第九章 电磁感应-电磁场(二)作业答案
第九章 电磁感应参考答案
第九章 电磁感应参考答案学 生 用 书§9.1 电磁感应电流条件 楞次定律【典型例题】[例1]1.根据感应电流的产生条件可知,BC 有感应电流,AD没有感应电流.[例2]磁铁向下运动时,穿过线圈的磁通量增加;根据楞次定律可知,线圈中产生感应电流的磁场方向与原磁场方向相反(向上),与原磁场相互排斥;再由安培定则可判定感应电流的方向(即图中箭头方向相同),故本题应选B .[例3]BC (要产生B 环中所示的电流,感应磁场方向为垂直纸面向外,由楞次定律知A 环内的磁场应向里增强或向外减弱,由安培定则可知BC 正确.)[例4]D (金属线框进入磁场时,由于穿过线框的磁通量增加,产生感应电流,根据楞次定律判断电流的方向为a b c d a →→→→.金属线框离开磁场时,由于穿过线框的磁通量减小,产生感应电流,根据楞次定律判断电流的方向为a d c b a →→→→.根据能量转化和守恒定律可知,金属线框的机械能将逐渐减小,转化为电能,如此往复摆动,最终金属线框在匀强磁场内摆动,由于d 0 L ,满足单摆运动的条件,所以,最终为往复运动.) 【当堂反馈】1.当滑动变阻器滑动触头左右滑动时,通电线圈在铁芯内部产生磁场的磁通量发生变化,故a 、b 两环中有感应电流,而穿过c 环的合磁通总为零,故c 环中无感应电流,本题选A .2.AD (据楞次定律,当S 闭合时,穿过B 线圈的磁场方向向上且在增大,B 线圈中的感应电流产生的磁场方向与之相反,进而判断出通过电流表的电流方向自左向右,根据楞次定律用同样方法可判断D 正确. )3.电键S 从位置1拨到位置2的过程中,通过左边线圈的电流先减小到零、再增加到原来值,穿过右边线圈向右的磁通量先增大后减小,由楞次定律和安培定则可得电流计中的电流方向.故本题选C .§9.2 法拉第电磁感应定律【典型例题】[例1]A (螺旋桨叶片在磁场中垂直旋转切割产生的感应电动势===ω221Bl v Bl E πfl 2B ,再由右手定则可知a 点电势低于b 点电势.)[例2]A (设开始时导轨d 与Ob 的距离为x 1,导轨c 与Oa 的距离为x 2,由法拉第电磁感应定律知,移动c 或d 时产生的感应电动势E==,通过导体R 的电量为Q=IΔt=Δt=.由上式可知,通过导体R 的电量与导轨d 或c 移动的速度无关,由于B 与R 是定值,其电量取决于所围面积的变化.由于ΔS 1=ΔS 2=ΔS 3=ΔS 4,则通过电阻R 的电量是相等的,即Q 1=Q 2=Q 3=Q 4.[例3](1)感应电动势E=ΔΦ/Δt =SΔB/Δt =k L1L2感应电流I=E/R=kL 1L 2/R ,方向从f 到e(2)因棒处于平衡,外力与安培力大小相等,方向水平向右, RL kL kt B BIL F 22101)(+==(3)为使棒中无感应电流,就要保持穿过abef 闭合回路的磁通量不变.即Φ=BS=BL1(L2+vt )=B0L1L2 得022B vtL L B +=,即B随t 按此规律减小.【当堂反馈】1.C (导体棒切割磁感线运动产生感应电动势BLv E =,R 1、R 2为相互并联的外电路,再由欧姆定律可得出本题应选C .)2.B (U =BLv )3.A (导体棒ab 在框架上向右匀速滑动切割磁感线,产生的感应电动势E =BLv 不变,而I =E /R 总,则回路中产生的感应电流逐渐减小.由t I Q =可知Q 1>Q 2.)4.A (由i=E/R=S B R t∆∆·∝Bt ∆∆=k 可知,在0—4T和2T—34T时间内i 的大小相等.在0—4T和2T—34T时磁场分别是垂直纸面向里减小和向外减小,现由楞次定律和安培定则可知其方向分别为顺时针和逆时针.)§9.3 互感和自感 电磁感应中的电路问题【典型例题】[例1]AD [(1)在图(a )中,设开关S 闭合时,上、下两支路电流分别为I 1、I 2,依题意知:I 1<I 2.在开关S 断开时,通过电阻R 的电流I 2立即消失;但由于线圈中产生自感现象,通过线圈电流不能突变,其大小只从I 1开始逐渐减小.因此开关断开前,通过灯泡的电流为I 1,断开后灯泡电流从I 1开始逐渐减小,所以灯泡D 在断开开关后逐渐变暗.(2)在图(b )中,设开关闭合时,上、下两支电路的电流分别为I 1′、I 2′,依题意知,I 1′>I 2′.当开关S 断开后,通过灯泡原电流I 2′立即消失;但线圈中产生自感现象,线圈中电流大小、方向不发生突变,在L 、R 、D 回路中,电流均从线圈中原电流I 1′开始逐渐减小.因此,开关闭合时,灯泡电流为I 2′;断开后,灯泡中电流突然增加为I 1′,并从I 1′开始逐渐减小,故开关断开时灯泡先闪亮,后逐渐变暗.][例2]只有左边有匀强磁场,金属板在穿越磁场边界时(无论是进入还是穿出),由于磁通量发生变化,板内产生涡流.根据楞次定律,涡流将会阻碍相对运动,所以摆动会很快停下来,这就是电磁阻尼现象.还可以用能量守恒来解释:有电流产生,就一定有机械能向电能转化,摆的机械能将不断减小.若空间都有匀强磁场,穿过金属板的磁通量不变化,无感应电流,不会阻碍相对运动,摆动就不会很快停下来.[例3]MN 滑过的距离为l /3时,它与bc 的接触点为P ,如图所示.由几何关系可知MP 长度为l /3,MP 中的感应电动势E =31Blv ,MP 段的电阻r =31R ,MacP 和MbP 两电路的并联电阻为r 并=32313231+⨯R =92R .由欧姆定律,PM 中的电流I =并r r E +,ac 中的电流I ac =32I ,解得I ac =RBlv 52.根据右手定则,MP 中的感应电流的方向由P 流向M ,所以电流I 的方向由a 流向c .R R 2【当堂反馈】 1.AC2.C3.D (导体棒转至竖直位置时,感应电动势E=B·2a·v/2=Bav 电路中总电阻R 总=+=R ,总电流I==,AB 两端的电压U=E-I·=Bav .)4.BCD (合上S 时,电感线圈产生自感电动势阻碍通过其电流的增加,电流只能逐渐增大,故A 、B 同时亮,以后A 灯逐渐变亮、B 灯逐渐变暗,由于线圈直流电阻为零,电路稳定时B 熄灭;断开S 时,A 灯电流为零立即熄灭,线圈产生自感电动势阻碍通过其电流的减小,与B 灯形成闭合电路,B 灯先闪亮、后熄灭.)§9.4 电磁感应中的力学问题【典型例题】[例1]A (给ef 一个向右的初速度,则ef 产生感应电动势,回路中产生感应电流.由楞次定律可以判断,ef 受到一个向左的安培力的作用而减速,随着ef 的速度减小,ef 产生的感应电动势减小,回路的感应电流减小,安培力减小,因此可以判断ef 是做加速度逐渐减小的减速运动.)[例2](1)受到竖直向下的重力,垂直斜面向上的支持力,和平行于斜面向上的安培力. (2)当ab 杆速度为v 时,感应电动势E =BL v ,此时电路中的电流I =E /R =BL v /R ,而ab 杆受到的安培力F =BIL =B 2L 2v /R .由牛顿第二定律,有mg sin θ-F =ma ,即a =g sin θ-B 2L 2v /mR .(3)当mg sin θ=B 2L 2v m /R 时,ab 杆达到最大速度v m ,则v m =mgR sin θ /B 2L 2. [例3](1)感应电动势E =Blv ,E I R= 所以 I =0时,v =0则: 22vx a==1m(2)最大电流 0m Blv I R= 022m I Blv I R'==安培力 2202B l v f I Bl R'===0.02N向右运动时 F +f =maF =ma -f =0.18N 方向与x 正向相反 向左运动时 F -f =maF =ma +f =0.22N 方向与x 正向相反 (3)开始时 v =v 0, 22m B l v f I B l R==F f m a += 22B l v F m a f m a R=-=-当v 0<22m aR B l =10m/s 时,F >0 方向与x 正向相反 当v 0>22m aRB l=10m/s 时,F <0 方向与x 正向相同[例4](1)在金属棒棒未进磁场,电路中总电阻:R 总=R L +R/2=4+ 2/2 = 5Ω线框中感应电动势:V V t BS t E 5.025.0241=⨯⨯=∆∆=∆∆=φ 灯泡中的电流强度 :A A R EI L 1.055.0===总(2)因灯泡中亮度不变,故在4秒末金属棒棒刚好进入磁场,且作匀速直线运动,此时金属棒棒中的电流强度:0.14(0.1)0.32L LL R L I R I I I I A A R⨯=+=+=+=恒力F 的大小:F = F A = BId= 2×0.3×0.5 N = 0.3 N(3)金属棒产生感应电动势:V V RR RR R I E L L 1)42422(3.0)(2=+⨯+⨯=++=金属棒在磁场中的速度:s m s m BdE v /1/5.0212=⨯==金属棒的加速度:2/41s m t v a ==据牛顿第二定律,金属棒的质量:kg kg a F m 2.125.03.0===【当堂反馈】1.BC (当金属杆所受合力为零时速度最大,则有22sin /m m g B L v R α=,22sin m m gR v B Lα=.)2.D (由楞次定律可知G 中电流向下,导体棒在外力和安培力作用下作加速度减小的加速运动,穿过左边回路的磁通量增加越来越慢,最后CD 匀速运动时,G 中无感应电流.) 