无碳小车设计说明ppt
《无碳小车》PPT课件
LOREM
LOREM
h
19
重心位置要合理
LOREM
LOREM LOREM
LOREM
LOREM
h
20
理论验算
小车移动的距离为(以A轮为参考)
ds R d2
当转向杆与驱动轴间的夹角为α时,曲柄转过的角度为 θ1则与满足以下关系:
α=atan((sin(θ1/i2)*r1)/c) 当小车转过的角度为时,有
未来车人类 仇熠聪、孙敏杰、刘璐
h
1
小车的大致外观
h
2
设计前的分析
小车车体的设计 转向系统的设计 传动系统的设计 轨迹调整机构的设计 重力势能转化系统的设计 速度控制系统的设计
h
3
小车车体的设计
小车车体:承载小车的重量,连接 小车的各个部件,各个尺寸要求合 理,车体有较好的刚性,并且重量 较小,能最大限度的降低小车的重 心
h
4
转向系统的设计
实现小车转向轮的左右摆动,要求左右摆角要相等,有利于减小压 力角,并且要易于加工和调整,有较好的稳定性;
h
5
传动系统
实现动力的传递以及运 动的传递,并且要求前 轮与后轮有一定的传动 比,有利于提高能量利 用率和有较好的工艺性
h
6
方向调整 机构
实现小车整体摆动角度 的微调,调整小车的运 动轨迹,实现稳定的无 极调节;
0.3
0.2
0.1
0
-0.1
-0.2
-0.3
-0.4
-0.5
-60
-50
-40
-30
-20
-10
0
10
h
23
LOREM IPSUM DOLOR
无碳小车设计说明书(模板) 3
无碳小车设计说明书参赛者:指导老师:2014-7-摘要关键字:目录摘要 (2)一绪论 (5)1.1本届竞赛命题主题 (5)1.2小车功能设计要求 (5)1.3小车整体设计要求 (6)1.4小车的设计方法 (7)二方案设计 (7)2.1车架 (8)2.2原动机构 (8)2.3传动机构 (8)2.4转向机构 (8)2.5行走机构 (8)2.6微调机构 (8)三技术设计 (8)3.1建立数学模型及参数确定 (8)3.1.1能耗规律模型 (8)3.1.2运动学分析模型 (8)3.1.3动力学分析模型 (8)3.1.4灵敏度分析模型 (9)3.1.5参数确定 (9)3.2零部件设计 (9)3.3整体设计 (9)3.3.1整体装配图 (9)3.3.2小车运动仿真分析 (10)四小车制作调试及改进 (10)4.1小车制作流程 (10)详见工艺分析方案报告.............................................. 错误!未定义书签。
4.2小车调试方法 (10)4.3小车改进方法 (10)五评价分析 (10)5.1小车优缺点 (10)5.2自动行走比赛时的前行距离估计 (10)5.3改进方向 (10)六参考文献 (10)七附录 (10)7.1装配图 (10)7.2耗能分析程序 (11)7.3运动学分析程序 (11)7.4动力学分析程序 (11)7.5灵敏度分析程序 (11)一、绪论1.1命题主题本次设计主题为“无碳小车”。
........。
1.2小车功能设计要求给定一重力势能,根据能量转换原理,设计一种可将该重力势能转换为机械能并可用来驱动小车行走的装置。
该自行小车在前行时能够自动避开赛道上设置的障碍物(每间隔1m,放置一个直径20mm、高200mm的弹性障碍圆棒)。
以小车前行距离的远近、以及避开障碍的多少来综合评定成绩。
