经典研材料裂项相消法求和大全
裂项相消法公式大全
![裂项相消法公式大全](https://img.taocdn.com/s3/m/aa7a2ee3b04e852458fb770bf78a6529647d358e.png)
裂项相消法公式大全
裂项相消法是一种数学方法,用于解决等差数列、等比数列以及无理数列的求和问题。
该方法的基本思想是将等差数列、等比数列以及无理数列的每一项分别裂项,然后将裂项相消,从而得到等差数列、等比数列以及无理数列的和。
以下是裂项相消法的一些公式:
1. 等差数列求和公式:
Sn = n * (a1 + an) / 2
其中,n 是数列的长度,a1 是数列的首项,an 是数列的最后一项。
2. 等比数列求和公式:
Sn = (n/2) * (a1 * an) / (an + a1)
其中,n 是数列的长度,a1 是数列的首项,an 是数列的最后一项。
3. 无理数列求和公式:
对于无理数列,可以将每一项裂项,然后相消。
例如,对于无理数列π*(n+1)/n,可以将π*(n+1)/n 裂项为π/n 和 (n+1)*π/n,然后将两项相消。
4. 等差数列裂项公式:
a[n+1] - a[n] = (n+1-n)*a1
其中,a[n+1] 是数列的第 n+1 项,a[n] 是数列的第 n 项,n 是数列的长度。
5. 等比数列裂项公式:
a[n+1]/a[n] = (a[n]/a[n-1])*(a[n-1]/a[n])
其中,a[n+1] 是数列的第 n+1 项,a[n] 是数列的第 n 项,n 是数列的长度。
6. 无理数列裂项公式:
π*(n+1)/n - π/n = (n+1-n)*π
其中,π*(n+1)/n 是数列的第 n+1 项,π/n 是数列的第 n 项,n 是数列的长度。
以上是裂项相消法的一些公式,可以根据实际需要选择合适的公式进行求解。
(完整版)裂项相消法求和附答案
![(完整版)裂项相消法求和附答案](https://img.taocdn.com/s3/m/c6d8bd0069eae009591bec19.png)
裂项相消法利用列项相消法求和时,应注意抵消后并不一定只剩下第一项和最后一项,也有可能前面剩两项,后面剩两项,再就是通项公式列项后,有时需要调整前面的系数,使列项前后等式两边保持相等。
(1)若是{a n }等差数列,则)11.(1111++-=n n n n a a d a a ,)11.(21122n ++-=n n n a a d a a(2)11111+-=+n n n n )( (3))11(1)(1kn n k k n n +-=+(4))121121(2112)121+--=+-n n n n )(((5)])2)(1(1)1(1[21)2)(1(1++-+=++n n n n n n n(6)n n n n -+=++111(7))(11n k n kkn n -+=++ 1.已知数列的前n 项和为, .(1)求数列的通项公式;(2)设,求数列的前n 项和为.[解析] (1) ……………①时, ……………②①②得:即……………………………………3分在①中令, 有, 即,……………………………………5分故对2.已知{a n}是公差为d的等差数列,它的前n项和为S n,S4=2S2+8.(Ⅰ)求公差d的值;(Ⅰ)若a1=1,设T n是数列{}的前n项和,求使不等式T n≥对所有的nⅠN*恒成立的最大正整数m的值;[解析](Ⅰ)设数列{a n}的公差为d,Ⅰ S4=2S2+8,即4a1+6d=2(2a1+d) +8,化简得:4d=8,解得d=2.……………………………………………………………………4分(Ⅰ)由a1=1,d=2,得a n=2n-1,…………………………………………5分Ⅰ =.…………………………………………6分Ⅰ T n===≥,…………………………………………8分又Ⅰ 不等式T n≥对所有的nⅠN*恒成立,Ⅰ ≥,…………………………………………10分化简得:m2-5m-6≤0,解得:-1≤m≤6.Ⅰ m的最大正整数值为6.……………………………………………………12分3.)已知各项均不相同的等差数列{a n}的前四项和S4=14,且a1,a3,a7成等比数列.(Ⅰ)求数列{a n}的通项公式;(Ⅰ)设T n为数列的前n项和,求T2 012的值.[答案] (Ⅰ)设公差为d,由已知得(3分)解得d=1或d=0(舍去),Ⅰa1=2. (5分)故a n=n+1. (6分)(Ⅰ)==-,(8分)ⅠT n=-+-+…+-=-=. (10分)ⅠT2 012=. (12分)4.)已知数列{a n}是等差数列,-=8n+4,设数列{|a n|}的前n项和为S n,数列的前n项和为T n.(1)求数列{a n}的通项公式;(2)求证:≤T n<1.[答案] (1)设等差数列{a n}的公差为d,则a n=a1+(n-1)d. (2分)Ⅰ-=8n+4,Ⅰ(a n+1+a n)(a n+1-a n)=d(2a1-d+2nd)=8n+4.当n=1时,d(2a1+d)=12;当n=2时,d(2a1+3d)=20.解方程组得或(4分)经检验知,a n=2n或a n=-2n都满足要求.Ⅰa n=2n或a n=-2n. (6分)(2)证明:由(1)知:a n=2n或a n=-2n.Ⅰ|a n|=2n.ⅠS n=n(n+1). (8分)Ⅰ==-.ⅠT n=1-+-+…+-=1-. (10分)Ⅰ≤T n<1. (12分)5.已知等差数列{a n}的公差为2,前n项和为S n,且S1,S2,S4成等比数列. (Ⅰ)求数列{a n}的通项公式;(Ⅰ)令b n=(-1)n-1,求数列{b n}的前n项和T n.[答案] 查看解析[解析] (Ⅰ)因为S1=a1,S2=2a1+×2=2a1+2,S4=4a1+×2=4a1+12,由题意得(2a1+2)2=a1(4a1+12),解得a1=1,所以a n=2n-1.(Ⅰ)b n=(-1)n-1=(-1)n-1=(-1)n-1.当n为偶数时,T n=-+…+-=1-=.当n为奇数时,T n=-+…-+++=1+=.所以T n=6. 已知点的图象上一点,等比数列的首项为,且前项和(Ⅰ) 求数列和的通项公式;(Ⅰ) 若数列的前项和为,问的最小正整数是多少?[解析]解:(Ⅰ) 因为,所以,所以,,,又数列是等比数列,所以,所以,又公比,所以,因为,又,所以,所以,所以数列构成一个首项为1,公差为1的等差数列,,所以,当时,,所以. (6分)(Ⅰ) 由(Ⅰ) 得,(10分)由得,满足的最小正整数为72. (12分)7. 在数列,中,,,且成等差数列,成等比数列().(Ⅰ)求,,及,,,由此归纳出,的通项公式,并证明你的结论;(Ⅰ)证明:.[解析] (Ⅰ)由条件得,由此可得.猜测. (4分)用数学归纳法证明:①当时,由上可得结论成立.②假设当时,结论成立,即,那么当时,.所以当时,结论也成立.由①②,可知对一切正整数都成立. (7分)(Ⅰ)因为.当时,由(Ⅰ)知.所以.综上所述,原不等式成立. (12分)8.已知数列的前项和是,且.(Ⅰ)求数列的通项公式;(Ⅰ)设,,求使成立的最小的正整数的值.[解析] (1)当时,,由,……………………1分当时,Ⅰ是以为首项,为公比的等比数列.……………………4分故…………………6分(2)由(1)知,………………8分,故使成立的最小的正整数的值.………………12分9. 己知各项均不相等的等差数列{a n}的前四项和S4=14,且a1,a3,a7成等比数列.(I)求数列{a n}的通项公式;(II)设T n为数列的前n项和,若T n≤¨对恒成立,求实数的最小值.[解析] 122.(Ⅰ)设公差为d. 由已知得……………………………3分解得,所以………………………………6分(Ⅰ),………………………………9分对恒成立,即对恒成立又Ⅰ的最小值为……………………………………………………………12分10. 已知数列前项和为,首项为,且,,成等差数列.(Ⅰ)求数列的通项公式;(II)数列满足,求证:,[解析] (Ⅰ)成等差数列, Ⅰ,,当时,,两式相减得:.所以数列是首项为,公比为2的等比数列,.(6分)(Ⅰ) ,(8分),.(12分)11.等差数列{a n}各项均为正整数, a1=3, 前n项和为S n, 等比数列{b n}中, b1=1, 且b2S2=64, {}是公比为64的等比数列.(Ⅰ) 求a n与b n;(Ⅰ) 证明:++…+<.[答案] (Ⅰ) 设{a n}的公差为d, {b n}的公比为q, 则d为正整数,a n=3+(n-1) d,b n=q n-1.依题意有①由(6+d) q=64知q为正有理数, 又由q=知, d为6的因子1, 2, 3, 6之一, 解①得d=2, q=8. 故a n=3+2(n-1) =2n+1, b n=8n-1.(Ⅰ) 证明:S n=3+5+…+(2n+1) =n(n+2) ,所以++…+=+++…+==<.12. 等比数列{a n}的各项均为正数, 且2a1+3a2=1, =9a2a6.(Ⅰ) 求数列{a n}的通项公式;(Ⅰ) 设b n=log3a1+log3a2+…+log3a n, 求数列的前n项和.