3.D (在II 位置,没有磁通量变化,所以没有感应电流,也不存在安培力,线框只受重力,所以加速度为g .在I 位置和III 位置有磁通量变化,有感应电流,也就存在安培力.在位置III 时速度大,所以在位置III 的安培力大,合力小了,所以加速度小了.即a 3<a 1.)4.(1)金属棒开始下滑的初速度为零,根据牛顿第二定律mg sin θ-μmg cos θ=ma ①由①式解得: a =4m/s 2 ②(2)设金属棒运动达到稳定时,速度为v ,所受安培力为F ,棒在沿导轨方向受力平衡 mg sin θ-μmg cos θ-F =0 ③此时金属棒克服安培力做功的功率等于电路中电阻R 消耗的电功率 Fv =P ④由③④两式解得 10P v F==m/s ⑤(3)设电路中电流为I ,两导轨间金属棒长为l ,磁场的磁感应强度为B B l v I R=⑥P =I 2R ⑦由⑥⑦两式解得 0.4B vl==T ,磁场方向垂直导轨平面向上.§9.5 电磁感应中的能量转化和图象问题【典型例题】[例1]ABD (2EQ R=,而E t∆φ∆=,随交变电流的电压、频率的增大而增大.)[例2]B [由(甲)图可知在0—1 s 内磁感应强度均匀增大,产生恒定的感应电流,根据楞次定律可判断感应电流的方向为逆时针,导体棒受到的安培力的方向是水平向左,棒静止不动,摩擦力方向水平向右,为正方向.同理,分析以后几秒内摩擦力的方向,从而得出f —t 图象为B 图.][例3](1)由右手定则可知:棒切割磁感线运动产生感应电流I 感方向由a→b ,棒受力的右侧视图如图示.当棒速稳定时棒受力平衡.设此时棒速为v .则有: P=Fv ① 由平衡条件得到:F=mgsinθ+F 安 ② F 安=BIL ③ I= E/R ④ E=BLv ⑤由①—⑤得到:v 2+v-6=0 v=2 m/s(负值舍去) (2)由动能定理得:W F -W 安-mgh=mv 2 ⑥W F =Pt ⑦ h=Ssin30°=2.8sin30° m=1.4 m ⑧ 联立得到:t=代入数据得t=1.5 s【当堂反馈】1.AD (剪断细线后,弹簧的作用使两棒分离,穿过回路的磁通量增大,回路中产生感应电流,但两棒运动方向相反,安培力的方向也相反,由于有感应电流的产生,系统的机械能减小,向电能转化.)2.C (通电螺线管内部产生的是匀强磁场,外部的磁场和条形磁铁的磁场相似,故B 从O 点进入螺线管时通过B 的磁通量是增加的;进入螺线管内部后,由于是匀强磁场,通过B 的磁通量不再变化,因而B 中没有感应电流;当B 从螺线管内部出来的过程,通过B 的磁通量则是减小的,所以在B 中会产生一个和进入时方向相反的感应电流.)3.(1)ab 边产生的感应电动势为E =BLv ① 线框中的感应电流为I =E /R ②ab 边所受的安培力F =BIL ③ 由①、②、③式代入数据解得 F =5×10-2N (2)线框中产生感应电流的时间 t =2s /v ④整个过程中线框所产生的焦耳热Q =I 2Rt ⑤由②、④、⑤式代入数据解得 Q =0.01J(3)在0~5×10-2s 时间内,ab 两端的电势差为15.0431=⋅=R I U V在5×10-2s ~1×10-1s 时间内,ab 两端的电势差为 U 2=E =0.2V在1×10-1s ~1.5×10-1s 时间内,ab 两端的电势差为05.0411=⋅=R I UVU ab /V t/s0.050.10 0.15 0.20 0.05 0.10 0.200.15电势差U随时间t变化的图线如图所示ab作业本§9.1 电磁感应电流条件楞次定律1.D2.B3.C(AB不动而CD右滑时,I≠0,但方向是逆时针,故A错.AB向左、CD向右滑动时,回路磁通量增加,I≠0,故B错.AB、CD向右等速滑动时,回路磁通量不变,I=0,故C对.AB、CD都向右滑但AB速度大于CD速度时,回路磁通量变化,I≠0,但方向是顺时针,故D错.)4.D(根据楞次定律的“阻碍”思想,安培力与重力总是相反的,所以D正确.)5.B(线圈C向右摆动,由楞次定律可知,线圈中电流产生的磁场减小,故导线ab应减速切割磁感线运动.)6.B(穿过回路的磁通量先增大后减小,由楞次定律可知,感应电流方向先是b→a,后变为a→b;再由左手定则可得,所受磁场力方向与ab垂直,开始为图中箭头所示反方向,后来变为箭头所示方向.)7.D(由楞次定律的推广含义判断.)8.B(线框中的合磁通量先是向纸外减小,后是向纸内增大,由楞次定律可得线框中感应电流的方向始终沿dcbad方向.)9.BC(若是匀强磁场,,则不产生感应电流,机械能守恒;若是非匀强磁场,则产生感应电流,由能量守恒定律可知,机械能能转化为电能.)10.D(由楞次定律可确定在t1—t2时间内A中电流为逆时针(此时B中电流为顺时针),异向电流相斥. )11.BC[a盘在外力作用下逆时针转动,其半径切割磁感线产生感应电动势,两圆盘中心与边缘通过导线构成闭合回路有感应电流.a盘受安培力为阻力,b盘中受安培力为动力,由右手定则得出电流流向,由左手定则判定b盘中安培力的方向,故B选项正确.b盘被动转动,其角速度一定小于a盘的角速度(若相等则无电流,b不会受安培力.]12.BC(本题可采用逆向推导,由果寻因,由左手定则、安培定则可得铁芯中感应电流的磁场方向向上,再由楞次定律和安培定则进行分析判断.)13.BD(认为超导体不消耗电能,由状态分析受力情况,从而确定磁极与电流的方向关系. )14.(1)如图所示(2)相反(3)相同§9.2 法拉第电磁感应定律1.D2.D (将磁铁缓慢或迅速插到闭合线圈的同一位置,磁通量的变化率不同,感应电流I= =N ,感应电流的大小不同,流过线圈横截面的电荷量q=I·Δt=N ·Δt=N,两次磁通量的变化量相同,电阻不变,所以q 与磁铁插入线圈的快慢无关.)3.D (横杆匀速滑动时,由于E =BLv 不变,故I 2=0,I 1≠0.加速滑动时,由于E =BIv 逐渐增大,电容器不断充电,故I 2≠0,I 1≠0.)4.D (电压表为理想电压表,故V 表读数为M 金属杆转动切割磁感线时产生的感应电动势的大小. U 0=B 0ω0r 2,mU 0=nB 0ω′r 2(r 为M 的长度),则ω′=ω0. )5.ABD (由E N B Lv =,04LN R S ρ=,2EP R=分析得出.)6.32Bd v /(3R ),自上向下7.E =N ΔΦ/t =10⨯0.2sin ︒30⨯0.2⨯0.2/0.1=0.4(V)8.线框受竖直向下的重力和安培力及竖直向上的拉力作用,由平衡条件,有2mg =mg +BIL ,由法拉第电磁感应定律,得感应电动势E =Δφ /Δt =ΔB /Δt ·S =kL 2/2,有闭合电路欧姆定律,得I =E /R ,据题意有B =kt .联立以上各式,有t =322Lk mgR .9.(1)E =BLv =0.1v (2) =-=m Rv l B F a /)(22 4.5 m/s2(3) 达到的最大速度时合力为零,022=-Rv l B F m,代入数据解得v m =10 m/s .10.(1)不管粒子带何种电荷,匀速运动必有Eq qB v =0 ①,即MN 板带正电,棒AB 向左运动,设AB 棒以速度v 向左运动,产生感应电动势为E vlB = ②,∴ q lvlB qB v =0 ③得 v =v 0(2)当AB 棒停止运动后,两扳通过AB 放电板间电场消失,仅受磁场力作圆周运动,位移为R qB mv =/0时转过圆心角60o.∴qBm T t 36π==④11.本题在流量计中产生的感应电动势可等效为长为c 的导体以流体速度v 切割磁感线产生的电动势,故E =Bcv ,所以I =Rr E +,r =ρabc ,而流量Q =vS =vbc ,联立以上各式解得Q =BI (bR +ρac ).