(1)“S”型赛道场地常规赛竞赛小车在前行时能够自动绕过赛道上设置的障碍物。
S型无碳小车设计ppt课件
律或运动轨迹,且设计较为复杂;当给定的运动要求较多或较复杂
时,需要的构件数和运动副数往往比较多,这样就使机构结构复杂
,工作效率降低,不仅发生自锁的可能性增加,而且机构运动规律
对制造、安装误差的敏感性增加;机构中做平面复杂运动和作往复
运动的构件所长生的惯性力难以平衡,在高速时将引起较大的振动
8
2 整体设计思路
。
17
3 结构设计及参数选
择
车轮轴的尺寸见图3-4
图3-4 车轮轴尺寸
图3-5 绳轮轴的尺寸
18
3 结构设计及参数选
择 槽轮轴尺寸见图3-6
图3-6 槽轮轴尺寸
图3-7 转向轴尺寸
19
3 结构设计及参数选
择 槽轮轴尺寸见图3-6
图3-6 槽轮轴尺寸
图3-7 转向轴尺寸
15
确定3 结情构设计况及参下数选,凹轮槽的宽度尺寸由转向 转向最大择转向角度为 。转向轴心与
两轴心距离为85mm。在SolidWorks草 凹槽的中心距离,参见图3-3。
图3-3 凹槽中心距示意图
16
3 结构设计及参数选
择
转向轮的设计
转向轮随着轴向轴的偏转而 偏转,转向轮起到调整小车 转弯的作用,转向轮不应过 大,一般小于后轮的尺寸, 设定转向轮的半径为25mm
。这里设定车轮转过3圈,则可以计算出无碳小车的车轮半径为 =126.8mm,为了方便制作取半径为 =125mm
齿轮的确定
确定了无碳小车的车轮半径后,根据
(3-5)
ds= *d =
其中齿轮2于齿轮1的传动比i=
12
3 结构设计及参数选
择 可知齿轮1和齿轮2的传动比决定了无碳小车初始速度的大小,适当 的调节齿轮的转动比,确定齿数大小的比例,从而可以得出齿轮半
无碳小车设计说明
其它的一些细节设计
车身的设计 车轮的设计 轴承的设计 车身部件的一些材料的取用 以上的各种细节设计都要以减小小车重力和阻 力为目的 ,同时要考虑其价钱的多少和设 同时要考虑其价钱的多少和设 计出来的艺术效果。 计出来的艺术效果。
驱动部分的大致结构图
物体在下落过程中所受到的阻力图
阻 力
速 度
驱动
原理:绳拉力为动力。 原理:绳拉力为动力。将物块下落的势能尽 可能多的转换为小车的动能, 可能多的转换为小车的动能,进而克服阻力 做功。 做功。物块在下落的过程中不可避免的要与 小车发生碰撞,碰撞过程必然要有能量损失, 小车发生碰撞,碰撞过程必然要有能量损失, 所以要解决的问题: 下降过程中 下降过程中, 所以要解决的问题:1下降过程中,尽可能的 降低下落的速度; 在将要下降到小车时 在将要下降到小车时, 降低下落的速度;2在将要下降到小车时,改 变转速比,使物块减速下落, 变转速比,使物块减速下落,进一步减少碰 撞损耗。 撞损耗。
小车的运动轨迹
其他方面的一些想法
1,在后轮转轴上安放多个不同半径的带轮, ,在后轮转轴上安放多个不同半径的带轮, 微调转矩,适应不同的环境下阻力的不同。 微调转矩,适应不同的环境下阻力的不同。 2,传输功率 转矩 角速度 ,通过一系列 转矩X角速度 通过一系列 ,传输功率=转矩 的齿轮,带轮,转轴产生转速比, 的齿轮,带轮,转轴产生转速比,使作用 在后轮的转矩和阻尼转矩平衡, 在后轮的转矩和阻尼转矩平衡,物块低速 匀速下落。 匀速下落。 3,制作多套后轮,微调转矩。改变后轮时, ,制作多套后轮,微调转矩。改变后轮时, 也要相应的改变转向传动轮的大小, 也要相应的改变转向传动轮的大小,同时 保持车身水平,适当调整前轮转轴的长度。 保持车身水平,适当调整前轮转轴的长度。
