苏教版五年级数学下册知识点复习
最新苏教版五年级下册数学_最大公因数_最小公倍数易错题和重点题型教案资料
一、知识点整理:1、一个数最小的因数是1,最大的因数是它本身,一个数因数的个数是有限的。
一个数最小的倍数是它本身,没有最大的倍数。
一个数倍数的个数是无限的。
一个数最大的因数等于这个数最小的倍数。
2、几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数,用符号[ ,]表示。
几个数的公倍数也是无限的。
3、两个数公有的因数,叫做这两个数的公因数,其中最大的一个,叫做这两个数的最大公因数,用符号(,)。
两个数的公因数也是有限的。
4、两个素数的积一定是合数。
举例:3×5=15,15是合数。
5、两个数的最小公倍数一定是它们的最大公因数的倍数。
举例:[6,8]=24,(6,8)=2,24是2的倍数。
6、求最大公因数和最小公倍数的方法:倍数关系的两个数,最大公因数是较小的数,最小公倍数是较大的数。
举例:15和5,[15,5]=15,(15,5)=5素数关系的两个数,最大公因数是1,最小公倍数是它们的乘积。
举例:[3,7]=21,(3,7)=1一个素数和一个合数,最大公因数是1,最小公倍数是它们的乘积。
[5,8]=40,(5,8)=1相邻关系的两个数,最大公因数是1,最小公倍数是它们的乘积。
[9,8]=72,(9,8)=1特殊关系的数(两个都是合数,一个是奇数,一个是偶数,但他们之间只有一个公因数1),比如4和9、4和15、10和21,最大公因数是1,最小公倍数是它们的乘积。
一般关系的两个数,求最大公因数用列举法或短除法,求最小公倍数用大数翻倍法或短除法。
二、经典例题:例1,写出每组数的最大公因数7和9 5和25 10和4写出每组数的最小公倍数8和10 51和3 5和4例2:有一批地砖,每块长45厘米、宽30厘米,至少要用多少块这样的地砖才能铺成一个正方形?在一张长40厘米,宽32厘米的长方形红纸上裁出同样大小,面积最大的正方形,并且没有剩余。
一共可以裁出多少个这样的正方形?例3:五(1)班学生人数不超过50人,在分小组做游戏时,可以分为每组6人或者每组8人,两种分法都刚好分完。
苏教版五年级数学知识点总结
苏教版五年级数学知识点总结一、数的认识与应用1. 数的认识与数的读法- 了解整数的概念,正数、负数的定义及相互关系- 掌握数码读法和数词读法,能熟练读写整数、小数和分数- 熟悉百、十、个位的读法和表示方法- 能将数按大小顺序排列- 能够在数线上表示数的位置2. 数中的奇偶性- 理解奇数和偶数的概念- 能判断一个数是奇数还是偶数3. 数的性质- 了解数的相反数和绝对值的概念- 能够判断数的大小关系- 理解数的分数形式和小数形式的相互转化- 能够对数进行估算和近似4. 数的应用- 能将数应用到日常生活中,如身高、体重等的测量二、小数1. 小数的定义与认识- 理解小数的概念,了解小数的意义- 会读写小数,熟悉小数点的位置和使用方法2. 小数的比较与排序- 掌握小数的大小比较方法- 能够将一组小数按大小排序3. 小数的加减运算- 掌握小数的加减法运算方法- 能够进行简单的小数加减法运算4. 小数的乘除运算- 理解小数的乘法运算- 熟悉小数的乘法运算规则- 了解小数的除法运算,能够进行小数的除法运算5. 小数与百分数之间的转化- 掌握小数与百分数之间的转化方法- 能够将小数转化为百分数,或将百分数转化为小数6. 学会使用小数进行实际问题解答- 能够运用小数解决生活中的实际问题三、分数1. 分数的认识- 理解分数的含义,了解分数的意义和表示方法- 能够将物体的部分与整体、图形的部分与整体用分数表示2. 分数的简化与扩展- 掌握分数的简化和扩展方法- 能够将一个分数化为最简形式,或将最简分数扩展为相等的分数3. 分数的比较与排序- 掌握分数的大小比较方法- 能够将一组分数按大小排序4. 分数的加法与减法- 掌握分数的加减法运算方法- 能够进行简单的分数加减法运算5. 分数的乘法与除法- 理解分数的乘法运算- 熟悉分数的乘法运算规则- 了解分数的除法运算,能够进行分数的除法运算6. 学会使用分数进行实际问题解答- 能够运用分数解决生活中的实际问题四、整数1. 整数的认识与应用- 理解整数的概念和意义- 能够在数线上表示整数的位置- 掌握整数的读法和书写方法2. 整数间的加法与减法运算- 理解整数的加法和减法运算规则,掌握运算法则- 能够进行整数的加减法运算,包括正数相加、负数相加、正数相减、负数相减等情况3. 整数的乘法与除法运算- 掌握整数的乘法和除法运算规则- 能够进行整数的乘除法运算,包括正数相乘、负数相乘、正数相除、负数相除等情况4. 整数的应用- 能够将整数应用到生活中的实际问题中,如温度变化、海拔高度等五、图形的认识与应用1. 图形与常见物体形状的关系- 理解图形与物体形状之间的对应关系,能够根据图形名称画出相应形状2. 直角、直线- 了解直角和直线的概念,能够根据题意画出具有直角的图形- 能够根据给定直线段的长度判断两点间是否垂直或平行3. 角的认识与度量- 了解角的概念,掌握角的命名和记号方法- 能够判断角的大小,如锐角、直角、钝角4. 三角形- 了解三角形的概念,掌握三角形的分类和命名方法- 能够根据给定条件画出特殊的三角形,如等边三角形、等腰三角形和直角三角形等5. 四边形- 了解四边形的概念,掌握四边形的分类和命名方法- 能够根据给定条件画出特殊的四边形,如矩形、正方形、菱形和平行四边形等6. 园的认识与运用- 了解圆的概念,掌握圆的性质和命名方法- 能够计算圆的面积和周长7. 体的认识与应用- 了解各种常见的几何体,如立方体、长方体、球体等- 掌握这些几何体的性质、面积和体积的计算方法。
苏教版五年级数学知识点归纳
苏教版五年级数学知识点归纳课堂临时报佛脚,不如〔课前预习〕好。
课堂临时报佛脚,不如课前预习好。
其实任何学科都是一样的,学习任何一门学科,勤奋是最好的〔学习〔方法〕〕,没有之一。
下面是我给大家整理的一些〔五年级数学〕的学问点,希望对大家有所关怀。
五年级数学下册学问点:图形的变换1、轴对称图形:把一个图形沿着某一条直线对折,两边能够完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴。