§9.3 互感和自感 电磁感应中的电路问题1.A (由右手定则可得感应电流的方向,而122B lv U IR R vB l R==⋅=.)2.BC (在断开电键时,L 中原电流减小,由于自感作用,产生与原电流方向相同的自感电流流经灯泡,故灯不会立即熄灭,A 错;自感现象中阻碍L 中电流的减小,但阻止不了电流的减小,该减小是在原电流大小基础上减小的.原来L 中电流大于灯中电流,故自感电流通过灯泡的初始阶段,灯中的电流大于原来的电流,故灯应比原来更亮一下最后熄灭,B 正确;当用电阻代替L 时,断开K 不存在自感,A 应立即熄灭,则C 对,D 错.)3.B 4.B (在四个图中,产生的电动势大小均相等(E ),回路电阻均为4r ,则电路中电流亦相等(I ).B 图中,ab 为电源,U ab =I ·3r =3E /4,其他情况下,U ab =I ·r =E /4.)5.A (油滴恰好处于静止状态时 /mg qU d =,而22E n U t ∆φ∆==,解得t∆φ∆=2mgd /(nq ).) 6.BC (电路接通时,两个支路中的电流都要增大,自感线圈要产生自感电动势,左正右负,阻碍电流的增大;而电阻没有这样的性质,因此B 对,但阻碍并不阻止,电流还是增大了,因此最后两灯一样亮.在开关断开时,两个支路中的电流都要减小,L 中产生的自感电动势左负右正,阻碍电流的减小,两个支路形成了闭合回路,线圈中的能量通过闭合回路使A 、B 灯亮一会儿才熄灭.)7.C (导体圆环受到向上的磁场作用力,说明穿过它的磁通量减小.)8.D9.对油滴,qE =mg ,电场力向上.又因为油滴带负电,故场强向下,电容器上极板带正电,下极板带负电,线圈N 感应电动势正极在上端,负极在下端.由楞次定律知ab 向右减速运动或向左加速运动.10.(1)a 、b 杆上产生的感应电动势为E =BLv =0.50 V .根据闭合电路欧姆定律,通过R 0的电流I =RR E +0=0.25 A.(2)由于ab 杆做匀速运动,拉力和磁场对电流的安培力F 大小相等,即 F 拉=F =BIL =0.025 N.(3)根据欧姆定律,ab 杆两端的电势差U ab =0R R ER+=R R BLvR+=0.375 V .11.(1)0043BLv R RBLv IR U adcb adcb AB ====;(2)Rv L B v L R I Q 03202=⋅=12.(1)粒子带负电. AB 棒向右运动,由右手定则可知,棒内产生的感应电流方向由B 到A ,所以金属板的a 板电势高,板间有由a 指向b 的匀强电场.由于粒子所受的重力mg 和电场力qE 都是恒力,所以必有重力和电场力相平衡,而洛伦兹力提供向心力,即电场力必为竖直向上,故粒子必带负电.(2)AB 棒中的感应电动势为:E =BLv电容器极板a 、b 上的电压就是电阻R 0上的电压U =重力和电场力平衡,有:mg=q粒子在极板间做匀速圆周运动,洛伦兹力提供向心力,有:qvB =m粒子的轨道半径满足:R≤,解得:v ≤1.0 m/s§9.4 电磁感应中的力学问题1.ABD (由于电磁感应现象总是起到阻碍作用,安培力的大小与运动速度有关F=B 2L 2v/R ,根据牛顿第二定律可知,线圈可能做匀速运动、加速度减小的加速或减减速运动.)2.AC (此过程中回路产生的感应电流不变,导体棒受到的安培力先沿斜面向上逐渐减小到零后反向增大,由平衡方程可知本题有两种可能.)3.A (杆在重力和安培力作用下运动,若安培力大于重力的两倍,则加速度大于重力加速度;由二力平衡可得,杆最终匀速运动的速度相同;杆整个运动过程能量守恒.) 4.A (根据E=BLv ,E=IR ,R=ρL/S ,m=DSL ,F 安=BIL ,a=(mg-F 安)/m ,推出2B va g Dρ=-,可见加速度与导线的粗线无关.)5.AD (ab 棒切割磁感线产生感应电动势,cd 棒不切割磁感线,整个回路中的感应电动势 E 感=BL ab v 1=BLv 1,回路中感应电流 I=,选项 C 错误.ab 棒受到的安培力为 F 安=BIL=B=,ab 棒沿导轨匀速运动,受力平衡.ab 棒受到的拉力为 F=F 摩+F 安=μmg+,选项 A 正确.cd 棒所受摩擦力为 f=μF 安=μ,选项 B 错误.cd 棒也匀速直线运动,受力平衡,mg=f ,mg=μ,μ=,选项 D 正确.)6.设杆2的运动速度为v ,由于两杆运动时,两杆间和导轨构成的回路中的磁通量发生变化,产生感应电动势 E =B l (v 0-v )感应电流 21R R E I +=杆2作匀速运动,它受到的安培力等于它受到的摩擦力, B l I =μm 2g导体杆2克服摩擦力做功的功率: P =μm 2gv 解得:⎥⎦⎤⎢⎣⎡+-=)(2122202R R lB gm v g m P μμ7.(1)感应电动势2Eklt∆Φ==∆,感应电流2E kl Irr==,方向为逆时针方向a d e b a →→→→ (2)t =t 1(s )时,B =B 0+kt 1,F =BIl 所以301()kl FB kt r=+(3)要棒中不产生感应电流,则总磁通量不变20()Bl l vt B l+=,所以0B l Bl vt=+8.(1)刚进入磁场时,线框的速度v =12gh =10 m/s ,产生的感应电动势E =Bd v ,受到的安培力F =BId =B 2d 2v /R ,有线框匀速运动,得mg =F ,解得B =0.4 T .(2)线框匀速下落l 用时t 1=l /v =0.05 s ,剩下的时间t 2=Δt -t 1=0.1 s 内做初速度为v ,加速度为g 的匀加速运动,运动的位移s =v t 2+21gt 22=1.05 m ,则磁场区域的高度h 2=s +l =1.55 m .9.杆ef 受重力mg 、拉力F 、安培力f 做匀加速运动,有 F -mg -f =ma其中安培力222B d v f R=它的运动速度v =at ,拉力F 的功率P 随时间变化2222()2B d a t P Fv m g a at R==++杆bc 受两根平行导轨的拉力F 杆(方向向上)和重力及安培力(方向向上),处于静止. 拉力:222222B d v B d at F m g m g RR=-=-杆.开始时,安培力较小,拉力F 杆>0,方向向上;某时刻(222mgR tB d a=),F 杆=0,随时间推移,安培力增大,F 杆<0,方向变为向下.10.以a 表示金属杆运动的加速度,在t 时刻,金属杆与初始位置的距离221at L =,此时杆的速度at v =,这时,杆与导轨构成的回路的面积S =Ll ,回路中的感应电动势 Blv tBS E +∆∆= 而:B =kt ,()B k t t ktk tt∆+∆-==∆∆回路的总电阻R =2Lr 0,回路中的感应电流RE i =作用于杆的安培力Bli F = 解得 t r l k F 022123=,代入数据为N F 31044.1-⨯=§9.5 电磁感应中的能量转化和图象问题1.D (匀速即拉力等于安培力,拉力所做的功大小等于安培力所做的功的大小.根据公式E=BLV ,E=IR ,F=BIL ,W=FS ,可以推出W 2=2W 1,电流做功都用来发热,所以Q 2=2Q 1.)2.A (线圈在进入和转出磁场的过程中磁通量才发生变化,故在这样的两个过程中才有感应电流.进入磁场的过程是磁通量增加,由楞次定律可知电流的方向为逆时针,符合题目要求.由于线框是扇形的且匀速转动,可知磁通量的变化是均匀的,故得到的感应电流是稳定的,所以选项A 是正确. )3.BCD (导体棒ab 充当电源,由闭合电路欧姆定律和功、功率的的公式可解得本题答案) 4.AD (t 1时刻Q 的磁场增强,通过P 的Φ增加,P 有向下运动的趋势,故F N >G .而t 2、t 4时刻Q 的磁场不变,P 中无感应电流,故Q 对P 无磁场力作用,有F N =G.t 3时刻P 中虽有感应电流,但Q 中电流为零,P 、Q 无相互作用力,故t 3时刻F N =G .)5.A (由图象可知,在0到1秒的时间内,磁感应强度均匀增大,那么感应电流的方向为逆时针方向,与图示电流方向相反,为负值,排除B 、C 选项.根据法拉第电磁感应定律,其大小tS B t∆∙∆=∆∆Φ=ε,Rt S B RE I ∙∆∙∆==为一定值,在2到3秒和4到5秒内,磁感应强度不变,磁通量不变,无感应电流生成,D 错误,所以A 选项感应强度不变,磁通量不变,无感应电流生成,D 错误.)6.(1) cd 棒静止时 θsin g m BIL cd = cd 棒两端电压为 Ir U =代入数据解得:1=U V(2)ab 棒向上匀速运动时θsin g m BIL F ab +=回路中电流为rBL I 2υ=则:)/(10sin 222s m LB gr m cd ==θυ代入数据解拉力功率 )(15W F P ==υ7.