[答案] (Ⅰ) 设数列{a n}的公比为q. 由=9a2a6得=9, 所以q2=.因为条件可知q>0, 故q=.由2a1+3a2=1得2a1+3a1q=1, 所以a1=.故数列{a n}的通项公式为a n=.(Ⅰ) b n=log3a1+log3a2+…+log3a n=-(1+2+…+n)=-,故=-=-2,++…+=-2++…+=-.所以数列的前n项和为-.13.等差数列{a n}的各项均为正数,a1=3,其前n项和为S n,{b n}为等比数列,b1=1,且b2S2=16,b3S3=60.(Ⅰ)求a n和b n;(Ⅰ)求++…+.[答案] (Ⅰ)设{a n}的公差为d,且d为正数,{b n}的公比为q,a n=3+(n-1)d,b n=q n-1,依题意有b2S2=q·(6+d)=16,b3S3=q2·(9+3d)=60,(2分)解得d=2,q=2.(4分)故a n=3+2(n-1)=2n+1,b n=2n-1.(6分)(Ⅰ)S n=3+5+…+(2n+1)=n(n+2),(8分)所以++…+=+++…+=(10分)==-.(12分)14.设数列{a n}的前n项和S n满足:S n=na n-2n(n-1). 等比数列{b n}的前n项和为T n,公比为a1,且T5=T3+2b5.(1)求数列{a n}的通项公式;(2)设数列的前n项和为M n,求证:≤M n<.[答案](1)ⅠT5=T3+2b5,Ⅰb4+b5=2b5,即(a1-1)b4=0,又b4≠0,Ⅰa1=1. n≥2时,a n=S n-S n-1=na n-(n-1)a n-1-4(n-1),即(n-1)a n-(n-1)a n-1=4(n-1).Ⅰn-1≥1,Ⅰa n-a n-1=4(n≥2),Ⅰ数列{a n}是以1为首项,4为公差的等差数列,Ⅰa n=4n-3. (6分)(2)证明:Ⅰ==·,(8分)ⅠM n=++…+==<,(10分)又易知M n单调递增,故M n≥M1=.综上所述,≤M n<. (12分)。
经典研材料裂项相消法求和大全
![经典研材料裂项相消法求和大全](https://img.taocdn.com/s3/m/cfd4f5b9cf84b9d529ea7abb.png)
开一数学组教研材料 (裂项相消法求和之再研究 ) 张明刚一项拆成两项,消掉中间所有项,剩下首尾对称项 基本类型:1。
形如)11(1)(1kn n k k n n +-=+型.如错误!=错误!-错误!;2。
形如a n =1(2n -1)(2n +1)=)121121(21+--n n 型; 3.)121121(211)12)(12()2(2+--+=+-=n n n n n a n4。
])2)(1(1)1(1[21)2)(1(1++-+=++=n n n n n n n a n5。
nn n n n n n n S n n n n n n n n n a 2)1(11,2)1(12121)1()1(221)1(21+-=+-⋅=⋅+-+=⋅++=-则 6。
形如a n =错误!型. 7.形如a n =错误!=错误!⎪⎭⎫⎝⎛---+1411411n n 型; 8.错误!=错误!=错误!-错误!. 9.形如a n =()n k n kk n n -+=++11型;1)1(1+++=n n n n a n10。
()b a ba b a --=+1111。
()!!1!n n n n -+=⋅ 12。
mn m n m n C C C -=+-11 13.()21≥-=-n S S a n n n14。
1)tan(tan tan tan tan ---=βαβαβα15。
利用两角差的正切公式进行裂项 把两角差的正切公式进行恒等变形,例如βαβαβαtan tan 1tan tan )tan(+-=- 可以另一方面,利用()[]kk kk k k tan )1tan(1tan )1tan(1tan 1tan ⋅+--+=-+=,得,11tan tan )1tan(tan )1tan(--+=⋅+kk k k16 利用对数的运算性质进行裂项对数运算有性质N M NMalog log log -=,有些试题则可以构造这种形式进行裂项。
数列的求和(裂项相消法)
![数列的求和(裂项相消法)](https://img.taocdn.com/s3/m/d28665571711cc7931b716bb.png)
数列的求和(裂项相消法)对于⎭⎬⎫⎩⎨⎧+1n n a a c ,其中{}n a 是各项均不为0的等差数列,通常用裂项相消法,即利用1+n n a a c =⎪⎪⎭⎫⎝⎛-+111n n a a d c , 常见拆项:111)1(1+-=+n n n n)121121(21)12)(12(1+--=+-n n n n1k==1、已知数列的的通项,求数列的前n 项和: (1) )1(1+=n n a n (2))2(1+=n n b n2、求数列⋅⋅⋅++⋅⋅⋅++,11,,321,211n n 的前n 项和.3、在数列{a n }中,11211++⋅⋅⋅++++=n nn n a n ,又12+⋅=n n n a a b ,求数列{b n }的前n 项的和.4、等比数列{a n}的各项均为正数,且2a1+3a2=1,a32=9a2a6,(1)求数列{an}的通项公式;(2)设bn =log3a1+log3a2+…+log3an,求数列{}的前n项和.5、正项数列{an }满足﹣(2n﹣1)an﹣2n=0.(1)求数列{an }的通项公式an;(2)令bn=,求数列{bn}的前n项和Tn.6、已知等差数列{an }满足:a3=7,a5+a7=26.{an}的前n项和为Sn.(1)求an 及Sn;(2)令(n∈N*),求数列{bn}的前n项和Tn.7. 已知数列{}n a 的前n 项和为n S ,点),(n s n n 在直线21121+=x y 上,数列{}n b 满足0212=+-++n n n b b b ,()*N n ∈,113=b,且其前9项和为153.(1)求数列{}n a ,{}n b 的通项公式; (2)设)12)(112(3--=n n n b a c ,求数列{}n c 前n 项的和n T .8、已知等差数列{a n }的前n 项和S n 满足5,053-==S S (1)求{a n }的通项公式; (2)求数列21211n n a a -+⎧⎫⎨⎬⎩⎭的前n 项和.9、S n 为数列{a n }的前n 项和.已知a n >0,(Ⅰ)求{a n }的通项公式: (Ⅱ)设 ,求数列}的前n 项和10、已知公差不为零的等差数列{}n a 中,37a =,且1413,,a a a 成等比数列. (1)求数列{}n a 的通项公式; (2)令211n n b a =-(n N *∈),求数列{}n b 的前n 项和n S .11、已知各项均为正数的等比数列{}n a 的首项12a =,n S 为其前n 项和,且312253S S S =+. (1)求数列{}n a 的通项公式; (2)设2log n n b a =,11n n n c b b +=,记数列{}n c 的前n 项和n T ,求4n Tn +的最大值.12. 已知数列{}n a 的前n 项和为n S ,且22n n S a =-,(1,2,3)n =⋅⋅⋅;数列{}n b 中,11,b = 点1(,)n n P b b +在直线20x y -+=上.(1)求数列{}n a 和{}n b 的通项公式; (2)设数列12n b +⎧⎫⎨⎬⎩⎭的前n 和为n S ,求12111nS S S +++;答案:1(1)1n n +(2)3111-)4212n n +++(21-;3、81n n +;4、(1)13n n a =(2)21n n S n =-+;5、(1)2n a n =(2)21n n T n =+();6、(1)2+1n a n =22n S n n =+(2)1n n T n =+4();7、(1)5;32n n a n b n =+=+(2)21n n T n =+;8、(1)2-n a n =(2)1-2n nT n=;9、(1)2+1n a n =(2)323)n n T n =+(10、(1)2+1n a n =(2)1)n n S n =+4(;11、、(1)2nn a =(2)1n n T n =+,最大值为19;12、(1)2nn a =;21n b n =-(2)21n nT n =+,。
裂项相消法求和
![裂项相消法求和](https://img.taocdn.com/s3/m/70243e47e45c3b3567ec8b5c.png)
裂项相消法求和
四、裂项相消法求和
这是分解与组合思想在数列求和中的具体应用. 裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的. 通项分解(裂项)如:
4.在数列{a n }中,11211++⋅⋅⋅++++=
n n n n a n ,又11+⋅=n n n a a b ,求数列{b n }的前n 项的和.