2、成轴对称图形的特征和性质:①对称点到对称轴的距离相等;②对称点的连线与对称轴垂直;③对称轴两边的图形大小样子完全相同。
3、物体旋转时应抓住三点:①旋转中心;②旋转方向;③旋转角度。
旋转只转变物体的位置,不转变物体的样子、大小。
小学五年级数学学问点分数的意义和性质1、分数的意义:把单位“1”平均分成若干份,表示这样的一份或几份的数,叫做分数。
2、分数单位:把单位“1”平均分成若干份,表示这样的一份的数叫做分数单位。
3、分数与除法的关系:除法中的被除数相当于分数的分子,除数相等于分母,用字母表示:a÷b= (b≠0)。
4、真分数和假分数:分子比分母小的分数叫做真分数,真分数小于1。
分子比分母大或分子和分母相等的分数叫做假分数,假分数大于1或等于1。
由整数部分和分数部分组成的分数叫做带分数。
5、假分数与带分数的互化:把假分数化成带分数,用分子除以分母,所得商作整数部分,余数作分子,分母不变。
把带分数化成假分数,用整数部分乘以分母加上分子作分子,分母不变。
6、分数的基本性质:分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变,这叫做分数的基本性质。
7、公因数:几个数共有的因数叫做它们的公因数,其中的一个叫做公因数。
8、互质数:公因数只有1的两个数叫做互质数。
两个数互质的特殊推断方法:①1和任何大于1的自然数互质。
②2和任何奇数都是互质数。
③相邻的两个自然数是互质数。
④相邻的两个奇数互质。
⑤不相同的两个质数互质。
苏教版五年级数学下册各单元知识点
苏教版五年级数学下册各单元知识点一、第一单元:数和数的运算- 理解整数的概念,包括正整数、负整数和零。
- 掌握整数的大小比较和顺序排列。
- 学会整数的加法和减法运算,包括正整数之间的加减运算,负整数之间的加减运算,以及正负整数之间的加减运算。
二、第二单元:小数的认识与认识- 理解小数的概念,包括小数的读法和写法。
- 掌握小数的大小比较和顺序排列。
- 学会小数的加减法运算,包括小数之间的加减运算和整数与小数之间的加减运算。
三、第三单元:长度的认识- 认识长度单位,包括厘米、分米和米,并能够互相转换。
- 了解不同物体的长度,并能够用适当的长度单位进行测量和比较。
- 研究长度的加法和减法运算,包括相同单位的长度加减运算和不同单位的长度加减运算。
四、第四单元:容积的认识- 认识容积单位,包括毫升和升,并能够互相转换。
- 掌握不同的容积,并能够用适当的容积单位进行测量和比较。
- 研究容积的加法和减法运算,包括相同单位的容积加减运算和不同单位的容积加减运算。
五、第五单元:质量的认识- 认识质量单位,包括克和千克,并能够互相转换。
- 了解不同物体的质量,并能够用适当的质量单位进行测量和比较。
- 研究质量的加法和减法运算,包括相同单位的质量加减运算和不同单位的质量加减运算。
六、第六单元:时间的认识- 认识时间的单位,包括秒、分、时和天,并能够互相转换。
- 掌握不同活动所需时间的概念。
- 研究时间的加法和减法运算,包括相同单位的时间加减运算和不同单位的时间加减运算。
七、第七单元:角度的认识- 认识角度的概念,包括直角、钝角和锐角。
- 了解不同角度的特征和分类。
- 研究角度的度量和比较,包括用直尺度量角度的大小。
八、第八单元:平方与平方根的认识- 了解平方的概念,包括正整数的平方和负整数的平方。
- 认识平方根的概念,包括正整数的平方根和非正整数的平方根。
- 研究求平方与开平方的计算方法。
九、第九单元:数据图的认识- 认识常见的数据图形式,包括条形图、折线图和饼图,并能够读取和分析图形中的数据。
苏教版五年级下册数学总复习知识点回顾(提纲+练习)
苏教版五年级下册数学总复习知识点回顾(提纲+练习) 第一单元方程1、左右两边相等关系的式子叫做等式。
(通俗的说就是含有“=”号的式子就是等式。
) 2、含有未知数的等式是方程。
[注:(判断题)含有未知数的式子是方程(?)] 3、(背诵)方程一定是等式;等式不一定是方程。
4、等式的性质。
(1)等式两边同时加上或减去同一个数,所得结果仍然是等式。
(2)等式两边同时乘或除以同一个(不等于0)的数,所得结果仍然是等式。
用途:解方程5、求方程中未知数的过程,叫做解方程。
解方程时常用的关系式:加法:加数+加数=和和-一个加数=另一个加数减法:被减数-减数=差被减数-差=减数差+减数=被减数乘法:因数×因数=积积÷一个因数=另一个因数除法:被除数÷除数=商被除数÷商=除数商×除数=被除数注意:解完方程,要养成检验的好习惯。
6、3个、5个或7个连续的自然数(或连续的奇数,连续的偶数)它们的和=中间的数×3、5或7。
中间的数=连续数的和÷3、5或7 (个数为奇数)比如:1、2、3、4、5 1+2+3+4+5=15 即:3×5=15 15÷5=3 又比如:6÷3=2 1、2、3 35÷5=7 3、5、7、9、11 7、列方程解应用题的思路:A、审题并弄懂题目的已知条件和所求问题。
B、理清题目的等量关系。
C、设未知数,一般是把所求的数用X表示。
D、根据等量关系列出方程E、解方程F、检验G、作答。
第一单元相应练习题1、哪些是等式,哪些是方程,请填入相应的横线上。
(填序号) ①3+x=12 ②3.6+x ③ 4+17.5=21.5 ④48+x��63等式________________________;方程:________________________ 2、含有未知数的式子叫方程。
()【判断】 3、等式都是方程,方程都是等式。
2_苏教版五年级数学下册知识点整理2017版
苏教版数学五年级下册知识点整理第一单元 简易方程一、知识点梳理(一)方程1.等式的意义:表示相等关系的式子叫做等式。
2.方程的意义:像x +50=150、2x =200 这样含有未知数的等式是方程。
3.方程与等式的关系:方程是等式,但等式不一定是方程,它们之间可以用右图表示:4.方程必须满足的条件:(1)必须是等式。
(2)必须含有未知数。
(二)解方程5.方程的解和解方程:使方程左右两边相等的未知数的值,叫做方程的解。
求方程的解的过程叫做解方程。