(1)在从图甲位置开始(t =0)转过60o 的过程中,经t ∆,转角t ∆=∆ωθ,回路的磁通量为:B l 221θ∆=∆Φ;由法拉第电磁感应定律,感应电动势为:tE ∆∆Φ=因匀速转动,这就是最大的感应电动势,由闭合欧姆定律可求得:2021Bl RI ω=,前半圈和后半圈I (t )相同,故感应电流频率等于旋转频率的2倍: ωπ=f ;(2)图线如图丙所示:8.(1)加速度越来越小的加速直线运动; (2)感应电动势 E =Blv ,感应电流 E I R=安培力 22m B L v F B IL R==由图线可知金属杆受拉力、安培力和阻力作用,匀速时,合力为零,22B L v F f R=+ ∴ 2222R Rf v F B LB L=-由图线可以得到直线的斜率 k =2,而 22R k B L=,即:1B ==T(3)由图线的直线方程:2222R Rf v F B LB L=-可知直线的截距为 224Rf B L-=-m/s∴ 可以求出金属杆所受到的阻力f ,代入数据可得:f =2N9.(1)线框在下落阶段匀速进入磁场的瞬间222B a v m g f R=+解得: 222()m g f R v B a-=(2)线框从离开磁场至上升到最高点的过程211()2m g f h m v +=线框从最高点回落至进入磁场瞬间221()2m g f h m v -=解得:1222)R v B a==(3)线框在向上通过磁场过程中220111()()22m v m v Q m g f a b -=+++v 0=2v 1所以: 222443[()]()()2RQ m m g f m g f a b B a=--++10.(1)由图可知,在t =1.0s 后,导体杆做匀速运动,且运动速度大小为:s m ts v /2=∆∆=此时,对导体AC 和物体D 受力分析,有:F T T +'=,Mg T ='; 对电动机,由能量关系,有:rI Tv IU 2+=由以上三式,可得:N T 5.3=,NF 5.0=再由BILF=、RE I=及BLvE=,得:m vFR BL 0.11==(或由REr I Mgv UI 22++=及BLvE=求解)(2)对于导体AC 从静止到开始匀速运动这一阶段,由能量守恒关系对整个系统,有:FW rt I v m M Mgh UIt ++++=22)(21则FW Q==3.8J单元测试卷第九章测试题 电磁感应一、 单选题1.C (导体棒AB 运动的加速度mRv L B F a /22-=,故开始阶段作加速度减小的的加速运动,而v RBLv I ∝=.)2.ABC (将图中铜盘A 所在的一组装置作为发电机模型,铜盘B 所在的一组装置作为电动机模型,这样就可以简单地把铜盘等效为由圆心到圆周的一系列“辐条”,处在磁场中的每一根“辐条”都在做切割磁感线运动,产生感应电动势,进而分析可得.)3.A (当导线中的电流突然增大时,可判断线框整体向外的磁通量增大,由楞次定律可判断线框中将产生顺时针方向的电流,根据左手定则可判断cd 边和ab 受到导线的安培力向右,而ad 、bc 两边整体所受安培力为零,因此,整个线框所受安培力向右,即x 轴正向.)4.A (磁性小球通过塑料管时不产生感应电流,做自由落体运动;但通过金属管时将产生感应电流,受到安培力作用,阻碍其相对运动.)5.D (电子将向M 板偏转,上部线圈中应产生上正下负的感应电动势,再对由楞次定律判断.) 6.B (图a 中,ab 棒以v 0向右运动的过程中,电容器开始充电,充电后ab 棒就减速,ab 棒上的感应电动势减小,当ab 棒上的感应电动势与电容器两端电压相等时,ab 棒上无电流,从而做匀速运动;图b 中,由于R 消耗能量,所以ab 棒做减速运动,直至停止;图c 中,当ab 棒向右运动时,产生的感应电动势与原电动势同向,因此作用在ab 棒上的安培力使ab 棒做减速运动,速度减为零后,在安培力作用下向左加速运动,向左加速过程中,ab 棒产生的感应电动势与原电动势反向,当ab 棒产生的感应电动势与原电动势大小相等时,ab 棒上无电流,从而向左匀速运动,所以B 正确.) 二、 多选题7.A D (由动能定理可得A 选项正确、BC 选项错误;由于各力做总功为零,则恒力F 与重力的合力所做的功等于等于克服安培力做的功,即等于电阻R 上发出的焦耳热.)8.CD (从能量的角度考虑,导轨光滑时,金属棒的动能全部转化为电能,最终以焦耳热的形式释放出来;导轨粗糙时,金属棒的动能一部分转化为电能,另一部分通过摩擦转化为热能,而安培力做功可以用机械能与电能之间的转化来量度,因此产生的电能不相同,所以A 错;电流做功可产生焦耳热,因此可以比较电流做功不同,B 错;但两个过程中,机械能都全部转化为热量,所以C 对;两个过程中,第二种种情况运动时间较小.)9.BD (产生感应电流后,两导体滑杆中的电流相等,受到磁场的作用力大小相等,感应电流的磁场阻碍原磁通量的增大,故两杆同时向右加速运动,因F 为恒力,磁场对杆的作用力为变力,随速度的增大而增大,因而开始时两杆做变加速运动(ab 加速度减小,cd 加速度增大),当两杆具有相同加速度时,它们以共同的加速度运动.)10.BCD (电流I 增大的过程中,穿过金属环C 的磁通量增大,环中出现逆时针的感应电流,可以将环等效成一个正方形线框,利用“同向电流相互吸引,异向电流相互排斥”得出环将受到向下的斥力且无转动,所以悬挂金属环C 的竖直拉力变大,环仍能保持静止状态.) 11.BD (等离子气流由左方连续以v 0射入两板间的匀强磁场中,正电荷向上偏转、负电荷向下偏转,通过ab 直导线的电流向下,由楞次定律可分时间段判断cd 导线中的电流方向,再由同向电流相互吸引、反向电流相互排斥分析得出.) 三、 填空题12.由题意可知,A 环的面积是B 环的4倍,所以A 环产生的感应电动势是B 环的4倍,A 环的电阻是B 环的2倍.磁场只穿过A 环时,A 环视为电源,B 环为外电路,此时有BA A R R E +RB =U ;磁场只穿过B环时,B 环是电源,A 环为外电路,此时有BA B R R E +R A =U ′.由以上关系可求得U ′=U /2.13.(1)S 闭合时:A 灯的电流从0一直增大到0.15A ;B 灯的电流从0到0.2A 然后到0.15A ,(2)S 断开时;A 灯的电流从0.15A 瞬间变为0,B 灯的电流从0.15A 慢慢得变到0.14.根据U=Bdv 得v = 流量Q=πd 2v =.四、 论述与计算题15.推导证明略16.该同学的结论是正确的.设转轮的角速度、转速分别为ω和n ,轮子转过θ角所需时间为⊿t ,通过线圈的磁通量的变化量为。
大学物理(少学时)第9章电磁感应与电磁场课后习题答案
9-1两个半径分别为R 和r 的同轴圆形线圈相距x ,且R >>r ,x >>R .若大线圈通有电流I 而小线圈沿x 轴方向以速率v 运动,试求小线圈回路中产生的感应电动势的大小. 解:在轴线上的磁场()()22003322222IR IR B x R x R xμμ=≈>>+32202xr IR BS πμφ==v xr IR dt dx x r IR dt d 422042202332πμπμφε=--=-=9-2如图所示,有一弯成θ 角的金属架COD 放在磁场中,磁感强度B ϖ的方向垂直于金属架COD 所在平面.一导体杆MN 垂直于OD 边,并在金属架上以恒定速度v ϖ向右滑动,v ϖ与MN 垂直.设t =0时,x = 0.求当磁场分布均匀,且B ϖ不随时间改变,框架内的感应电动势i ε.解:12m B S B xy Φ=⋅=⋅,θtg x y ⋅=,vt x =22212/()/i d dt d Bv t tg dt Bv t tg εϕθθ=-=-=⋅,电动势方向:由M 指向N9-3 真空中,一无限长直导线,通有电流I ,一个与之共面的直角三角形线圈ABC 放置在此长直导线右侧。
已知AC 边长为b ,且与长直导线平行,BC 边长为a ,如图所示。
若线圈以垂直于导线方向的速度v 向右平移,当B 点与直导线的距离为d 时,求线圈ABC 内的感应电动势的大小和方向。
解:当线圈ABC 向右平移时,AB 和AC 边中会产生动生电动势。
当C 点与长直导线的距离为d 时,AC 边所在位置磁感应强度大小为:02()IB a d μπ=+AC 中产生的动生电动势大小为:xr IRx vC DOxMθBϖv ϖ02()AC AC IbvBl v a d μεπ==+,方向沿CA 方向如图所示,在AB 边上取微分元dl ,微分元dl 中的动生电动势为,()AB d v B dl ε=⨯⋅v v v其方向沿BA 方向。