练习:求数列
⋅⋅⋅++⋅⋅⋅++,11,,321,211n n 的前n 项和.
五、利用数列的通项求和
先根据数列的结构及特征进行分析,找出数列的通项及其特征,然后再利用数列的通项揭示的规律来求数列的前n 项和,是一个重要的方法.
5.求
11111111111个n ⋅⋅⋅+⋅⋅⋅+++之和.
实战练习:已知等差数列{}n a 的前n 项和为n S ,公差,50,053=+≠S S d 且1341,,a a a 成等比数列.
(Ⅰ)求数列{}n a 的通项公式;
(Ⅱ)设⎭
⎬⎫⎩⎨⎧n n a b 是首项为1,公比为3的等比数列,求数列{}n b 的前n 项和n T .。
经典研材料裂项相消法求和大全
![经典研材料裂项相消法求和大全](https://img.taocdn.com/s3/m/6e604a61492fb4daa58da0116c175f0e7cd1192c.png)
经典研材料裂项相消法求和大全一、引言在研究材料的裂项性质时,求和是一个非常常见的操作。
而裂项相消法是一种常用的技巧,可以简化裂项求和的过程,并得到一个更加简洁的结果。
本篇文章将介绍一些经典的研材料裂项相消法求和的例子,希望可以帮助读者更好地理解和应用这一技巧。
二、裂项相消法求和的基本思路裂项相消法的基本思路是通过巧妙地加减项,使得一些项的系数相消,从而得到一个更简单的求和结果。
下面将介绍一些常用的裂项相消法。
三、具体示例1.例题一求和S=1-2+3-4+5-6+...+(-1)^n*n的值。
解:我们可以观察到这个求和式的两项之间有一定的规律。
可以发现,每两个相邻的项都是一正一负,并且绝对值递增。
因此,我们可以尝试将这两项相加进行简化。
S=(1-2)+(3-4)+(5-6)+...+[(-1)^(n-1)*n+(-1)^n*(n+1)]通过配对相加的方式,可以得到:S=-1+(-1)+(-1)+...+(-1)=-n因此,求和S的值为-n。
2.例题二求和S=1*2+2*3+3*4+...+(n-1)*n的值。
解:我们可以观察到这个求和式的每一项都是两个因数的乘积,并且这两个因数的差值为1、因此,我们可以尝试将这两项相减进行简化。
S=(1*2)+(2*3)+(3*4)+...+[(n-1)*n]通过配对相减的方式,可以得到:S=(2-1)+(3-2)+(4-3)+...+(n-(n-1))S=1+1+1+...+1=n-1因此,求和S的值为n-13.例题三求和S=1+3+6+10+15+...+n(n+1)/2的值。
解:我们可以观察到这个求和式的每一项都是一个等差数列的前n项和,而这个等差数列的公差为1、因此,我们可以尝试构造一个等差数列来进行简化。
S=1+3+6+10+15+...+n(n+1)/2将每一项用等差数列的前n项和来表示:S=(1+2+3+4+...+n)+(2+3+4+5+...+n)+(3+4+5+6+...+n)+...+(n(n+1)/2)可以观察到,每一项的相邻两项有很多项是相同的,只有前k项相同,后面的一些项就不同了。
经典研材料裂项相消法求和大全
![经典研材料裂项相消法求和大全](https://img.taocdn.com/s3/m/df1c6917cdbff121dd36a32d7375a417866fc1bf.png)
经典研材料裂项相消法求和大全本文介绍了一些数学求和中常用的裂项相消法。
其中包括了一些基本类型,例如形如xxxxxxx的(-)型,以及形如an=(-)型的2n-12n+1/((2n-1)(2n+1))等。
此外,还介绍了一些利用正切公式、对数运算性质以及排列数或组合数的性质进行裂项的方法。
这些方法可以帮助我们更有效地解决数学求和问题。
值得注意的是,有些试题可以构造成logM-logN的形式进行裂项,而有些则可以利用排列数或组合数的性质来解决。
在实际运用中,我们需要根据题目的具体情况选择合适的裂项方法。
总之,裂项相消法是数学求和中常用的一种方法,掌握了这种方法可以帮助我们更快速地解决数学问题。
分析直接利用公式$n\cdot n!=(n+1)!-n!$可得结果为$(n+1)!-1$。
求和:$S_n=C_2+C_3+\cdots+C_n$。
有$C_k=C_{k+1}-C_k$,从而$S_n=C_2+C_{n+1}-C_3=C_{n+1}$。
裂项相消法求和再研究一项拆成两项,消掉中间所有项,剩下首尾对称项。
一、多项式数列求和。
1)用裂项相消法求等差数列前$n$项和。
即形如$a_n=an+b$的数列求前$n$项和。
此类型可设$a_n=(An+Bn)-[A(n-1)+B(n-1)]=an+b$,左边化简对应系数相等求出$A,B$。
则$S_n=a_1+a_2+\cdots+a_n=\frac{n}{2}[2a+(n-1)d]=\frac{n}{2}[2(An+B)+n-1]=n(An+B)-\frac{n(n-1)}{2}d$。
例1:已知数列$\{a_n\}$的通项公式为$a_n=2n-1$,求它的前$n$项和$S_n$。
解:令$a_n=(An+Bn)-[A(n-1)^2+B(n-1)]$,则有$a_n=2An+B-A=2n-1$。
解得$A=1,B=0$,则$a_n=n$,$S_n=1+2+\cdots+n=\frac{n(n+1)}{2}$。
专题36 运用裂项相消法求和(解析版)
![专题36 运用裂项相消法求和(解析版)](https://img.taocdn.com/s3/m/7f7bf6c1fad6195f302ba66e.png)
专题36 运用裂项相消法求和把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得前n 项和.常见的裂项技巧①1n (n +1)=1n -1n +1. ②1n (n +2)=12⎝⎛⎭⎫1n -1n +2.③1(2n -1)(2n +1)=12⎝⎛⎭⎫12n -1-12n +1. ④1n +n +1=n +1-n .⑤1n (n +1)(n +2)=12⎝⎛⎭⎫1n (n +1)-1(n +1)(n +2).一、题型选讲例1、(2020届山东省九校高三上学期联考)已知数列{}1n a +是等比数列,11a =且2a ,32a +,4a 成等差数列.(1)求数列{}n a 的通项公式; (2)设11n nn n n a a b a a ++-=,求数列{}n b 的前n 项和n S .【解析】(1)设数列{}1n a +的公比为q ,∵112a +=,∴22334121212a q a q a q +=⎧⎪+=⎨⎪+=⎩,∴22334212121a q a q a q =-⎧⎪=-⎨⎪=-⎩, ∵()32422a a a +=+, ∴()232212121q q q +=-+-, ∴2342222q q q +=+-, 即:()()224121q q q +=+, 解得:2q.∴11222n nn a -+=⋅=, ∴21nn a =-.(2)()()1121121212121n n n n n n b ++==-----, ∴1231n n n S b b b b b -=+++++122334111111212121212121⎛⎫⎛⎫⎛⎫=-+-+- ⎪ ⎪ ⎪------⎝⎭⎝⎭⎝⎭11111121212121n n n n -+⎛⎫⎛⎫++-+- ⎪ ⎪----⎝⎭⎝⎭11112212121n n n +++-=-=--. 例2、(华南师大附中2021届高三综合测试)在①26,7753=+=a a a ;②63,371==S a ;③n n S n 22+=,这三个条件中任选一个,补充在下面问题中,然后解答补充完整的题目. 已知S n 为等差数列}{n a 的前n 项和,若 . (1)求a n ; (2)令*)(112N n a b n n ∈-=,求数列}{n b 的前n 项和T n .注:如果选择多个条件分别解答,按第一个解答计分. 【解析】:(1)若选择条件(1),在等差数列}{n a 中⎩⎨⎧=+=267753a a a ,⎩⎨⎧=+=+∴261027211d a d a ,解得⎩⎨⎧==231d a122)1(3)1(1+=-+=-+=∴n n d n a a n若选择条件(2),在等差数列}{n a 中⎪⎩⎪⎨⎧=⨯+==6326773171d a S a ,解得⎩⎨⎧==231d a 122)1(3)1(1+=-+=-+=∴n n d n a a n ;若选择条件(3),在等差数列}{n a 中a l =S l =3,当n ≥2时,a n =S n -S n -1=n 2+2n -[(n -l)2 +2(n -1)]= 2n +l ,a 1也符合, ∴a n =2n +1; (2)由(1)得)111(41)1(411)12(11122+-=+=-+=-=n n n n n a b n n ,)1(4)111(41)1113121211(4121+=+-=+-++-+-=+++=∴n n n n nb b b T n n例3、(江苏盐城中学2021届高三年级第三阶段检测数学试题)已知数列{}n a 的前n 项和nS满足2(2,)n n =+≥∈N ,且14a =.