无碳小车
无碳小车一、系统设计1、小车总体设计图(图1)2、设计要求给定一重力势能,根据能量转换原理,设计一种可将该重力势能转换为机械能并可用来驱动小车行走的装置。
该自行小车在前行时能够自动避开赛道上设置的障碍物(每间隔 1米,放置一个直径 20mm 、高 200mm 的弹性障碍圆棒)。
以小车前行距离的远近、以及避开障碍的多少来综合评定成绩。
给定重力势能为5焦耳(取g= 10m /s2),竞赛时统一用质量为 1Kg 的重块(¢50× 65 mm ,普通碳钢)铅垂下降来获得,落差500± 2mm,重块落下后,须被小车承载并同小车一起运动,不允许掉落。
要求小车前行过程中完成的所有动作所需的能量均由此能量转换获得,不可使用任何其他的能量形式。
小车要求采用三轮结构(1个转向轮,2个驱动轮),具体结构造型以及材料选用均由参赛者自主设计完成。
要求满足:①小车上面要装载一件外形尺寸为¢60× 20 mm 的实心圆柱型钢制质量块作为载荷,其质量应不小于750克;在小车行走过程中,载荷不允许掉落。
②转向轮最大外径应不小于¢30mm二、车体设计车体选择:梯形车身设计车架材料选择:我们经过比较认为选择有机玻璃。
用有机玻璃做的车架比塑料车架更加牢固,比铁制小车更轻便,美观。
制作无碳小车总体思路:根据要求小车采用三轮结构,我们制定了前轮作为转向轮,后两轮作为驱动轮的方案。
即前轮通过车轮转向机构(如车轮转向设计图),使其能够做周期性的来回摆动,后两轮通过杆连接,杆上装有几个可以调节选择的皮带轮,通过皮带轮与动力机构连接从而带动后轮转动(如图1)。
这样,当前轮周期性摆动和后轮向前滚动结合起来就可以实现无碳小车的周期性向前行进,由此可以轻松的实现小车小车避开每隔一米一个的弹性圆棒(如图2)。
在安装时我们保证载荷均匀分布。
当小车前进时,后驱动轮与前转向轮形成了三点结构。
这种结构使得小车在前进时比较平稳,可以避免出现后轮过低而使左右两驱动轮驱动力不够的情况。
无碳小车PPT
标志说明
(1)设计说明: 整个徽标是一个椭圆形的圈,包围着一个加油机字样的N和英文字母“CAR”, 代表着“No Carbon”无碳,简单明了地说明了这届大赛的主题。同时,英文字 母“CAR”也代表着我们所做的无碳小车。其次,选用绿色为标志的主色调,代表 着绿色环保,和谐自然。且外面的椭圆圈,代表着能量的意识,说明了势能与动 能相互转换的过程。同时,椭圆圈又是一圈圈跑道,代表着无碳的道路永无止境。 最后,以整体上看,整个图形像一只眼睛。看着远方,对未来全球实现无碳充满 希望。 (2)材料:45钢 (3)制作:激光打标机 喷漆
※ 创新点简述
本小车采用的转向方案中,曲柄是在一 个圆盘上,在不改变小车机构的前提下,可 以调节曲柄和连杆的长度,从而避免了安装 时的局限。同时,可以根据两个障碍物的距 离改变后,相应的调节曲柄和连杆的长度, 以适应不同宽度的赛道。此外,后轮可以根 据不同赛道的地面更换相对应材料的外胎。
驱动轴3与细绳2的连接处为阶梯槽型,局部放大图如下:
全国大学生工程训练综合能力竞赛命题原则
◆创新设计能力 ◆制造工艺能力 ◆实际操作能力 ◆工程管理能力
1、设计说明
2、方案说明
下面请大家看一下机构仿真
3、计算部分