大学物理(少学时)第9章电磁感应与电磁场课后习题答案
大学物理(少学时)第9章电磁感应与电磁场课后习题答案9-1两个半径分别为R 和r 的同轴圆形线圈相距x ,且R >>r ,x >>R .若大线圈通有电流I 而小线圈沿x 轴方向以速率v 运动,试求小线圈回路中产生的感应电动势的大小.解:在轴线上的磁场()()22003322222IR IR B x R x R xμμ=≈>>+32202xr IR BS πμφ==v xr IR dt dx x r IR dt d 422042202332πμπμφε=--=-=9-2如图所示,有一弯成θ 角的金属架COD 放在磁场中,磁感强度B ?的方向垂直于金属架COD 所在平面.一导体杆MN 垂直于OD 边,并在金属架上以恒定速度v ?向右滑动,v ?与MN 垂直.设t =0时,x = 0.求当磁场分布均匀,且B ?不随时间改变,框架内的感应电动势i ε.解:12m B S B xy Φ=?=?,θtg x y ?=,vt x =22212/()/i d dt d Bv t tg dt Bv t tg ε?θθ=-=-=?,电动势方向:由M 指向N9-3 真空中,一无限长直导线,通有电流I ,一个与之共面的直角三角形线圈ABC 放置在此长直导线右侧。
已知AC 边长为b ,且与长直导线平行,BC 边长为a ,如图所示。
若线圈以垂直于导线方向的速度v 向右平移,当B 点与直导线的距离为d 时,求线圈ABC 内的感应电动势的大小和方向。
解:当线圈ABC 向右平移时,AB 和AC 边中会产生动生电动势。
当C 点与长直导线的距离为d 时,AC 边所在位置磁感应强度大小为:02()IB a d μπ=+AC 中产生的动生电动势大小为:xr IRx vC DOxMθBv ?02()AC AC IbvBl v a d μεπ==+,方向沿CA 方向如图所示,在AB 边上取微分元dl ,微分元dl 中的动生电动势为,()AB d v B dl ε=??v v v其方向沿BA 方向。
大学物理课后习题答案第九章
第9章 电稳感应和电磁场 习题及答案1. 通过某回路的磁场与线圈平面垂直指向纸面内,磁通量按以下关系变化:23(65)10t t Wb -Φ=++⨯。
求2t s =时,回路中感应电动势的大小和方向。
解:310)62(-⨯+-=Φ-=t dtd ε 当s t 2=时,V 01.0-=ε由楞次定律知,感应电动势方向为逆时针方向2. 长度为l 的金属杆ab 以速率υ在导电轨道abcd 上平行移动。
已知导轨处于均匀磁场B ϖ中,B ϖ的方向与回路的法线成60°角,如图所示,B ϖ的大小为B =kt (k 为正常数)。
设0=t 时杆位于cd 处,求:任一时刻t 导线回路中感应电动势的大小和方向。
解:任意时刻通过通过回路面积的磁通量为202160cos t kl t Bl S d B m υυ==⋅=Φρρ导线回路中感应电动势为 t kl tmυε-=Φ-=d d 方向沿abcda 方向。
3. 如图所示,一边长为a ,总电阻为R 的正方形导体框固定于一空间非均匀磁场中,磁场方向垂直于纸面向外,其大小沿x 方向变化,且)1(x k B +=,0>k 。
求: (1)穿过正方形线框的磁通量;(2)当k 随时间t 按t k t k 0)(=(0k 为正值常量)变化时,线框中感生电流的大小和方向。
解:(1)通过正方形线框的磁通量为⎰⎰=⋅=Φa S Badx S d B 0ρρ⎰+=a dx x ak 0)1()211(2a k a +=(2)当t k k 0=时,通过正方形线框的磁通量为)211(02a t k a +=Φ 正方形线框中感应电动势的大小为dt d Φ=ε)211(02a k a += 正方形线框线框中电流大小为)211(02a R k a R I +==ε,方向:顺时针方向4.如图所示,一矩形线圈与载有电流t I I ωcos 0=长直导线共面。
设线圈的长为b ,宽为a ;0=t 时,线圈的AD 边与长直导线重合;线圈以匀速度υρ垂直离开导线。
大学物理第九章习题答案
B
A
O
C O
B
(A)A 点比 B 点电势高。 (B)A 点与 B 点电势相等。 (C)A 点比 B 点电势低。 (D)有稳恒电流从 A 点流向 B 点。 3、一根长为 L 的铜棒,在均匀磁场 B 中以匀角速度 旋转着, B 的方向垂直铜棒转动的 平面,如图。设 t 0 时,铜棒与 Ob 成 角,则在任一时刻 t 这根铜棒两端之间的感应电动势是:[ (A) L B cos(t ) (B)
0 I I b ldx 0 In 2 x 2 a
0 I 2 x
2、如图所示,矩形导体框架置于通有电流 I 的长直导线旁,且两者共面, ad 边与长直导 线平行, dc 段可沿框架移平动。设导体框架的总电阻 R 始终保持不变,现 dc 以速度 v 沿 ,穿过 abcd 回路 框架向下作匀速运动,试求(1)当 dc 段运动到图示位置(与 ab 相距 x ) 的磁通量; (2)回路中的感应电流 I i ;
B a b
2
大学物理习题集
10、在无限长的载流直导线附近放置一矩形闭合线圈,开始时线圈与导线在同一平面内, 且线圈中两条边与导线平行, 当线圈以相同的速率作如图所示的三种不同方向的平动时, 线圈中的感应电流:[ B ]
是由通有电流 I 的线圈所产生,且 B KI ( K 为常量) ,则旋转线圈相对于产生磁场的线 圈最大互感系数为 6、 。
无限长密绕直螺线管通以电流 I 、内部充满均匀、各向同性的磁介质,磁导率为 。 , 磁能密度 。
设管内部的磁感应强度大小为 B ,则内部的磁场强度为 为 。 设螺线管体积为 V, 则存储在螺线管内部的总磁能为
ch9+电磁感应和电磁场+习题及答案Word版
第9章 电稳感应和电磁场 习题及答案1. 通过某回路的磁场与线圈平面垂直指向纸面内,磁通量按以下关系变化:23(65)10t t Wb -Φ=++⨯。
求2t s =时,回路中感应电动势的大小和方向。
解:310)62(-⨯+-=Φ-=t dtd ε当s t 2=时,V 01.0-=ε由楞次定律知,感应电动势方向为逆时针方向2. 长度为l 的金属杆ab 以速率υ在导电轨道abcd 上平行移动。
已知导轨处于均匀磁场B中,B 的方向与回路的法线成60°角,如图所示,B的大小为B =kt (k 为正常数)。
设0=t 时杆位于cd 处,求:任一时刻t 导线回路中感应电动势的大小和方向。
解:任意时刻通过通过回路面积的磁通量为202160cos t kl t Bl S d B m υυ==⋅=Φ导线回路中感应电动势为 t kl tmυε-=Φ-=d d 方向沿abcda 方向。
3. 如图所示,一边长为a ,总电阻为R 的正方形导体框固定于一空间非均匀磁场中,磁场方向垂直于纸面向外,其大小沿x 方向变化,且)1(x k B +=,0>k 。
求: (1)穿过正方形线框的磁通量;(2)当k 随时间t 按t k t k 0)(=(0k 为正值常量)变化时,线框中感生电流的大小和方向。
解:(1)通过正方形线框的磁通量为⎰⎰=⋅=Φa S Badx S d B 0 ⎰+=a dx x ak 0)1()211(2a k a +=(2)当t k k 0=时,通过正方形线框的磁通量为)211(02a t k a +=Φ 正方形线框中感应电动势的大小为dt d Φ=ε)211(02a k a += 正方形线框线框中电流大小为)211(02a R k a R I +==ε,方向:顺时针方向4.如图所示,一矩形线圈与载有电流t I I ωcos 0=长直导线共面。
设线圈的长为b ,宽为a ;0=t 时,线圈的AD 边与长直导线重合;线圈以匀速度υ垂直离开导线。
大学物理第9章 电磁感应和电磁场 课后习题及答案
第9章 电稳感应和电磁场 习题及答案1. 通过某回路的磁场与线圈平面垂直指向纸面内,磁通量按以下关系变化:23(65)10t t Wb -Φ=++⨯。
求2t s =时,回路中感应电动势的大小和方向。
解:310)62(-⨯+-=Φ-=t dtd ε当s t 2=时,V 01.0-=ε由楞次定律知,感应电动势方向为逆时针方向2. 长度为l 的金属杆ab 以速率υ在导电轨道abcd 上平行移动。
已知导轨处于均匀磁场B中,B 的方向与回路的法线成60°角,如图所示,B 的大小为B =kt (k 为正常数)。
设0=t 时杆位于cd 处,求:任一时刻t 导线回路中感应电动势的大小和方向。
解:任意时刻通过通过回路面积的磁通量为202160cos t kl t Bl S d B m υυ==⋅=Φ导线回路中感应电动势为 t kl tmυε-=Φ-=d d 方向沿abcda 方向。
