数理统计期末试题

合集下载

概率论与数理统计》期末考试试题及解答

概率论与数理统计》期末考试试题及解答

概率论与数理统计》期末考试试题及解答1.设事件A,B仅发生一个的概率为0.3,且P(A)+P(B)=0.5,则A,B至少有一个不发生的概率为0.3.解:由题意可得:P(AB+AB)=0.3,即0.3=P(AB)+P(AB)=P(A)-P(AB)+P(B)-P(AB)=0.5-2P(AB),所以P(AB)=0.1,P(A∪B)=P(AB)=1-P(AB)=0.9.2.设随机变量X服从泊松分布,且P(X≤1)=4P(X=2),则P(X=3)=1/e6.解答:由P(X≤1)=P(X=0)+P(X=1)=e^(-λ)+λe^(-λ)=5λe^(-λ/2)得e^(-λ/2)=0.4,即λ=ln2,所以P(X=2)=e^(-λ)λ^2/2!=1/6,又因为P(X≤1)=4P(X=2),所以P(X=0)+P(X=1)=4P(X=2),即e^(-λ)+λe^(-λ)=4λe^(-λ),解得λ=ln2,故P(X=3)=e^(-λ)λ^3/3!=1/e6.3.设随机变量X在区间(0,2)上服从均匀分布,则随机变量Y=X在区间(0,4)内的概率密度为f_Y(y)=1/2,0<y<4;其它为0.解答:设Y的分布函数为F_Y(y),X的分布函数为F_X(x),密度为f_X(x),则F_Y(y)=P(Y≤y)=P(X≤y)=F_X(y)-F_X(0)。

因为X~U(0,2),所以F_X(0)=0,F_X(y)=y/2,故F_Y(y)=y/2,所以f_Y(y)=F_Y'(y)=1/2,0<y<4;其它为0.4.设随机变量X,Y相互独立,且均服从参数为λ的指数分布,P(X>1)=e^(-λ),则λ=2,P{min(X,Y)≤1}=1-e^(-λ)。

解答:因为P(X>1)=1-P(X≤1)=e^(-λ),所以λ=ln2.因为X,Y相互独立且均服从参数为λ的指数分布,所以P{min(X,Y)≤1}=1-P{min(X,Y)>1}=1-P(X>1)P(Y>1)=1-e^(-λ)。

概率论与数理统计期末考试试题及参考答案

概率论与数理统计期末考试试题及参考答案

概率论与数理统计期末考试试题及参考答案一、选择题(每题2分,共20分)1. 设A、B为两个事件,且P(A) = 0.5,P(B) = 0.6,则P(A∪B)等于()A. 0.1B. 0.3C. 0.5D. 0.7参考答案:D2. 设随机变量X的分布函数为F(x),若F(x)是严格单调增加的,则X的数学期望()A. 存在且大于0B. 存在且小于0C. 存在且等于0D. 不存在参考答案:A3. 设X~N(0,1),以下哪个结论是正确的()A. P(X<0) = 0.5B. P(X>0) = 0.5C. P(X=0) = 0.5D. P(X≠0) = 0.5参考答案:A4. 在伯努利试验中,每次试验成功的概率为p,失败的概率为1-p,则连续n次试验成功的概率为()A. p^nB. (1-p)^nC. npD. n(1-p)参考答案:A5. 设随机变量X~B(n,p),则X的二阶矩E(X^2)等于()A. np(1-p)B. npC. np^2D. n^2p^2参考答案:A二、填空题(每题3分,共15分)1. 设随机变量X~N(μ,σ^2),则X的数学期望E(X) = _______。

参考答案:μ2. 若随机变量X、Y相互独立,且X~N(0,1),Y~N(0,1),则X+Y的概率密度函数f(x) = _______。

参考答案:f(x) = (1/√(2πσ^2))exp(-x^2/(2σ^2))3. 设随机变量X、Y相互独立,且X~B(n,p),Y~B(m,p),则X+Y~_______。

参考答案:B(n+m,p)4. 设随机变量X、Y的协方差Cov(X,Y) = 0,则X、Y的相关系数ρ = _______。

参考答案:ρ = 05. 设随机变量X~χ^2(n),则X的期望E(X) = _______,方差Var(X) = _______。

参考答案:E(X) = n,Var(X) = 2n三、计算题(每题10分,共40分)1. 设随机变量X、Y相互独立,且X~N(0,1),Y~N(0,1),求X+Y的概率密度函数f(x)。

概率论与数理统计期末考试试题(答案)

概率论与数理统计期末考试试题(答案)

概率论与数理统计开/闭卷闭卷A/B 卷 A课程编号 2219002801—2219002811课程名称 概率论与数理统计学分 3基本题6小题,每小题5分,满分30分。

在每小题给出的四个选项中,只有一把所选项前的字母填在题后的括号内)(每道选择题选对满分,选错分)。

事件表达式A B 的意思是 ( ) ) 事件A 与事件B 同时发生 (B ) 事件A 发生但事件B 不发生) 事件B 发生但事件A 不发生 (D) 事件A 与事件B 至少有一件发生D ,根据A B 的定义可知。

假设事件A 与事件B 互为对立,则事件A B ( )) 是不可能事件 (B ) 是可能事件 C) 发生的概率为1 (D) 是必然事件 :选A,这是因为对立事件的积事件是不可能事件。

已知随机变量X ,Y 相互独立,且都服从标准正态分布,则X 2+Y 2服从 ( ) A) 自由度为1的χ2分布 (B ) 自由度为2的χ2分布 ) 自由度为1的F 分布 (D) 自由度为2的F 分布选B ,因为n 个相互独立的服从标准正态分布的随机变量的平方和服从自由度为n 的2分布.已知随机变量X ,Y 相互独立,X ~N (2,4),Y ~N (-2,1), 则( ) X +Y ~P (4) (B ) X +Y ~U (2,4) (C) X +Y ~N (0,5) (D ) +Y ~N (0,3)C ,因为相互独立的正态变量相加仍然服从正态分布,而E (X +Y )=E (X )+E (Y )D (X +Y )=D (X )+D (Y )=4+1=5, 所以有X +Y ~N (0,5)。

样本(X 1,X 2,X 3)取自总体X ,E (X )=μ, D (X )=σ2, 则有( ) A) X 1+X 2+X 3是μ的无偏估计(B )1233X X X ++是μ的无偏估计) 22X 是σ2的无偏估计(D ) 21233X X X ++⎛⎫ ⎪⎝⎭是σ2的无偏估计:选B ,因为样本均值是总体期望的无偏估计,其它三项都不成立。

概率论与数理统计期末考试试题库及答案

概率论与数理统计期末考试试题库及答案

概率论与数理统计期末考试试题库及答案概率论与数理统计概率论试题一、填空题1.设 A、B、C是三个随机事件。

试用 A、B、C分别表示事件1)A、B、C 至少有一个发生 2)A、B、C 中恰有一个发生3)A、B、C不多于一个发生2.设 A、B为随机事件, ,,。

则=3.若事件A和事件B相互独立, ,则4. 将C,C,E,E,I,N,S等7个字母随机的排成一行,那末恰好排成英文单词SCIENCE的概率为5. 甲、乙两人独立的对同一目标射击一次,其命中率分别为0.6和0.5,现已知目标被命中,则它是甲射中的概率为6.设离散型随机变量分布律为则A______________7. 已知随机变量X的密度为,且,则________________8. 设~,且,则 _________9. 一射手对同一目标独立地进行四次射击,若至少命中一次的概率为,则该射手的命中率为_________10.若随机变量在(1,6)上服从均匀分布,则方程x2+x+10有实根的概率是11.设,,则12.用()的联合分布函数F(x,y)表示13.用()的联合分布函数F(x,y)表示14.设平面区域D由y x , y 0 和 x 2 所围成,二维随机变量x,y在区域D上服从均匀分布,则(x,y)关于X的边缘概率密度在x 1 处的值为。

15.已知,则=16.设,且与相互独立,则17.设的概率密度为,则=18.设随机变量X1,X2,X3相互独立,其中X1在[0,6]上服从均匀分布,X2服从正态分布N(0,22),X3服从参数为3的泊松分布,记YX1-2X2+3X3,则D(Y)19.设,则20.设是独立同分布的随机变量序列,且均值为,方差为,那么当充分大时,近似有~ 或 ~ 。