6.等式的性质:(1)等式的两边加上或减去同一个数,所得结果仍然是等式。
(即左右两边仍然相等)(2)等式的两边乘或除以同一个不是0的数,所得结果仍然是等式。
7.四则运算各部分的关系:一个加数=和-另一个加数 减数=被减数-差 被减数=减数+差一个因数=积÷另一个因数 除数=被除数÷商 被除数=商×除数8.解方程的常用方法:(1)等式的性质 (2)四则运算各部分的关系 (3)移项9.方程的检验:将方程的解代入原方程看方程左右两边是否相等。
(三)列方程解决问题10.一般步骤:(1)审:认真审题,理解题意,寻找等量关系。
(2)设:设未知数。
(一般设所求的未知数为x ,如果未知数有几个,可以设其中一个,然后根据关系表示其他未知数;也可以间接设某个量为x ,再通过这个量去求未知数。
)(3)列:根据题中所设的未知数和已知条件,按照等量关系式列出方程(4)解:求出所列方程的解。
(5)验:检验方程的解是否正确,检验方程的解是否符合题意。
(6)答:回答题目所问,写出答句。
11.注意点:(1)找到等量关系是列方程解决问题的关键。
(2)列方程解决问题时一般不把未知数x 单独放在一边。
(3)设未知数x 时要在后面写上单位名称,求出的x 的值不带单位名称。
等式 方程(四)其他相关知识点12.连续的自然数(或连续的奇数,连续的偶数)的和:3个连续自然数(或连续奇数、偶数)的和等于中间的一个数的3倍。
小学数学(苏教版)五年级下册知识点归纳
小学数学(苏教版)五年级下册知识点归纳知识模具体内容重点难点块理解方程的含义,初步会列方程解决一步计算的实际问方程方程的含义,等式与方程的关系;等式的性质题初步理解等式的性质,会用等式的体会等式与方程的关系性质解简单的实际问题确定位列、行的含义,确定第几列、第几行的规定;数对的含义初步理解数对的含义用数对表示具体情境中物体的位置置,掌握用数对确定位置的方法。
公倍数公倍数与最小公倍数、公因数与最大公因数;会求10 以内两个找两个数最小公倍数找两个数最小公倍数和最大公因与公因数的最小公倍数和 100 以内两个数的最大公因数和最大公因数的方法数的方法数认识分单位“ 1”和分数单位的含义,分数的意义;分数与除法的关系,把假分数化成整数或分数的意义;分数基本性质以及数,分数会进行分数与小数的互化;分数的基本性质,约分和通分的方法,带分数,分数与小数的互约分、通分、分数大小比较方法;能的基本分数的大小比较。
异分母分数加、减法,分数加减混合运算的运算化;约分和通分的方法,异正确计算简单的分母分数加、减法,性质及顺序,能应用运算律或运算性质进行一些分数加、减法的简便运算;分母分数加、减法的计算方理解并掌握分数加减混合运算的运算其基本能用分数加、减法解决一些简单的实际问题。
法顺序性质用平移的方法探索并发现简单图形覆盖现象中的规律,能根据平移的方法探索并发能根据某个图形平移的次数推算找规律某个图形平移的次数推算被该图形覆盖的总次数,并解决相应的简现简单图形覆盖现象中的被该图形覆盖的总次数,体会有序列单实际问题。
规律举和思考是解决问题的基本策略之一复式折线统计图的作用和特点,能读懂常见的复式折线统计图,了解复式折线统计图能根据要求把复式折线统计图补统计能根据要求把复式折线统计图补画完整;能根据复式折线统计图所的作用和特点,能读懂常见画完整,经历用复式折线统计图表示表达的信息,进行相应的分析、比较和简单的判断的复式折线统计图数据的过程。
最新苏教版五年级下册数学-最大公因数-最小公倍数易错题和重点题型
一、知识点整理:1、一个数最小的因数是1,最大的因数是它本身,一个数因数的个数是有限的。
一个数最小的倍数是它本身,没有最大的倍数。
一个数倍数的个数是无限的。
一个数最大的因数等于这个数最小的倍数。
2、几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数,用符号[ ,]表示。
几个数的公倍数也是无限的。
3、两个数公有的因数,叫做这两个数的公因数,其中最大的一个,叫做这两个数的最大公因数,用符号(,)。
两个数的公因数也是有限的。
4、两个素数的积一定是合数。
举例:3×5=15,15是合数。
5、两个数的最小公倍数一定是它们的最大公因数的倍数。
举例:[6,8]=24,(6,8)=2,24是2的倍数。
6、求最大公因数和最小公倍数的方法:倍数关系的两个数,最大公因数是较小的数,最小公倍数是较大的数。
举例:15和5,[15,5]=15,(15,5)=5素数关系的两个数,最大公因数是1,最小公倍数是它们的乘积。
举例:[3,7]=21,(3,7)=1一个素数和一个合数,最大公因数是1,最小公倍数是它们的乘积。
[5,8]=40,(5,8)=1相邻关系的两个数,最大公因数是1,最小公倍数是它们的乘积。
[9,8]=72,(9,8)=1特殊关系的数(两个都是合数,一个是奇数,一个是偶数,但他们之间只有一个公因数1),比如4和9、4和15、10和21,最大公因数是1,最小公倍数是它们的乘积。
一般关系的两个数,求最大公因数用列举法或短除法,求最小公倍数用大数翻倍法或短除法。
二、经典例题:例1,写出每组数的最大公因数7和9 5和25 10和4写出每组数的最小公倍数8和10 51和3 5和4例2:有一批地砖,每块长45厘米、宽30厘米,至少要用多少块这样的地砖才能铺成一个正方形?在一长40厘米,宽32厘米的长方形红纸上裁出同样大小,面积最大的正方形,并且没有剩余。
一共可以裁出多少个这样的正方形?例3:五(1)班学生人数不超过50人,在分小组做游戏时,可以分为每组6人或者每组8人,两种分法都刚好分完。
[苏教版]五年级数学下册全册知识点整理
苏教版五年级数学(下册)知识点总结姓名:第一单元:简易方程一、概念部分1、表示相等关系的式子叫做等式。
2、含有未知数的等式叫方程。
3、方程一定是等式;等式不一定是方程。
4、等式的性质(1)等式两边同时加上或减去同一个数,所得结果仍然是等式。
这是等式的性质。
(2)等式两边同时乘或除以同一个不等于0的数,所得结果仍然是等式。
这也是等式的性质。
5、解方程(1)使方程左右两边相等的未知数的值叫做方程的解。
(2)求方程中未知数的过程,叫做解方程。
6、列方程解应用题的思路:①、审题并弄懂题目的已知条件和所求问题,设未知数,一般是把问题中的量用X表示。