3. 如图所示,一边长为a ,总电阻为R 的正方形导体框固定于一空间非均匀磁场中,磁场方向垂直于纸面向外,其大小沿x 方向变化,且)1(x k B +=,0>k 。
求: (1)穿过正方形线框的磁通量;(2)当k 随时间t 按t k t k 0)(=(0k 为正值常量)变化时,线框中感生电流的大小和方向。
解:(1)通过正方形线框的磁通量为⎰⎰=⋅=Φa S Badx S d B 0 ⎰+=a dx x ak 0)1()211(2a k a +=(2)当t k k 0=时,通过正方形线框的磁通量为)211(02a t k a +=Φ 正方形线框中感应电动势的大小为dt d Φ=ε)211(02a k a += 正方形线框线框中电流大小为)211(02a R k a R I +==ε,方向:顺时针方向4.如图所示,一矩形线圈与载有电流t I I ωcos 0=长直导线共面。
设线圈的长为b ,宽为a ;0=t 时,线圈的AD 边与长直导线重合;线圈以匀速度υ垂直离开导线。
第九章 磁 场带答案完整版
第九章 磁 场一、.磁感线⑴用来形象地描述磁场中各点的磁场方向和强弱的曲线。
磁感线上每一点的切线方向就是该点的磁场方向,也就是在该点小磁针静止时N 极的指向。
磁感线的疏密表示磁场的强弱。
⑵磁感线是封闭曲线(和静电场的电场线不同)。
⑶要熟记常见的几种磁场的磁感线:二、磁感应强度ILF B (条件是匀强磁场中,或ΔL 很小,并且L ⊥B )。
磁感应强度是矢量。
单位是特斯拉,符号为T 。
三、磁通量:Φ=BS ⊥可以认为穿过某个面的磁感线条数就是磁通量。
四、安培力 (磁场对电流的作用力)F=BIL (L ⊥B )。
9-1.如图所示,可以自由移动的竖直导线中通有向下的电流,不计通电导线的重力,仅在磁场力作用下,导线将如何移动?9-2. 条形磁铁放在粗糙水平面上,正中的正上方有一导线,通有图示方向的电流后,磁铁对水平面的压力将会___(增大、减小还是不变?)。
水平面对磁铁的摩擦力大小为___。
9-3. 如图所示,光滑导轨与水平面成α角,导轨宽L。
匀强磁场磁感应强度为B。
金属杆长也为L,质量为m,水平放在导轨上。
当回路总电流为I1时,金属杆正好能静止。
求:⑴B至少多大?这时B的方向如何?⑵若保持B的大小不变而将B的方向改为竖直向上,应把回路总电流I2调到多大才能使金属杆保持静止?9-4.如图所示,质量为m的铜棒搭在U形导线框右端,棒长和框宽均为L,磁感应强度为B的匀强磁场方向竖直向下。
电键闭合后,在磁场力作用下铜棒被平抛出去,下落h后的水平位移为s。
求闭合电键后通过铜棒的电荷量Q。
hs αα洛伦兹力 带电粒子在磁场中的运动一、洛伦兹力:F=qvB 。
条件是v 与B 垂直。
当v 与B 成θ角时,F=qvB sin θ。
2.洛伦兹力方向的判定:在用左手定则时,四指必须指电流方向(不是速度方向)。
9-5.磁流体发电机原理图如右。
等离子体高速从左向右喷射,两极板间有如图方向的匀强磁场。
该发电机哪个极板为正极?两板间最大电压为多少?二、带电粒子在匀强磁场中的运动 洛伦兹力充当向心力,推得:Bq m T Bq mv r π2,== 1、带电粒子在半无界磁场中的运动9-6.如图直线MN 上方有磁感应强度为B 的匀强磁场。
ch9+电磁感应和电磁场+习题及答案
而电容:
所以,
则
19. 给电容为 的平行板电容器充电,传导电流为 (SI), 时电容器极板上无电荷。求:
(1)极板间电压 随时间 而变化的关系式;
(2) 时刻极板间总的位移电流 (忽略边缘效应)。
解:(1)传导电流与极板上电量的关系: ,所以
极板间电压 随时ቤተ መጻሕፍቲ ባይዱ 而变化的关系式
解:建立图示坐标系,长直导线在右边产生的磁感应强度大小为
时刻通过线圈平面的磁通量为
任一时刻线圈中的感应电动势为
5.如图所示,在两平行载流的无限长直导线的平面内有一矩形线圈。两导线中的电流方向相反、大小相等,且电流以 的变化率增大,求:
(1)任一时刻线圈内所通过的磁通量;
(2)线圈中的感应电动势。
解:(1)任一时刻通过线圈平面的磁通量为
(2)线圈中的感应电动势为
6.如图所示,长直导线 中的电流 沿导线向上,并以 的变化率均匀增长。导线附近放一个与之共面的直角三角形线框,其一边与导线平行,位置及线框尺寸如图所示。求此线框中产生的感应电动势的大小和方向。
解:建立图示的坐标系,在直角三角形线框上 处取平行于y轴的宽度为 、高度为 的窄条。由几何关系得到 (SI)
解: 、 运动速度 方向与磁力线平行,不产生感应电动势。
产生动生电动势为
产生电动势为
回路中总感应电动势为
方向沿顺时针。
8.如图所示,载有电流 的长直导线附近,放一导体半圆环 与长直导线共面,且端点 的连线与长直导线垂直。半圆环的半径为 ,环心 与导线相距 。设半圆环以速率 平行导线平移。求半圆环内感应电动势的大小和方向及 两端的电压 。
解:任意时刻通过通过回路面积的磁通量为
第9章 作业答案(最新修改)
第9章 电磁场9-6 如图9-40所示,一截面积26S cm=的密绕线圈,共有50匝,置于0.25BT=的均匀磁场中,B 的方向与线圈的轴线平行。
如使磁场B 在0.25s 内线性地降为零,求线圈中产生的感应电动势iε。
分析:因B 随t 改变,故穿过密绕线圈的Φ也随t 改变,根据法拉第电磁感应定律要产生感应运动势。
解:由题可知B 随时间变化的关系是:0.25B t =-+,则磁通量为:46.010(0.25)BS t Φ-==⨯-+由法拉第电磁感应定律可得:0.03()i d NV dtεΦ=-=感应电动势的方向为:b a →。
9-7 一铁心上绕有线圈100匝,已知铁心中磁通量与时间的关系为58.010sin 100t Φπ-=⨯(SI 制),求在21.010t s-=⨯时,线圈中的感应电动势。
分析:线圈中有N 匝相同的回路,其感应电动势等于各匝回路的感应电动势之和。
解:由N ψΦ=和法拉第电磁感应定律i d dtψε=-得:2.51cos100()i d Nt V dtΦεπ=-=-当21.010t s -=⨯时,2.51()i V ε=9-8 如图9-41所示,用一根硬导线弯成一半径为r 的半圆,使这根半圆形导线在磁感应强度为B 的匀强磁场中以频率f 旋转,整个电路的电阻为R ,求感应电流的表达式和最大值。
分析:由题可知,闭合回路的面积为212S r π=,穿过它的磁通量cos B S Φθ=在不断变化,因此可先由法拉第电磁感应定律i d dtΦε=-求出感应电动势,再由欧姆定律iI Rε=求出感应电流,据此再讨论最大值。
解:设在初始时刻,半圆形导线平面的法线与B 之间的夹角0θ=,则在任意时刻穿过回路的磁通量为:21cos cos 22B S Br ft Φθππ==根据法拉第电磁感应定律,有:22sin 2i d r fB ft dtΦεππ=-=由欧姆定律可得回路中的电流为:22sin 2i r fB I ft RRεππ==故感应电流的最大值为22m r fB I Rπ=9-9 有两根相距为a 的无限长平行直导线,它们通以大小相等流向相反的电流,且电流均以d I d t 的变化率增长。
大学物理_第九章_课后答案
µ0 I , r 为管外一点到螺线管轴 2πr
题 9-4 图 9-5 如果一个电子在通过空间某一区域时不偏转, 能否肯定这个区域中没有磁场?如果它发 生偏转能否肯定那个区域中存在着磁场? 解:如果一个电子在通过空间某一区域时不偏转,不能肯定这个区域中没有磁场,也可能存 在互相垂直的电场和磁场, 电子受的电场力与磁场力抵消所致. 如果它发生偏转也不能肯定 那个区域存在着磁场,因为仅有电场也可以使电子偏转. 9-6 已知磁感应强度 B = 2.0 Wb· m 的均匀磁场, 方向沿 x 轴正方向, 如题 9-6 图所示. 试求:(1)通过图中 abcd 面的磁通量;(2)通过图中 befc 面的磁通量;(3)通过图中 aefd 面 的磁通量. 解: 如题 9-6 图所示
题 9-7 图 9-7 如题9-7图所示, AB 、 CD 为长直导线, BC 为圆心在 O 点的一段圆弧形导线,其半 径为 R .若通以电流 I ,求 O 点的磁感应强度. 解:如题 9-7 图所示, O 点磁场由 AB 、 BC 、 CD 三部分电流产生.其中
⌢
⌢
AB 产生
� B1 = 0
CD 产生 B2 =
9-13 一根很长的铜导线载有电流10A,设电流均匀分布.在导线内部作一平面 S ,如题9-13 图所示.试计算通过S平面的磁通量(沿导线长度方向取长为1m的一段作计算).铜的磁导率
µ = µ0 .
解:由安培环路定律求距圆导线轴为 r 处的磁感应强度
� B ∫ ⋅ dl = µ 0 ∑ I
l
B 2πr = µ 0
B0 =
�
µ 0 ev = 13 T 4πa 2
电子磁矩 Pm 在图中也是垂直向里,大小为
Pm =
e 2 eva πa = = 9.2 × 10 − 24 A ⋅ m 2 T 2
大学物理 第9-10章习题解答
第九章 电磁感应§9-1 电源 电动势 §9-2 电磁感应定律 §9-3 动生电动势§9-4 感生电动势和感生电场 §9-5 自感和互感 §9-6 磁场的能量§9-7 位移电流 麦克斯韦方程组9.1 法拉第电磁感应定律指出:通过回路所圈围的面积的磁通量发生变化时,回路中就产生感应电动势。
哪些物理量的改变会引起磁通量的变化?9.2 若感应电流的方向与楞次定律所确定的方向相反,或者说,法拉第定律公式中的负号换成正号,会导致什么结果?9.3 有人说,楞次定律告诉我们“感应电流的磁通总是原磁通相反的”,你认为对吗?为什么?解答:不对,阻碍并不是相反。
9.4 L 值是否有负值?M 值是否有负值?怎样理解负值的物理意义? 9.5 有两个相隔距离不太远的线圈,如何放置才能使其互感系数为零? 9.6 存在位移电流,是否必存在位移电流的磁场?9.7 半径为a 的圆线圈置于磁感强度为B 的均匀磁场中,线圈平面与磁场方向垂直,线圈电阻为R ;当把线圈转动使其法向与B 的夹角060=θ时,线圈中通过的电荷与线圈面积及转动所用的时间的关系是( ) A 、与线圈面积成正比,与时间无关; B 、与线圈面积成正比,与时间成正比; C 、与线圈面积成反比,与时间成正比; D 、与线圈面积成反比,与时间无关。
答案:A9.8 如图9-8所示,长度为的直导线ab 在均匀磁场B 中以速度υ移动,直导线ab 中的电动势为A 、Bυ B 、sin B υα C 、cos B υα D 、0答案:D9.9 在感生电场中,电磁感应定律可写成i k d d dtεΦ=⋅=⎰E l ,式中k E 为感生电场的电场强度;此式表明( ) A 、闭合回路上的k E 处处相等; B 、感生电场是保守场;C 、感生电场的电场线不是闭合曲线;D 、感生电场是涡旋藏。
答案:D9.10 若尺寸相同的铁环与铜环所包围的面积中穿过磁通量的变化率相同,则在这两个环中( )A 、感应电动势不同,感应电流相同;B 、感应电动势和感应电流都相同;C 、感应电动势和感应电流都不同;D 、感应电动势相同,感应电流不同。
大学物理第9章题库答案
第九章 电磁场填空题 〔简单〕1、在竖直放置的一根无限长载流直导线右侧有一与其共面的任意形状的平面线圈,直导线中的电流由上向下,当线圈以垂直于导线的速度背离导线时,线圈中的感应电动势 ,当线圈平行导线向上运动时,线圈中的感应电动势 。
〔填>0,<0,=0〕〔设顺时针方向的感应电动势为正〕(<0, =0)2、磁场的高斯定律说明磁场是 ,因为磁场发生变化而引起电磁感应,是不同于回路变化时产生的 。
相同之处是 。
〔无源场,动生电动势,磁通量发生改变〕3、只要有运动电荷,其周围就有 产生;而法拉弟电磁感应定律说明,只要 发生变化,就有 产生。
〔磁场,磁通量,感应电动势〕4、一磁铁自上向下运动,穿过一闭合导体回路,〔如图7〕,当磁铁运动到a 处和b处时,回路中感应电流的方向分别是 和 。
〔逆时针,顺时针〕5、电磁感应就是由 生 的现象,其主要定律为 ,其中它的方向是由 定律来决定,即 。
〔磁,电,电磁感应定律,楞次,见p320〕6、当穿过某回路中的磁通量发生变化时,电路中 (填肯定或不肯定)产生感应电流;电路中 (填肯定或不肯定)产生感应电动势。
(不肯定, 肯定)7、在电磁感应中,感应电动势的大小与闭合回路的磁通量 成正比。
〔对时间的变化率〕8、在竖直放置的一根无限长载流直导线右侧有一与其共面的任意形状的平面线圈,直导线中的电流由上向下,当线圈平行导线向下运动时,线圈中的感应电动势 , 当线圈以垂直于导线的速度靠近导线时,线圈中的感应电动势 。
〔填>0,<0,=0〕〔设顺时针方向的感应电动势为正〕(=0,>0)9、将条形磁铁插入与冲击电流计串连的金属环中,有-5q=2.010c ⨯的电荷通过电流计,假设连接电流计的电路总电阻25R =Ω,则穿过环的磁通量的变化=∆ΦWb 。
〔4510q R --⨯=-⨯〕10、电磁波是变化的 和变化的 在空间以肯定的速度传播而形成的。
电磁感应 电磁场(二)答案
第九章 电磁感应 电磁场(二)一. 选择题[ D ]1. 用细导线均匀密绕成长为l 、半径为a (l >> a )、总匝数为N 的螺线管,管内充满相对磁导率为μr 的均匀磁介质.若线圈中载有稳恒电流I ,则管中任意一点的 (A) 磁感强度大小为B = μ0 μ r NI . (B) 磁感强度大小为B = μ r NI / l . (C) 磁场强度大小为H = μ 0NI / l .(D) 磁场强度大小为H = NI / l . 【参考答案】 B = μ0 μ r nI= μ NI / l=μH[ C ]2. 磁介质有三种,用相对磁导率μr 表征它们各自的特性时, (A) 顺磁质μr >0,抗磁质μr <0,铁磁质μr >>1. (B) 顺磁质μr >1,抗磁质μr =1,铁磁质μr >>1. (C) 顺磁质μr >1,抗磁质μr <1,铁磁质μr >>1.(D) 顺磁质μr <0,抗磁质μr <1,铁磁质μr >0.[ C ]3. 如图,平板电容器(忽略边缘效应)充电时,沿环路L 1的磁场强度H ϖ的环流与沿环路L 2的磁场强度H ϖ的环流两者,必有:(A) >'⎰⋅1d L l H ϖϖ⎰⋅'2d L l H ϖϖ. (B)='⎰⋅1d L l H ϖϖ⎰⋅'2d L l H ϖϖ.(C)<'⎰⋅d L l H ϖϖ⎰⋅'d L l H ϖϖ. (D)0d ='⎰⋅L l H ϖϖ.【参考答案】全电流总是连续的。
位移电流大小和传导电流相等,位移电流均匀分布在平板电容器所对应的面积上,环路L1所包围电流小于位移电流,即小于传导电流,由安培环路定律知(C) <'⎰⋅1d L l H ϖϖ⎰⋅'2d L l H ϖϖ[ A ]4. 对位移电流,有下述四种说法,请指出哪一种说法正确. (A) 位移电流是指变化电场.(B) 位移电流是由线性变化磁场产生的. (C) 位移电流的热效应服从焦耳─楞次定律.(D) 位移电流的磁效应不服从安培环路定理.[ C ]5. 电位移矢量的时间变化率t D d /d ϖ的单位是(A )库仑/米2 (B )库仑/秒(C )安培/米2 (D )安培•米2H ϖL1L 2[ D ]6. 如图所示.一电荷为q 的点电荷,以匀角速度ω作圆周运动,圆周的半径为R .设t = 0 时q 所在点的坐标为x 0 = R ,y 0 = 0 ,以i ϖ、j ϖ分别表示x 轴和y 轴上的单位矢量,则圆心处O 点的位移电流密度为:(A) i t R q ϖωωsin 42π (B)j t R q ϖωωcos 42π (C) k Rq ϖ24πω (D) )cos (sin 42j t i t Rq ϖϖωωω-π 【参考答案】方向由点电荷所在位置指向圆心O 点,单位矢量与x 轴夹角为t ω,分解为x 轴和y 轴上的分量为()j t it ρρωωsin cos --二. 填空题1. 一个绕有500匝导线的平均周长50 cm 的细环,载有 0.3 A 电流时,铁芯的相对磁导率为600.(1) 铁芯中的磁感强度B 为_____0.226T_____. (2) 铁芯中的磁场强度H 为.n=500/0.5 T nI B r 226.0102.73.010*******370=⨯=⨯⨯⨯⨯==--ππμμ2. 图示为三种不同的磁介质的B ~H 关系曲线,其中虚线表示的是B = μ0H 的关系.说明a 、b 、c 各代表哪一类磁介质的B ~H 关系曲线:a 代表_____铁磁质 __________的B ~H 关系曲线.b 代表______顺磁质__________的B ~H 关系曲线.c 代表______抗磁质__________的B ~H 关系曲线.3. 图示为一圆柱体的横截面,圆柱体内有一均匀电场E ϖ,其方向垂直纸面向内,E ϖ的大小随时间t 线性增加,P 为柱体内与轴线相距为r 的一点则(1)P 点的位移电流密度的方向为_垂直纸面向内___. (2) P 点感生磁场的方向为__竖直向下___. 【参考答案】(1)dt E d j d /ρρε=,E ϖ是一均匀电场,方向不变,大小随时间t 线性增加,所以位移电流密度的方向与电场方向相同。
大学物理第九章练习 参考答案
第九章 电磁感应 电磁场理论练 习 一一.选择题1. 在一线圈回路中,规定满足如图1所示的旋转方向时,电动势ε,磁通量Φ为正值。
若磁铁沿箭头方向进入线圈,则有( B )(A ) d Φ /dt < 0, ε < 0 ; (B ) d Φ /dt > 0, ε < 0 ; (C ) d Φ /dt > 0, ε > 0 ; (D ) d Φ /dt < 0, ε > 0。
2. 一磁铁朝线圈运动,如图2所示,则线圈内的感应电流的方向(以螺线管内流向为准)以及电表两端电势U A 和U B 的高低为( C )(A ) I 由A 到B ,U A >U B ; (B ) I 由B 到A ,U A <U B ; (C ) I 由B 到A ,U A >U B ; (D ) I 由A 到B ,U A <U B 。
3. 一长直螺线管,单位长度匝数为n ,电流为I ,其中部放一面积为A ,总匝数为N ,电阻为R 的测量线圈,如图3所示,开始时螺线管与测量线圈的轴线平行,若将测量线圈翻转180°,则通过测量线圈某导线截面上的电量∆q 为( A )(A ) 2μ0nINA /R ; (B ) μ0nINA /R ; (C ) μ0NIA /R ; (D ) μ0nIA /R 。
4. 尺寸相同的铁环和铜环所包围的面积中,磁通量的变化率相同,则环中( A ) (A )感应电动势相同,感应电流不同; (B )感应电动势不同,感应电流相同; (C )感应电动势相同,感应电流相同; (D )感应电动势不同,感应电流不同。
二.填空题1.真空中一长度为0l 的长直密绕螺线管,单位长度的匝数为n ,半径为R ,其自感系数L可表示为0220l R n L πμ=。
2. 如图4所示,一光滑的金属导轨置于均匀磁场B 中,导线ab 长为l ,可在导轨上平行移动,速度为v ,则回路中的感应电动势ε=θsin Blv ,a 、b 两点的电势a U < b U (填<、=、>),回路中的电流I=R Blv /sin θ,电阻R 上消耗的功率P=R Blv /)sin (2θ。
2011第9章答案
一、选择题 1.感生电动势产生的本质原因是 A.磁场对导体中自由电子的作用 B.静电场对导体中自由电子的作用 C.感生电场(涡旋电场)对导体中自由电子作用
2. 尺寸相同的铁环与铜环所包围的面积中,通以相同 变化的磁通量,环中: A. 感应电动势不同 B. 感应电动势相同,感应电流相同 C. 感应电动势不同,感应电流相同 D.感应电动势相同,感应电流不同
解: B S SB cos 60 m
d m i kLvt dt
1 kt Lvt 1 kLvt 2 2 2
方向a →b,顺时针。
用法拉第电磁感应 定律计算电动势, 不必再求动生电动 势
2. 在等边三角形平面回路ADCA 中存在磁感应强度为B 均匀磁场,方向垂直于回路平面,回路CD 段为滑动导 线,它以匀速 v 远离A 端运动,并始终保持回路是等边 三角形,设滑动导线CD 到A 端的垂直距离为x,且时间 t = 0 时,x = 0, 试求,在下述两种不同的磁场情况下, 回路中的感应电动势和时间t 的关系。
5.如图,在磁感应强度B = 0.5T匀强磁场中有一导轨,导 轨平面垂直磁场,长为0.5m。导线AB在导轨上无摩擦以 1 速度 4 m s 向右运动,在运动过程中,回路总电阻 R = 0.2Ω不变。求 (1)导线AB产生动生电动势; (2)电阻R上消耗的功率; (3)导线AB受到的磁场力。
2. 动生电动势的定义式为ε =
b
a
(v B ) d l
与动生电动势相联系非静电力为 洛仑兹力 ,
。 其非静电性场强为EK = v B
3. 位移电流Id=
dΦe dt
,它与传导电流及运流
电流均能产生 磁 效应,但不能产生 热 效应。 4.涡旋电场由 变化的磁场 所激发,其环流数学 dΦm 表达式为 E dl ,涡旋电场强度E涡与 dt dB 成 左 旋关系。 dt
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一. 选择题
[A] 1 (基础训练4)、两根很长的平行直导线,其间距离为a ,与电源
组成闭合回路,如图12-4. 已知导线上的电流为I ,在保持I 不变的情况下,若将导线间的距离增大,则空间的
(A) 总磁能将增大.
(B) 总磁能将减少.
(C) 总磁能将保持不变.
(D) 总磁能的变化不能确定
[D] 2(基础训练7)、如图12-17所示.一电荷为
q 的点电荷,以匀角速度ω作圆周运动,
圆周的半径为R .设t = 0 时q 所在点的坐标为x 0 = R ,y 0 = 0 ,以i 、j
分别表示x 轴和y 轴上的单位矢量,则圆心处O 点的位移电流密度为: (A)
i t R q ωω
sin 42
π (B) j t R
q ωω
cos 42
π (C) k R
q 2
4πω (D) )cos (sin 42
j t i t R
q ωωω
-π
[C] 3 (基础训练8)、 如图12-18,平板电容器(忽略边缘效应)
充电时,沿环路L 1的磁场强度H 的环流与沿环路L 2的磁场强度H
的环流两者,必有:
(A) >
'⎰⋅1
d L l H
⎰⋅'2
d L l H . (B) =
'⎰⋅1
d L l H ⎰⋅'2
d L l H .
(C) <
'⎰⋅1d L l H
⎰⋅'2d L l H
. (D)
0d 1
='⎰⋅L l H
.
【参考答案】
全电流是连续的,即位移电流和传导电流大小相等、方向相同。
另,在忽略边界效应的情况下,位移电流均匀分布在电容器两极板间,而环路L1所包围的面积小于电容器极板面积,故选(C )。
图12-14
图12-17
图12-18
[B] 4 (自测提高6)、如图12-27所示,空气中有一无限长金属薄壁圆筒,在表面上沿圆周方向均匀地流着一层随时间变化的面电流i (t ),则 (A) 圆筒内均匀地分布着变化磁场和变化电场. (B) 任意时刻通过圆筒内假想的任一球面的磁通量和电通量均为零. (C) 沿圆筒外任意闭合环路上磁感强度的环流不为零.
(D) 沿圆筒内任意闭合环路上电场强度的环流为零.
二. 填空题
5 (第十一章:基础训练10)、 一个绕有500匝导线的平均周长50 cm 的细环,载有 0.3 A 电流时,铁芯的相对磁导率为600.(1) 铁芯中的磁感强度B 为_____0.226T_____. (2) 铁芯中的磁场强度H 为_____300A/m_________.
【参考答案】
n=500/0.5 T nI B r 226.0102.73.0106001042370=⨯=⨯⨯⨯⨯==--ππμμ。
0/300/r H B A m μμ==
6 (基础训练13)、 13、平行板电容器的电容C 为20.0 μF ,两板上的电压变化率为d U /d t
5-1,则该平行板电容器中的位移电流为__3A____.
7 (第十一章: 自测提高15)、 如图11-54所示为三种不同的
磁介质的B ~H 关系曲线,其中虚线表示的是B = μ0H 的关系.说明a 、b 、c 各代表哪一类磁介质的B ~H 关系曲线:
a 代表_____铁磁质 __________的B ~H 关系曲线.
b 代表______顺磁质__________的B ~H 关系曲线.
c 代表______抗磁质__________的B ~H 关系曲线.
图11-54
8(自测提高11)、 图示12-30为一圆柱体的横截面,圆柱体内有
一均匀电场E ,其方向垂直纸面向内,E
的大小随时间t 线性增加,P
为柱体内与轴线相距为r 的一点则
(1)P 点的位移电流密度的方向为_垂直纸面向内里__. (2) P 点感生磁场的方向为__竖直向下___.
【参考答案】
(1)由于d /d 0d J E t ε=> ,故d J
与E 同向, 垂直纸面向里。
(2)由安培环路定理
知:d J
与H 的关系与f J 与H 的关系一样,成右手螺旋关系,故P 点感生磁场的方向
竖直向下。
9(自测提高12)、半径为r 的两块圆板组成的平行板电容器充了电,在放电时两板间的
电场强度的大小为E = E 0e -t /RC ,式中E 0、R 、C 均为常数,则两板间的位移电流的大小为
2
00t RC
E r e
RC
επ-
-
,其方向与场强方向_相反 .
二. 计算题
10 (自测提高19)、平行板空气电容器接在电源两端,电压为
U ,如图12-37所示,回路电阻忽略不计.今将电容器的两极板以速率v 匀速拉开,当两极板间距为x 时,求电容器内位移电流密度.
11(自测提高20)、设一电缆,由两个无限长的同轴圆筒状导体所组成,内圆筒和外圆
筒上的电流方向相反而强度I 相等,设内、外圆筒横截面的半径分别为R 1
和R 2,如图12-38所示。
试计算长为l 的一段电缆内的磁场所储藏的能量。
()d f d l s
H dl J J s
⋅=+⎰⎰⎰
图12-30
图12-38
r
μ。