特别是,当同为正态分布时,对于任意的,都精确有~ 或~.21.设是独立同分布的随机变量序列,且,那么依概率收敛于22.设是来自正态总体的样本,令则当时~。

23.设容量n 10 的样本的观察值为(8,7,6,9,8,7,5,9,6),则样本均值,样本方差24.设X1,X2,…Xn为来自正态总体的一个简单随机样本,则样本均值服从二、选择题1. 设A,B为两随机事件,且,则下列式子正确的是(A)P A+B P A; (B)(C) (D)2. 以A表示事件“甲种产品畅销,乙种产品滞销”,则其对立事件为 (A)“甲种产品滞销,乙种产品畅销”; (B)“甲、乙两种产品均畅销”(C)“甲种产品滞销”;(D)“甲种产品滞销或乙种产品畅销”。

概率论和数理统计期末考试试题及答案 (2)

概率论和数理统计期末考试试题及答案 (2)

一、选 择 题 (本大题分5小题, 每小题3分, 共15分)(1)设A 、B 互不相容,且P(A)〉0,P (B )〉0,则必有(A )0)(>A B P (B ))()(A P B A P =(C )0)(=B A P (D))()()(B P A P AB P =(2)某人花钱买了C B A 、、三种不同的奖券各一张。

已知各种奖券中奖是相互独立的,中奖的概率分别为,02.0)(,01.0)(,03.0)(===C p B P A p 如果只要有一种奖券中奖此人就一定赚钱,则此人赚钱的概率约为(A) 0.05 (B ) 0。

06 (C ) 0.07 (D) 0.08(3)),4,(~2μN X ),5,(~2μN Y }5{},4{21+≥=-≤=μμY P p X P p ,则(A )对任意实数21,p p =μ (B )对任意实数21,p p <μ(C )只对μ的个别值,才有21p p = (D )对任意实数μ,都有21p p >(4)设随机变量X 的密度函数为)(x f ,且),()(x f x f =-)(x F 是X 的分布函数,则对任意实数a 成立的是(A )⎰-=-adx x f a F 0)(1)( (B )⎰-=-a dx x f a F 0)(21)( (C ))()(a F a F =- (D)1)(2)(-=-a F a F(5)二维随机变量(X ,Y )服从二维正态分布,则X +Y 与X -Y 不相关的充要条件为(A )EY EX = (B)2222][][EY EY EX EX -=-(C )22EY EX = (D ) 2222][][EY EY EX EX +=+二、填 空 题 (本大题5小题, 每小题4分, 共20分)(1) 4.0)(=A P ,3.0)(=B P ,4.0)(=⋃B A P ,则___________)(=B A P 0。

概率论与数理统计期末考试题及答案

概率论与数理统计期末考试题及答案

模拟试题填空题(每空3分,共45 分)1、已知P(A) = 0.92, P(B) = 0.93, P(B| A) = 0.85,则P(A| B)=P( A U B)=12、设事件A与B独立,A与B都不发生的概率为—,A发生且B不发生的概率与 B9发生且A不发生的概率相等,则A发生的概率为:_______________________ ;3、一间宿舍内住有6个同学,求他们之中恰好有4个人的生日在同一个月份的概率:;没有任何人的生日在同一个月份的概率I Ae x, X c 04、已知随机变量X的密度函数为:W(x) = {1/ 4, 0 < X V 2,则常数A=0, x>2分布函数F(x)= ,概率P{—0.5<X <1}=5、设随机变量X~ B(2,p)、Y~ B(1,p),若P{X>1} =5/ 9,贝U p =若X与丫独立,则Z=max(X,Y)的分布律:6、设X ~ B(200,0.01), Y - P(4),且X 与丫相互独立,则D(2X-3Y)=COV(2X-3Y , X)=7、设X1,X2,III,X5是总体X ~ N(0,1)的简单随机样本,则当k = 时,丫"⑶;8、设总体X~U(0,巧日:>0为未知参数,X i,X2,lil,X n为其样本, -1nX =—S X i为n i 二样本均值,则日的矩估计量为:9、设样本X i,X2,川,X9来自正态总体N(a,1.44),计算得样本观察值X = 10,求参数a的置信度为95%的置信区间:计算题(35分)1、(12分)设连续型随机变量X的密度函数为:「1求:1) P{|2X —1|<2} ; 2) Y =X 2的密度函数 S(y) ; 3) E(2X-1);2、(12分)设随机变量(X,Y )的密度函数为3、( 11分)设总体X 的概率密度函数为:X 1,X 2,…,X n 是取自总体X 的简单随机样本。

最新《概率论与数理统计》期末考试试题及答案教案资料

最新《概率论与数理统计》期末考试试题及答案教案资料

四、(本题12分)设二维随机向量(,)X Y 的联合分布律为\01210.10.20.120.10.2Y X a 试求: (1) a 的值; (2)X 与Y 的边缘分布律; (3)X 与Y 是否独立?为什么?五、(本题12分) 设随机变量X 的概率密度为(),01,2,12,0,.x x f x x x ≤<⎧⎪=-≤≤⎨⎪⎩其他 求()(),E X D X一、填空题(每小题3分,共30分)1、ABC 或A B C U U2、0.63、2156311C C C 或411或0.3636 4、1 5、13 6、2014131555kX p 7、1 8、(2,1)N -二、解 设12,A A 分别表示取出的产品为甲企业和乙企业生产,B 表示取出的零件为次品,则由已知有 1212606505121101(),(),(|),(|)1101111011605505P A P A P B A P B A ======== .................. 2分 (1)由全概率公式得112261511()()(|)()(|)1151155P B P A P B A P A P B A =+=⨯+⨯= ............................................ 7分 (2)由贝叶斯公式得22251()()5115()1()115P A P B A P A B P B ⨯=== ................................................................................. 12分三、(本题12分)解 (1)由概率密度的性质知 340391()21224x f x dx kxdx dx k +∞-∞⎛⎫=+-=+= ⎪⎝⎭⎰⎰⎰故16k =. ..................................................................................................................................................... 3分 (2)当0x ≤时,()()0xF x f t dt -∞==⎰;当03x <<时, 2011()()612xxF x f t dt tdt x -∞===⎰⎰; 当34x ≤<时, 320311()()223624x x t F x f t dt tdt dt x x -∞⎛⎫==+-=-+- ⎪⎝⎭⎰⎰⎰;当4x ≥时, 34031()()2162x t F x f t dt tdt dt -∞⎛⎫==+-= ⎪⎝⎭⎰⎰⎰;故X 的分布函数为220,01,0312()123,3441,4x x x F x x x x x ≤⎧⎪⎪<<⎪=⎨⎪-+-≤<⎪⎪≥⎩.......................................................................................... 9分(3) 77151411(1)22161248P X F F ⎧⎫⎛⎫<≤=-=-=⎨⎬ ⎪⎩⎭⎝⎭....................................................................... 12分四、解 (1)由分布律的性质知01.0.20.10.10.21a +++++=故0.3a = .................................................................................................................................................... 4分(2)(,)X Y 分别关于X 和Y 的边缘分布律为0120.40.30.3X p ........................................................................................................................ 6分120.40.6Y p .................................................................................................................................. 8分(3)由于{}0,10.1P X Y ===,{}{}010.40.40.16P X P Y ===⨯=,故 {}{}{}0,101P X Y P X P Y ==≠==所以X 与Y 不相互独立. ............................................................................................................................ 12分 五、(本题12分) 设随机变量X 的概率密度为(),01,2,12,0,.x x f x x x ≤<⎧⎪=-≤≤⎨⎪⎩其他求()(),E X D X .解 2131223201011()()d d (2)d 1.33x E X xf x x x x x x x x x +∞-∞⎡⎤⎡⎤==+-=+-=⎢⎥⎢⎥⎣⎦⎣⎦⎰⎰⎰ ................................ 6分122232017()()d d (2)d 6E X x f x x x x x x x +∞-∞==+-=⎰⎰⎰................................................................... 9分 221()()[()].6D XE X E X =-= ........................................................................................................ 12分一、填空题(每空3分,共45分)1、已知P(A) = 0.92, P(B) = 0.93, P(B|A ) = 0.85, 则P(A|B ) = P( A ∪B) =2、设事件A 与B 独立,A 与B 都不发生的概率为19,A 发生且B 不发生的概率与B 发生且A 不发生的概率相等,则A 发生的概率为: ;3、一间宿舍内住有6个同学,求他们之中恰好有4个人的生日在同一个月份的概率: 没有任何人的生日在同一个月份的概率4、已知随机变量X 的密度函数为:,0()1/4,020,2x Ae x x x x ϕ⎧<⎪=≤<⎨⎪≥⎩, 则常数A= ,分布函数F (x )= , 概率{0.51}P X -<<= ;5、设随机变量X~ B(2,p)、Y~ B(1,p),若{1}5/9P X ≥=,则p = ,若X 与Y 独立,则Z=max(X,Y)的分布律: ;6、设~(200,0.01),~(4),X B Y P 且X 与Y 相互独立,则D(2X-3Y)= , 1、 (12分)设连续型随机变量X 的密度函数为:1,02()20,x x x ϕ⎧≤≤⎪=⎨⎪⎩其它求:1){|21|2}P X -<;2)2Y X =的密度函数()Y y ϕ;3)(21)E X -;2、(12分)设随机变量(X,Y)的密度函数为1)1/4,||,02,(,)0,y x x x y ϕ<<<⎧=⎨⎩其他求边缘密度函数(),()X Y x y ϕϕ;2) 问X 与Y 是否独立?是否相关?计算Z = X + Y 的密度函数()Z z ϕ1、(10分)设某人从外地赶来参加紧急会议,他乘火车、轮船、汽车或飞机来的概率分别是3/10,1/5,1/10和2/5。