②、理清题目的数量关系,根据数量关系列出方程。
③、解方程④、检验、答。
二、例题分析部分1、方程与等式下列式子:8+3=11;x-5=5;7x+8;…6x>9;a+6=17;14+5<24;4x=26哪些是等式,哪些是方程?等式的有:8+3=11;x-5=5;a+6=17;4x=26方程的有:x-5=5;a+6=17;4x=26注意:集合图表示包含关系,因而x-5=5;a+6=17; 4x=26 只能填入内圈方程处。
2、解方程 方法:主要依据等式的性质求解,当未知数是减数或除数时有时也可利用加、减、乘、除各个部分之间的关系进行解题。
(熟练了左边可以简写即变成了移项变号)40.8+x=57.3 2x-0.82﹦8.2 2x +0.4x=488x-0.8×9﹦26.4 13-0.5x ﹦7 20÷χ= 8解方程注意:①写解、②等于号对齐、③要养成检验的好习惯。
3、列方程解应用题(1)几倍多(少) 几的问题例题:食堂运来150千克大米,比运来的面粉的3倍少30千克。
食堂运来面粉多少?解:设食堂运来面粉x 千克 面粉重量的3倍-30=大米的重量3x-30=150解:40.8+X-40.8=57.3-40.8 X=16.5利用了等式性质1进行解题解:2x-0.82+0.82=8.2+0.82 2X=9.02 2x ÷2=9.02÷2X=4.51两步计算的方程先利用了等式性质1再利用等式性质2 进行求解解: 2.4x=48 2.4X ÷2.4=48÷2.4 X=20含有相同未知数的方程先合并化简再利用了等式性质2进行求解解:8x-7.2=26.2 8X-7.2+7.2=26.4+7.2 8x=33.4 8X ÷8=33.6÷8x=4.2 三步计算的方程先计算然后分别利用等式性质1和等式性质2 求解解: 13-0.5x+0.5x=7+0.5x 0.5x=17-7 0.5x=10 X=20当x 在减号后可利用等式性质1也可利用减数=被减数-差直接得出0.5x=17-7解: 20÷χ×χ=8×χ20=8χX=2.5当x 在除号后可利用等式性质2也可利用除数=被除数÷商直接得出8x=203x-30=1503x=180 X=60面粉重量的3倍-大米的重量=303x-150=303x=180 X=60答:食堂运来面粉60千克。
苏教版五年级下册数学知识点归纳
苏教版五年级下册数学知识点归纳以下是苏教版五年级下册数学知识点的归纳:一、数的认识1. 整数的认识:正整数、负整数、零、相反数、绝对值等概念。
2. 分数的认识:分数的定义、分数的大小比较、分数的化简、分数的加减乘除等运算。
3. 小数的认识:小数的定义、小数的读法、小数和分数的转换。
4. 百分数的认识:百分数的定义、百分数的意义、百分数的转化、百分数的计算等。
二、数的运算1. 加、减、乘、除的运算,并能结合实际情境来进行解决问题。
2. 多位数的加、减、乘、除。
3. 小数的加、减、乘、除,并能结合实际情境进行解决问题。
4. 分数的加、减、乘、除。
5. 分数和整数的混合运算。
6. 取余数和商、分辨被除数、除数、商、余数的大小关系。
三、图形的认识1. 命名、比较、解读简单图形的性质:如线段、角、三角形、四边形、多边形等。
2. 通过测量和估算,能获取图形的长度、面积、周长等信息,了解相应的计算方法。
3. 理解几何图形的对称性和相似性,能够通过等距离变换、比例变换、旋转变换等对图形进行变换操作并且判断相应的变换关系。
4. 能够捏造一些简单的图形,从而使其满足一些要求。
四、简单方程1. 学习解一步一元一次方程。
2. 通过研究具体问题并利用代数符号建模,发现模式并提出问题。
3. 利用各种方法破解问题,发掘问题本质特征。
五、数据的处理1. 理解样本的性质、固定时间样本和间断时间样本的不同,以及样本和总体的关系。
2. 准确把握和解读直方图、折线图、饼图等不同形式的统计图表。
3. 利用统计图表进行数据的整体比较、分类统计以及趋势预测等操作。
总之,苏教版五年级下册数学知识点包括数的认识、数的运算、图形的认识、简单方程和数据的处理,这些知识点的掌握是学生成功学习数学的重要基础。
苏教版五年级下册数学期末重点复习
苏教版五年级下册数学期末重点复习一,知识点整理:1,方程:解方程和方程的解2,确定位置3,最小公倍数和最大公因数4,认识分数5,异分母分数的加减法6,找规律…7,统计和解决问题的策略8,圆:圆的位置,大小,面积,周长,半圆的面积和周长,圆环的面积二,经典例题:例1, 有一批地砖,每块长45厘米、宽30厘米,至少要用多少块这样的地砖才能铺成一个正方形?在一张长40厘米,宽32厘米的长方形红纸上裁出同样大小,面积最大的正方形,并且没有剩余。
一共可以裁出多少个这样的正方形?%例2:把3米长的铁丝平均截成8段,每段长( )( ) 米,每段长是3米的( )( ) 。
一块3公顷的菜地平均分成8份,每份占这块菜地的( )( ) ,每份是( )( ) 公顷。
5米的19 和1米的( )( ) 相等,例3:把一根铁丝平均剪成15段,用去5段,剩下的占全长的几分之几~洗衣机厂计划25天生产1200台洗衣机,实际提前5天就完成了任务,实际每天完成了这项任务的几分之几?三:课堂练习1、A 是B 倍数,那么它们的最小公倍数是( )。
A 、AB B 、AC 、B2、两个数的最大公因数是15,最小公倍数是90,这两个数一定不是( )。
A 、15和90B 、45和90C 、45和303,54的分子加上12,要使分数的大小不变,分母应该加上( )\4、把两根长度分别是120厘米和180厘米的铁丝,截成长度相等的小段,每根都不能有剩余。
每小段最长多少厘米?5,三个连续的奇数的和是57,中间的数是M ,你能列方程求M 的值吗?6,小明和小红共有邮票50张,如果小明给小红8张,那么两人的邮票张数相等,小明原来有多少张?7,一个正方形的周长与一个圆的周长相等,已知正方形的边长是6.28厘米,圆的半径是多少厘米?·8,一个长方形纸的长是20厘米,周长是60厘米,在这张纸上剪下一个最大的圆,这个圆的周长是( )厘米,面积是( )平方厘米。
最新苏教版五年级下册数学知识点总结归纳
