢与铸铁的力学性能、破环过程和现象。
二、实验设备:
万能试验机、游标卡尺。
三、试件:
实验表明,试件的尺寸和形状对实验结果有影响,为了避免这种影响和便于对各种材料力学性能的测试结果可进行比较,国家标准对试件的尺寸、形状作了统一规定,根据规定,拉伸试件可制成圆形或矩形截面,实验前、后的试件如图所示。
五、实验步骤
低碳钢拉伸:
1、试件准备
采用长试件(L=10d)。
用游标卡尺在试件标距两端和中间部位,分别沿相互垂直的两个方向各测量一次直径,并计算这三处的平均值,取其最小者作为试件直径d,并计算出试件的横截面面积A0。
2、试验机准备
根据低碳钢的强度极限σb和横截面面积A0,估算出试验所需的最大载荷Fb,选择合适的测力度盘,并配以相应的摆锤。将缓冲器调至适当位置,调整测力指针使其对准零点,调整好绘图装置。
式中A0——为试验前试件的横截面面积。
六、实验报告
材料力学实验报告
实验名称:
实验目的:
实验设备:
实验记录及计算结果:
(1)试件尺寸
(2)实验数据和计算结果
七、分析与思考题

实验拉伸实验报告

实验拉伸实验报告

实验拉伸实验报告实验拉伸实验报告引言:拉伸实验是材料力学实验中最基本的实验之一,通过对材料在受力下的变形和破坏过程进行观察和分析,可以得到材料的力学性能参数,为材料的设计和应用提供重要依据。