数理统计期末测试题

数理统计期末测试题

数理统计一、填空题1、设n X X X ,,21为母体X 的一个子样,如果),,(21n X X X g , 则称),,(21n X X X g 为统计量。

不含任何未知参数2、设母体σσμ),,(~2N X 已知,则在求均值μ的区间估计时,使用的随机变量为nX σμ-3、设母体X 服从修正方差为1的正态分布,根据来自母体的容量为100的子样,测得子样均值为5,则X 的数学期望的置信水平为95%的置信区间为 。

025.01015u ⨯±4、假设检验的统计思想是 。

小概率事件在一次试验中不会发生5、某产品以往废品率不高于5%,今抽取一个子样检验这批产品废品率是否高于5%, 此问题的原假设为 。

0H :05.0≤p6、某地区的年降雨量),(~2σμN X ,现对其年降雨量连续进行5次观察,得数据为: (单位:mm) 587 672 701 640 650 ,则2σ的矩估计值为 。

1430.87、设两个相互独立的子样2121,,,X X X 与51,,Y Y 分别取自正态母体)2,1(2N 与)1,2(N , 2*22*1,S S 分别是两个子样的方差,令2*2222*121)(,S b a aS +==χχ,已知)4(~),20(~222221χχχχ,则__________,==b a 。

用)1(~)1(222*--n S n χσ,1,5-==b a8、假设随机变量)(~n t X ,则21X 服从分布 。

)1,(n F 9、假设随机变量),10(~t X 已知05.0)(2=≤λX P ,则____=λ 。

用),1(~2n F X 得),1(95.0n F =λ10、设子样1621,,,X X X 来自标准正态分布母体)1,0(N ,X为子样均值,而01.0)(=>λX P , 则____=λ01.04)1,0(~1z N nX=⇒λ 11、假设子样1621,,,X X X 来自正态母体),(2σμN ,令∑∑==-=161110143i i i iX XY ,则Y 的分布 )170,10(2σμN12、设子样1021,,,X X X 来自标准正态分布母体)1,0(N ,X 与2S 分别是子样均值和子样方差,令2*210S X Y =,若已知01.0)(=≥λY P ,则____=λ 。

《概率论与数理统计》期末考试试题及解答.doc

《概率论与数理统计》期末考试试题及解答.doc

《概率论与数理统计》期末考试试题及解答一、填空题(每小题3分,共15分)1.设事件A,B仅发生一个的概率为0.3,且P(A)?P(B)?0.5,则A,B至少有一个不发生的概率为__________.答案:0.3解:P(A?B)?0.3即0.3?P(A)?P(B)?P(A)?P(AB)?P(B)?P(AB)?0.5?2P(AB)所以P(AB)?0.1P(?)?P(AB)?1?P(AB)?0.9.2.设随机变量X服从泊松分布,且P(X?1)?4P(X?2),则P(X?3)?______.答案:1?1e6解答:P(X?1)?P(X?0)?P(X?1)?e????e,??P(X?2)??22e??????2?? 由P(X?1)?4P(X?2) 知e??e?2?e2 即2????1?0 解得??1,故P(X?3)?1?1e 623.设随机变量X在区间(0,2)上服从均匀分布,则随机变量Y?X在区间(0,4)内的概率密度为fY(y)?_________.答案:0?y?4,fY(y)?FY?(y)?fX? 0,其它.?解答:设Y的分布函数为FY(y),X的分布函数为FX(x),密度为fX(x)则FY(y)?P(Y?y)?P(X?2y)?y?)yX)Xy? ?)y 因为X~U(0,2),所以FX(?0,即FY(y)?FX故10?y?4,fY(y)?FY?(y)?fX? 0,其它.?另解在(0,2)上函数y?x2严格单调,反函数为h(y)?所以0?y?4,fY(y)?fX? ?0,其它.?24.设随机变量X,Y相互独立,且均服从参数为?的指数分布,P(X?1)?e,则??_________,P{min(X,Y)?1}=_________.答案:??2,P{min(X,Y)?1}?1?e-4解答:P(X?1)?1?P(X?1)?e???e?2,故??2P{min(X,Y)?1}?1?P{min(X,Y)?1}?1?P(X?1)P(Y?1)?1?e?4.5.设总体X的概率密度为???(??1)x,0?x?1, f(x)?? ???1. ?其它?0,X1,X2,?,Xn是来自X的样本,则未知参数?的极大似然估计量为_________.答案:???11nlnxi?ni?1?1解答:似然函数为L(x1,?,xn;?)??(??1)xi??(??1)n(x1,?,xn)?i?1nlnL?nln(??1)??n?lnxi?1ni解似然方程得?的极大似然估计为dlnLn???lnxi?0 d???1i?12?? ?11n?lnxini?1?1.二、单项选择题(每小题3分,共15分)1.设A,B,C为三个事件,且A,B相互独立,则以下结论中不正确的是(A)若P(C)?1,则AC与BC也独立.(B)若P(C)?1,则A?C与B也独立.(C)若P(C)?0,则A?C与B也独立.(D)若C?B,则A与C也独立. ()答案:(D).解答:因为概率为1的事件和概率为0的事件与任何事件独立,所以(A),(B),(C)都是正确的,只能选(D).事实上由图可见A与C不独立.2.设随机变量X~N(0,1),X的分布函数为?(x),则P(|X|?2)的值为(A)2[1??(2)]. (B)2?(2)?1.(C)2??(2). (D)1?2?(2). ()答案:(A)解答:X~N(0,1)所以P(|X|?2)?1?P(|X|?2)?1?P(?2?X?2)(2)??(?2)?1?[2?(2?) ?1??1]?2?[1 ? 应选(A).3.设随机变量X和Y不相关,则下列结论中正确的是(A)X与Y独立. (B)D(X?Y)?DX?DY.(C)D(X?Y)?DX?DY. (D)D(XY)?DXDY. () 3答案:(B)解答:由不相关的等价条件知,?xy?0?cov(x,y)?0 D(X?Y)?DX?DY+2cov (x,y)应选(B).4.设离散型随机变量X和Y的联合概率分布为(X,Y)(1,1)(1,2)(1,3)(2,1)(2,2)(2,3) P111169183??若X,Y独立,则?,?的值为(A)??29,??19. (A)??129,??9.(C)??16,??16 (D)??518,??118.4 )(答案:(A)解答:若X,Y独立则有??P(X?2,Y?2)?P(X?2)P(Y?2) 1121 ?(????)(??)?(??) 393921 ???,??99 故应选(A).5.设总体X的数学期望为?,X1,X2,?,Xn为来自X的样本,则下列结论中正确的是(A)X1是?的无偏估计量. (B)X1是?的极大似然估计量.(C)X1是?的相合(一致)估计量. (D)X1不是?的估计量. ()答案:(A)解答:EX1??,所以X1是?的无偏估计,应选(A).三、(7分)已知一批产品中90%是合格品,检查时,一个合格品被误认为是次品的概率为0.05,一个次品被误认为是合格品的概率为0.02,求(1)一个产品经检查后被认为是合格品的概率;(2)一个经检查后被认为是合格品的产品确是合格品的概率.解:设A?‘任取一产品,经检验认为是合格品’B?‘任取一产品确是合格品’则(1)P(A)?P(B)P(A|B)?P()P(A|)?0.9?0.95?0.1?0.02?0.857.(2)P(B|A)?四、(12分)从学校乘汽车到火车站的途中有3个交通岗,假设在各个交通岗遇到红灯的事件是相互独立的,并且概率都是2/5. 设X为途中遇到红灯的次数,求X的分布列、分布函数、数学期望和方差.5 P(AB)0.9?0.95??0.9977. P(A)0.857解:X的概率分布为P(X?k)?C3()()k25k353?kk?0,1,2,3.X即X的分布函数为P02712515412523612538 125x?0,?0,?27?,0?x?1,?125??81,1?x?2, F(x)???125?117 2?x?3,?125,?x?3.?1,?26EX?3??,552318DX?3???.5525五、(10分)设二维随机变量(X,Y)在区域D?{(x,y)|x?0,y?0,x?y?1} 上服从均匀分布. 求(1)(X,Y)关于X的边缘概率密度;(2)Z?X?Y的分布函数与概率密度.(1)(X,Y)的概率密度为?2,(x,y)?Df(x,y)??0,其它.?fX(x)?(2)利用公式fZ(z)? 其中f(x,z?x)????????????2?2x,0?x?1f(x,y)dy??0,其它??f(x,z?x)dx?2,0?x?1,0?z?x?1?x?2,0?x?1,x?z?1.??0,其它??0,其它.当z?0或z?1时fZ(z)?0 0?z?1时fZ(z)?2?z0dx?2x0?2zz6故Z的概率密度为??2z,0?z?1,fZ(z)????0,其它.Z的分布函数为fZ(z)??z??z?0?0,?0,z?0,?z??fZ(y)dy???2ydy,0?z?1??z2,0?z?1, 0??1,z?1.?z?1??1,或利用分布函数法?z?0,?0,?FZ(z)?P(Z?z z1,)?P(X?Y?)z,y0??????2dxd?D1?1,z?1.??0,?2, ??z?1,?z?0,0?z?1, z?1.?2z,?0,0?z?1,其它.fZ(z)?FZ?(z)??六、(10分)向一目标射击,目标中心为坐标原点,已知命中点的横坐标X和纵坐标Y相互独立,且均服从N(0,2)分布. 求(1)命中环形区域D?{(x,y)|1?x?y?2}的概率;(2)命中点到目标中心距离Z?1)P{X,Y)?D}?222.??f(x,y)dxdyD???2??4D?x2?y28dxdy? 18?r282??2?21e?r28rdrd??(2)EZ?E? ?21e?r28d(?)??e 82??e?e;1?18?12 ?? ??r28 ????1e?04 ???1e8??x2?y28dxdy?18???2???0re?rdrd??r28r2dr7??rer2?8????0??0e?r28dr??????r28dr?.七、(11分)设某机器生产的零件长度(单位:cm)X~N(?,?2),今抽取容量为16的样本,测得样本均值?10,样本方差s2?0.16. (1)求?的置信度为0.95的置信区间;(2)检验假设H0:?2?0.1(显著性水平为0.05).(附注)t0.05(16)?1.746,t0.05(15)?1.753,t0.025(15)?2.132,解:(1)?的置信度为1??下的置信区间为(?t?/2(n?222?0.05(16)?26.296,?0.05(15)?24.996,?0.025(15)?27.488. ?t?/2(n??10,s?0.4,n?16,??0.05,t0.025(15)?2.132所以?的置信度为0.95的置信区间为(9.7868,10.2132)2 (2)H0:?2?0.1的拒绝域为?2???(n?1).15S22?15?1.6?24,?0.05 ??(15)?24.996 0.12 因为?2?24?24.996??0.05(15),所以接受H0.2《概率论与数理统计》期末考试试题(A)专业、班级:姓名:学号:一、单项选择题(每题3分共18分)891011121314151617《概率论与数理统计》课程期末考试试题(B)专业、班级:姓名:学号:181920212223242526272829共8页30。