(1)求数列{}n a 的前n 项和n S 及通项公式n a ; (2) 记11n n n b a a +=⋅,n T 为{}n b 的前n 项和,求n T .【解析】(I)2=,∴数列为等差数列,2==,22(1)2n n =+-=,即24n S n =,当2n ≥时,22144(1)4(21)n n n a S S n n n -=-=--=-,又12a =也满足上式,∴4(21)n a n =-; (II)由(1)知,111116(21)(21)322121n b n n n n ⎛⎫==- ⎪-+-+⎝⎭,∴1111111323352121n T n n ⎛⎫=-+-++- ⎪-+⎝⎭, 111322116(21)n n n ⎛⎫=-= ⎪++⎝⎭ 例4、(2020届山东省德州市高三上期末)已知数列{}n a 的前n 项和为n S ,且0n a >,242n n n S a a =+.(1)求数列{}n a 的通项公式; (2)若11nn n S S b S S -=⋅,求数列{}n b 的前n 项和n T .【解析】(1)当1n =时,211142a a a =+,整理得2112a a =,10a >,解得12a =;当2n ≥时,242n n n S a a =+①,可得211142n n n S a a ---=+②,①-②得2211422n n n n n a a a a a --=-+-,即()()221120n n n n a a a a ----+=,化简得()()1120n n n n a a a a --+--=,因为0n a >,10n n a a -∴+>,所以12n n a a --=,从而{}n a 是以2为首项,公差为2的等差数列,所以()2212n a n n =+-=; (2)由(1)知()()()122122n n n a a n n S n n ++===+, 因为()11111111111212n n n n S S b S S S S n n n n -==-=-=--⋅++,1211111111112223212n n T b b b n n ⎛⎫⎛⎫⎛⎫∴=++⋅⋅⋅+=--+--+⋅⋅⋅+-- ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭111111111112231212n n n n n ⎛⎫⎛⎫⎛⎫=-+-+⋅⋅⋅+--=-- ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭. 例5、(2020届山东省滨州市三校高三上学期联考)已知数列{}n a 的前n 项和n S满足2(2,)n n =+≥∈N ,且14a =.(1)求数列{}n a 的前n 项和n S ,及通项公式n a ; (2)记11n n n b a a +=⋅,n T 为{}n b 的前n 项和,求n T .【解析】(I2=,∴数列为等差数列,2==,22(1)2n n =+-=,即24n S n =,当2n ≥时,22144(1)4(21)n n n a S S n n n -=-=--=-,又12a =也满足上式,∴4(21)n a n =-; (II )由(1)知,111116(21)(21)322121n b n n n n ⎛⎫==- ⎪-+-+⎝⎭,∴1111111323352121n T n n ⎛⎫=-+-++- ⎪-+⎝⎭, 111322116(21)n n n ⎛⎫=-= ⎪++⎝⎭ 例6、(2020届山东省潍坊市高三上期末)已知各项均不相等的等差数列{}n a 的前4项和为10,且124,,a a a 是等比数列{}n b 的前3项. (1)求,n n a b ; (2)设()11n n n n c b a a =++,求{}n c 的前n 项和n S .【解析】 (1)设数列{}n a 的公差为d , 由题意知: ()1234114414+46102a a a a a d a d ⨯-+++==+= ① 又因为124,,a a a 成等比数列, 所以2214a a a =⋅,()()21113a d a a d +=⋅+,21d a d =,又因为0d ≠, 所以1a d =. ② 由①②得11,1a d ==, 所以n a n =,111b a ==,222b a == ,212b q b ==, 12n n b -∴= .(2)因为()111112211n n n c n n n n --⎛⎫=+=+- ⎪++⎝⎭,所以0111111122 (2)12231n n S n n -⎛⎫=++++-+-+⋅⋅⋅+- ⎪+⎝⎭1211121n n -=+--+ 121n n =-+ 所以数列{}n c 的前n 项和121nn S n =-+.例7、(2020届山东省泰安市高三上期末)已知等差数列{}n a 的前n 项和为254,12,16n S a a S +==. (1)求{}n a 的通项公式; (2)数列{}n b 满足141n n n b T S =-,为数列{}n b 的前n 项和,是否存在正整数m ,()1k m k <<,使得23k m T T =?若存在,求出m ,k 的值;若不存在,请说明理由.【解析】(1)设等差数列{}n a 的公差为d ,由2541216a a S +=⎧⎨=⎩得112512238a d a d +=⎧⎨+=⎩,解得112a d =⎧⎨=⎩,()*12121,n a n n n N ∴=+-=-∈;(2)()2122n n n S n n -=+⨯=,211114122121n b n n n ⎛⎫∴==- ⎪--+⎝⎭,1211111111111123352321212122121n n n T b b b n n n n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫∴=++⋅⋅⋅+=-+-+⋅⋅⋅+-+-=-= ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥---+++⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦ , 若23k m T T =,则()2232121k m k m =++,整理得223412m k m m=+-, 又1k m >>,2234121m m m m m ⎧>⎪∴+-⎨⎪>⎩,整理得222104121m m m m m ⎧-->⎪+-⎨⎪>⎩,解得11m <<+,又*m N ∈,2m ∴=,12k ∴=, ∴存在2,12m k ==满足题意.例8、【2020届河北省衡水中学全国高三期末大联考】在数列中,有.(1)证明:数列为等差数列,并求其通项公式; (2)记,求数列的前n 项和.【解析】(1)因为,所以当时,,上述两式相减并整理,得.又因为时,,适合上式,所以.从而得到,所以,所以数列为等差数列,且其通项公式为.(2)由(1)可知,.所以 .二、达标训练1、【2020届中原金科大联考高三4月质量检测】已知数列{a n }的前n 项和为S n ,且a n >0,4S n =a n 2+2a n .(1)求数列{a n }的通项公式; (2)若b n =S 1−S n S n ⋅S 1,求数列{b n }的前n 项和T n .{}n a ()2*1232n a a a a n n n +++⋯+=+∈N {}n a 11n n n b a a +=⋅{}n b n T ()2*1232n a a a a n n n +++⋯+=+∈N2n ≥212312((11))n a a a a n n -+++⋯+=--+21(2)n a n n =+≥1n =211213a =+⨯=()*21n a n n =+∈N 121n an -=-12n n a a --={}n a ()*12n N a n n +∈=111111(21)(23)22123n n n b a a n n n n +⎛⎫===- ⎪⋅+⋅+++⎝⎭12311111111123557792123n n T b b b b n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=++++=-+-+-++- ⎪ ⎪ ⎪ ⎪⎢⎥++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦11123233(23)n n n ⎛⎫=-= ⎪++⎝⎭【解析】(1)当n =1时,4a 1=a 12+2a 1,整理得a 12=2a 1,∵a 1>0,解得a 1=2; 当n ≥2时,4S n =a n 2+2a n ①,可得4S n−1=a n−12+2a n−1②,①-②得4a n =a n 2−a n−12+2a n −2a n−1,即(a n 2−a n−12)−2(a n +a n−1)=0,化简得(a n +a n−1)(a n −a n−1−2)=0,因为a n >0,∴a n +a n−1>0,所以a n −a n−1=2,从而{a n }是以2为首项,公差为2的等差数列,所以a n =2+2(n −1)=2n ; (2)由(1)知S n =n (a 1+a n )2=n (2+2n )2=n (n +1),因为b n =S 1−S n S n ⋅S 1=1S n−1S 1=1n (n+1)−12=1n−1n+1−12,∴T n =b 1+b 2+⋅⋅⋅+b n =(11−12)−12+(12−13)−12+⋅⋅⋅+(1n −1n +1)−12=(11−12)+(12−13)+⋅⋅⋅+(1n −1n+1)−12n =1−1n+1−12n .2、(2020届山东省临沂市高三上期末)设*n N ∈,向量(31,3)AB n =+,(0,32)BC n =-,n a AB AC =⋅. (1)试问数列{}1n n a a +-是否为等差数列?