本文将对拉伸实验的目的、原理、实验装置以及实验结果进行详细描述和分析。

一、实验目的拉伸实验的目的是通过对材料在受力下的变形和破坏过程进行观察和分析,获取材料的力学性能参数,如屈服强度、抗拉强度、断裂延伸率等。

通过实验可以评估材料的力学性能,为材料的设计和应用提供依据。

二、实验原理拉伸实验是将试样置于拉伸机上,施加拉伸力使试样发生拉伸变形,通过测量试样的变形和力的变化,计算得到材料的力学性能参数。

拉伸实验的主要原理有以下几个方面:1. 应力-应变关系:拉伸试验中,测量试样的应变与应力之间的关系,可以得到材料的应力-应变曲线。

应力-应变曲线可以反映材料的变形特性和力学性能。

2. 屈服强度:材料在拉伸过程中,当应力达到一定值时,试样会出现塑性变形,即试样开始产生屈服。

屈服强度是指材料开始塑性变形时的应力值。

3. 抗拉强度:材料在拉伸过程中,当试样继续受力时,应力逐渐增大,最终达到最大值,即抗拉强度。

抗拉强度反映了材料的抗拉能力。

4. 断裂延伸率:材料在拉伸过程中,当试样发生破坏时,测量试样的断裂长度与原始长度之比,即可得到材料的断裂延伸率。

断裂延伸率可以评估材料的韧性和延展性。

三、实验装置拉伸实验需要使用拉伸试验机和试样,其中拉伸试验机是实验的核心装置,用于施加力和测量试样的变形。

实验装置包括以下几个部分:1. 拉伸试验机:拉伸试验机是用于施加力和测量试样变形的设备。

它由主机、传感器、控制系统等组成。

主机通过驱动装置施加拉力,传感器用于测量试样的变形,控制系统用于控制试验过程。

2. 试样:试样是进行拉伸实验的材料样品。

试样的形状和尺寸根据实验要求而定,常见的试样形状有圆柱形、矩形等。

试样的制备要求严格,以保证实验的准确性和可重复性。

材料力学实验之拉伸实验 ppt课件

材料力学实验之拉伸实验 ppt课件
材料力学实验之拉伸实验
拉伸实验
(验证性实验)
拉伸实验
材料力学实验之拉伸实验
一、实验目的
拉伸实验
1、测定低碳钢拉伸弹性模量E、屈服点σs、 抗拉强度σb、断后伸长率δ、断面收缩率ψ。
2、测定铸铁抗拉强度σb,断后伸长率δ。
二、实验设备及仪器
1. 电子万能材料试验机; 2. 0.02mm游标卡尺;
3. 双侧电子引伸计。
2、铸铁拉伸时的力学性能:
试样装在试验机上,受到轴向拉力
F 作用,试样标距产生伸长量 D。l 两者
之间的关系如图。
铸铁没有明显直线部分,没有屈服和 颈缩现象。在较小拉应力下被拉断,断 后伸长率也很小。铸铁等脆性材料的抗 拉强度很低,所以不宜作为抗拉零件的 材料。
抗拉强度
b
Fb A0
(强度指标)
拉伸实验
拉伸实验
材料在弹性范围内服从虎克定律,其应力、应变成正比关系:E
将 F , Dl 代入上式,得
0
l
E F l0 Dl A0


电 子 引
用双侧电子引伸计
测量变形量 Dl


l为0 引伸计刀口间
距离 l0 50mm
材料力学实验之拉伸实验
拉伸实验
试验方法: 将引伸计安装在试样上,受拉力后所产生的伸长量与力之间的
F
Fb
O 铸铁拉伸曲线 Dl
断后伸长率 l1 l0 100%(塑性指标)
l0材料力学实验之拉伸实验
拉伸实验——观察现象
低碳钢
颈缩现象,“杯口”
拉伸实验
低碳钢试样拉伸破坏后,断口呈“杯口”状。
铸铁
平面断口,正应力引起
铸铁试样拉伸破坏后,断口在横截面上,呈平口状。

关于材料的拉伸实验

关于材料的拉伸实验

实验二材料的拉伸实验概述常温、静载下的轴向拉伸试验是材料力学试验中最基本、应用最广泛的试验。

通过拉伸试验,可以全面地测定材料的力学性能,如弹性、塑性、强度、断裂等力学性能指标。

这些性能指标对材料力学的分析计算、工程设计、选择材料和新材料开发都有及其重要的作用。

一、金属的拉伸实验(一)实验目的1.测定低碳钢的屈服强度Rel、抗拉强度Rm、断后延伸率A11.3和断面收缩率Z。

2.测定铸铁的抗拉强度Rm。

3.观察上述两种材料在拉伸过程中的各种现象,并绘制拉伸图(F─曲线)。

4.分析比较低碳钢和铸铁的力学性能特点与试样破坏特征。

(二)实验原理依据国标GB/T 228-2002《金属室温拉伸实验方法》分别叙述如下:1.低碳钢试样。

在拉伸试验时,利用试验机的自动绘图器可绘出低碳钢的拉伸曲线,见图1示的F—ΔL曲线。

图中最初阶段呈曲线,是由于试样头部在夹具内有滑动及试验机存在间隙等原因造成的。

分析时应将图中的直线段延长与横坐标相交于O点,作为其坐标原点。

拉伸曲线形象的描绘出材料的变形特征及各阶段受力和变形间的关系,可由该图形的状态来判断材料弹性与塑性好坏、断裂时的韧性与脆性程度以及不同变形下的承载能力。

但同一种材料的拉伸曲线会因试样尺寸不同而各异。

为了使同一种材料不同尺寸试样的拉伸过程及其特性点便于比较,以消除试样几何尺寸的影响,可将拉F a-比例伸长力;F c-弹性伸长力;F su-上屈服力;F sl-下屈服力;F b-最大力;F f-断裂力;-断裂后塑性伸长;-弹性伸长;图1碳钢拉伸曲线伸曲线图的纵坐标(力F)除以试样原始横截面面积S,并将横坐标(伸长ΔL)除以试样的原始标距L0得到的曲线便与试样尺寸无关,此曲线称为应力-应变曲线或R—曲线,如图2示。

从曲线上可以看出,它与拉伸图曲线相似,也同样表征了材料力学性能。

拉伸试验过程分为四个阶段,如图1、图2所示。

(1)弹性阶段OC。

在此阶段中的OA段拉力和伸长成正比关系,表明钢材的应力与应变为线性关系,完全遵循虎克定律,如图2示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