数理统计期末考试试题

数理统计期末考试试题

一、X 服从),(2σμN ,2σ为已知,原假设和备择假设为0:0:10>↔=μμH H 用U 检验法进行检验,求该检验的势函数及犯第二类错误的概率. 96.1,65.1,05.0025.005.0===U U α (12分)二、X 的分布密度函数为⎪⎩⎪⎨⎧≤>=-000),(11x x e x f x θθθ (1)求θ的最大似然估计量; (7分)(2)该估计量是否为θ的有效估计 (7分)三、n X X X ,...,21为来自),0(θ上均匀分布的样本,证明i n x n X X ≤≤=1)(max 是θ的充分统计量,并证明其为θ的无偏估计。

四、121,,...,+n n X X X X 为来自),(2σμN 的样本,2,n S X 分别为的样本均值和样本方差,求111+-+-n n n n S XX 的概率分布五、在某橡胶产品的配方中,考虑3种不同的促进剂和4种不同分量的氧化锌,各配方作2次实验.设在各水平的搭配下胶品的定强指标服从正态分布且方差相同, 已知5.17,75.4,13.82,58.38====E AXB B A Q Q Q Q 问促进剂、氧化锌分量以及它们的交互作用对定强指标有无显著影响.29.3)15,3(,49.3)12,3(,89.3)12,2(,3)12,6(,05.005.005.005.005.0=====F F F F α六.某电话交换台在一小时内接到电话用户呼叫次数按每分钟统计得到记录如下: 呼叫次数 0 1 2 3 4 5 6 >7频 数 8 16 17 10 6 2 1 0问电话交换台每分钟接到呼叫次数X 是否服从泊松分布. (14分)七、),(~2σμN X ,2σ未知,求μ的置信度为α-1的置信区间。

(8分) 八、n θ是θ的一个估计量,当∞→n 时有0ˆ,0ˆ→→n n D E θθ.证明nθˆ是θ的相合估计量,即0}ˆ{lim =≥-∞→εθθn n P 九、X 服从两点分布B(1.p).n X X X ,...,21为其样本,参数p 的先验分布为),(γαβ.求p 的后验分布. (10分)。

大学《概率论与数理统计》期末考试试卷含答案

大学《概率论与数理统计》期末考试试卷含答案

大学《概率论与数理统计》期末考试试卷含答案一、填空题(每空 3 分,共 30分)在显著性检验中,若要使犯两类错误的概率同时变小,则只有增加 样本容量 .设随机变量具有数学期望与方差,则有切比雪夫不等式 .设为连续型随机变量,为实常数,则概率= 0 . 设的分布律为,,若绝对收敛(为正整数),则=.某学生的书桌上放着7本书,其中有3本概率书,现随机取2本书,则取到的全是概率书的概率为. 设服从参数为的分布,则=. 设,则数学期望= 7 .为二维随机变量, 概率密度为, 与的协方差的积分表达式为 .设为总体中抽取的样本的均值,则= . (计算结果用标准正态分布的分布函数表X ()E X μ=2()D X σ={}2P X μσ-≥≤14X a {}P X a =X ,{}1,2,k k P X x p k ===2Y X =1n k k k x p ∞=∑n()E Y 21k k k x p ∞=∑17X λpoisson (2)E X 2λ(2,3)YN 2()E Y (,)X Y (,)f x y X Y (,)Cov X Y (())(())(,)d d x E x y E y f x y x y +∞+∞-∞-∞--⎰⎰X N (3,4)14,,X X {}15P X ≤≤2(2)1Φ-()x Φ示)10. 随机变量,为总体的一个样本,,则常数=.A 卷第1页共4页 概率论试题(45分) 1、(8分)题略解:用,分别表示三人译出该份密码,所求概率为 (2分)由概率公式 (4分)(2分) 2、(8分) 设随机变量,求数学期望与方差.解:(1) = (3分) (2) (3分) (2分)(8分) 某种电器元件的寿命服从均值为的指数分布,现随机地取16只,它们的寿命相互独立,记,用中心极限定理计算的近似值(计算结果用标准正态分布的分布函数表示).2(0,)XN σn X X X ,,,21 X221()(1)ni i Y k X χ==∑k 21n σA B C 、、P A B C ()P A B C P ABC P A P B P C ()=1-()=1-()()()1-1-1-p q r =1-()()()()1,()2,()3,()4,0.5XY E X D X E Y D Y ρ=====()E X Y +(23)D X Y -()E X Y +E X E Y ()+()=1+3=4(23)4()9()12ov(,)D X Y D X D Y C X Y -=+-8361244XYρ=+-=-100h i T 161ii T T ==∑{1920}P T ≥()x Φ解: (3分) (5分)(4分)(10分)设随机变量具有概率密度,.(1)求的概率密度; (2) 求概率.解: (1) (1分)A 卷第2页共4页(2分)(2分)概率密度函数 (2分)(2) . (3分) (11分) 设随机变量具有概率分布如下,且.i i ET D T E T D T 2()=100,()=100,()=1600,()=160000{1920}0.8}1P T P ≥=≥≈-Φ(0.8)X 11()0x x f x ⎧-≤≤=⎨⎩,,其它21Y X =+Y ()Y f y 312P Y ⎧⎫-<<⎨⎬⎩⎭12Y Y y F y y F y≤>时()=0,时()=1212,{}{1}()d Y y F yP Y y P X y f x x <≤≤=+≤=()=02d 1x y ==-2()=Y Y y f y F y≤⎧'⎨⎩1,1<()=0,其它3102Y YP Y F F ⎧⎫-<<=-=⎨⎬⎩⎭311()-(-1)=222(,)X Y {}110P X Y X +===(1)求常数; (2)求与的协方差,并问与是否独立?解: (1) (2分)由(2分) 可得 (1分)(2), , (3分) (2分) 由可知与不独立 (1分) 三、数理统计试题(25分)1、(8分) 题略. A 卷第3页共4页 证明:,相互独立(4分) ,(4分),p q X Y (,)Cov X Y X Y 1111134123p q p q ++++=+=,即{}{}{}{}{}101011010033P X Y X P Y X p P X Y X P X P X p +====+========+,,1p q ==EX 1()=2E Y 1()=-3E XY 1()=-6,-CovX Y E XY E X E Y ()=()()()=0..ij i j P P P ≠X Y 222(1)(0,1),(1)X n S N n χσ--22(1)X n S σ-2(1)X t n -(1)X t n -(10分) 题略解:似然函数 (4分)由 可得为的最大似然估计 (2分)由可知为的无偏估计量,为的有偏估计量 (4分) 、(7分) 题略 解: (2分)检验统计量,拒绝域 (2分)而 (1分)因而拒绝域,即不认为总体的均值仍为4.55 (2分)A 卷第4页共4页2221()(,)2n i i x L μμσσ=⎧⎫-=-⎨⎬⎩⎭∑2221()ln ln(2)ln() 222ni i x n n L μπσσ=-=---∑2222411()ln ln 0,022n ni i i i x x L L nμμμσσσσ==--∂∂===-+=∂∂∑∑221111ˆˆ,()n n i i i i x x n n μσμ====-∑∑2,μσ221ˆˆ(),()n nE E μμσσ-==11ˆn i i x n μ==∑μ2211ˆ()ni i x n σμ==-∑2σ01: 4.55: 4.55H H μμ=≠x z =0.025 1.96z z ≥=0.185 1.960.036z ==>0H。

数理统计 期末试题及答案

数理统计 期末试题及答案

数理统计期末试题及答案注意事项:本文为数理统计期末试题及答案,按照试题的要求,将试题和答案进行整理和排版,以便学生们参考和复习。

以下为试题及答案的详细内容。

一、选择题1. 下列哪个统计图可以用于表示定性变量的分布情况?A. 饼图B. 直方图C. 线图D. 散点图答案:A2. 假设某地区的年降雨量服从正态分布,平均降雨量为50mm,标准差为10mm。

设有一天的降雨量为X,X~N(50,10^2),则P(X≥60)等于多少?A. 0.1587B. 0.3413C. 0.5000D. 0.8413答案:D3. 在一场篮球赛中,甲队的命中率为75%,乙队的命中率为80%。

已知甲队共投篮20次,乙队共投篮30次。

问:甲队在这场比赛中命中球的次数比乙队多多少次?A. 1B. 2C. 3D. 4答案:B4. 某投资公司第一天投资100万美元,以后每天投资额为前一天的1/4。

设投资额构成一个等比数列,求该公司的总投资额。

A. 200万美元B. 240万美元C. 250万美元D. 300万美元答案:C5. 一个城市中共有A、B、C三个医院,过去一年中A医院门诊病人数占总病人数的1/3,B医院门诊病人数占总病人数的1/4,C医院门诊病人数占总病人数的1/6。

如果某天随机选择一位门诊病人,那么他就诊于C医院的概率是多少?A. 1/6B. 1/5C. 1/4D. 1/3答案:A二、计算题1. 设X为正态分布随机变量,已知X~N(50,16),求P(45≤X≤55)。

答案:要求P(45≤X≤55),可以使用标准正态分布表计算。

先求得标准化后的值:(45-50)/4=-1.25,(55-50)/4=1.25。

查表可得P(-1.25≤Z≤1.25)=0.7881-0.1056=0.6825。

故P(45≤X≤55)≈0.6825。

2. 甲、乙两人独立地各自以相同的速率生产零件,甲人生产的零件平均每小时有2个次品,乙人生产的零件平均每小时有3个次品。

概率论与数理统计期末考试试题及解答

概率论与数理统计期末考试试题及解答

《概率论与数理统计》期末试题一、填空题(每小题3分,共15分)1. 设事件B A ,仅发生一个的概率为0。

3,且5.0)()(=+B P A P ,则B A ,至少有一个不发生的概率为__________. 答案:0.9解:3.0)(=+B A B A P即)(25.0)()()()()()(3.0AB P AB P B P AB P A P B A P B A P -=-+-=+=所以1.0)(=AB P9.0)(1)()(=-==AB P AB P B A P .2. 设随机变量X 服从泊松分布,且)2(4)1(==≤X P X P ,则==)3(X P ______.答案:161-e解答:λλλλλ---==+==+==≤e X P e eX P X P X P 2)2(,)1()0()1(2由 )2(4)1(==≤X P X P 知 λλλλλ---=+e e e 22 即 0122=--λλ 解得 1=λ,故161)3(-==e X P3. 设随机变量X 在区间)2,0(上服从均匀分布,则随机变量2X Y =在区间)4,0(内的概率密度为=)(y f Y _________。

答案:04,()()0,.Y Y X y f y F y f <<'===⎩其它解答:设Y 的分布函数为(),Y F y X 的分布函数为()X F x ,密度为()X f x 则2()()()((Y X X F y P Y y P X y P X F F =≤=≤==-因为~(0,2)X U,所以(0X F =,即()Y X F y F =故04,()()0,.Y Y Xyf y F y f<<'===⎩其它另解在(0,2)上函数2y x=严格单调,反函数为()h y所以04,()0,.Y Xyf y f<<==⎩其它4.设随机变量YX,相互独立,且均服从参数为λ的指数分布,2)1(-=>eXP,则=λ_________,}1),{min(≤YXP=_________.答案:2λ=,-4{min(,)1}1eP X Y≤=-解答:2(1)1(1)P X P X e eλ-->=-≤==,故2λ={min(,)1}1{min(,)1}P X Y P X Y≤=->1(1)(1)P X P Y=->>41e-=-.5.设总体X的概率密度为⎪⎩⎪⎨⎧<<+=其它,0,1,)1()(xxxfθθ1->θ。

《应用数理统计》考试试题与参考答案

《应用数理统计》考试试题与参考答案

《应用数理统计》试卷 第 1 页 共 4 页《应用数理统计》期末考试试卷一、单项选择题:(每小题2分,共20分)在每小题列出的四个选项中只有一个选项是符合题目要求的,请将正确选项前的字母填在题后的括号内。

1、设随机事件A 与B 互不相容,且P(A)>0,P(B)>0,则( )A.P(A)=1-P (B )B.P(AB)=P(A)P(B)C.P(A ∪B)=1D.P(AB )=1 2、设A ,B 为随机事件,P(A)>0,P (A|B )=1,则必有( ) A.P(A ∪B)=P(A) B.A ⊂B C.P(A)=P(B) D.P(AB)=P(A)3、将两封信随机地投入四个邮筒中,则未向前面两个邮筒投信的概率为( )A.2422B .C C 2142 C .242!A D.24!!4、某人连续向一目标射击,每次命中目标的概率为34,他连续射击直到命中为止,则射击次数为3的概率是( ) A.()343B.41)43(2C. 43)41(2D.C 4221434()5、已知随机变量X 的概率密度为f X (x ),令Y=-2X ,则Y 的概率密度f Y (y)为( )A.2f X (-2y)B.f X ()-y2C.--122f y X () D.122f y X ()- 6、如果函数f(x)=x a x b x a x b,;,≤≤或0<>⎧⎨⎩是某连续随机变量X 的概率密度,则区间[a,b]可以是( )A.〔0,1〕B.〔0,2〕C.〔0,2〕D.〔1,2〕7、下列各函数中是随机变量分布函数的为( )A.F x xx 1211(),=+-∞<<+∞B..0,1;0,0)(2x x x x x F ≤C.F x e x x 3(),=-∞<<+∞-D.F x arctgx x 43412(),=+-∞<<+∞π8 则P{X=0}=A.112B.212 C. 412 D. 5129、已知随机变量X 和Y 相互独立,且它们分别在区间[-1,3]和[2,4]上服从均匀分布,则E(XY)=( ) A. 3 B. 6 C. 10 D. 12 10、设Ф(x)为标准正态分布函数,X i =10,,事件发生;事件不发生,A A ⎧⎨⎩ i=1,2,…,100,且P(A)=0.8,X 1,X 2,…,X 100相互独立。

数理统计期末考试试题答案

数理统计期末考试试题答案

1. Let n X X X ,,,21 be a random sample from the ),(βαGamma distributionβααβαβαxe x xf --Γ=1)(1),|(, 0>x , 0>α, 0>β.(a) ( 8 %) Find the method of moment estimates of α and β. (b) ( 7 %) Find the MLE of β, assuming α is known.(c) ( 7 %) Giving 0>α, find the Cramer-Rao lower bound of estimates of β. (d) ( 8 %) Giving 0>α, find the UMVUE of β.2. Suppose that n X X X ,,,21 are iid ~),2(p B , )1,0(∈p . Let )1(2)(p p p -=τ.(a) ( 5 %) Show that ∑==ni i X T 1 is a sufficient statistic for p .(b) ( 5 %) Let ⎩⎨⎧≠==1 if ,01if ,111X X Y . Show that Y is an unbiased estimate of )(p τ.(c) (10%) Find the UMVUE W of )(p τ.3. Let n X X X , , ,21 be a random sample from a )(λPoisson ,0>λ, distribution. Consider testing 1:0=λH vs 3:1=λH . (a) (10%) Find a UMP level α test, 10<<α.(b) ( 7 %) For 3=n , the test rejects 0H , if 5321≥++X X X .Find the power function )(λβ of the test.(c) ( 8 %) For 3=n , the test rejects 0H , if 5321≥++X X X .Evaluate the size and the power of the test.4. (10%) Let n X X X , , ,21 be iid )(ΛPoisson distribution, and let the priordistribution of Λ be a ),(βαGamma distribution, 0>α, 0>β. Find the posterior distribution of Λ.5. Let n X X X , , ,21 be a random sample from an exponential distribution with meanθ,0>θ. (a) ( 5 %) Show that ∑==ni i X T 1 is a sufficient statistic n for θ.(b) ( 5 %) Show that the Poisson family has a monotone likelihood ratio, MLR. (c) ( 5 %) Find a UMP level α test of 10:0≤<θH vs 1:1>θH by theKarlin-Rubin Theorem shown below.[Definition] A family of pdfs or pmfs }|)|({Θ∈θθt g has a monotone likelihood ratio,MLR, if for every 12θθ>, )|()|(12θθt g t g is a monotone function of t .[Karlin-Rubin Theorem] Suppose that T is a sufficient statistic for θ and the pdfs orpmfs }|)|({Θ∈θθt g has a non-decreasing monotone likelihood ratio. Consider testing 00:θθ≤H vs 01:θθ>H . A UMP level α test rejects 0H if and only if 0t T >, where )(00t T P >=θα.數理統計期末考試試題答案1. (a) Since αββαβαβαααβαα=Γ+Γ=Γ=+∞-⎰)()1()(1)(10dx e x X E xand22012)1()()2()(1)(βααβαβαβαααβαα+=Γ+Γ=Γ=+∞-+⎰dx e xX E x,Let αβ=1m and 22)1(βαα+=m ⇒αα1212+=m m ⇒ 21221~m m m -=α, 12121~~m m m m -==αβ. Furthermore, X m =1,2122212212)1()(11S nn X X n X X n m m ni i ni i -=-=-=-∑∑==, The MME of α.and β are 22)1(~Sn X n -=α, X n S n 2)1(~-=β(b) βααβααβαβααβ∑--=--==∏Γ=Γ∏=ni iix i ni n x i ni ex e x x L 1)(])([1])(1[)~,|(1111⇒ βαβαααβ∑∑==--+-Γ-=ni ni i x x n n x L 111ln )1(ln )(ln )~,|(lnLet 01)~,|(ln 12=+-=∂∂∑=n i i x n x L ββααββ ⇒ ααβx x n ni i ==∑=11ˆ. Furthermore, 32132222ln 2)~,|(ln ββαββααββx n n x n x L n i i -=-=∂∂∑= ⇒02ˆ2ˆ)~,|ˆ(ln 233222<-=-=-=∂∂x n x x n x n x n n x L ββααββ, So, αβX =ˆ is the MLE of β. (c) 232132222)2()]~,|(ln [βαβαββαββααββββn n n X n E x L E n i i =+-=+-=∂∂-∑=⇒ CRLB =αβαβββn x L E 222)]~,|(ln [1=∂∂- (d) Since βααβα==)(XE , αβX =ˆ is an unbiased estimate of β, and===αβαβααn nXVar 2221)(CRLB, αβX =ˆ is the UMVUE of β. [Or] βααβαβαxe x x I xf --∞Γ=1),0()()(1),|()]1(exp[)()(11),0(ββααα-Γ=-∞x x x I⇒ Given α, )}|({βx f is an exponential family in β.⇒ ∑==ni i X T 1is a sufficient statistic for β.Since ααβn T X ==ˆ is an unbiased estimate of β and a function of sufficient statistics T , by Rao-Blackwell Theorem, αβX =ˆ is the UMVUE of β.2. (a) ∏∏==--⎪⎪⎭⎫⎝⎛==ni n i x x ii i n i i p p x I x p x f p x x x f 112}2,1,0{21])1()(2[)|()|,,,( n x n i i i n i x i i p p p x I x p p p x I x ni i i 21}2,1,0{12}2,1,0{)1()1]()(2[])1()1)((2[1--⎪⎪⎭⎫⎝⎛=--⎪⎪⎭⎫ ⎝⎛=∑===∏∏ Let n x T p p p p x T g 2)~()1()1()),~((--= and )(2)(}2,1,0{1i n i i x I x x h ∏=⎪⎪⎭⎫ ⎝⎛=. By factorization theorem, ∑==ni i X T 1is a sufficient statistic for p .[Or] )]1ln(exp[)1()(2)1()(2)|(2}2,1,0{2}2,1,0{p p x p x I x p p x I x p x f x x --⎪⎪⎭⎫ ⎝⎛=-⎪⎪⎭⎫ ⎝⎛=- ⇒ )}|({p x f is an exponential family ⇒ ∑==ni i X T 1is a sufficient statistic.(b) )1(2)1(12)1(0)1(1)(12111p p p p X P X P Y E -=-⎪⎪⎭⎫ ⎝⎛=≠⋅+=⋅=-, so Y is an unbiased estimate of )(p τ. (c) If n X X X ,,,21 , N n ∈, are iid ~),2(p B , then ),2(~1p n B X T ni i ∑==.⇒ )()1 & 1()()& 1()()& 1()|(211t T P t X X P t T P t T X P t T P t T Y P t T Y E ni i =-============∑=t n t t n t ni i p p t n p p t n p p t T P t X P X P ----=-⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛---==-===∑212121)1(2)1(122)1(2)()1()1( )12()2()!2()!2(!)!12()!1()!22(2--=-----=n n t n t n t n t t n t n , n t 2,,2,1,0 =.By Rao-Blackwell Theorem, )12(2)()|(--==n T n T T Y E W is the UMVUE of λλτ-=e )(.3. (a) By Neyman-Pearson Lemma, a UMP level α test rejects 0H if and only if)1|,,,()3|,,,(2121=>=λλn n x x x kf x x x f .⇔ ])!(1[])!(3[1131-=-=∏>∏e x k e x i x n i i x ni ii ⇔ n x ke i 23>∑ ⇔ k n x n i i ln 23ln )(1+>∑= ⇔c kx ni i =+>∑=3ln ln 21 Since)(~1λn Poisson X ni i ∑=, a UMP level α test rejects0H if and only ifc X ni i >∑=1, where c is the smallest integer satisfying α≤-∞+=∑nc i i e i n 1!. [Or] ∑==ni i X T 1is sufficient for λ and )(~λn Poisson T .By the corollary of Neyman-Pearson Lemma, a UMP level α test rejects 0H if and only if )1|()3|(=>=λλt kg t g .⇔ 13!1!3-->e t k e t t t ⇔ 23ke t > ⇔ k x ni ln 23ln )(11+>∑=(b) )4(1)5()(321321≤++-=≥++=X X X P X X X P λλλβλλλλλλ343210]!4)3(!3)3(!2)3(!1)3(!0)3([1-++++-=e, 0>λ (c) The size of this test is 1847.0]!43!33!23!13!03[1)1(343210=++++-=-e β The power of this test is 9450.0]!49!39!29!19!09[1)3(943210=++++-=-e β 4. Since ∑==ni i X T 1 is sufficient for λ and )(~λn Poisson T .λλλλn tT e t n t f -=!)()|(|; and βλααλβαλ--ΛΓ=e f 1)(1)(⇒ βλααλλβαλλ---Γ=e e t n tf n t1)(1!)(),(λβααλβα)1(1)(!+--+Γ=n t tet n, 0>λ⇒ ααλβααββαβαλλβα+∞+--+++ΓΓ=Γ=⎰t tn t tT n t t n d et nt f )1)(()(!)(!)(0)1(1⇒ αλβαααλβααββαλββαβαλβαλλ++--+++--+Λ++Γ=++ΓΓΓ==t n t t t n t tT t n t e n t t n et nt f t f t f )1)(()1)(()(!)(!)(),()|()1(1)1(1|, 0>λThe posterior distribution of Λ is )1,(++ββαn t Gamma .5. (a) )(1))(1()|()|,,,(),0(111),0(211i n i x n ni ni i x i n x I e x I e x f x x x f i ∞=∑-==∞-∏===∏∏θθθθθθLet θθθ)~(1)),~((x T n ex T g -= and )()~(),0(1i n i x I x h ∞=∏=. By factorization theorem, ∑==ni i X T 1is a sufficient statistic for θ.[Or])]1(exp[1)()(1)|(),0(),0(βθθθθ-==∞∞-x x I x I e x f x⇒ )}|({θx f is an exponential family.⇒ ∑==ni i X T 1is a sufficient statistic.Since ααβn T X ==ˆ is an unbiased estimate of β and a function of sufficient statistics T , by Rao-Blackwell Theorem, αβX =ˆ is the UMVUE of β. (b) )(~1λn Poisson X T ni i ∑== ⇒ λλλn t et n t g -=!)()|(, ,2,1,0∈t ⇒ )(1212121212!)(!)()|()|(λλλλλλλλλλ----⎪⎪⎭⎫ ⎝⎛==n t n t n t e e t n et n t g t g If 12λλ> ⇒ 112>λλ ⇒ )|()|(12λλt g t g is an increasing function of t ,Hence }0|)|({>λλt g of T has MLR. (c) ),(~1θn Gam m a X T ni i ∑== ⇒ θθθtn ne t n t g --Γ=1)(1)|(, 0>t⇒tn tn n tn n e e t n e t n t g t g )11(211112121212)(1)(1)|()|(θθθθθθθθθθ------⎪⎪⎭⎫ ⎝⎛=ΓΓ=, 0>t If 12θθ> ⇒ 0)11(211212>-=--θθθθθθ ⇒ )|()|(12θθt g t g is increasing in t .Hence }0|)|({>θθt g of T has an MLR.By Karlin-Rubin Theorem, the UMP size α test rejecting 0H if c X T ni i >=∑=1, where csatisfies that αθ==>∑=}1|{1c X P ni i ; i.e.,α=Γ⎰∞--cxn dx e x n 1)(1.。

数理统计期末试题

数理统计期末试题

数理统计期末试题数理统计期末试题————————————————————————————————作者:————————————————————————————————日期:数理统计期末练习题1. 在总体)4,6.7(N 中抽取容量为n 的样本,如果要求样本均值落在)6.9,6.5(内的概率不小于0.95,则n 至少为多少2.设n x x ,,1 是来自)25,( N 的样本,问n 多大时才能使得95.0)1|(| x P 成立 3. 由正态总体)4,100(N 抽取两个独立样本,样本均值分别为y x ,,样本容量分别15,20,试求)2.0|(| y x P .5.设161,,x x 是来自),(2 N 的样本,经计算32.5,92s x ,试求)6.0|(| x P .6.设n x x ,,1 是来自)1,( 的样本,试确定最小的常数c,使得对任意的0 ,有)|(|c x .7. 设随机变量 X~F(n,n),证明 )1(X9.设21,x x 是来自),0(2N 的样本,试求22121 x x x x Y 服从分布.10.设总体为N(0,1),21,x x 为样本,试求常数k ,使得.05.0)()()(221221221k x x x x x x11.设n x x ,,1 是来自),(21N 的样本,m y y ,,1 是来自),(22 N 的样本,c,d是任意两个不为0的常数,证明),2(~)()(2221m n t s y d x c t md nc 其中22222,2)1()1(y x yx s s m n s m s n s 与分别是两个样本方差.12.设121,,, n n x x x x 是来自),(2N 的样本,11,n n i i x x n _2211(),1n n i n i s x x n 试求常数c 使得1n nc nx x t cs 服从t 分布,并指出分布的自由度。

概率论与数理统计期末考试试题及解答

概率论与数理统计期末考试试题及解答

概率论与数理统计期末考试试题及解答概率论与数理统计》期末试题一、填空题(每小题3分,共15分)1.设事件A,B仅发生一个的概率为0.3,且P(A)+P(B)=0.5,则A,B至少有一个不发生的概率为0.9.解:由题意可得P(AB+AB)=0.3,即0.3=P(AB)+P(AB)=P(A)-P(AB)+P(B)-P(AB)=0.5-2P(AB),所以P(AB)=0.1,P(A∪B)=P(AB)=1-P(AB)=0.9.2.设随机变量X服从泊松分布,且P(X≤1)=4P(X=2),则P(X=3)=1-e^(-6)。

解:由P(X≤1)=P(X=0)+P(X=1)=e^(-λ)+λe^(-λ),P(X=2)=λ^2e^(-λ)/2,且P(X≤1)=4P(X=2),可得λ=1,因此P(X=3)=λ^3e^(-λ)/3!=1-e^(-6)。

3.设随机变量X在区间(0,2)上服从均匀分布,则随机变量Y=X在区间(0,4)内的概率密度为f_Y(y)=1/2,0<y<2;f_Y(y)=1,2<y<4;其它为0.解:设Y的分布函数为F_Y(y),X的分布函数为F_X(x),密度为f_X(x),则F_Y(y)=P(Y≤y)=P(X≤y)=P(-y≤X≤y)=F_X(y)-F_X(-y)。

因为X~U(0,2),所以F_X(-y)=0,即F_Y(y)=F_X(y)。

又因为f_Y(y)=F_Y'(y)=f_X(y),所以f_Y(y)=1/2,0<y<2;f_Y(y)=1,2<y<4;其它为0.另解:在(0,2)上函数y=x严格单调,反函数为h(y)=y,所以f_Y(y)=f_X(y)/h'(y)=f_X(y)/2y=1/2,0<y<2;f_Y(y)=f_X(y)/h'(y)=f_X(y)/2y=1,2<y<4;其它为0.4.设随机变量X,Y相互独立,且均服从参数为λ的指数分布,P(X>1)=e^(-2),则λ=2,P{min(X,Y)≤1}=1-e^(-2)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数理统计期末试题————————————————————————————————作者:————————————————————————————————日期:数理统计期末练习题1. 在总体)4,6.7(N 中抽取容量为n 的样本,如果要求样本均值落在)6.9,6.5(内的概率不小于0.95,则n 至少为多少2.设n x x ,,1 是来自)25,( N 的样本,问n 多大时才能使得95.0)1|(| x P 成立 3. 由正态总体)4,100(N 抽取两个独立样本,样本均值分别为y x ,,样本容量分别15,20,试求)2.0|(| y x P .5.设161,,x x 是来自),(2 N 的样本,经计算32.5,92s x ,试求)6.0|(| x P .6.设n x x ,,1 是来自)1,( 的样本,试确定最小的常数c,使得对任意的0 ,有)|(|c x .7. 设随机变量 X~F(n,n),证明 )1(X9.设21,x x 是来自),0(2N 的样本,试求22121 x x x x Y 服从 分布.10.设总体为N(0,1),21,x x 为样本,试求常数k ,使得.05.0)()()(221221221k x x x x x x11.设n x x ,,1 是来自),(21N 的样本,m y y ,,1 是来自),(22 N 的样本,c,d是任意两个不为0的常数,证明),2(~)()(2221m n t s y d x c t md nc 其中22222,2)1()1(y x yx s s m n s m s n s 与分别是两个样本方差.12.设121,,, n n x x x x 是来自),(2N 的样本,11,n n i i x x n _2211(),1n n i n i s x x n 试求常数c 使得1n nc nx x t cs 服从t 分布,并指出分布的自由度 。

13.设从两个方差相等的正态总体中分别抽取容量为15,20的样本,其样本方差分别为,,2221s s试求).2(2221 S S p14. 某厂生产的灯泡使用寿命)250,2250(~2N X ,现进行质量检查,方法如下:随机抽取若干个灯泡,如果这些灯泡的平均寿命超过2200h,就认为该厂生产的灯泡质量合格,若要使检查能通过的概率不低于0.997,问至少应检查多少只灯泡?15.设 )(171x x 是来自正态分布),(2N 的一个样本,_x 与 2s 分别是样本均值与样本方差。

求k,使得95.0)(_ks x p , 21.设1,,n x x L 是来自正态分布总体2,N 的一个样本。

2111nni i s x x n 是样本方差,试求满足95.05.122n s P 的最小n 值 。

1. 设(X 1, X 2, …,X n )为来自正态总体 N( , 2)的样本, 2未知, 现要检验假设H 0: = 0, 则应选取的统计量是______; 当H 0成立时, 该统计量服从______分布.2. 在显著性检验中,若要使犯两类错误的概率同时变小, 则只有增加______. 1. 设总体X ~ N( , 2) , 2已知, x 1, x 2, …, x n 为取自X 的样本观察值, 现在显著水平 = 0.05下接受了H 0: = 0. 若将 改为0.01时, 下面结论中正确的是(A) 必拒绝H 0 (B) 必接受H 0 (C) 犯第一类错误概率变大 (D) 犯第一类错误概率变小2. 在假设检验中, H 0表示原假设, H 1为备选假设, 则称为犯第二类错误的是 (A) H 1不真, 接受H 1 (B) H 0不真, 接受H 1 (C) H 0不真, 接受H 0 (D) H 0为真, 接受H 13. 设(X 1, X 2, …,X n )为来自正态总体 N( , 2)的样本, , 2未知参数, 且n i i X n X 11, ni i X X Q 122)(则检验假设H 0: = 0时, 应选取统计量为 (A) Q X n n )1( (B) Q X n (C) Q X n 1 (D) 2QXn 4,对于单因素试验方差分析的数学模型,设T S 为总离差平方和,e S 为误差平方和,A S 为效应平方和,则总有T e A S S S1、设来自总体X 的样本值为(3,2,1,2,0) ,则总体X 的经验分布函数5()F x 在0.8x 处的值为_____________。

2、设来自总体(1,)B 的一个样本为12,,,n X X X L ,X 为样本均值。

则()Var X ___________。

3、设112,,,,...,m m m X X X X K 是来自总体2(0,)N 的简单随机样本,则统计量1221mii m ii m XT X服从的分布为__________。

4、设1,,n X X K 为来自总体(0,)U 的样本, 为未知参数,则 的矩法估计量为____________________。

5、设12,,,n X X X L 为来指数分布()Exp 的简单随机样本, 为未知参数,则12ni i X 服从自由度为_________的卡方分布。

6、12,,,n X X X L 设为来自正态分布2(,)N 的简单随机样本,2, 均未知,2,X S 分别为样本均值和样本无偏方差,则检验假设0010::H VS H 的检验统计量为0()n X t S,在显著性水平 下的拒绝域为_______________________。

1、设1,,n X X K 是来自总体2(,)N 的简单随机样本, 统计量1211()n i i i T c X X 为2的无偏估计。

则常数c 为12(1)n3、设1234,,,X X X X 是来自总体(1,)B p 样本容量为4的样本,若对假设检验问题0H :0.5p ,1H :0.75p 的拒绝域为413i i W x,该检验犯第一类错误的概率为( )。

(A )1/2 (B )3/4 (C )5/16 (D )11/164、设12,,,n X X X L 为来自总体X 的简单随机样本,总体X 的方差2 未知,2,X S分别为样本均值和样本无偏方差,则下述结论正确的是( )。

(A )S 是 的无偏估计量 (B )S 是 的最大似然估计量 (C )S 是 的相合估计量 (D )S 与X 相互独立1、某种产品以往的废品率为5%,采取某种技术革新措施后,对产品的样本进行检验,这种产品的废品率是否有所降低,取显著水平%5 ,则此,设题的原假设0H :______备择假设1H :______.犯第一类错误的概率为_______。

2、设总体),(~2 N x ,方差2 未知,对假设0H :0 ,1H :0 ,进行假设检验,通常采取的统计量是________,服从_______分布,自由度是________。

3、设总体),(~2 N x , 和2 均未知。

统计假设取为0H :0 1H :0 若用t 检验法进行假设检验,则在显著水平 之下,拒绝域是(B )A 、)1(||21n ttB 、)1(||21n ttC 、)1(||1 n t tD 、)1(||1 n t t4、在假设检验中,原假设0H ,备择选择1H ,则称( B )为犯第二类错误A 、0H 为真,接受0HB 、0H 不真,接受0HC 、0H 为真,拒绝0HD 、0H 不真,拒绝0H2、设n X X X ,...,,21为取自总体),(~2 N X 的样本,X 为样本均值,212)(1X X n S i ni n,则服从自由度为1 n 的t 分布的统计量为 3、若总体X ~),(2 N ,其中2 已知,当样本容量n 保持不变时,如果置信度1 减小,则 的置信区间 .4、在假设检验中,分别用 , 表示犯第一类错误和第二类错误的概率,则当样本容量n 一定时,下列说法中正确的是( ).(A ) 减小时 也减小; (B ) 增大时 也增大; (C ), 其中一个减小,另一个会增大; (D )(A )和(B )同时成立. 6、设总体X 和Y 相互独立,且都服从正态分布2(0,3)N ,而129(,,)X X X L 和129(,,)Y Y Y L 是分别来自X 和Y 的样本,则192219X X U Y YL L 服从的分布是_______ .7、设1ˆ 与2ˆ 都是总体未知参数 的估计,且1ˆ 比2ˆ 有效,则1ˆ 与2ˆ 的期望与方差满足_______ ______________.8、设总体),(~2 N X ,2 已知,n 为样本容量,总体均值 的置信水平为 1的置信区间为),( X X ,则 的值为________.9、设n X X X ,...,,21为取自总体),(~2 N X 的一个样本,对于给定的显著性水平,已知关于2 检验的拒绝域为 2≤)1(21 n ,则相应的备择假设1H 为________;一、填空题1. 若X 是离散型随机变量,分布律是{}(;)P X x P x ,( 是待估计参数),则似然函数 ,X 是连续型随机变量,概率密度是(;)f x ,则似然函数是 。

2. 若未知参数 的估计量是$ ,若 称$ 是 的无偏估计量。

设$$12, 是未知参数 的两个无偏估计量,若 则称$1 较$2 有效。

3. 对任意分布的总体,样本均值X 是 的无偏估计量。

样本方差2S 是 的无偏估计量。

4. 设总体~()X P ,其中0 是未知参数,1,,n X X K 是X 的一个样本,则 的矩估计量为 ,极大似然估计为 。

二、计算题1. 设总体服从几何分布:.3,2,1,11x p p x X P x 如果取得样本观测值为,,,,21n x x x 求参数p 的矩法估计量和极大似然估计。

2. 设总体服从指数分布~X ()e , 取一个样本为12,,,n x x x L ,求 矩估计量 和最大似然估计量.3. 设总体X 服从0-1分布),1(p B ,这里10 p . 现从总体中抽 取了一个样本1,,n x x L ,试求p 的极大似然估计量.4. 设~X (,)U a b ,一个样本为12,,,n x x x L ,求参数, a b 的矩估计量.5. 设总体X 的概率密度为1,01,(,)0,.x x f x其它 其中0 ,如果取得样本观测值为12,,,n x x x L ,求参数 的矩估计值和最大似然估计值.7、设总体X 的概率函数为000);(1x x e ax x p ax a ,其中0 是未知参数, 0 a 是已知常数,试根据来自总体X 的简单随机样本n X X X ,,21,求的最大似然估计量^8. 设1ˆ 和2ˆ 为参数 的两个独立的无偏估计量,且假定21ˆ2ˆ D D ,求常数c 和d ,使21ˆˆˆ d c 为 的无偏估计,并使方差 ˆD 最小.9、设n 个随机变量1X ,2X ,…,n X 独立同分布,21)( X D ,ni i X n X 11,ni i X X n S 122)(11,则A )S 是 的无偏估计量;B )S 是 的最大似然估计量;C )S 是 的相合估计量(即一致估计量);D )S 与X 相互独立.一、填空题1、设总体2~(,) ,1 ,…,n 是 的样本,则当2已知时,求 的置信区间所使用的统计量为= ; 服从 分布;当2 未知时,求 的置信区间所使用的统计量 = , 服从 分布.2、设总体2~(,) ,1 ,…,n 是来自 的一个样本,则当 已知时,求2的置信区间所使用的统计量为 = ; 服从 分布.则当 未知时,求2的置信区间所使用的统计量为= ; 服从 分布.3、设由来自总体2~(,0.9) 容量为9的简单随机样本,得样本均值 =5,则未知参数 的置信度为0.95的置信区间是 .一、选择题1.设随机变量X 服从n 个自由度的t 分布,定义t α满足P(X ≤t α)=1-α,0<α<1。

相关文档
最新文档