最新苏教版五年级下册数学知识点总结归纳最新苏教版五年级下册数学知识点总结归纳编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(最新苏教版五年级下册数学知识点总结归纳)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为最新苏教版五年级下册数学知识点总结归纳的全部内容。
最新苏教版五年级下册数学知识点总结归纳最新苏教版五年级(下册)数学知识点总结第一单元:方程1、表示相等关系的式子叫做等式.2、含有未知数的等式叫方程.3、方程一定是等式;等式不一定是方程.4、等式两边同时加上或减去同一个数,所得结果仍然是等式。
这是等式的性质。
等式两边同时乘或除以同一个不等于0的数,所得结果仍然是等式。
这也是等式的性质。
5、使方程左右两边相等的未知数的值叫做方程的解。
6、求方程中未知数的过程,叫做解方程。
注意:解完方程,要养成检验的好习惯。
7、三个连续的自然数(或连续的奇数,连续的偶数)的和,等于中间的一个数的3倍。
五个连续的自然数(或连续的奇数,连续的偶数)的和,等于中间的一个数的5倍。
8、列方程解应用题的思路:①、审题并弄懂题目的已知条件和所求问题。
②、理清题目的数量关系。
③、设未知数,一般是把问题中的量用X表示. ④、根据数量关系列出方程。
⑤、解方程。
⑥、检验。
⑦、答.第二单元:折线统计图9.折线统计图的特点:能够反映物体的变化趋势情况。
作图时要注意描点、写数据、连线.第三单元:因数与倍数10、一个数最小的因数是1,最大的因数是它本身,一个数因数的个数是有限的。
一个数最小的倍数是它本身,没有最大的倍数。
一个数倍数的个数是无限的.一个数最大的因数等于这个数最小的倍数。
苏州数学五年级下册知识点
苏州数学五年级下册知识点
苏州数学五年级下册的知识点涵盖了多个数学领域,包括但不限于以下几个主要部分:
1. 分数的加减法:学生将学习如何进行分数的加减运算,包括同分母和异分母分数的加法,以及分数的减法。
2. 小数的乘除法:小数的乘除法是五年级数学的重点之一,学生需要掌握小数乘法和除法的计算方法,以及如何进行近似值的计算。
3. 比例和比例尺:学生将学习比例的概念,如何设置比例,以及如何使用比例尺解决实际问题。
4. 几何图形的面积和周长:包括三角形、四边形、圆等基本几何图形的面积和周长的计算方法。
5. 统计图表:学生将学习如何收集数据,制作条形统计图、折线统计图和饼图,并能从图表中获取信息。
6. 应用题:解决实际问题的能力是数学学习的重要组成部分,学生将通过解决各种应用题来提高自己的数学应用能力。
7. 单位换算:学生需要掌握不同度量单位之间的换算,例如长度、面积、体积和重量等。
8. 数学思维和逻辑推理:通过解决数学问题,培养学生的逻辑思维能力和数学思维。
9. 数学游戏和活动:通过数学游戏和活动,激发学生对数学的兴趣,提高他们的参与度和学习动力。
10. 数学文化:了解数学在历史和文化中的作用,以及数学在日常生活中的应用。
结尾:
苏州数学五年级下册的知识点不仅涵盖了基础的数学运算和概念,还包括了培养学生数学思维和解决实际问题的能力。
通过这些知识点的学习,学生能够更好地理解数学在现实生活中的应用,为未来的学习打下坚实的基础。
苏教版五年级数学下册第六单元《圆》单元复习知识点归纳总结
一、圆的认识1.圆的特征。
圆是由曲线围成的封闭图形,没有顶点。
2.圆和多边形的异同。
(1)相同点:圆和多边形都是平面图形。
(2)不同点:多边形由线段围成,有顶点;圆由曲线围成,没有顶点。
圆的画法:(1)把圆规的两脚分开,定好两脚间的距离。
(2)把有针尖的脚固定在一点上。
(3)把装有铅笔芯的脚旋转一周,就画成了一个圆。
旋转圆规时,两脚间的距离不能变。
3.圆的各部分的名称。
(1)圆心:用圆规画圆时,针尖固定的一点是圆心,通常用字母O表示,圆心决定圆的位置。
(2)半径:连接圆心和圆上任意一点的线段(如线段OA)是半径,通常用字母r表示。
半径决定圆的大小,半径越长,圆越大;半径越短,圆越小。
(3)直径:通过圆心并且两端都在圆上的线段(如线段BC)是直径,通常用字母d表示。
如图:4.半径和直径的特征及圆的对称性。
(1)圆有无数条直径和半径。
在同圆或者等圆中,直径的长度是半径的2倍,半径的长度是直径的一半,用字母表示是d=2r或r=d2。
(2)圆是轴对称图形,有无数条对称轴。
二、扇形1.扇形。
一条弧和经过这条弧两端点的两条半径所围成的图形叫作扇形。
2.扇形各部分的名称。
易错提示:生活中的球不是圆,球是立体图形,圆是平面图形。
重点提示:画圆时,固定住针尖,不可以移动。
旋转时要捏住圆规的顶端。
知识巧记:圆的认识并不难,心径特征要记全。
圆心一点定位置,大小二径说了算。
直径半径都无数,圆心圆上线段连。
二者关系有条件,同圆等圆说在前。
直径为兄半径弟,兄长弟短二倍牵。
圆规画圆挺容易,半径即在两脚间。
针尖定在圆心位,笔芯一转就画完。
重点提示:扇形是轴对称图形,只有一条对称轴。
通过扇形两条半径的交点(即圆心)和曲线中点的直线就是它的对称轴。
苏教版五年级数学下册复习知识点整理资料
苏教版五年级数学重点难点复习资料第一单元方程知识点:等式:表示相等关系的式子叫做等式。
练习: 1、下面的式子中,是等式的在后面() 里画“V”。
X+18=36()x+2> 10 ()72-x() x=3()知识点:方程:含有未知数的等式是方程。
知识点:方程与等式的关系:方程一定是等式,等式不一定是方程。
练习: 1、哪些是等式,哪些是方程,请填入相应的横线上。
( 填序号 )①3+x=12② 3.6+x③ 4+17.5=21.5④48+x < 63等式 _________________________;方程:____________________________知识点:等式的性质练习: 1、解方程X-97=145 1.15+x=6.813.5-x=8.23x=3.9x - 3=2.115x=2401128- x=42 --x= 一242、吴兵买了 1 本练习本和 3 枝铅笔,张兰买了同样的7 枝铅笔,两人用去的钱同样多。
一本练习本的价钱等于 () 枝铅笔的价钱。