通过整理以上方程,带入合理参数,使用 Matlab软件分析得到小车的运动轨迹。(如 下图)
参数确定 单位:mm 转向轮与曲柄轴轴心距 b=145; 摇杆长c=32; 驱动轮直径D=120; 驱动轮A与转向轮横向偏距 a1=78 驱动轮B与转向轮横向偏距 a2=78; 驱动轴与转向轮的距离d=145; 曲柄长r1=22; 绳轮半径r2=16
① 启动阶段(时间很短):细绳绕图中的左边大轴运 动,此时驱动转矩大于阻尼转矩,重块加速下降; ② 匀速阶段(时间较长):细绳绕图中的中间中轴运 动,此时驱动转矩约等于阻尼转矩,重块以较低的 速度匀速下降; ③ 结束阶段(时间较短):细绳绕图中的右边小轴运 动,此时驱动转矩已经小于阻尼转矩,但是由于惯 性小车依然运动,重块减速下落至车架,碰撞产生 的能量损失较小。
无碳越障小车设计说明1(1)
设计思想:
看到此次竞赛主题,我们认为,能否很好地解决小车的驱动问题 和自动转向问题是设计成功不否的关键。围绕这个中心,我们展开了 一系列理论分析不验证。最终确定了我们的设计思想:重力驱动不仿 自行车式转向。
驱动方面:驱动其行走的能量是根据能量转换原理,由给定重力 势能转换来的。绳子的拉力作为动力,将物体下落的势能尽可能的转 化为小车的动能,迚而克服阻力做功,尽可能使小车匀速运动。 转向方面:主要仿照自行车转向的方案,利用曲柄摇杆机构控制 小车的自动转向。
利用转向轮中心轴偏转,实现小车转向。本方案设 计中小车动力转变通过改变绳子绕在绳轮上丌同位置来改 变其输出,
小车运动轨迹示意图:
动力系统设计:
设计主体思路:首先利用重力势能转化成由绳子带 动可调的绳轮式原动机构带动后轮驱动小车的前迚。
理论计算数据:能量用4J计算可以得到运行最大距 离,但实际运行中,能量运用率无法达到100%,相互抵 消不否需要实验数据说明。
小车整体及外观初步设计:
小车底板设计:小车底板宽度180mm,总长度300mm, 前半部分采用等腰梯形,上底100mm,下底180mm, 高100mm,后半部分为矩形设计长为200mm,宽度为 180mm。底板厚度3mm。 重物支撑架设计:采用长度为600mm,宽度50mm,厚 度为3mm中部为空的塑料板,另外重物支撑架两边用两 根长度为300mm的塑料棒支撑。 转向装置设计:转向连杆统一采用直径1mm的硬质铝棒, 中轴采用钢棒。转向轮位于小车中轴线上,转向轮轴线不 前底板相距30mm。转向轮外径为50mm,最大宽度 15.625mm。 后轮驱动设计:后轮外径60mm,宽度为10mm,两轮 中轴线离后底板30mm,采用嵌入式放置,小齿轮位于两 后轮连线中心处。
S型无碳小车设计PPT课件
.
24
谢谢观看
.
25
①无碳小车在整个行驶过程中,都是由重锤下落的重力势能提供能量,在设计中应尽可能利用 这势能,减少其它不必要结构消耗能量。
②因为提供的能量有限,要可能减少整个无碳小车的质量,无碳小车越轻越好,因此尽可能使 用轻质材料构成。
③无碳小车按照“s”型路线行走,要有一定的转向机构按照一定的规律周期运转,并且稳定可靠 能及时响应。
完成各种零件的装配后得到了无碳小车的完整装配图
图3-8无碳小车的完整装配图建模
.
21
3 结构设计及参数选择
完成各种零件的装配后得到了无碳小车的完整装配图
.
22
3 结构设计及参数选择
完成各种零件的装配后得到了无碳小车的完整装配图
.