为什么?(2)求数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和n S .【解析】(1)(31,31)AC AB BC n n =+=++,2(31)3(31)(31)(34)n a n n n n ∴=+++=++.1(34)(37)(31)(34)6(34)n n a a n n n n n +-=++-++=+,()()21118n n n n a a a a +++∴---=为常数, {}1n n a a +∴-是等差数列.(2)111133134n a n n ⎛⎫=- ⎪++⎝⎭, 1111111111347710313434341216n nS n n n n ⎛⎫⎛⎫∴=-+-++-=-= ⎪ ⎪++++⎝⎭⎝⎭. 3、(2020届山东省济宁市高三上期末)已知等差数列{}n a 满足246a a +=,前7项和728S =.(1)求数列{}n a 的通项公式;(2)设()()122121n n nn a a b +=++,求数列{}n b 的前n 项和n T .【解析】 (1)设等差数列{}n a 的公差为d ,由246a a +=可知33a =,前7项和728S =.44a ∴=,解得11,1a d ==.()111n a n n ∴=+-=.(2)()()()()1112211212121212121n n n n n n n n n a a b +++===-++++++ {}n b ∴前n 项和12n n T b b b =+++……12231111111212121212121n n +⎛⎫⎛⎫⎛⎫=-+-+⋅⋅⋅+- ⎪ ⎪ ⎪++++++⎝⎭⎝⎭⎝⎭111321n +=-+. 4、(2020届浙江省温州市高三4月二模)已知等差数列{},n a 和等比数列{}n b 满足:311249351,*,3,330.n b a b b N a a a b a b ==∈++==-(I )求数列{}n a 和{}n b 的通项公式;(II )求数列21n n n a a +⎧⎫⎨⎬⋅⎩⎭的前n 项和n S .【解析】 (I ) 311249351,3,330b a b a a a b a b ==++==-,故()224312331130d q q d q ⎧+=⎪⎨⎡⎤+-=-⎪⎣⎦⎩, 解得23d q =⎧⎨=⎩,故21n a n =-,13n n b -=.(II )()()()()22221111212141442121n n n n n a a n n n n n +===+⋅-⋅+--⋅+1111482121n n ⎛⎫=+- ⎪-+⎝⎭,故()21114821221n n n n S n n +⎛⎫=+-= ⎪++⎝⎭. 5、(南通市2021届高三年级期中学情检测)等比数列{}n a 的前n 项和为()*234,2,,4n S n N S S S ∈-成等差数列,且2341216a a a ++=.(1)求数列{}n a 的通项公式; (2)若2(2)log n an b n =-+,求数列1{}nb 的前n 项和n T . 【解析】(1)设等比数列{}n a 的公比为q ,由23424,,S S S -成等差数列知,423422S S S +-=,所以432a a =-,即12q =-. 又2341216a a a ++=,所以231111216a q a q a q ++=,所以112a =-,所以等差数列{}n a 的通项公式12nn a ⎛⎫=- ⎪⎝⎭.(2)由(1)知1()22(2)log(2)n nb n n n =-+=+所以11111(2)22n b n n n n ⎛⎫==- ⎪++⎝⎭所以数列1n b ⎧⎫⎨⎬⎩⎭的前n 项和:11111111111224511233n T n n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++-+- ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥-++⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦111112212n n ⎡⎤=+--⎢⎥++⎣⎦32342(1)(2)n n n +=-++ 所以数列1n b ⎧⎫⎨⎬⎩⎭的前n 项和32342(1)(2)n n T n n +=-++ 6、(金陵中学2021届高三年级学情调研测试(一))已知数列{a n }中,a 1=1,当n ≥2时,其前n 项和S n 满足S n 2=a n (S n -12).(1)求S n 的表达式;(2)设b n =S n2n +1,求数列{b n }的前n 项和T n . 【解析】:(1)因为S n 2=a n (S n -12),当n ≥2时,S n 2=(S n -S n -1)(S n -12),即2S n -1S n =S n -1-S n .①…………2分11 由题意得S n -1·S n ≠0,所以1S n -1S n -1=2,即数列{1S n }是首项为1S 1=1a 1=1,公差为2的等差数列.…………5分 所以1S n =1+2(n -1)=2n -1,得S n =12n -1. …………………………………………7分(2)易得b n =S n 2n +1=1(2n -1)(2n +1)……………………………8分 =12(12n -1-12n +1),……………………………10分 所以T n =12[(1-13)+(13-15)+…+(12n -1-12n +1)]=12(1-12n +1) =n2n +1。
裂项相消法求和附答案
![裂项相消法求和附答案](https://img.taocdn.com/s3/m/7437dceb312b3169a551a493.png)
裂项相消法利用列项相消法求与时,应注意抵消后并不一定只剩下第一项与最后一项,也有可能前面剩两项,后面剩两项,再就就是通项公式列项后,有时需要调整前面得系数,使列项前后等式两边保持相等。
(1)若就是{a n}等差数列,则,(2)(3)(4)(5)(6)(7)1、已知数列得前n项与为, .(1)求数列得通项公式;(2)设,求数列得前n项与为.[解析] (1)……………①时, ……………②①②得:即……………………………………3分在①中令, 有, 即,……………………………………5分故对2、已知{an}就是公差为d得等差数列,它得前n项与为Sn,S4=2S2+8.(Ⅰ)求公差d得值;(Ⅰ)若a1=1,设T n就是数列{}得前n项与,求使不等式Tn≥对所有得nⅠN*恒成立得最大正整数m得值;[解析](Ⅰ)设数列{a n}得公差为d,Ⅰ S4=2S2+8,即4a1+6d=2(2a1+d) +8,化简得:4d=8,解得d=2.……………………………………………………………………4分(Ⅰ)由a1=1,d=2,得an=2n-1,…………………………………………5分Ⅰ=.…………………………………………6分Ⅰ T n===≥,…………………………………………8分又Ⅰ 不等式Tn≥对所有得nⅠN*恒成立,Ⅰ ≥,…………………………………………10分化简得:m2-5m-6≤0,解得:-1≤m≤6.Ⅰ m得最大正整数值为6.……………………………………………………12分3、)已知各项均不相同得等差数列{a n}得前四项与S4=14,且a1,a3,a7成等比数列、(Ⅰ)求数列{an}得通项公式;(Ⅰ)设T n为数列得前n项与,求T2 012得值、[答案] (Ⅰ)设公差为d,由已知得(3分)解得d=1或d=0(舍去),Ⅰa1=2、(5分)故an=n+1、(6分)(Ⅰ)==-,(8分)ⅠT n=-+-+…+-=-=、(10分)ⅠT2 012=、(12分)4、)已知数列{an}就是等差数列,-=8n+4,设数列{|an|}得前n项与为S n,数列得前n项与为Tn、(1)求数列{a n}得通项公式;(2)求证:≤Tn<1、[答案](1)设等差数列{an}得公差为d,则an=a1+(n-1)d、(2分)Ⅰ-=8n+4,Ⅰ(a n+1+an)(a n+1-an)=d(2a1-d+2nd)=8n+4、当n=1时,d(2a1+d)=12;当n=2时,d(2a1+3d)=20、解方程组得或(4分)经检验知,a n=2n或an=-2n都满足要求、Ⅰa n=2n或a n=-2n、(6分)(2)证明:由(1)知:an=2n或a n=-2n、Ⅰ|an|=2n、ⅠS n=n(n+1)、(8分)Ⅰ==-、ⅠT n=1-+-+…+-=1-、(10分)Ⅰ≤Tn<1、(12分)5、已知等差数列{an}得公差为2,前n项与为Sn,且S1,S2,S4成等比数列、(Ⅰ)求数列{a n}得通项公式;(Ⅰ)令bn=(-1)n-1,求数列{b n}得前n项与Tn、[答案]查瞧解析[解析](Ⅰ)因为S1=a1,S2=2a1+×2=2a1+2,S4=4a1+×2=4a1+12,由题意得(2a1+2)2=a1(4a1+12),解得a1=1,所以an=2n-1、(Ⅰ)b n=(-1)n-1=(-1)n-1=(-1)n-1、当n为偶数时,T n=-+…+-=1-=、当n为奇数时,T n=-+…-+++=1+=、所以T n=6、已知点得图象上一点,等比数列得首项为,且前项与(Ⅰ)求数列与得通项公式;(Ⅰ) 若数列得前项与为,问得最小正整数就是多少?[解析]解:(Ⅰ)因为,所以,所以,,,又数列就是等比数列,所以,所以,又公比,所以,因为,又,所以,所以,所以数列构成一个首项为1,公差为1得等差数列,,所以,当时,,所以、(6分)(Ⅰ)由(Ⅰ)得,(10分)由得,满足得最小正整数为72、(12分)7、在数列,中,,,且成等差数列,成等比数列()、(Ⅰ)求,,及,,,由此归纳出,得通项公式,并证明您得结论;(Ⅰ)证明:、[解析](Ⅰ)由条件得,由此可得、猜测、(4分)用数学归纳法证明:①当时,由上可得结论成立、②假设当时,结论成立,即,那么当时,、所以当时,结论也成立、由①②,可知对一切正整数都成立、(7分)(Ⅰ)因为、当时,由(Ⅰ)知、所以、综上所述,原不等式成立、(12分)8、已知数列得前项与就是,且.(Ⅰ)求数列得通项公式;(Ⅰ)设,,求使成立得最小得正整数得值.[解析](1)当时,,由, ……………………1分当时,Ⅰ就是以为首项,为公比得等比数列.……………………4分故…………………6分(2)由(1)知,………………8分,故使成立得最小得正整数得值、………………12分9、己知各项均不相等得等差数列{an}得前四项与S4=14,且a1,a3,a7成等比数列.(I)求数列{a n}得通项公式;(II)设Tn为数列得前n项与,若T n≤¨对恒成立,求实数得最小值.[解析] 122、(Ⅰ)设公差为d、由已知得……………………………3分解得,所以………………………………6分(Ⅰ),………………………………9分对恒成立,即对恒成立又Ⅰ得最小值为 (2)10、已知数列前项与为,首项为,且,,成等差数列、(Ⅰ)求数列得通项公式;(II)数列满足,求证:,[解析](Ⅰ)成等差数列,Ⅰ,,当时,,两式相减得: 、所以数列就是首项为,公比为2得等比数列,、(6分)(Ⅰ),(8分),、(12分)11、等差数列{an}各项均为正整数,a1=3, 前n项与为Sn,等比数列{b n}中,b1=1,且b2S2=64,{}就是公比为64得等比数列、(Ⅰ) 求a n与b n;(Ⅰ) 证明:++…+<、[答案](Ⅰ)设{a n}得公差为d,{b n}得公比为q,则d为正整数,a n=3+(n-1)d,b n=qn-1、依题意有①由(6+d) q=64知q为正有理数,又由q=知,d为6得因子1, 2,3,6之一,解①得d=2, q=8、故a n=3+2(n-1)=2n+1, bn=8n-1、(Ⅰ) 证明:S n=3+5+…+(2n+1)=n(n+2) ,所以++…+=+++…+==<、12、等比数列{an}得各项均为正数, 且2a1+3a2=1,=9a2a6、(Ⅰ) 求数列{a n}得通项公式;(Ⅰ)设bn=log3a1+log3a2+…+log3an, 求数列得前n项与、[答案] (Ⅰ) 设数列{a n}得公比为q、由=9a2a6得=9,所以q2=、因为条件可知q>0, 故q=、由2a1+3a2=1得2a1+3a1q=1, 所以a1=、故数列{a n}得通项公式为an=、(Ⅰ) b n=log3a1+log3a2+…+log3a n=-(1+2+…+n)=-,故=-=-2,++…+=-2++…+=-、所以数列得前n项与为-、13、等差数列{an}得各项均为正数,a1=3,其前n项与为Sn,{b n}为等比数列,b1=1,且b2S2=16,b3S3=60、(Ⅰ)求a n与bn;(Ⅰ)求++…+、[答案] (Ⅰ)设{a n}得公差为d,且d为正数,{bn}得公比为q,an=3+(n-1)d,b n=q n-1,依题意有b2S2=q·(6+d)=16,b3S3=q2·(9+3d)=60,(2分)解得d=2,q=2、(4分)故a n=3+2(n-1)=2n+1,bn=2n-1、(6分)(Ⅰ)Sn=3+5+…+(2n+1)=n(n+2),(8分)所以++…+=+++…+=(10分)==-、(12分)14、设数列{an}得前n项与S n满足:S n=na n-2n(n-1)、等比数列{bn}得前n项与为T n,公比为a1,且T5=T3+2b5、(1)求数列{an}得通项公式;(2)设数列得前n项与为Mn,求证:≤M n<、[答案](1)ⅠT5=T3+2b5,Ⅰb4+b5=2b5,即(a1-1)b4=0,又b4≠0,Ⅰa1=1、n≥2时,a n=S n-S n-1=na n-(n-1)an-1-4(n-1),即(n-1)a n-(n-1)a n-1=4(n-1)、Ⅰn-1≥1,Ⅰan-a n-1=4(n≥2),Ⅰ数列{a n}就是以1为首项,4为公差得等差数列,Ⅰan=4n-3、(6分)(2)证明:Ⅰ==·,(8分)ⅠM n=++…+==<,(10分)又易知Mn单调递增,故M n≥M1=、综上所述,≤Mn<、(12分)。
数列裂项相消法求和
![数列裂项相消法求和](https://img.taocdn.com/s3/m/157a3c4ef12d2af90242e6c0.png)
数列的求和是高考的必考题型,求和问题关键在于分析通项的结构特征,选择恰当的求和方法。
常见的求和方法有:公式法、错位相减法、裂项相消法、分组求和法等。
今天讲讲裂项相消法求和。
常见的列项求和公式()11111)1(+-=+n n n n())11(11)2(kn n k k n n +-=+ )121121(21141)3(2+--=-n n n nn n n -+=++111)4( )(11)5(n k n k kn n -+=++nn na a a log )1(log )11(log )6(-+=+注意:裂开后,两项之差前面的系数为小分母大分母-1【典例1】形如)(1k n n a n+=型{}{}{}nn nn n n nn n n T n b s b a n a a s s n a 项和的前求数列设项公式。
是等比数列,并求其通证明数列都成立。
对任意的正整数且满足项和为的各项为正数,前已知数列,1)2()1(324,2=-+= ⎩⎨⎧≥-==-2,1n ,11n S S S a a S n n n n n ,得用公式求分析:已知下面求n>1时,(1)【典例2】形如kn n a n++=1型 {}2019,,)()1(124)(S S n a N n n f n f a x x f n n n a求项和为的前记数列,令),,的图像过点(已知函数+∈++==解析:【规律方法】利用裂项相消法求和的注意事项。
1、抵消后并不定只剩下第一项和最后一项,也有可能是前面两项,和后两项;或者是前面几项,后面几项。
2、将通项裂开后,有时需要调整前面的系数,系数为:裂开的两项分母之差的倒数。
(完整版)裂项相消法求和附答案
![(完整版)裂项相消法求和附答案](https://img.taocdn.com/s3/m/c6d8bd0069eae009591bec19.png)
裂项相消法利用列项相消法求和时,应注意抵消后并不一定只剩下第一项和最后一项,也有可能前面剩两项,后面剩两项,再就是通项公式列项后,有时需要调整前面的系数,使列项前后等式两边保持相等。
(1)若是{a n }等差数列,则)11.(1111++-=n n n n a a d a a ,)11.(21122n ++-=n n n a a d a a(2)11111+-=+n n n n )( (3))11(1)(1kn n k k n n +-=+(4))121121(2112)121+--=+-n n n n )(((5)])2)(1(1)1(1[21)2)(1(1++-+=++n n n n n n n(6)n n n n -+=++111(7))(11n k n kkn n -+=++ 1.已知数列的前n 项和为, .(1)求数列的通项公式;(2)设,求数列的前n 项和为.[解析] (1) ……………①时, ……………②①②得:即……………………………………3分在①中令, 有, 即,……………………………………5分故对2.已知{a n}是公差为d的等差数列,它的前n项和为S n,S4=2S2+8.(Ⅰ)求公差d的值;(Ⅰ)若a1=1,设T n是数列{}的前n项和,求使不等式T n≥对所有的nⅠN*恒成立的最大正整数m的值;[解析](Ⅰ)设数列{a n}的公差为d,Ⅰ S4=2S2+8,即4a1+6d=2(2a1+d) +8,化简得:4d=8,解得d=2.……………………………………………………………………4分(Ⅰ)由a1=1,d=2,得a n=2n-1,…………………………………………5分Ⅰ =.…………………………………………6分Ⅰ T n===≥,…………………………………………8分又Ⅰ 不等式T n≥对所有的nⅠN*恒成立,Ⅰ ≥,…………………………………………10分化简得:m2-5m-6≤0,解得:-1≤m≤6.Ⅰ m的最大正整数值为6.……………………………………………………12分3.)已知各项均不相同的等差数列{a n}的前四项和S4=14,且a1,a3,a7成等比数列.(Ⅰ)求数列{a n}的通项公式;(Ⅰ)设T n为数列的前n项和,求T2 012的值.[答案] (Ⅰ)设公差为d,由已知得(3分)解得d=1或d=0(舍去),Ⅰa1=2. (5分)故a n=n+1. (6分)(Ⅰ)==-,(8分)ⅠT n=-+-+…+-=-=. (10分)ⅠT2 012=. (12分)4.)已知数列{a n}是等差数列,-=8n+4,设数列{|a n|}的前n项和为S n,数列的前n项和为T n.(1)求数列{a n}的通项公式;(2)求证:≤T n<1.[答案] (1)设等差数列{a n}的公差为d,则a n=a1+(n-1)d. (2分)Ⅰ-=8n+4,Ⅰ(a n+1+a n)(a n+1-a n)=d(2a1-d+2nd)=8n+4.当n=1时,d(2a1+d)=12;当n=2时,d(2a1+3d)=20.解方程组得或(4分)经检验知,a n=2n或a n=-2n都满足要求.Ⅰa n=2n或a n=-2n. (6分)(2)证明:由(1)知:a n=2n或a n=-2n.Ⅰ|a n|=2n.ⅠS n=n(n+1). (8分)Ⅰ==-.ⅠT n=1-+-+…+-=1-. (10分)Ⅰ≤T n<1. (12分)5.已知等差数列{a n}的公差为2,前n项和为S n,且S1,S2,S4成等比数列. (Ⅰ)求数列{a n}的通项公式;(Ⅰ)令b n=(-1)n-1,求数列{b n}的前n项和T n.[答案] 查看解析[解析] (Ⅰ)因为S1=a1,S2=2a1+×2=2a1+2,S4=4a1+×2=4a1+12,由题意得(2a1+2)2=a1(4a1+12),解得a1=1,所以a n=2n-1.(Ⅰ)b n=(-1)n-1=(-1)n-1=(-1)n-1.当n为偶数时,T n=-+…+-=1-=.当n为奇数时,T n=-+…-+++=1+=.所以T n=6. 已知点的图象上一点,等比数列的首项为,且前项和(Ⅰ) 求数列和的通项公式;(Ⅰ) 若数列的前项和为,问的最小正整数是多少?[解析]解:(Ⅰ) 因为,所以,所以,,,又数列是等比数列,所以,所以,又公比,所以,因为,又,所以,所以,所以数列构成一个首项为1,公差为1的等差数列,,所以,当时,,所以. (6分)(Ⅰ) 由(Ⅰ) 得,(10分)由得,满足的最小正整数为72. (12分)7. 在数列,中,,,且成等差数列,成等比数列().(Ⅰ)求,,及,,,由此归纳出,的通项公式,并证明你的结论;(Ⅰ)证明:.[解析] (Ⅰ)由条件得,由此可得.猜测. (4分)用数学归纳法证明:①当时,由上可得结论成立.②假设当时,结论成立,即,那么当时,.所以当时,结论也成立.由①②,可知对一切正整数都成立. (7分)(Ⅰ)因为.当时,由(Ⅰ)知.所以.综上所述,原不等式成立. (12分)8.已知数列的前项和是,且.(Ⅰ)求数列的通项公式;(Ⅰ)设,,求使成立的最小的正整数的值.[解析] (1)当时,,由,……………………1分当时,Ⅰ是以为首项,为公比的等比数列.……………………4分故…………………6分(2)由(1)知,………………8分,故使成立的最小的正整数的值.………………12分9. 己知各项均不相等的等差数列{a n}的前四项和S4=14,且a1,a3,a7成等比数列.(I)求数列{a n}的通项公式;(II)设T n为数列的前n项和,若T n≤¨对恒成立,求实数的最小值.[解析] 122.(Ⅰ)设公差为d. 由已知得……………………………3分解得,所以………………………………6分(Ⅰ),………………………………9分对恒成立,即对恒成立又Ⅰ的最小值为……………………………………………………………12分10. 已知数列前项和为,首项为,且,,成等差数列.(Ⅰ)求数列的通项公式;(II)数列满足,求证:,[解析] (Ⅰ)成等差数列, Ⅰ,,当时,,两式相减得:.所以数列是首项为,公比为2的等比数列,.(6分)(Ⅰ) ,(8分),.(12分)11.等差数列{a n}各项均为正整数, a1=3, 前n项和为S n, 等比数列{b n}中, b1=1, 且b2S2=64, {}是公比为64的等比数列.(Ⅰ) 求a n与b n;(Ⅰ) 证明:++…+<.[答案] (Ⅰ) 设{a n}的公差为d, {b n}的公比为q, 则d为正整数,a n=3+(n-1) d,b n=q n-1.依题意有①由(6+d) q=64知q为正有理数, 又由q=知, d为6的因子1, 2, 3, 6之一, 解①得d=2, q=8. 故a n=3+2(n-1) =2n+1, b n=8n-1.(Ⅰ) 证明:S n=3+5+…+(2n+1) =n(n+2) ,所以++…+=+++…+==<.12. 等比数列{a n}的各项均为正数, 且2a1+3a2=1, =9a2a6.(Ⅰ) 求数列{a n}的通项公式;(Ⅰ) 设b n=log3a1+log3a2+…+log3a n, 求数列的前n项和.[答案] (Ⅰ) 设数列{a n}的公比为q. 由=9a2a6得=9, 所以q2=.因为条件可知q>0, 故q=.由2a1+3a2=1得2a1+3a1q=1, 所以a1=.故数列{a n}的通项公式为a n=.(Ⅰ) b n=log3a1+log3a2+…+log3a n=-(1+2+…+n)=-,故=-=-2,++…+=-2++…+=-.所以数列的前n项和为-.13.等差数列{a n}的各项均为正数,a1=3,其前n项和为S n,{b n}为等比数列,b1=1,且b2S2=16,b3S3=60.(Ⅰ)求a n和b n;(Ⅰ)求++…+.[答案] (Ⅰ)设{a n}的公差为d,且d为正数,{b n}的公比为q,a n=3+(n-1)d,b n=q n-1,依题意有b2S2=q·(6+d)=16,b3S3=q2·(9+3d)=60,(2分)解得d=2,q=2.(4分)故a n=3+2(n-1)=2n+1,b n=2n-1.(6分)(Ⅰ)S n=3+5+…+(2n+1)=n(n+2),(8分)所以++…+=+++…+=(10分)==-.(12分)14.设数列{a n}的前n项和S n满足:S n=na n-2n(n-1). 等比数列{b n}的前n项和为T n,公比为a1,且T5=T3+2b5.(1)求数列{a n}的通项公式;(2)设数列的前n项和为M n,求证:≤M n<.[答案](1)ⅠT5=T3+2b5,Ⅰb4+b5=2b5,即(a1-1)b4=0,又b4≠0,Ⅰa1=1. n≥2时,a n=S n-S n-1=na n-(n-1)a n-1-4(n-1),即(n-1)a n-(n-1)a n-1=4(n-1).Ⅰn-1≥1,Ⅰa n-a n-1=4(n≥2),Ⅰ数列{a n}是以1为首项,4为公差的等差数列,Ⅰa n=4n-3. (6分)(2)证明:Ⅰ==·,(8分)ⅠM n=++…+==<,(10分)又易知M n单调递增,故M n≥M1=.综上所述,≤M n<. (12分)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
开一数学组教研材料 (裂项相消法求和之再研究 ) 张明刚一项拆成两项,消掉中间所有项,剩下首尾对称项 基本类型:1.形如)11(1)(1kn n k k n n +-=+型。
如1n n +1=1n -1n +1;2.形如a n =12n -12n +1=)121121(21+--n n 型; 3.)121121(211)12)(12()2(2+--+=+-=n n n n n a n 4.])2)(1(1)1(1[21)2)(1(1++-+=++=n n n n n n n a n5.nn n n n n n n S n n n n n n n n n a 2)1(11,2)1(12121)1()1(221)1(21+-=+-⋅=⋅+-+=⋅++=-则 6.形如a n =n +1n 2n +22型.7.形如a n =4n 4n -14n +1-1=13⎪⎭⎫⎝⎛---+1411411n n型; =2n -(n -1)n (n -1)·2n =1(n -1)2n -1-1n ·2n . 9.形如a n =()n k n kk n n -+=++11型;1)1(1+++=n n n n a n10.()b a ba b a --=+1111.()!!1!n n n n -+=⋅ 12.m n m n m n C C C -=+-1113.()21≥-=-n S S a n n n14.1)tan(tan tan tan tan ---=βαβαβα15.利用两角差的正切公式进行裂项 把两角差的正切公式进行恒等变形,例如βαβαβαtan tan 1tan tan )tan(+-=- 可以另一方面,利用()[]kk kk k k tan )1tan(1tan )1tan(1tan 1tan ⋅+--+=-+=,得,11tan tan )1tan(tan )1tan(--+=⋅+kk k k16 利用对数的运算性质进行裂项对数运算有性质N M NMalog log log -=,有些试题则可以构造这种形式进行裂项. 17 利用排列数或组合数的性质进行裂项排列数有性质!)!1(!n n n n -+=⋅,组合数有这样的性质11-+-=m n m n m n C C C ,都可以作为裂项的依据.例7 求和:_____!!22!11=⋅++⋅+⋅n n Λ分析 直接利用!)!1(!n n n n -+=⋅可得结果是1)!1(-+n .18.求和:22322n n C C C S +++=Λ.有3312k k k C C C -=+,从而31333122++=-+=n n n C C C C S .裂项相消法求和之再研究一项拆成两项,消掉中间所有项,剩下首尾对称项一、多项式数列求和。
(1)用裂项相消法求等差数列前n 项和。
即形如n a an b =+的数列求前n 项和此类型可设22()[(1)(1)]n a An Bn A n B n an b =+--+-=+左边化简对应系数相等求出A,B 。
123222()0(42)()(93)(42)()[(1)(1)]n nS a a a a A B A B A B A B A B An Bn A n B n An Bn=+++=+-++-+++-++++--+-=+L L 则例1:已知数列{}n a 的通项公式为21n a n =-,求它的前n 项和n S 。
2222222222123()[(1)(1)]212=2122110(1)12132(1)n n n n n a An Bn A n B n n a An B A n A A B A B a n n S a a a a n n n =+--+-=-=+--==⎧⎧∴⇒⎨⎨-=-=⎩⎩∴=--∴=+++=+-+-++--=L L 解:令 则有(2)用裂项相消法求多项式数列前n 项和。
即形如121210m m n m m a b n b nb n b ----=++++L 的数列求前n 项和。
此类型可111111()[(1)(1)(1)]mm m m n m m m m a c n c nc n c n c n c n ----=+++--+-++-L L 设121210m m m m b n b n b n b ----=++++L上边化简对应系数相等得到一个含有m 元一次方程组。
说明:解这个方程组采用代入法,不难求。
系数化简可以用二项式定理,这里不解释。
解出12,,,m c c c L 。
再裂项相消法用易知111m m n m m S c n c nc n --=+++L例2:已知数列{}n a 的通项公式为3n a n =,求它的前n 项和n S 。
432432322323[(1)(1)(1)(1)](4641)(331)(21)4(63)(432)()14411630243200n a An Bn Cn Dn A n B n C n D n A n n n B n n C n D An A B n A B C n A B C D n A A A B B A B C C A B C D =+++--+-+-+-=-+-+-++-+=+-++-++-+-+===⎧⎪-+==⎪∴⇒⎨-+=⎪⎪-+-+=⎩解:设() 140D ⎧⎪⎪⎪⎪⎨⎪=⎪⎪⎪=⎩4324322222222222111111[(1)(1)(1)]424424(1)(1)221223123423(1)(1)(1)22222222n n a n n n n n n n n n n n n n n n n S ∴=++--+-+-+-⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭⨯⨯⨯⨯⨯+-+⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫∴=+-+-++-= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭L () 二、二、多项式数列与等比数列乘积构成的数列。
(1)用裂项相消法求等比数列前n 项和。
即形如nn a aq =的数列求前n 项和。
这里不妨设1q ≠。
(1q =时为常数列,前n 项和显然为n S an =)此类型可设1A n n n a q Aq -=-,则有()n n n A a A q aq q =-=,从而有,1A aq A a A q q -==-。
再用裂项相消法求得nn S Aq A =-例3:已知数列{}n a 的通项公式为3nn a =,求它的前n 项和n S 。
解:设1A n n n a q Aq-=-,则有2333n nn A a ==g ,从而有32A =,故13322n n n a +=-。
232431112311(33333333)(33)22n n n n n S a a a a ++∴=+++=-+-+-+++-=-L L(2)用裂项相消法求等差数列与等比数列乘积构成的数列前n 项和。
即形如()nn a an b q =+的数列求前n 项和。
此类型通常的方法是乘公比错位错位相减法,其实也可以用裂项相消法。
这里依然不妨设1q ≠,(1q =时为等差数列,不再赘述。
)可设1()[(1)]n n n a An B q A n B q -=+--+,则有11[())()n n n a Aq A n Bq A B q aqn bq q --=-++-=+,从而得到方程组()Aq A aq Bq A B bq-=⎧⎨+-=⎩,继而解出A ,B 。
再用裂项相消法求得()nn S An B q B =+-例4:已知数列{}n a 的通项公式为3nn a n =⋅,求它的前n 项和n S 。
解:设1()3[(1)]3n n n a An B A n B -=+--+,则有11[22)333n n n a An B A n --=++=⋅,从而得到方程组2320A B A =⎧⎨+=⎩,解得3234A B ⎧=⎪⎪⎨⎪=-⎪⎩。
121233344n n n n n a +--=⋅-⋅ 222321112311[333335333(21)3(23)3][(21)33]44n n n n n S a a a a n n n ++∴=+++=++⨯-+⨯-⨯++-⋅--⋅=-⋅+L L (3)用裂项相消法求多项式数列与等比数列乘积构成的数列前n 项和。
即形如121210()m m n n m m a b n b nb n b q ----=+++L 的数列求前n 项和。
此类型有一个采用m 次错位相减法的方法求出,但是当次数较高时错位相减法的优势就完全失去了。
同样这里依然不妨设1q ≠,(1q =时为多项式数列,不再赘述。
)下面介绍错位相减法的方法:设1212112101210()[(1)(1)(1))m m n m m n n m m m m a B n B n B n B q B n B n B n B q ---------=++++--+-++-+L L 。
先对上式化简成121210()m m nn m m a C n C n C n C q ----=++++L 的形式,其中011,,m C C C -L 是用011,,,m B B B q-L 来表示的一次式子。
同样让对应系数相等得到一个m 元一次方程组,用代入法可以解出011,,m B B B -L 再用用裂项相消法求得1212100()m m n n m m S B n B nB n B q B ----=++++-L 。
例5:已知数列{}n a 的通项公式为22nn a n =⋅,求它的前n 项和n S 。
解:设221()2[(1)(1))2n n n a An Bn C A n B n C -=++--+-+,则有2121((2)()]222n n n a An A B n A B C n --=+++-++=⋅从而得到2200A A B A B C =⎧⎪+=⎨⎪-++=⎩,解得246A B C =⎧⎪=-⎨⎪=⎩,所以212(23)2[(1)2(1)3)2n nn a n n n n +=-+----+2322121232122323222(23)2[(1)2(1)3)2(23)26n n n n n S a a a a n n n n n n ++∴=+++=⨯-⨯+⨯-⨯++-+----+=-+-L L事实上裂项求和适合用于所有能将n a 化成()(1)n a f n f n =--形式的所有数列{}n a ,()f n 与n a 存在形式上相似性,从而利用待定系数法的方式得到()f n 的表达式,最终可以得到()(0)n S f n f =-。
这里部分可用倒叙相加法的数列不能使用此法是因为它没有一个统一形式不带省略号的前n 项和公式。