【填空】知识点:列方程解决简单的实际问题练习:列方程解决实际问题1、一个三角形形的面积是 2.4 平方厘米,底边长0.8 米,它的高是多少厘米?2、光明书店上午卖出图书350 本,比下午多卖出35 本,一共卖出多少本知识点:五个连续的自然数(或连续的奇数,连续的偶数)的和,等于中间的一个数的 5 倍练习: 1、三个连续的自然数的和是24, 这三个数分别是()、()、()。
2、五个连续奇数的和是35, 五个连续奇数中最小的数是()。
第三单元公因数与公倍数知识点:公因数和最大公因数练习: 1、写出下面每组数的最大公因数。
3 和 5()4 和 8()1和 13()13和26()4 和 9()17和 51()21 和 36 ()22和55()n 都是非零的自然2、m十 n =5 (m 、,m和 n 的最大公因数是()。
数)3、m和n是相邻的两个非零的自然数,m和 n 的最大公因数是()。
苏教版五年级下册数学总复习资料
苏教版五年级下册数学总复习资料
一、数的认识
1.自然数:
2.整数:
3.分数:
4.小数:
5.数的大小比较:
6.数轴:
二、乘法运算
1.乘法的概念:
2.乘法的性质:
3.乘法的运算法则:
4.乘法的应用:
三、除法运算
1.除法的概念:
2.除法的性质:
3.除法的运算法则:
4.除法的应用:
四、小数计算
1.小数的加减法:
2.小数的乘法:
3.小数的除法:
4.小数的应用:
五、整数计算
1.整数的加减法:
2.整数的乘法:
3.整数的除法:
4.整数的应用:
六、分数计算
1.分数的加减法:
2.分数的乘法:
3.分数的除法:
4.分数的应用:
七、平方数与平方根
1.平方数的性质:
2.平方根的概念:
3.平方数的运算:
4.平方根的运算:
八、长方体
1.长方体的结构特点:
2.长方体的面积计算:
3.长方体的体积计算:
九、图形的认识
1.平面图形:
2.立体图形:
3.图形的属性:
十、图形的分类
1.三角形:
2.四边形:
3.多边形:
4.圆:
十一、图形的计算
1.图形的周长计算:
2.图形的面积计算:
十二、时间和日期
1.时钟:
2.日期:
3.时间的计算:
以上是苏教版五年级下册数学的总复资料,希望对大家的研究有所帮助。
苏教版五年级下册数学全册单元知识小结
第 2 单元 归纳总结
重要考点
单式折线 统计图
复式折线 统计图
考点解析 1。折线统计图的 特点是既可以反映 出数量的多少,又 能清晰地反映出数 量的增减变化情 况。 2。绘制折线统计 图的方法:(1)用 纵轴表示一种量, 横轴表示另一种 量;(2)根据数据 的大小确定单位长 度表示的数量; (3)根据所给数 据描点;(4)用线 段顺次连接各点, 在各点旁边注明数 据。 3.折线统计图的应 用:可以根据折线 统计图发现问题、 解决问题,并进行 简单的预测。 1。复式折线统计 图:在一个统计图 中,用两组不同的 折线表示两组不同 数据的变化情况, 这就是复式折线统 计图. 2。复式折线统计 图的特点:能表示 出两组数据数量的 多少,还能表示出 两组数据数量的增 减变化情况,便于 对两组数据进行比 较。 3。复式折线统计
树的几分之几?
4
3
【解答】 40÷30=3 30÷40=4
一个数 另一个数
4
3
答:梨树的棵数是杏树的3,杏树的棵数是梨树的4
1.真分数:分子比分 母小的分数叫作真分 数.真分数都小于 1。 2.假分数:分子大于或 等于分母的分数叫作 假分数。假分数大于
。
判断下面分数,哪些是真分数?哪些是假分
数?
3 7 8 2 1 8 11
典型例题
2014 年~2018 年某地区旅游人数情况统计如下 表所示。
年份 2014 2015 2016 2017 2018 人数/亿人 5.5 4.8 8.2 10.5 12。4 (1)根据上表制作折线统计图。 (2)哪一年的旅游人数最多?哪一年的最少? (3)哪两个年份间增长的幅度最大? (4)该地区旅游人数总趋势是上升还是下降? 【解答】 (1)如图所示。 2014 年~2018 年某地区旅游人数统计图
五年级下册苏教版数学重点知识点大全
五年级下册苏教版数学重点知识点大全五年级下册苏教版数学重点知识点一、图形的变换图形变换的基本方式是平移、对称和旋转。
1、轴对称:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴。
(1)学过的轴对称平面图形:长(正)方形、圆形、等腰三角形、等边三角形、等腰梯形……等腰三角形有1条对称轴,等边三角形有3条对称轴,长方形有2条对称轴,正方形有4条对称轴,等腰梯形有1条对称轴,任意梯形和平行四边形不是轴对称图形。
(2)圆有无数条对称轴。
(3)对称点到对称轴的距离相等。
(4)轴对称图形的特征和性质:①对应点到对称轴的距离相等;②对应点的连线与对称轴垂直;③对称轴两边的图形大小、形状完全相同。
对称图形包括轴对称图形和中心对称图形。
平行四边形(除棱形)属于中心对称图形。
2、旋转:在平面内,一个图形绕着一个顶点旋转一定的角度得到另一个图形的变化较做旋转,定点O叫做旋转中心,旋转的角度叫做旋转角,原图形上的一点旋转后成为的另一点成为对应点。
(1)生活中的旋转:电风扇、车轮、纸风车(2)旋转要明确绕点,角度和方向。
(3)长方形绕中点旋转180度与原来重合,正方形绕中点旋转90度与原来重合。
等边三角形绕中点旋转120度与原来重合。
旋转的性质:(1)图形的旋转是图形上的每一点在平面上绕某个固定点旋转固定角度的位置移动;(2)其中对应点到旋转中心的距离相等;(3)旋转前后图形的大小和形状没有改变;(4)两组对应点非别与旋转中心的连线所成的角相等,都等于旋转角;(5)旋转中心是不动的点。
3、对称和旋转的画法:旋转要注意:顺时针、逆时针、度数二、因数和倍数1、整除:被除数、除数和商都是自然数,并且没有余数。
整数与自然数的关系:整数包括自然数。
2、因数、倍数:大数能被小数整除时,大数是小数的倍数,小数是大数的因数。
例:12是6的倍数,6是12的因数。
(1)数a能被b整除,那么a就是b的倍数,b就是a的因数。
苏教版五年级(下册)数学知识点梳理归纳及复习要点
苏教版五年级(下册)数学知识点梳理归纳及复习要点一、知识点梳理归纳第一单元:简易方程1、表示相等关系的式子叫作等式。
如:20+30=50a+20=302、含有未知数的等式是方程。
如:X+Y=40,30+b=503、方程一定是等式;等式不一定是方程。
如:20+30=50是等式,但不是方程,它不含有未知数。
4、等式两边同时加上或减去同一个数,所得结果仍然是等式。
这是等式的性质。
等式两边同时乘或除以同一个不是0的数,所得结果仍然是等式。
这也是等式的性质。
5、使方程左右两边相等的未知数的值叫作方程的解。
如x=30是20+x=50的解,不能说30是20+x=50的解。
6、求方程的解的过程,叫作解方程。
解方程步骤:(1)写解;(2)=上下对齐;(3)运用等式的性质解方程;(4)注意:解完方程,要养成检验的好习惯,把求得的解代入原方程,看等号左右两边是否相等。
7、三个连续的自然数(或连续的奇数,连续的偶数)的和,等于中间的一个数的3倍。
五个连续的自然数(或连续的奇数,连续的偶数)的和,等于中间的一个数的5倍。
8、列方程解应用题的思路:①审题并弄懂题目的已知条件和所求问题。
②理清题目的数量关系,找准等量关系式。
③设未知数,一般是把问题中的量用X表示。
④根据数量关系列出方程。
⑤解方程。
⑥检验。
(把方程结果代入原题检验)⑦写答句。
注意书写应规范:设句中要有单位名称,求得的x的值的后面不写单位名称。
9、找等量关系的方法:①根据条件想数量间的相等关系。
②根据计算公式确定等量关系。
③稍复杂的条件可以画出线段图找等量关系。
第二单元:折线统计图1、从复式折线统计图中,不仅能看出数量的多少和数量增减变化的情况,直接表示增减变化的速度,而且便于这两组相关数据进行比较。
2、作复式折线统计图步骤:①写标题和统计时间;②注明图例(实线和虚线表示);③分别描点、标数;④实线和虚线的区分(画线用直尺)。
注意:先画表示实线的统计图,再画虚线统计图。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一单元方程1、表示相等关系的式子叫做等式。
2、含有未知数的等式是方程。
3、方程一定是等式;等式不一定是方程。
等式>方程4、等式两边同时加上或减去同一个数,所得结果仍然是等式。
这是等式的性质。
等式两边同时乘或除以同一个不等于0的数,所得结果仍然是等式。
这也是等式的性质。
5、求方程中未知数的过程,叫做解方程。
解方程时常用的关系式:一个加数=和-另一个加数减数=被减数-差被减数=减数+差一个因数=积÷另一个因数除数=被除数÷商被除数=商×除数注意:解完方程,要养成检验的好习惯。
6、五个连续的自然数(或连续的奇数,连续的偶数)的和,等于中间的一个数的5倍。
奇数个连续的自然数(或连续的奇数,连续的偶数)的和÷个数=中间数7、4个连续的自然数(或连续的奇数,连续的偶数)的和,等于中间两个数或首尾两个数的和×个数÷2(高斯求和公式)8、列方程解应用题的思路:A、审题并弄懂题目的已知条件和所求问题。
B、理清题目的等量关系。
C、设未知数,一般是把所求的数用X表示。
D、根据等量关系列出方程E、解方程F、检验G、作答。
第二单元确定位置1、确定位置时,竖排叫做列,横排叫做行。
确定第几列一般从左往右数,确定第几行一般从前往后数。
2、数对(x,y)第1个数表示第几列(x),第2个数表示第几行(y),写数对时,是先写列数,再写行数。
3、从地球仪上看,连接北极和南极两点的是经线,垂直于经线的线圈是纬线,经线和纬线、分别按一定的顺序编排表示“经度”和“纬度”,“经度”和“纬度”都用度(°)、分(′)、秒(″)表示。
4、将某个点向左右平移几格,只是列(x)上的数字发生加减变化,向左减,向右加,行(y)上的数字不变。
举例:将点(6,3)的位置向右平移2个单位后的位置是(8,3),列6+2=8;将点(6,3)的位置向左平移2个单位后的位置是(4,3),列6-2=4。
5、将某个点向上下平移几格,只是行(y)上的数字发生加减变化,向上减,向下加,列(x)上的数字不变。
举例:将点(6,3)的位置向上平移2个单位后的位置是(6,5),行3+2=5;将点(6,3)的位置向下平移2个单位后的位置是(6,1),列3-2=1。
第三单元公倍数和公因数1、一个数最小的因数是1,最大的因数是它本身,一个数因数的个数是有限的。
一个数最小的倍数是它本身,没有最大的倍数。
一个数倍数的个数是无限的。
一个数最大的因数等于这个数最小的倍数。
2、几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数,用符号[ ,]表示。
几个数的公倍数也是无限的。
3、两个数公有的因数,叫做这两个数的公因数,其中最大的一个,叫做这两个数的最大公因数,用符号( ,)。
两个数的公因数也是有限的。
4、两个素数的积一定是合数。
举例:3×5=15,15是合数。
5、两个数的最小公倍数一定是它们的最大公因数的倍数。
举例:[6,8]=24,(6,8)=2,24是2的倍数。
6、求最大公因数和最小公倍数的方法:倍数关系的两个数,最大公因数是较小的数,最小公倍数是较大的数。
举例:15和5,[15,5]=15,(15,5)=5 素数关系的两个数,最大公因数是1,最小公倍数是它们的乘积。
举例:[3,7]=21,(3,7)=1一个素数和一个合数,最大公因数是1,最小公倍数是它们的乘积。
[5,8]=40,(5,8)=1相邻关系的两个数,最大公因数是1,最小公倍数是它们的乘积。
[9,8]=72,(9,8)=1特殊关系的数(两个都是合数,一个是奇数,一个是偶数,但他们之间只有一个公因数1),比如4和9、4和15、10和21,最大公因数是1,最小公倍数是它们的乘积。
一般关系的两个数,求最大公因数用列举法或短除法,求最小公倍数用大数翻倍法或短除法。
(详见课本31页内容)数字与信息1、我国目前采用的邮政编码为“四级六码”制。
第一、二位代表省(自治区、直辖市),第三位代表邮区,第四位代表县(市)邮电局,最后两位是投递局(区)的编号。
2、身份证编码规则:1-6位数字为行政区划代码,其中1、2位数为各省级政府的代码,3、4位数为地、市级政府的代码,5、6位数为县、区级政府代码。
7-14位为您的出生日期,其中7-10位为出生年份(4位),11-12位为出生月份,13-14位为出生日期,15-17位为顺序码,是县、区级政府所辖派出所的分配码,其中单数为男性分配码,双数为女性分配码。
18位为校验码,是由号码编制单位按照统一的公式计算得出来的,其取值范围是0至10,当值等于10时,用罗马数字符χ表示。
第四单元认识分数1、一个物体、一个计量单位或由许多物体组成的一个整体,都可以用自然数1来表示,通常我们把它叫做单位“1”。
把单位“1”平均分成若干份,表示这样的一份或几份的数叫做分数。
表示其中一份的数,叫做分数单位。
一个分数的分母是几,它的分数单位就是几分之一。
2、分母越大,分数单位越小,最大的分数单位是2(1)。
3、举例说明一个分数的意义:7(3)表示把单位“1”平均分成7份,表示这样的3份.还表示把3平均分成7份,表示这样的1份。
7(3)吨表示把1吨平均分成7份,表示这样的3份.还表示把3吨平均分成7份,表示这样的1份。
4、4米的5(1)和1米的5(4)同样长。
5、分子比分母小的分数叫做真分数;分子比分母大或者分子和分母相等的分数叫做假分数。
6、真分数小于1。
假分数大于或等于1。
真分数总是小于假分数。
7、男生人数是女生人数的4(3),则女生人数是男生人数的3(4)。
8、分数与除法的关系:被除数相当于分数的分子,除数相当于分数的分母。
被除数÷除数= 除数(被除数)如果用a表示被除数,b表示除数,可以写成a÷b=b(a)(b≠0)9、能化成整数的假分数,它们的分子都是分母的倍数。
反过来,分子是分母倍数的假分数,都能化成整数。
(用分子除以分母)10、分子不是分母倍数的假分数,可以写成整数和真分数合成的数,通常叫做带分数。
带分数是假分数的另一种形式。
例如,3(4)就可以看作是3(3)(就是1)和3(1)合成的数,写作1 3(1),读作一又三分之一。
带分数都大于真分数,同时也都大于1。
11、把分数化成小数的方法:用分数的分子除以分母。
12、把小数化成分数的方法:如果是一位小数就写成十分之几,是两位小数就写成百分之几,是三位小数就写成千分之几,……13、把假分数转化成整数或带分数的方法:分子除以分母,如果分子是分母的倍数,可以化成整数;如果分子不是分母的倍数,可以化成带分数,除得的商作为带分数的整数部分,余数作为分数部分的分子,分母不变。
14、把带分数化成假分数的方法:把整数乘分母加分子作为假分数的分子,分母不变。
15、把不是0的整数化成假分数的方法:用整数与分母相乘的积作分子。
16、大于7(3)而小于7(5)的分数有无数个;分数单位是7(1)只有7(4)一个。
17、分数大小比较的应用题:工作效率大的快,工作时间小的快。
18、一些特殊分数的值:1 2= 0.5、 14= 0.25 、4(3) =0.75 5(1) =0.2 5(2) =0.4 5(3) =0.65(4) =0.8 8(1) =0.125 8(3) =0.375 8(5) =0.625 8(7) =0.875 10(1) =0.1 16(1) =0.062516(3) =0.1875 16(5) =0.3125 20(1) =0.05 25(1) =0.04 50(1) =0.02 100(1) =0.0119、求一个数是(占)另一个数的几分之几,用除法列算式计算。
第五单元找规律1、单向平移求不同的和的个数规律:方格的总个数—每次框出的个数+1=得到不同和的个数2、双向平移如果平移的方向既有横又有纵,我们只要分别探究出两个方向上各有几种不同的排列方法(和单向平移的规律一样),相乘的积是多少一共就有多少种不同的排列方法。
一共有多少种贴法=沿着长的贴法×沿着宽的贴法3、中间的数×框出的个数=框出的每个数的和框出的每个数的和÷框出的个数=中间的数(注意:有些数字的和是不能框出来的,(1)是框出的每个数的和÷框出的个数≠中间的数;(2)是虽然“框出的每个数的和÷框出的个数=中间的数”,但中间的数在边上;(3)出现有空白方格。
)第六单元分数的基本性质1、分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变,这是分数的基本性质。
它和整数除法中的商不变规律类似。
2、分子和分母只有公因数1,这样的分数叫最简分数。
约分时,通常要约成最简分数。
3、把一个分数化成同它相等,但分子、分母都比较小的分数,叫做约分。
约分方法:直接除以分子、分母的最大公因数。
例如:4、把几个分母不同的分数(也叫做异分母分数)分别化成和原来分数相等的同分母分数,叫做通分。
通分过程中,相同的分母叫做这几个分数的公分母。
通分时,一般用原来几个分母的最小公倍数作公分母。
5、比较异分母分数大小的方法:(1)先通分转化成同分母的分数再比较。
(2)化成小数后再比较。
(3)先通分转化成同分子的分数再比较。
(4)十字相乘法。
球的反弹实验球的反弹高度实验的结论:(1)用同一种球从不同高度下落,表示反弹高度与下落高度关系的分数大致不变,这说明同一种球的弹性是一样的。
(2)用不同的球从同一个高度下落,表示反弹高度与下落高度关系的分数是不一样的,这说明不同的球的弹性是不一样的。
第七单元统计1、从复式折线统计图中,不仅能看出数量的多少和数量增减变化的情况,而且便于这两组相关数据进行比较。
2、作复式折线统计图步骤:①写标题和统计时间;②注明图例(实线和虚线表示);③分别描点、标数;④实线和虚线的区分(画线用直尺)。
注意:先画表示实线的统计图,再画虚线统计图。
不能同时描点画线,以免混淆。
(也可以先画虚线的统计图)第八单元分数加法和减法1、计算异分母分数加减法时,要先通分,再按同分母分数加减法计算;计算结果能约分要约成最简分数,是假分数的要化为带分数;计算后要验算。
2、分母的最大公因数是1,分子都是1的分数相加,得数的分母是两个分母的积,分子是两个分母的和。
分母的最大公因数是1,分子都是1的分数相减,得数的分母是两个分母的积,分子是两个分母的差。
3、分母分子相差越大,分数就越接近0;分子接近分母的一半,分数就接近2(1);分子分母越接近,分数就越接近1。
4、分数加、减法混合运算顺序与整数、小数加减混合运算顺序相同。
没有小括号,从左往右,依次运算;有小括号,先算小括号里的算式。
5、整数加法的运算律,整数减法的运算性质同样可以在分数加、减法中运用,使计算简便。