23
4 仿真结果
在完成整体装配图的环境下,单击左下角的运动算例,把动画模拟时间轴拉到20秒的位置。 在无碳小车装配体中,单击虚拟马达,弹出马达类型对话窗,选择旋转马达,然后单击绳轮 面,为绳轮轴添加一个虚拟马达。虚拟马达模拟重锤下落时牵动绳子带动绳索转动的情况, 设定虚拟马达的转速为30r/min。 然后按下从头播放动画,观察小车齿轮、车轮、凹槽轮、拨杆运动情况。输出动画结果,对 结果进行分析。 对于建立的无碳小车,在没有考虑其它摩擦力、阻力、能量损失的情况下,加人虚拟马达模 拟运动时,绳轮能带动轴的转动,引起齿轮2的转动,齿轮2又带动齿轮1、齿轮3的转动。当 车轮转过1.5圈时,凹槽轮刚好转过0.5圈,说明齿轮1、齿轮2、齿轮3在齿数设计上符合拟定 的运动轨迹转向要求。 对于转向机构的设计,凹槽轮转动时,拨杆球面与凹槽面相切运动,随着凹槽的改变,拨杆 也能随着凹槽路径改变,引起转向轴的改变,带动前轮转动。说明设计的这种转向机构有一 定的实用性,能够带动小车有规律的转向。同理可以通过边凹槽轮上的凹槽路径,设定出特 定规律的路径,让无碳小车沿不同特定规律路线行走。比如走“8”字型、“0”路线。
机械设计大赛-无碳小车-设计说明书
目录前言第1章、绪论 (4)1.1 参赛主题 (4)1.2 功能分析 (4)1.3 设计方法 (4)第2章、轨迹和行走机构选型与计算 (6)2.1 轨迹和行走机构选型 (6)2.2 轨迹参数计算 (7)第3章、控制机构选型与计算 (10)3.1 控制机构选型 (10)3.2 放大机构的设计 (12)3.3 凸轮的设计 (13)第4章、传动机构选型与计算 (16)4.1 传动机构选型 (16)4.2 齿轮系的设计 (16)4.2 尺寸参数校核 (17)第5章、动力机构选型与计算 (19)5.1 绕绳轮安装位置分析 (19)5.2 力分析 (20)5.3 前轮转向阻力矩的计算 (23)5.4 弹簧劲度系数的计算 (23)5.5 尺寸参数的获取 (23)5.6 质量属性参数的确定 (26)5.7 参数的计算 (27)5.8 绕绳轮最大半径的确定 (29)第6章、微调机构简介 (30)第7章、误差分析及效率计算 (31)7.1 误差分析 (31)7.1.1 设计误差 (31)7.1.2 参数误差 (31)7.1.3 加工与装配误差 (31)7.2 传动效率的计算 (32)7.2.1 动力机构效率的计算 (32)7.2.2 传动机构效率的计算 (33)7.2.3 控制机构效率的计算 (34)第8章、仿真分析 (35)第9章、综合评价及改进方案 (37)9.1 综合评价 (37)9.2 改进方案 (39)第10章、参考文献 (40)第11章、附录 (40)11.1 机构运动简图及装配图 (40)11.2 小车三维装配图及爆炸图 (42)第1章、绪论1.1 参赛主题第三届全国大学生工程训练大赛的竞赛主题为“无碳小车越障竞赛”。
这次竞赛包含两个竞赛项目。
第一个项目与往届竞赛相同,为小车走“S”形线路绕杆。
竞赛项目二为小车走“8”字形线路绕杆。
通过商量,我们选择的竞赛项目为项目二。
1.2功能分析根据本次竞赛规定,竞赛项目二是小车在半张标准乒乓球台(长1525mm、宽1370mm)上,绕相距一定距离的两个障碍沿8字形轨迹绕行,绕行时不可以撞倒障碍物,不可以掉下球台。
无碳小车设计说明书