化阶段、局部变形阶段。
O
拉伸实验
Fb Fs
Dl
低碳钢拉伸曲线
屈服点
s
F s (强度指标) A0
断后伸长率 l1 l0 100%(塑性指标)
l0
抗拉强度 b
F b(强度指标) 断面收缩率 A0 A1 10% 0(塑性指标)
A0
材料力学实验之拉伸实验
A0
低碳钢拉伸弹性模量E
拉伸实验
材料在弹性范围内服从虎克定律,其应力、应变成正比关系:E
实验试样
拉伸试样 —— 试验采用标准圆形试样
拉伸实验
长试样 l0=10d0
短试样 l0= 5d0
l0
d0
材料力学实验之拉伸实验
三、实验原理
1、低碳钢拉伸时的力学性能:
F
试样装在试验机上,受到轴向拉力
F 作用,试样标距产生伸长量 D。l 两者
之间的关系如图。
低碳钢试样的变形过程,大致可分为四
个变形阶段——弹性阶段、屈服阶段、强
拉伸实验
(验证性实验)
拉伸实验
材料力学实验之拉伸实验
一、实验目的
拉伸实验
1、测定低碳钢拉伸弹性模量E、屈服点σs、 抗拉强度σb、断后伸长率δ、断面收缩率ψ。
2、测定铸铁抗拉强度σb,断后伸长率δ。
二、实验设备及仪器
1. 电子万能材料试验机; 2. 0.02mm游标卡尺;
3. 双侧电子引伸计。
材料力学实验之拉伸实验
之间的关系如图。
铸铁没有明显直线部分,没有屈服和 颈缩现象。在较小拉应力下被拉断,断 后伸长率也很小。铸铁等脆性材料的抗 拉强度很低,所以不宜作为抗拉零件的 材料。
抗拉强度
b
Fb A0
(强度指标)
拉伸实验
F
Fb
O 铸铁拉伸曲线 Dl
断后伸长率 l1 l0 100%(塑性指标)
l0材料力学实验之拉伸实验
将 F , Dl 代入上式,得
0
l
E F l0 Dl A0


电 子 引
用双侧电子引伸计
测量变形量 Dl


l为0 引伸计刀口间
距离 ቤተ መጻሕፍቲ ባይዱ0 50mm
材料力学实验之拉伸实验
拉伸实验
试验方法: 将引伸计安装在试样上,受拉力后所产生的伸长量与力之间的
线性关系由计算机显示,如下图。
求出直线上 a、b 两点的力和伸长量, F
实验报告要求(按实验目的完成报告)
1.计算材料强度指标、塑性指标和低碳钢拉伸弹性模量E(GPa)。
2.描述拉伸断口特点。
3.比较两种材料的拉伸力学性能。
4.强度指标以MPa为单位(1 M 1 P N /m a2 )m ,并保留3位有效数字。
材料力学实验之拉伸实验
用增量法,计算弹性模量E。
b
用增量法,计算式为:
E DF l0 D(Dl) A0
DF
a
D(Dl)
上式中, DFFbFa (力增量)
O
Dl
D(Dl)DlbDla(伸长量增量)
l0 50mm
A 0 为原始截面积材料力学实验之拉伸实验
2、铸铁拉伸时的力学性能:
试样装在试验机上,受到轴向拉力
F 作用,试样标距产生伸长量 D。l 两者
拉伸实验——观察现象
低碳钢
颈缩现象,“杯口”
拉伸实验
低碳钢试样拉伸破坏后,断口呈“杯口”状。
铸铁
平面断口,正应力引起
铸铁试样拉伸破坏后,断口在横截面上,呈平口状。
材料力学实验之拉伸实验
四、实验步骤
拉伸实验
1.测量拉伸试样原始尺寸:直径d0,长度l0。 2.安装试样,进行加载,测出材料的屈服载荷Fs、最大载荷Fb。 3.测量试样断后尺寸:直径d1,长度l1。 4.观察并描述试样破坏后断口特点。
相关文档
最新文档