S组无碳小车设计说明书目录1、小车的设计要求 (1)2、无碳小车结构方案的设计 (2)2.1整体方案分析 (2)2.2驱动机构 (3)2.3传动机构 (4)2.4转向机构以及轨迹分析与设计 (4)2.4.1小车运行轨迹理论参数分析 (4)2.4.2小车动态力分析 (5)2.4.3传动机构及行走机构参数确定 (7)2.4.4 转向机构参数的确定 (8)2.5微调机构 (9)2.6小车车体整体分析 (9)3、基于SolidWorks motion的仿真分析 (10)3.1 简化模型的建立 (10)3.2 运动副的添加 (10)3.2 仿真计算以及结果分析 (11)参考文献 (12)1、小车的设计要求图1-1 无碳小车示意图图1-2 无碳小车运行轨迹图如上图1-1小车示意图:根据能量守恒定律,给一定重力势能(用⌀mm5065错误!未找到引用源。
普通碳钢的重块,质量为1kg,铅垂下落差为400mm来获得),设计一种“以重力势能驱动具有方向控制功能的无碳小车”,该小车能够在行驶的过程中有规律避开水平的平面上每隔1米设置一个弹性圆棒障碍物(如上图2小车运行轨迹图)。
保证小车行走的过程重物随车平稳的行走而不掉落,要求小车行走的过程中所有的动能均由重物的重力势能获得,不得借用其他形式的能量。
小车底板结构设计采用三轮结构,即2个驱动轮,1个转向轮。
细节上的结构只能根据学校现有材料、机床以及加工工艺的难度进行设计。
2、无碳小车结构方案的设计2.1整体方案分析通过对毕业设计任务要求及目的的剖析,利用发散性思维方式,把实现小车功能的各种可能方案一一列出,为了方便设计,可以将能实现小车功能细分为:驱动机构、传动机构、转向机构、微调机构四个模块。
下图2-1为无碳小车设计的思维导图:图2-1 无碳小车结构方案设计思路在选择各个模块方案时,要从实际情况出发,充分考虑实际学校的机床设备,材料的获取,制造成本以及实际加工工艺的可行性等等。
无碳小车制作培训课件
无碳小车制作培训课件无碳小车制作培训课件随着环境保护意识的增强和对可持续发展的追求,无碳交通工具的研发和制造成为了当今社会的热点话题。
无碳小车作为其中的一种代表,因其环保、经济、便捷等优势,受到了广大消费者的青睐。
为了推动无碳小车的普及和制造技术的传承,我们特别设计了一份无碳小车制作培训课件,旨在帮助大家了解无碳小车的制作原理和技术要点。
一、无碳小车的原理介绍无碳小车是指使用无污染能源,如太阳能、风能等,作为动力源的小型交通工具。
与传统燃油车相比,无碳小车具有零排放、低噪音、经济实惠等优势。
其原理主要分为两个方面:能源获取和动力传递。
1. 能源获取:无碳小车的能源获取主要依靠可再生能源,如太阳能和风能。
通过太阳能电池板或风力发电机将自然界的能量转化为电能,供给小车的驱动系统。
2. 动力传递:无碳小车的动力传递方式多样,常见的有电动传动和氢燃料电池传动。
电动传动是通过电动机将电能转化为机械能,驱动车辆前进;氢燃料电池传动则是将氢气与氧气反应产生电能,再通过电动机驱动车辆。
二、无碳小车制作的基本步骤无碳小车的制作过程相对复杂,需要一定的技术和工具支持。
下面将介绍无碳小车制作的基本步骤,供大家参考。
1. 设计规划:首先需要根据实际需求和预算制定设计方案。
包括车辆的尺寸、外形、载重等参数的确定,以及动力系统和能源获取系统的选择。
2. 材料准备:根据设计方案,采购所需的材料和零部件。
包括车架、车轮、电动机、电池、太阳能电池板或风力发电机等。
3. 组装搭建:按照设计方案,将所购买的材料和零部件进行组装搭建。
包括车架的搭建、电动机和电池的安装、能源获取系统的连接等。
4. 调试测试:完成组装后,进行初步的调试测试。
检查车辆的各个部分是否安装正确,能源获取系统是否正常工作,动力传递是否顺畅等。
5. 优化改进:根据测试结果,对车辆进行优化改进。
如调整电动机的转速、增加太阳能电池板的数量等,以提高车辆的性能和效率。
6. 安全检测:在完成优化改进后,进行全面的安全检测。
无碳小车课件
键 联 接
联接。
21
四、销连接
22
1、销联接的主要类型
1.1 圆柱销
1.2 圆锥销 1.3 开口销
23
2、圆柱销的特点
2.1 圆柱销利用微小过盈固定在铰制孔中,可以承 受不大的载荷;
2.2 圆柱销多次拆装会降低定位精度和可靠性;
2.3 圆柱销主要用于定位,也用于联接销和安全销。
小的轴上零件或孔内零件如轴承等,简单方便。
2、卡簧类型:它分为轴用和孔用两种。形状有
C型、E型和U型。
28
卡簧
29
卡簧
30
七、弹簧
1、弹簧分类: 1.1
按所承受的载荷性质分:拉伸弹簧、
压缩弹簧、扭转弹簧和弯曲弹簧等四种。
1.2
按弹簧形状分:螺旋弹簧、碟形弹簧、
环形弹簧、板弹簧、盘簧等。
轴承两类。
4.2 按滚动体形状不同分为球轴承和滚子轴承。
50
5、滚动轴承组成
一般由内圈、外圈、滚动体和保持架组成。内 圈装在轴颈上,外圈装在机座或零件的轴承孔 内。多数情况下,外圈不转动,内圈与轴一起 转动。当内外圈之间相对旋转时,滚动体沿着 滚道滚动。保持架使滚动体均匀分布在滚道上, 并减少滚动体之间的碰撞和磨损。
44
6.2 轴上零件的周向定位方法
键联接定位;
销联接定位; 紧定螺钉定位; 过盈配合定位; 紧定套定位。
45
七、轴的设计要求
46
轴的设计要求
轴的结构和形状应便于装配和维修; 阶梯轴的直径应该是中间大,两端小,便于轴上的零件拆装; 轴端、轴颈与轴肩的过渡部分应该有倒角或者过渡圆角; 轴上需要切制螺纹或者进行磨削时,应该有螺纹退刀槽或者砂轮 越程槽; 当轴上有两个以上的键槽时,键槽宽度尽可能相同,并且在同一 母线上,以利于加工; 从强度、刚度和振动稳定性等方面来保证轴具有足够的工作能力 和可靠性。
无碳小车设计
谢谢观看~
动力系统说明
原理:绳拉力为动力。将物块下落的势能尽 可能多的转换为小车的动能,进而克服阻 力做功。物块在下落的过程中不可避免的 要与小车发生碰撞,碰撞过程必然要有能 量损失,使用梯形滚筒可以达到:1下降过 程中,尽可能的降低下落的速度;2在将要 下降到小车时,改变转速比,使物块减速 下落,进一步减少碰撞损耗。
无碳小车设计说明
仅此参考
设计思路
根据能量守恒定律,物块下落的重力势能 直接转化为小车前进的动能时,能量损失 最少,所以小车前进能量来源直接由重物 下落过程中减少的重力势能提供为宜。 根据小车功能设计要求(小车在前行时能 够自动避开赛道上设置的障碍物),小车 前进的路线具有一定的周期性;考虑到小 车转向时速度有损失,小车前进的线路是 命题设计要求的最优解。
Байду номын сангаас
阻力
速度
齿轮传动分析
1、大齿轮1与滚筒结合,带动齿轮2,使驱动轴转 速增大。 2、小齿轮3带动大齿轮4转动,使用周期转向的频 率下降。
转向系统
转向机构与驱动轴关联 小车的转向轮周期性的摆动 齿轮与凸轮结合部分,控制运行轨迹(凹 处现实由直线-----右转——左转------直线前行 功能,凸出就实现由直线----左转------右转--直线前行动能,其中其他圆弧部分实现直 线前行功能) 确定初始位置与摆轮角度的关系。
徽标图:
无碳小车主体
一、整体车型 二、动力系统 1、重物垂直下落,绳子牵引 2、齿轮传动
三、转向系统 1、凹槽导轮系统 2、转速控制
主视图
俯视图
3D模型1
3D模型2
3D模型3
工作过程简述: