特殊平行四边形知识点总结及题型

合集下载

特殊平行四边形知识点归纳

特殊平行四边形知识点归纳

特殊平行四边形知识点归纳1.对角线:特殊平行四边形的对角线分别连接了两对相对顶点,它们相交于一个点,并且该交点将对角线分为两个相等的部分。

2.平行线性质:特殊平行四边形的两对边分别是平行的。

根据平行线的性质,可以推论出特殊平行四边形的一些重要性质,如对边相等和内角和为180度。

3.对角线性质:特殊平行四边形的对角线相等,即对角线BD=AC。

这个性质可以通过两个相似三角形的性质证明得出。

4.垂直线性质:特殊平行四边形的对角线相交于一个垂直点,即∠BOC=90度。

这个性质可以通过垂直线的性质证明得出。

5.邻补角性质:特殊平行四边形的邻补角(共享一条边且内角和为180度的两个角)之和为180度。

这个性质可以通过平行线的性质证明得出。

6.夹角性质:特殊平行四边形的夹角(相邻且共享一条边的两个内角)之和为180度。

这个性质也可以通过夹角的定义和平行线的性质证明得出。

7.对角线中点连线性质:特殊平行四边形的对角线的中点分别连接,即中点E和F相连,则EF平行于对边AB和CD,并且EF=AB=CD。

这个性质可以通过对角线中点连线构造等腰直角三角形的性质证明得出。

特殊平行四边形的这些性质和概念在几何学中有着广泛的应用。

例如,在解决平行四边形的面积、周长、角度和边长等问题时,可以利用这些性质来求解。

特殊平行四边形还与三角形、四边形和多边形等几何图形的关系密切相关,在几何证明和问题求解中起着重要的作用。

总之,特殊平行四边形是一个重要的几何概念,它具有一系列的重要性质和应用。

通过深入理解这些知识点,并善于运用它们来解决问题,可以提高我们的几何学思维能力和分析问题的能力。

初中数学特殊平行四边形知识点总结

初中数学特殊平行四边形知识点总结

特殊的平行四边形一、平行四边形(复习):中心对称图形,非轴对称图形平行四边形的定义:两组对边分别平行的四边形叫做平行四边形平行四边形的性质(1)平行四边形的对边平行且相等。

(对边)(2)平行四边形相邻的角互补,对角相等(对角)(3)平行四边形的对角线互相平分。

(对角线)(4)平行四边形是中心对称图形,对称中心是对角线的交点。

补充:(1)若一直线过平行四边形两对角线的交点,则这条直线被一组对边截下的线段的中点是对角线的交点,并且这条直线二等分此平行四边形的面积。

(2)推论:夹在两条平行线间的平行线段相等。

(3)平行线分线段成比例定理:两条直线被一组平行线所截,截得的对应线段的长度成比例。

推论:平行于三角形一边的直线,截其他两边(或两边延长线)所得的对应线段成比例平行四边形的判定(1)定义:两组对边分别平行的四边形是平行四边形。

(对边)(2)定理1:两组对边分别相等的四边形是平行四边形。

(对边)(3)定理2:一组对边平行且相等的四边形是平行四边形。

(对边)(4)定理3:两组对角分别相等的四边形是平行四边形。

(对角)(5)定理4:对角线互相平分的四边形是平行四边形。

(对角线)两条平行线的距离:两条平行线中,一条直线上的任意一点到另一条直线的距离,叫做这两条平行线的距离。

注意:平行线间的距离处处相等。

平行四边形的面积:S平行四边形=底边长×高=ah二、菱形:特殊平行四边形,有平行四边形一切性质菱形的定义:有一组邻边相等的平行四边形叫做菱形菱形的性质(1)菱形的四条边相等,对边平行。

(边)(2)菱形的相邻的角互补,对角相等。

(对角)(3)菱形的对角线互相垂直平分,并且每一条对角线平分一组对角。

(对角线)(4)菱形既是中心对称图形又是轴对称图形;对称中心是对角线的交点(对称中心到菱形四条边的距离相等);对称轴有两条,是对角线所在的直线。

菱形的判定(1)定义:有一组邻边相等的平行四边形是菱形。

(2)定理1:四边都相等的四边形是菱形。

平行四边形和特殊平行四边形的知识要点

平行四边形和特殊平行四边形的知识要点
等腰梯形是轴对称图形,它只有一条对称轴,一底的垂直平分线是它的对称轴
4、对角线互相垂直平分,每一条对角线平分一组对角。
1、有一组邻边相等的平行四边形
2、四条边都相等的四边形
3、对角线互相垂直平分的四边形
4、对角线互相垂直的平行四边形
5、菱形的面积=两对角线乘积的一半
既是中心对称也是轴对称图形



1、四条边都相等
2、四个角都是直角
3、对角线互相垂直平分且相等,每一条对角线平分一组对角。
平行四边形和特殊平行四边形的知识要点
图形名称
性质定理
判定定理
对称性





1、对边平行且相等
2、对角相等
3、对角线互相平分
1.两组对边分别平行的四边形。
2.两组对边分别相等的四边形。
3.两组对角分别相等的四边形
4.对角线互相平分的四边形
5.一组对边平行且相等的四边形。中来自心对称




1、对边平行且相等
1、邻边相等的矩形是正方形
2、有个角是直角的菱形
3、对角线互相垂直平分且相等的四边形
既是中心对称也是轴对称图形




1、等腰梯形两腰相等、两底平行.
2、等腰梯形在同一底上的两个角相等.
3、等腰梯形的对角线相等.
1、两腰相等的梯形是等腰梯形.
2、在同一底上的两个角相等的梯形是等腰梯形.
3、对角线相等的梯形是等腰梯形.
2、对角相等且四个角都是直角
3、对角线互相平分且相等
1、有一个角是直角的平行四边形
2、对角线相等的平行四边形
3、有3个角是直角的四边形(1、直角三角形斜边上的中线等于斜边的一半。2、三角形的中位线平行于第三边,且等于第三边的一半)

特殊的平行四边形章节知识点归纳(全)

特殊的平行四边形章节知识点归纳(全)

5. 矩形的性质
A
D
) )
O
B
C
(1)∵四边形 ABCD 是矩形
∴∠DAB=∠ABC =∠BCD=∠CDA=90°(

(2)∵四边形 ABCD 是矩形 ∴AC=BD( OA=OC= OB=OD(
) )
6. 矩形的判定
A
D
O
B
C
(1)∵四边形 ABCD 是平行四边形,且∠BAD=90°
∴□ABCD 是矩形(
(2)∵四边形 ABCD 是正方形
∴AC=BD(

AC⊥BD,且 OA=OC= OB=OD(
8. 正方形的判定
A
D
) )

O
B
C
(1)∵四边形 ABCD 是平行四边形,且∠BAD=90° ,AB=BC
∴□ABCD 是正方形(

(2)∵四边形 ABCD 是菱形,且∠BAD=90°
∴菱形 ABCD 是正方形(

(2)∵四边形 ABCD 是平行四边形,且 AC=BD
∴□ABCD 是矩形(

(3)∵∠DAB=∠ABC =∠BCD =90°
∴四边形 ABCD 是矩形(

7. 正方形的性质
A
D
O
B
C
(1)∵四边形 ABCD 是正方形 ∴AB= BC =CD=AD( ∠DAB=∠ABC =∠BCD=∠CDA=90°(
(正方形既是菱形也是矩形)
4. 菱形的判定:有一组邻边相等的平行四边形是菱形 对角线互相垂直的平行四边形是菱形; 四条边相等的四边形是菱形.
5. 矩形的判定:有一个角是直角的平行四边形是矩形 对角线相等的平行四边形是矩形; 有三个角是直角的四边形是矩形.

平行四边形及特殊的平行四边形知识点归纳总结

平行四边形及特殊的平行四边形知识点归纳总结

平行四边形及特殊的平行四边形知识点归纳总结平行四边形,就像是数学世界里的一个灵动的精灵,总是充满着各种奇妙的特点和变化。

先来说说平行四边形的定义吧。

两组对边分别平行的四边形就是平行四边形。

这就好比两个人,各自朝着不同的方向前进,但是步伐始终保持平行,是不是很有趣?平行四边形的性质那可不少。

它的对边相等,这就像双胞胎一样,长得一模一样,不分彼此。

对边平行就更不用说啦,一直朝着相同的方向延伸,不离不弃。

还有啊,它的对角相等,邻角互补。

这就好像是好朋友,有相同的兴趣爱好,也能互相补足。

平行四边形的判定方法也很重要哦。

两组对边分别平行的四边形,这是定义判定,就像一把最直接的钥匙打开大门。

两组对边分别相等的四边形,这不就像是找到了两个一模一样的拼图块,拼在一起就是完整的图形嘛。

一组对边平行且相等的四边形,这就好比一个人既有前进的方向,又有足够的实力,肯定能到达目的地。

对角线互相平分的四边形,就像两个人共同分享一个宝贝,公平分配,和谐共处。

说完平行四边形,咱们再来瞧瞧特殊的平行四边形。

菱形,那可是有棱有角的美。

菱形的四条边都相等,这不就像是四个一样高的小伙伴手拉手站成一圈。

菱形的对角线互相垂直且平分,各自都有自己的职责,又能互相配合。

矩形呢,方方正正,有规有矩。

矩形的四个角都是直角,就像是四个坚定的战士,昂首挺胸,威风凛凛。

矩形的对角线相等,仿佛是两条实力相当的巨龙,不分上下。

正方形就更厉害啦,它既是菱形又是矩形,集两家之长。

正方形的四条边相等,四个角都是直角,对角线互相垂直平分且相等。

这就如同一个全能的超人,无所不能。

掌握这些知识点,就像是拥有了一把打开数学宝藏的钥匙。

当你在数学的海洋中遨游时,这些知识能让你如鱼得水,轻松应对各种难题。

难道你不想拥有这样的能力吗?还不赶紧把这些知识装进你的脑袋里,让它们成为你攻克数学难题的有力武器!总之,平行四边形及特殊的平行四边形的知识点就像是一个丰富多彩的宝藏库,等待着我们去探索、去挖掘、去运用。

平行四边形知识点总结及对应例题.

平行四边形知识点总结及对应例题.

平行四边形、矩形、菱形、正方形知识点总结定义 :两组对边分别平行的四边形是平行四边形平行四边形的 性质:(1平行四边形 对边相(即AB=CD,AD=BC ); (2): 平行四边形 对边平行 (即: AB//CD,AD//BC ); (3): 平行四边形 对角相等 (即: ∠A=∠C,∠ B=∠D ); (4): 平行四边形 对角线互相平分 (即: OA=OC , OB=OD ); 判定方法: 1. 两组对边分别平行 的四边形是平行四边形(定义判定法)2. 一组对边平行且相等 的四边形是平行四边形;3. 两组对边分别相等 的四边形是平行四边形;4. 对角线互相平分 的四边形是平行四边形;5.两组对角分别相等 的四边形是平行四边形;考点 1 特殊的平行四边形的性质与判定1.矩形的定义、性质与判定(1)矩形的定义:有一个角是直角的平行四边形是矩形。

(2)矩形的性质:矩形的对角线 ____ ;矩形的四个角都是 _____ 角。

矩形具有 ___ 的一切性质。

矩形是轴对称图形,对称轴有 _________ 条,矩形也是中心对称图形,对称中心为 _______ 的交点。

矩形被对角线分成了 _________ 个等腰三角形。

(3)矩形的判定有一个是直角的平行四边形是矩形;有三个角是 ________ 的四边形是矩形;对角线 _ 的平行四边形是矩形。

温馨提示 :矩形的对角线是矩形比较常用的性质,当对角线的夹角中,有一个角为 60 度时,则构成一个等边三角 形;在判定矩形时,要注意利用定义或对角线来判定时,必须先证明此四边形为平行四边形,然后再请一个角为直角 或对角线相等。

很多同学容易忽视这个问题。

2.菱形的定义、性质与判定(1)菱形的定义:有一组邻边相等的平行四边形是菱形。

(2)菱形的性质菱形的____ 都相等;菱形的对角线互相___ ,并且每一条对角线___ 一组对角;菱形也具有平行四边形的一切性质。

菱形即是轴对称图形,对称轴有条。

平行四边形知识点归纳和题型归类

平行四边形知识点归纳和题型归类

平行四边形知识点归纳和题型归类平行四边形知识点归纳和题型归类要点梳理】要点一、平行四边形1.定义:有两组对边分别平行的四边形叫做平行四边形。

2.性质:(1)对边相等;(2)同位角相等;(3)相邻角互补;(4)是中心对称图形。

3.面积:S = 底 ×高。

4.判定:边:(1)有两组对边分别平行的四边形是平行四边形;(2)对边相等的四边形是平行四边形;(3)对角线互相平分的四边形是平行四边形。

角:(4)有一组对边平行,且同位角相等的四边形是平行四边形。

对角线:有一组对边相等,且互相平分的四边形是平行四边形。

要点诠释:平行线的性质:(1)平行线间的距离相等;(2)等底等高的平行四边形面积相等。

要点二、矩形1.定义:有四个角都是直角的平行四边形叫做矩形。

2.性质:(1)对边相等;(2)相邻角互补;(3)对角线相等;(4)是中心对称图形,也是轴对称图形。

3.面积:S = 长 ×宽。

4.判定:有四个角都是直角的平行四边形是矩形。

要点诠释:由矩形得直角三角形的性质:(1)直角三角形斜边上的中线等于斜边的一半;(2)直角三角形中,30度角所对应的直角边等于斜边的一半。

要点三、菱形1.定义:有四个边都相等的平行四边形叫做菱形。

2.性质:(1)对边相等;(2)相邻角互补;(3)对角线相等;(4)是中心对称图形,也是轴对称图形。

3.面积:S = 对角线之积的一半。

4.判定:有一组对边平行且相等的四边形是菱形。

要点四、正方形1.定义:四条边都相等,四个角都是直角的平行四边形叫做正方形。

2.性质:(1)对边相等;(2)相邻角互补;(3)对角线相等;(4)是中心对称图形,也是轴对称图形;(5)两条对角线把正方形分成四个全等的等腰直角三角形。

3.面积:S = 边长的平方,也可以用对角线的平方的一半求解。

4.判定:(1)有一组对边平行且相等的菱形是正方形;(2)有四个角都是直角的矩形是正方形;(3)对角线互相垂直平分且相等的四边形是正方形;(4)四条边都相等,四个角都是直角的四边形是正方形。

(完整版)特殊平行四边形知识点总结及题型

(完整版)特殊平行四边形知识点总结及题型

新天宇教育授课讲义授课科目初三上册授课时间(2016.9.11)授课内容特殊的平行四边形1基础知识1.基础知识点(概念、公式)1.菱形菱形定义:有一组邻边相等的平行四边形叫做菱形.(1)是平行四边形;(2)一组邻边相等.菱形的性质性质1菱形的四条边都相等;性质2 菱形的对角线互相平分,并且每条对角线平分一组对角;菱形的判定菱形判定方法1:对角线互相垂直的平行四边形是菱形.菱形判定方法2:四边都相等的四边形是菱形.2.矩形矩形定义: 有一个角是直角的平行四边形叫做矩形(通常也叫长方形或正方形).矩形是中心对称图形,对称中心是对角线的交点,矩形也是轴对称图形,对称轴是通过对边中点的直线,有两条对称轴;矩形的性质:(具有平行四边形的一切特征)矩形性质1: 矩形的四个角都是直角.矩形性质2: 矩形的对角线相等且互相平分.矩形的判定方法.矩形判定方法1:对角钱相等的平行四边形是矩形.矩形判定方法2:有三个角是直角的四边形是矩形.矩形判定方法3:有一个角是直角的平行四边形是矩形.矩形判定方法4:对角线相等且互相平分的四边形是矩形.2.正方形正方形是在平行四边形的前提下定义的,它包含两层意思:①有一组邻边相等的平行四边形(菱形②有一个角是直角的平行四边形(矩形)正方形不仅是特殊的平行四边形,并且是特殊的矩形,又是特殊的菱形.正方形定义:有一组邻边相等.......的平行四边形.....叫做正方形.正方形是中心对称......并且有一个角是直角图形,对称中心是对角线的交点,正方形又是轴对称图形,对称轴是对边中点的连线和对角线所在直线,共有四条对称轴;因为正方形是平行四边形、矩形,又是菱形,所以它的性质是它们性质的综合,正方形的性质总结如下:边:对边平行,四边相等;角:四个角都是直角;对角线:对角线相等,互相垂直平分,每条对角线平分一组对角.注意:正方形的一条对角线把正方形分成两个全等的等腰直角三角形,对角线与边的夹角是45°;正方形的两条对角线把它分成四个全等的等腰直角三角形,这是正方形的特殊性质.正方形具有矩形的性质,同时又具有菱形的性质.正方形的判定方法:(1)有一个角是直角的菱形是正方形;(2)有一组邻边相等的矩形是正方形.注意:1、正方形概念的三个要点:(1)是平行四边形;(2)有一个角是直角;(3)有一组邻边相等.2、要确定一个四边形是正方形,应先确定它是菱形或是矩形,然后再加上相应的条件,确定是正方形.2.本节课的重点、难点(1)对平行四边形和特殊的几种图形的性质要注意理解(2)对证明特殊平行四边形的方法进行掌握3.学生容易混淆的知识点(1)各种四边形对角线的特点。

特殊平行四边形知识点总结

特殊平行四边形知识点总结

特殊平行四边形知识点总结
平行四边形、矩形、菱形、正方形的性质:
所有这些图形都有对边相等且平行的性质,四条边都相等的图形是正方形,对角线互相平分的图形是平行四边形,对角线相等的图形是矩形,有一组邻边相等的图形是菱形。

判定方法小结:
判定平行四边形的方法有五种:①两组对边分别平行;②两组对边分别相等;③两组对角分别相等;④对角线互相平分;
⑤一组对边平行且相等。

判定矩形的方法有四种:①有一个角是直角的平行四边形;
②对角线相等的平行四边形;③有三个角是直角的四边形;④对角线相等且互相平分的四边形。

判定菱形的方法有四种:①有一组邻边相等的平行四边形;
②对角线互相垂直的平行四边形;③四边都相等的四边形;④对角线互相垂直平分的四边形。

判定正方形的方法有七种:①有一组邻边相等且有一个角是直角的平行四边形;②对角线互相垂直且相等的平行四边形;
③有一组邻边相等的矩形;④对角线互相垂直的矩形;⑤有一
个角是直角的菱形;⑥对角线相等的菱形;⑦对角线互相垂直平分且相等的四边形。

基础达标训练:
1.两条对角线的四边形是平行四边形;
2.两条对角线的四边形是矩形;
3.两条对角线的四边形是菱形;
4.两条对角线的四边形是正方形;
5.两条对角线的平行四边形是矩形;
6.两条对角线的平行四边形是菱形;
7.两条对角线的平行四边形是正方形;
8.两条对角线的矩形是正方形;
9.两条对角线的菱形是正方形。

平行四边形及特殊平行四边形知识点(经典完整版)

平行四边形及特殊平行四边形知识点(经典完整版)

正方形与平行四边形、矩形、菱形之间的关系有怎样的包含关系?请填入下图中. 二、几种特殊四边形的常用说理方法与解题思路分析
(1)判定矩形的常用方法(3种)
①先说明四边形ABCD为平行四边形,再说明平行四边形ABCD的有一个角为直角.
②先说明四边形ABCD为平行四边形,再说明平行四边形ABCD的对角线相等.
③说明四边形ABCD的三个角是直角.
(2)判定菱形的常用方法(3种)
①先说明四边形ABCD为平行四边形,再说明平行四边形ABCD的任一组邻边相等.
②先说明四边形ABCD为平行四边形,再说明对角线互相垂直.
③说明四边形ABCD的四条边相等.
(3)判定正方形的常用方法。

特殊平行四边形知识点总结及题型

特殊平行四边形知识点总结及题型

特殊平行四边形知识点总结及题型特殊平行四边形知识点总结及题型特殊平行四边形是几何学中的重要概念,它包括矩形、菱形和正方形。

这些特殊平行四边形具有一些独特的性质和特征,它们在几何学、晶体学和工程学等领域都有广泛的应用。

本文将总结特殊平行四边形的定义、性质、判定方法和典型题型,以帮助读者更好地理解和掌握这些知识。

一、定义1、矩形:一个内角为直角的平行四边形叫做矩形。

2、菱形:一个内角为锐角的平行四边形叫做菱形。

3、正方形:内角均为直角的平行四边形叫做正方形。

二、性质1、对边平行且相等。

2、对角线互相平分且相等。

3、四个内角均为90度。

4、邻角互补。

5、对角线与邻边组成的三角形为等腰直角三角形。

三、判定方法1、矩形 (1) 内角为直角。

(2) 对边平行且相等。

2、菱形 (1) 内角为锐角。

(2) 对边平行且相等。

3、正方形 (1) 内角均为直角。

(2) 对边平行且相等。

四、典型题型1、求特殊平行四边形的角度和周长。

2、证明特殊平行四边形的性质和判定方法。

3、解决与特殊平行四边形相关的实际问题。

五、扩展知识1、空间几何中的特殊平行四边形,如空间双面平行四边形等。

2、立体几何中的特殊平行四边形,如平行六面体等。

3、相关知识点,如三角函数、向量等在特殊平行四边形中的应用。

总之,特殊平行四边形是一个具有丰富内容和广泛应用的知识点。

理解和掌握这些特殊形状的特点和性质,对于解决相关问题以及进一步学习几何学、物理学等学科都具有重要意义。

希望读者通过阅读本文,能够对这些特殊平行四边形的定义、性质、判定方法和典型题型有更深入的理解和掌握,为进一步学习打下坚实的基础。

平行四边形知识点总结平行四边形知识点总结一、定义平行四边形是一种几何图形,具有两条相互平行的对边和两条对角线。

它是人类生活中常见的形状,具有广泛的应用价值。

二、性质1、平行四边形的对边平行且相等。

2、平行四边形的对角相等。

3、平行四边形的内角和为360度。

特殊平行四边形知识点归类

特殊平行四边形知识点归类

第20讲特殊的平行四边形一、知识清单梳理知识点一:特殊平行四边形的性质与判定关键点拨及对应举例1.性质(具有平行四边形的一切性质,对边平行且相等)矩形菱形正方形(1)矩形中,Rt△ABD≌Rt△DCA≌Rt△CDB≌Rt△BAC; _两对全等的等腰三角形.所以经常结合勾股定理、等腰三角形的性质解题.(2)菱形中,有两对全等的等腰三角形;Rt△AB O≌Rt△ADO≌Rt△CBO≌Rt△CDO;若∠ABC=60°,则△ABC和△ADC为等边三角形,且四个直角三角形中都有一个30°的锐角.(3)正方形中有8个等腰直角三角形,解题时结合等腰直角三角形的锐角为45°,斜边=直角边. (1)四个角都是直角(2)对角线相等且互相平分.即AO=CO=BO=DO.(3)面积=长×宽=2S△ABD=4S△AOB.(1)四边相等(2)对角线互相垂直、平分,一条对角线平分一组对角(3)面积=底×高=对角线_乘积的一半(1)四条边都相等,四个角都是直角(2)对角线相等且互相垂直平分(3)面积=边长×边长=2S△ABD=4S△AOB2.判定(1)定义法:有一个角是直角的平行四边形(2)有三个角是直角(3)对角线相等的平行四边形(1)定义法:有一组邻边相等的平行四边形(2)对角线互相垂直的平行四边形(3)四条边都相等的四边形(1)定义法:有一个角是直角,且有一组邻边相等的平行四边形(2)一组邻边相等的矩形(3)一个角是直角的菱形(4)对角线相等且互相垂直、平分例:判断正误.邻边相等的四边形为菱形.()有三个角是直角的四边形式矩形.()对角线互相垂直平分的四边形是菱形. ()对边相等的矩形是正方形.()3.联系包含关系:知识点二:特殊平行四边形的拓展归纳4.中点四边形(1)任意四边形多得到的中点四边形一定是平行四边形.(2)对角线相等的四边形所得到的中点四边形是矩形.(3)对角线互相垂直的四边形所得到的中点四边形是菱形.(4)对角线互相垂直且相等的四边形所得到的中点四边形是正方形.如图,四边形ABCD为菱形,则其中点四边形EFGD的形状是矩形.5.特殊四边形中的解题模型(1)矩形:如图①,E为AD上任意一点,EF过矩形中心O,则△AOE≌△COF,S1=S2.(2)正方形:如图②,若EF⊥MN,则EF=MN;如图③,P为AD边上任意一点,则PE+PF=AO. (变式:如图④,四边形ABCD为矩形,则PE+PF的求法利用面积法,需连接PO.)图①图②图③图④。

特殊平行四边形知识点讲解与练习(含答案)

特殊平行四边形知识点讲解与练习(含答案)

特殊平行四边形知识点与练习重要知识点:一、矩形的定义、性质及判定:1、定义:有一个角是直角的平行四边形叫做矩形.2、性质:矩形的四个角都是直角,矩形的对角线相等3、判定:(1)有一个角是直角的平行四边形叫做矩形;(2)有三个角是直角的四边形是矩形:(3)两条对角线相等的平行四边形是矩形(直接跟本章的内容有联系).4、对称性:矩形是轴对称图形也是中心对称图形.二、矩形的定义、性质及判定:1、定义:有一组邻边相等的平行四边形叫做菱形.2、性质:(1)菱形的四条边都相等。

(2)菱形的对角线互相垂直,并且每一条对角线平分一组对角(3)菱形被两条对角线分成四个全等的直角三角形.(4)菱形的面积等于两条对角线长的积的一半。

3、判定:(1)有一组邻边相等的平行四边形叫做菱形(2)四条边都相等的四边形是菱形;(3)对角线互相垂直的平行四边形是菱形(4)对称性:跟矩形一样三、正方形定义、性质及判定.'1.定义:有一组邻边相等并且有一个角是直角的平行四边形叫做正方形.2.性质:(1)正方形四个角都是直角,四条边都相等;(2)正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角;(3)正方形的一条对角线把正方形分成两个全等的等腰直角三角形;(4)正方形的对角线与边的夹角是45。

(5)正方形的两条对角线把这个正方形分成四个全等的等腰直角三角形.3.判定:(1)先判定一个四边形是矩形,再判定出有一组邻边相等;(2)先判定一个四边形是菱形,再判定出有一个角是直角.4.对称性:正方形是轴对称图形也是中心对称图形.四、等腰梯形的性质及判定.1.定义:一组对边平行,另一组对边不平行的四边形是梯形.两腰相等的梯形是等腰梯2.等腰梯形的性质:等腰梯形的两腰相等;同一底上的两个角相等;两条对角线相等.3.等腰梯形的判定:两腰相等的梯形是等腰梯形;同一底上的两个角相等的梯形是等腰梯形;两条对角线相等的梯形是等腰梯形.4.对称性:等腰梯形是轴对称图形(注意理解!).练习11.在△ABC 中,,90︒=∠C 若,7=+b a △ABC 的面积等于6,则边长c=2、3.如图4.3-15,平行四边形ABCD 的面积为15,设P 是AD 边上任一点,那么△PBC 的面积等于 .3.一个三角形的三边之比为5∶12∶13,它的周长为60,则它的面积是___.4.※直角三角形的面积为S ,斜边上的中线长为d ,则这个三角形周长为( )(A )22d S d ++ (B )2d S d --(C )222d S d ++ (D )22d S d ++ 5、如图,在△ABC 中,AB=AC=6,P 为BC 上任意一点,请用学过的知识试求PC ·PA+PA 2的值。

新人教版初中数学——特殊的平行四边形-知识点归纳及中考典型题解析

新人教版初中数学——特殊的平行四边形-知识点归纳及中考典型题解析

新人教版初中数学——特殊的平行四边形知识点归纳及中考题型解析一、矩形的性质与判定1.矩形的性质:(1)四个角都是直角;(2)对角线相等且互相平分;(3)面积=长×宽=2S△ABD=4S△AOB.(如图)2.矩形的判定:(1)定义法:有一个角是直角的平行四边形;(2)有三个角是直角;(3)对角线相等的平行四边形.二、菱形的性质与判定1.菱形的性质:(1)四边相等;(2)对角线互相垂直、平分,一条对角线平分一组对角;(3)面积=底×高=对角线乘积的一半.2.菱形的判定:(1)定义法:有一组邻边相等的平行四边形;(2)对角线互相垂直的平行四边形;(3)四条边都相等的四边形.三、正方形的性质与判定1.正方形的性质:(1)四条边都相等,四个角都是直角;(2)对角线相等且互相垂直平分;(3)面积=边长×边长=2S△ABD=4S△AOB.2.正方形的判定:(1)定义法:有一个角是直角,且有一组邻边相等的平行四边形;(2)一组邻边相等的矩形;(3)一个角是直角的菱形;(4)对角线相等且互相垂直、平分.四、联系(1)两组对边分别平行;(2)相邻两边相等;(3)有一个角是直角;(4)有一个角是直角;(5)相邻两边相等;(6)有一个角是直角,相邻两边相等;(7)四边相等;(8)有三个角都是直角.五、中点四边形(1)任意四边形所得到的中点四边形一定是平行四边形.(2)对角线相等的四边形所得到的中点四边形是矩形.(3)对角线互相垂直的四边形所得到的中点四边形是菱形.(4)对角线互相垂直且相等的四边形所得到的中点四边形是正方形.考向一矩形的性质与判定1.矩形除了具有平行四边形的一切性质外,还具有自己单独的性质,即:矩形的四个角都是直角;矩形的对角线相等.2.利用矩形的性质可以推出直角三角形斜边中线的性质,即在直角三角形中,斜边上的中线等于斜边的一半.3.矩形的判定:有三个角是直角的四边形是矩形;对角线相等的平行四边形是矩形.典例1 如图,矩形ABCD的对角线交于点O,若∠BAO=55°,则∠AOD等于A.105°B.110°C.115°D.120°【答案】B【解析】∵四边形ABCD是矩形,∴OA=O B.∴∠BAO=∠ABO=55°.∴∠AOD=∠BAO+∠ABO=55°+55°=110°.故选B.典例2 如图,矩形ABCD的对角线AC与数轴重合(点C在正半轴上),AB=5,BC=12,点A表示的数是–1,则对角线AC、BD的交点表示的数A.5.5 B.5 C.6 D.6.5【答案】A【解析】连接BD交AC于E,如图所示:∵四边形ABCD是矩形,∴190,2B AE AC ∠==,∴13AC=,∴AE=6.5,∵点A表示的数是−1,∴OA=1,∴OE=AE−OA=5.5,∴点E表示的数是5.5,即对角线AC、BD的交点表示的数是5.5;故选A.1.如图,四边形ABCD 的对角线互相平分,要使它成为矩形,那么需要添加的条件是A .AB =BC B .AC 垂直BD C .∠A =∠C D .AC =BD2.如图,在平行四边形ABCD 中,对角线AC BD 、交于点O ,并且6015DAC ADB ∠=︒∠=︒,,点E 是AD 边上一动点,延长EO 交于BC 点F ,当点E 从点D 向点A 移动过程中(点E 与点D ,A 不重合),则四边形AFCE 的变化是A .平行四边形→菱形→平行四边形→矩形→平行四边形B .平行四边形→矩形→平行四边形→菱形→平行四边形C .平行四边形→矩形→平行四边形→正方形→平行四边形D .平行四边形→矩形→菱形→正方形→平行四边形考向二 菱形的性质与判定1.菱形除了具有平行四边形的一切性质外,具有自己单独的性质,即:菱形的四条边都相等; 菱形的对角线互相垂直,并且每一条对角线平分一组对角. 2.菱形的判定:四条边都相等的四边形是菱形; 对角线互相垂直的平行四边形是菱形.典例3 菱形具有而平行四边形不具有的性质是 A .两组对边分别平行 B .两组对边分别相等 C .一组邻边相等D .对角线互相平分【答案】C【解析】根据菱形的性质及平行四边形的性质进行比较,可发现A,B,D两者均具有,而C只有菱形具有平行四边形不具有,故选C.【名师点睛】有一组邻边相等的平行四边形是菱形.典例4如图,四边形ABCD的对角线互相垂直,且满足AO=CO,请你添加一个适当的条件_____________,使四边形ABCD成为菱形.(只需添加一个即可)【答案】BO=DO(答案不唯一)【解析】四边形ABCD中,AC、BD互相垂直,若四边形ABCD是菱形,需添加的条件是:AC、BD 互相平分(对角线互相垂直且平分的四边形是菱形).故答案为:BO=DO(答案不唯一).3.已知菱形的一条对角线与边长相等,则菱形的邻角度数分别为A.45°,135°B.60°,120°C.90°,90°D.30°,150°4.如图,在△ABC中,AD是∠BAC的平分线,DE∥AC交AB于E,DF∥AB交AC于F,求证:四边形AEDF是菱形.考向三正方形的性质与判定1.正方形的性质=矩形的性质+菱形的性质.2.正方形的判定:以矩形和菱形的判定为基础,可以引申出更多正方形的判定方法,如对角线互相垂直平分且相等的四边形是正方形.证明四边形是正方形的一般步骤是先证出四边形是矩形或菱形,再根据相应判定方法证明四边形是正方形.典例5面积为9㎝2的正方形以对角线为边长的正方形面积为A.18㎝2B.20㎝2C.24㎝2D.28㎝2【答案】A【解析】∵正方形的面积为9cm2,∴边长为3cm,∴根据勾股定理得对角线长cm,∴以=2=18cm2.故选A.典例6如图,在△ABC中,∠B=90°,AB=BC=4,把△ABC绕点A逆时针旋转45°得到△ADE,过点C作CF⊥AE于F,DE交CF于G,则四边形ADGF的周长是A.8 B.C.D.【答案】D【解析】如图,连接AG,∵∠B=90°,AB=BC=4,∴∠CAB=∠ACB=45°,AC,∵把△ABC绕点A逆时针旋转45°得到△ADE,∴AD=AB=4,∠EAD=∠CAB=45°,∴∠FAB=90°,CD=AC﹣AD﹣4,∵∠B=90°=∠FAB,CF⊥AE,∴四边形ABCF是矩形,且AB=BC=4,∴四边形ABCF是正方形,∴AF=CF=AB=4=AD,∠AFC=∠FCB=90°,∴∠GCD =45°,且∠GDC =90°,∴∠GCD =∠CGD =45°,∴CD =GD ﹣4,∵AF =AD ,AG =AG ,∴Rt △AGF ≌Rt △AGD (HL ),∴FG =GD ﹣4,∴四边形ADGF 的周长=AF +AD +FG +GD ﹣﹣,故选D .5.如图,在正方形ABCD 内一点E 连接BE 、CE ,过C 作CF ⊥CE 与BE 延长线交于点F ,连接DF 、DE .CE =CF =1,DE ,下列结论中:①△CBE ≌△CDF ;②BF ⊥DF ;③点D 到CF 的距离为2;④S 四边形DECF +1.其中正确结论的个数是A .1B .2C .3D .46.如图,在正方形ABCD 中,,2BE FC CF FD ==,AE 、BF 交于点G ,下列结论中错误的是A .AE BF ⊥B .AE BF =C .43BG GE =D .ABGCEGF S S=四边形考向四 中点四边形1.中点四边形一定是平行四边形;2.中点四边形的面积等于原四边形面积的一半.典例7如图,任意四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA上的点,对于四边形EFGH的形状,某班学生在一次数学活动课中,通过动手实践,探索出如下结论,其中错误的是A.当E,F,G,H是各边中点,且AC=BD时,四边形EFGH为菱形B.当E,F,G,H是各边中点,且AC⊥BD时,四边形EFGH为矩形C.当E,F,G,H不是各边中点时,四边形EFGH可以为平行四边形D.当E,F,G,H不是各边中点时,四边形EFGH不可能为菱形【答案】D【解析】A.当E,F,G,H是四边形ABCD各边中点,且AC=BD时,存在EF=FG=GH=HE,故四边形EFGH为菱形,故A正确;B.当E,F,G,H是四边形ABCD各边中点,且AC⊥BD时,存在∠EFG=∠FGH=∠GHE=90°,故四边形EFGH为矩形,故B正确;C.如图所示,当E,F,G,H不是四边形ABCD各边中点时,若EF∥HG,EF=HG,则四边形EFGH 为平行四边形,故C正确;D.如图所示,当E,F,G,H不是四边形ABCD各边中点时,若EF=FG=GH=HE,则四边形EFGH 为菱形,故D错误,故选D.7.顺次连接下列四边形的四边中点所得图形一定是菱形的是A.平行四边形B.菱形C.矩形D.梯形8.如图,我们把依次连接任意四边形ABCD各边中点所得四边形EFGH叫中点四边形.若四边形ABCD的面积记为S1,中点四边形EFGH的面积记为S2,则S1与S2的数量关系是A.S1=3S2B.2S1=3S2C.S1=2S2D.3S1=4S21.如图,矩形ABCD的对角线AC与BD相交于点O,∠ADB=30°,AB=4,则OC=A.5 B.4 C.3.5 D.32.如图,在矩形ABCD中,对角线AC,BD交于点O,已知∠AOD=120°,AC=16,则图中长度为8的线段有A.2条B.4条C.5条D.6条3.如图,在长方形ABCD中,AB=3,BC=4,若沿折痕EF折叠,使点C与点A重合,则折痕EF 的长为A.158B.154C.152D.154.如图,菱形ABCD的对角线交于点O,AC=8 cm,BD=6 cm,则菱形的高为A.485cm B.245cm C.125cm D.105cm5.如图,在菱形ABCD中,∠ADC=72°,AD的垂直平分线交对角线BD于点P,垂足为E,连接CP,则∠CPB的度数是A.108°B.72°C.90°D.100°6.如图,在正方形ABCD中,点E,F分别在边BC,CD上,且BE=CF.连接AE,BF,AE与BF 交于点G.下列结论错误的是A.AE=BF B.∠DAE=∠BFCC.∠AEB+∠BFC=90°D.AE⊥BF7.如图,矩形ABCD中将其沿EF翻折后,D点恰落在B处,∠BFE=65°,则∠AEB=____________.8.如图,P为正方形ABCD内一点,且BP=2,PC=3,∠APB=135°,将△APB绕点B顺时针旋转90°得到△CP′B,连接PP′,则AP=_______.9.如图,在ABCD中,AB=6,BC=8,AC=10.(1)求证:四边形ABCD是矩形;(2)求BD的长.10.如图,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC绕点A按顺时针方向旋转得到的,连接BE,CF相交于点D.(1)求证:BE=CF;(2)当四边形ACDE为菱形时,求BD的长.11.如图,△ABC中,点O是AC边上的一个动点,过点O作直线MN∥BC,交∠ACB的平分线于点E,交∠ACB的外角平分线于点F.(1)判断OE与OF的大小关系?并说明理由;(2)当点O运动到何处时,四边形AECF是矩形?并说出你的理由;(3)在(2)的条件下,当△ABC满足什么条件时,四边形AECF是正方形.直接写出答案,不需说明理由.1.下列命题正确的是A.有一个角是直角的平行四边形是矩形B.四条边相等的四边形是矩形C.有一组邻边相等的平行四边形是矩形D.对角线相等的四边形是矩形2.如图,四边形ABCD为菱形,A,B两点的坐标分别是(2,0),(0,1),点C,D在坐标轴上,则菱形ABCD的周长等于AB.C.D.203.如图,在正方形ABCD中,点E,F将对角线AC三等分,且AC=12,点P在正方形的边上,则满足PE+PF=9的点P的个数是A.0 B.4 C.6 D.84.如图,正方形ABCD中,点E.F分别在边CD,AD上,BE与CF交于点G.若BC=4,DE=AF=1,则GF的长为A.135B.125C.195D.1655.如图,正方形纸片ABCD的边长为12,E是边CD上一点,连接AE.折叠该纸片,使点A落在AE上的G点,并使折痕经过点B,得到折痕BF,点F在AD上.若5DE ,则GE的长为__________.6.如图,把某矩形纸片ABCD沿EF、GH折叠(点E、H在AD边上,点F、G在BC边上),使得点B、点C落在AD边上同一点P处,A点的对称点为A 点,D点的对称点为D点,若FPG,A EP90△的面积为1,则矩形ABCD的面积等于__________.△的面积为4,D PH7.如图,已知菱形ABCD的对角线AC,BD交于点O,E为BC的中点,若OE=3,则菱形的周长为__________.8.如图,正方形ABCD,点E,F分别在AD,CD上,且DE=CF,AF与BE相交于点G.(1)求证:BE=AF;(2)若AB=4,DE=1,求AG的长.9.已知:如图,在▱ABCD中,AE⊥BC,CF⊥AD,E,F分别为垂足.(1)求证:△ABE≌△CDF;(2)求证:四边形AECF是矩形.10.如图,在菱形ABCD中,点E.F分别为A D.CD边上的点,DE=DF,求证:∠1=∠2.11.如图,点E、F分别是矩形ABCD的边AB、CD上的一点,且DF=BE.求证:AF=CE.12.如图,四边形ABCD中,AB=CD,AD=BC,对角线AC,BD相交于点O,且OA=OD.求证:四边形ABCD是矩形.13.如图,矩形EFGH的顶点E,G分别在菱形ABCD的边AD,BC上,顶点F,H在菱形ABCD 的对角线BD上.(1)求证:BG=DE;(2)若E为AD中点,FH=2,求菱形ABCD的周长.1.【答案】D【解析】结合选项可知,添加AC=BD,∵四边形ABCD的对角线互相平分,∴四边形ABCD是平行四边形,∵AC=BD,根据矩形判定定理对角线相等的平行四边形是矩形,∴四边形ABCD是矩形,故选D.2.【答案】A【解析】点E从D点向A点移动过程中,当∠EOD<15°时,四边形AFCE为平行四边形,当∠EOD=15°时,AC⊥EF,四边形AFCE为菱形,当15°<∠EOD <75°时,四边形AFCE 为平行四边形, 当∠EOD =75°时,∠AEF =90°,四边形AFCE 为矩形, 当75°<∠EOD <105°时,四边形AFCE 为平行四边形,故选A . 3.【答案】B【解析】如图,由题意知AB =BC =AC ,∵AB =BC =AC ,∴△ABC 为等边三角形,即60B ∠=︒,根据平行四边形的性质,18060120.BAD ∠=-=︒︒︒故选B .4.【解析】∵DE ∥AC ,DF ∥AB , ∴四边形AEDF 为平行四边形, ∴∠FAD =∠EDA ,∵AD 是∠BAC 的平分线,∴∠EAD =∠FAD ,∴∠EAD =∠EDA , ∴AE =ED ,∴四边形AEDF 是菱形. 5.【答案】B【解析】∵四边形ABCD 是正方形,∴BC =CD ,∠BCD =90°, ∵CF ⊥CE ,∴∠ECF =∠BCD =90°,∴∠BCE =∠DCF ,在△BCE 与△DCF 中,BC CDBCE DCF CE CF =⎧⎪∠=∠⎨⎪=⎩,∴△BCE ≌△DCF (SAS ),故①正确;∵△BCE ≌△DCF ,∴∠CBE =∠CDF ,∴∠DFB =∠BCD =90°,∴BF ⊥ED , 故②正确,过点D 作DM ⊥CF ,交CF 的延长线于点M ,∵∠ECF =90°,FC =EC =1,∴∠CFE =45°,∵∠DFM +∠CFB =90°,∴∠DFM =∠FDM =45°,∴FM =DM ,∴由勾股定理可求得:EF ,∵DE ,∴由勾股定理可得:DF =2,∵EF 2+BE 2=2BE 2=BF 2,∴DM =FM ∵△BCE ≌△DCF ,∴S △BCE =S △DCF ,∴S 四边形DECF =S △DCF +S △DCE =S △ECF +S △DEF =S △AFP +S △PFB =12B . 6.【答案】C【解析】在正方形ABCD 中,AB =BC ,∠ABE =∠C =90,又∵BE =CF ,∴△ABE ≌△BCF (SAS ),∴AE =BF ,∠BAE =∠CBF ,∴∠FBC +∠BEG =∠BAE +∠BEG =90°,∴∠BGE =90°,∴AE ⊥BF .故A 、B 正确; ∵CF =2FD ,∴CF :CD =2:3,∵BE =CF ,AB =CD ,32AB BE ∴=, ∵∠EBG +∠ABG =∠ABG +∠BAG =90°,∴∠EBG =∠BAG , ∵∠EGB =∠ABE =90°,∴△BGE ∽△ABE ,32BG AB GE BE ∴==,故C 不正确, ∵△ABE ≌△BCF ,∴S △ABE =S △BFC ,∴S △ABE –S △BEG =S △BFC –S △BEG ,∴S 四边形CEGF =S △ABG , 故D 正确.故选C .7.【答案】C【解析】∵顺次连接任意四边形的四边中点所得图形一定是平行四边形, 当对角线相等时,所得图形一定是菱形,故选C . 8.【答案】C【解析】如图,设AC 与EH 、FG 分别交于点N 、P ,BD 与EF 、HG 分别交于点K 、Q , ∵E 是AB 的中点,F 是BC 的中点,∴EF ∥AC , 同理可证EH ∥BD ,∴△EBK ∽△ABM ,△AEN ∽△EBK ,1.【答案】B【解析】∵四边形ABCD 是矩形,∴AC =BD ,OA =OC ,∠BAD =90°, ∵∠ADB =30°,∴AC =BD =2AB =8,∴OC =AC =4.故选B . 2.【答案】D【解析】∵AC =16,四边形ABCD 是矩形, ∴DC =AB ,BO =DO =12BD ,AO =OC =12AC =8,BD =AC , ∴BO =OD =AO =OC =8,∵∠AOD =120°,∴∠AOB =60°,∴△ABO 是等边三角形,∴AB =AO =8,∴DC =8,即图中长度为8的线段有AO 、CO 、BO 、DO 、AB 、DC 共6条,故选D . 3.【答案】B【解析】如图,连接AF .根据折叠的性质,得EF 垂直平分AC ,则设,则,在中,根据勾股定理,得,解得. 在中,根据勾股定理,得AC =5,则AO =2.5.12.AF CF =AF x =4BF x =-Rt △ABF 229(4)x x =+-258x =Rt △ABC在中,根据勾股定理,得 根据全等三角形的性质,可以证明则故选B .4.【答案】B【解析】∵菱形ABCD 的对角线∴AC ⊥BD ,OA =AC =4 cm ,OB =BD =3 cm ,根据勾股定理,(cm ).设菱形的高为h ,则菱形的面积,即,解得,即菱形的高为cm .故选B . 5.【答案】B【解析】如图,连接AP ,∵在菱形ABCD 中,∠ADC =72°,BD 为菱形ABCD 的对角线,∴∠ADP =∠CDP =12∠ADC =36°. ∵AD 的垂直平分线交对角线BD 于点P ,垂足为E ,∴PA =P D. ∴∠DAP =∠ADP =36°.∴∠APB =∠DAP +∠ADP =72°. 又∵菱形ABCD 是关于对角线BD 对称的,∴∠CPB =∠APB =72°.故选B.6.【答案】CRt △AOF 158,OF =,OE OF =154.EF=8cm 6cm AC BD ==,,12125AB ===12AB h AC BD =⋅=⋅15862h =⨯⨯245h =245【解析】∵AD//BC,∴∠DAE=∠AEB,∵BE=CF,AB=BC,∠ABE=∠BCF,∴△ABE≌△BCF,∴AE=BF,∠DAE=∠BFC,∵∠FBC+∠BFC=90°,∠AEB=∠BFC,∴∠FBC+AEB=90°,∴AE ⊥BF,所以A、B、D三个选项正确,∠AEB=∠BFC,故C选项错误,故选C.7.【答案】50°【解析】如图所示,由矩形ABCD可得AD∥BC,∴∠1=∠BFE=65°,由翻折得∠2=∠1=65°,∴∠AEB=180°–∠1–∠2=180°–65°–65°=50°.故答案为:50°.8.【答案】1【解析】∵△BP'C是由△BPA旋转得到,∴∠APB=∠CP'B=135°,∠ABP=∠CBP',BP=BP',AP=CP',∵∠ABP+∠PBC=90°,∴∠CBP'+∠PBC=90°,即∠PBP'=90°,∴△BPP'是等腰直角三角形,∴∠BP'P=45°,∵∠APB=∠CP'B=135°,∴∠PP'C=90°,∵BP=2,∴PP,∵PC=3,∴CP,∴AP=CP′=1,故答案为1.9.【解析】(1)∵AB=6,BC=8,AC=10,∴AB2+BC2=AC2,∴∠ABC=90°,∵四边形ABCD是平行四边形,∴ABCD是矩形.(2)∵四边形ABCD是矩形,∴BD=AC=10.10.【解析】(1)∵△AEF是由△ABC绕点A按顺时针方向旋转得到的,∴AE=AB,AF=AC,∠EAF=∠BAC,∴∠EAF+∠BAF=∠BAC+∠BAF,即∠EAB=∠FAC,在△ACF和△ABE中,AC ABCAF BAEAF AE=⎧⎪∠=∠⎨⎪=⎩,∴△ACF≌△ABE,∴BE=CF.(2)∵四边形ACDE为菱形,AB=AC=1,∴DE=AE=AC=AB=1,AC∥DE,∴∠AEB=∠ABE,∠ABE=∠BAC=45°,∴∠AEB=∠ABE=45°,∴△ABE为等腰直角三角形,∴BEBD=BE﹣DE1.11.【解析】(1)OE=OF,理由如下:因为CE平分∠ACB,所以∠1=∠2,又因为MN∥BC,所以∠1=∠3,所以∠3=∠2,所以EO=CO,同理,FO=CO,所以OE=OF.(2)当点O运动到AC的中点时,四边形AECF是矩形,理由如下:因为OE=OF,点O是AC的中点,所以四边形AECF是平行四边形,又因为CF平分∠BCA的外角,所以∠4=∠5,又因为∠1=∠2,所以∠1=∠2,∠2+∠4=11802⨯︒=90°,即∠ECF=90°,所以平行四边形AECF是矩形.(3)当△ABC是直角三角形时,即∠ACB=90°时,四边形AECF是正方形,理由如下:由(2)证明可知,当点O运动到AC的中点时,四边形AECF是矩形,又因为∠ACB=90°,CE,CN分别是∠ACB与∠ACB的外角的平分线,所以∠1=∠2=∠3=∠4=∠5=45°,所以AC⊥MN,所以四边形AECF是正方形.1.【答案】A【解析】A.有一个角为直角的平行四边形是矩形满足判定条件;B.四条边都相等的四边形是菱形,故B错误;C有一组邻边相等的平行四边形是菱形,故C错误;对角线相等且相互平分的四边形是矩形,则D错误;故选A.【名师点睛】本题考查了矩形的判定,矩形的判定方法有:1.有三个角是直角的四边形是矩形;2.对角线互相平分且相等的四边形是矩形;3.有一个角为直角的平行四边形是矩形;4.对角线相等的平行四边形是矩形.2.【答案】C【解析】∵菱形ABCD的顶点A,B的坐标分别为(2,0),(0,1),∴AO=2,OB=1,AC⊥BD,∴由勾股定理知:AB==,∵四边形ABCD为菱形,∴AB=DC=BC=AD∴菱形ABCD的周长为:C.【名师点睛】此题主要考查了菱形的性质,勾股定理以及坐标与图形的性质,得出AB的长是解题关键.3.【答案】D【解析】如图,过E点作关于AB的对称点E′,则当E′,P,F三点共线时PE+PF取最小值,∵∠EAP=45°,∴∠EAE′=90°,又∵AE=EF=AE′=4,∴PE+PF的最小值为E′F=,∵满足PE+PF∴在边AB上存在两个P点使PE+PF=9,同理在其余各边上也都存在两个P点满足条件,∴满足PE+PF=9的点P的个数是8,故选D.【名师点睛】本题主要考查了正方形的性质以及根据轴对称求最短路径,有一定难度,巧妙的运用求最值的思想判断满足题意的点的个数是解题关键.4.【答案】A【解析】正方形ABCD 中,∵BC =4, ∴BC =CD =AD =4,∠BCE =∠CDF =90°, ∵AF =DE =1,∴DF =CE =3,∴BE =CF =5,在△BCE 和△CDF 中,BC CD BCE CDF CE DF =⎧⎪∠=∠⎨⎪=⎩,∴△BCE ≌△CDF (SAS ),∴∠CBE =∠DCF , ∵∠CBE +∠CEB =∠ECG +∠CEB =90°=∠CGE , cos ∠CBE =cos ∠ECG =BC CGBE CE=, ∴453CG =,CG =125,∴GF =CF ﹣CG =5﹣125=135, 故选A .【名师点睛】此题主要考查了正方形的性质,全等三角形的判定和性质,勾股定理,锐角三角函数,证明△BCE ≌△CDF 是解本题的关键. 5.【答案】4913【解析】如图,令AE 与BF 的交点为M . 在正方形ABCD 中,∠BAD =∠D =90︒,∴∠BAM +∠FAM =90︒, 在Rt ADE △中,13==A E ,∵由折叠的性质可得ABF GBF △≌△, ∴AB =BG ,∠FBA =∠FBG , ∴BF 垂直平分AG , ∴AM =MG ,∠AMB =90︒, ∴∠BAM +∠ABM =90︒, ∴∠ABM =∠FAM ,∴ABM EAD △∽△,∴AM AB DE AE = ,∴12513AM =,∴AM =6013,∴AG =12013,∴GE =13–120491313=. 【名师点睛】本题考查了正方形与折叠,勾股定理,等腰三角形的性质,以及三角形相似的判定和性质,熟练掌握相关的知识是解题的关键.6.【答案】【解析】∵A 'E ∥PF ,∴∠A 'EP =∠D 'PH ,又∵∠A =∠A '=90°,∠D =∠D '=90°,∴∠A '=∠D ',∴△A 'EP ~△D 'PH , 又∵AB =CD ,AB =A 'P ,CD =D 'P ,∴A 'P = D 'P , 设A 'P =D 'P =x ,∵S △A 'EP :S △D 'PH =4:1,∴A 'E =2D 'P =2x ,∴S △A 'EP =2112422A E A P x x x ''⨯⨯=⨯⨯==, ∵0x >,∴2x =,∴A 'P =D 'P =2,∴A 'E =2D 'P =4,∴EP ==∴1=2PH EP =112DH D H A P ''===,∴415AD AE EP PH DH =+++=+=+ ∴2AB A P '==,∴25)10ABCD S AB AD =⨯=⨯=矩形,【名师点睛】本题考查矩形的性质、折叠的性质,解题的关键是掌握矩形的性质、折叠的性质. 7.【答案】24【解析】∵四边形ABCD 是菱形, ∴AB =BC =CD =AD ,BO =DO , ∵点E 是BC 的中点, ∴OE 是△BCD 的中位线, ∴CD =2OE =2×3=6,∴菱形ABCD 的周长=4×6=24; 故答案为:24.【名师点睛】本题考查了菱形的性质以及三角形中位线定理;熟记菱形性质与三角形中位线定理是解题的关键.8.【解析】(1)∵四边形ABCD是正方形,∴∠BAE=∠ADF=90°,AB=AD=CD,∵DE=CF,∴AE=DF,在△BAE和△ADF中,AB ADBAE ADF AE DF=⎧⎪∠=∠⎨⎪=⎩,∴△BAE≌△ADF(SAS),∴BE=AF;(2)解:由(1)得:△BAE≌△ADF,∴∠EBA=∠FAD,∴∠GAE+∠AEG=90°,∴∠AGE=90°,∵AB=4,DE=1,∴AE=3,∴BE,在Rt△ABE中,12AB×AE=12BE×AG,∴AG=435⨯=125.【名师点睛】本题考查了全等三角形的判定与性质、正方形的性质、勾股定理以及三角形面积公式;熟练掌握正方形的性质,证明三角形全等是解题的关键.9.【解析】(1)∵四边形ABCD是平行四边形,∴∠B=∠D,AB=CD,AD∥BC,∵AE⊥BC,CF⊥AD,∴∠AEB=∠AEC=∠CFD=∠AFC=90°,在△ABE和△CDF中,B DAEB CFD AB CD∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABE≌△CDF(AAS);(2)∵AD∥BC,∴∠EAF=∠AEB=90°,∴∠EAF=∠AEC=∠AFC=90°,∴四边形AECF是矩形.【名师点睛】本题考查了矩形的判定、平行四边形的性质、全等三角形的判定与性质;熟练掌握平行四边形的性质和矩形的判定是解题的关键.10.【解析】∵四边形ABCD是菱形,∴AD=CD,在△ADF和△CDE中,AD CDD D DF DE=⎧⎪∠=∠⎨⎪=⎩,∴△ADF≌△CDE(SAS),∴∠1=∠2.【名师点睛】本题考查了菱形的性质、全等三角形的判定与性质;熟练掌握菱形的性质,证明三角形全等是解题的关键.11.【答案】见解析.【解析】∵四边形ABCD是矩形,∴∠D=∠B=90°,AD=BC,在△ADF和△CBE中,AD CBD B DF BE⎧=∠=∠=⎪⎨⎪⎩,∴△ADF≌△CBE(SAS),∴AF=CE.【名师点睛】本题考查了矩形的性质、全等三角形的判定与性质;熟练掌握矩形的性质,证明三角形全等是解题的关键.12.【答案】见解析.【解析】∵四边形ABCD中,AB=CD,AD=BC,∴四边形ABCD是平行四边形,∴AC=2AO,BD=2OD,∵OA=OD,∴AC=BD,∴四边形ABCD是矩形.【名师点睛】本题考查了平行四边形的性质和判定,矩形的判定等知识点,能由题中已知信息推出四边形ABCD是平行四边形是关键.13.【解析】(1)∵四边形EFGH是矩形,∴EH=FG,EH∥FG,∴∠GFH=∠EHF,∵∠BFG=180°﹣∠GFH,∠DHE=180°﹣∠EHF,∴∠BFG=∠DHE,∵四边形ABCD是菱形,∴AD∥BC,∴∠GBF=∠EDH,∴△BGF≌△DEH(AAS),∴BG=DE;(2)连接EG,∵四边形ABCD是菱形,∴AD=BC,AD∥BC,∵E为AD中点,∴AE=ED,∵BG=DE,∴AE=BG,AE∥BG,∴四边形ABGE是平行四边形,∴AB=EG,∵EG=FH=2,∴AB=2,∴菱形ABCD的周长=8.【名师点睛】本题考查了菱形的性质,矩形的性质,全等三角形的判定和性质,正确的识别作图是解题的关键.。

特殊的平行四边形专题(题型详细分类)要点

特殊的平行四边形专题(题型详细分类)要点

特殊的平⾏四边形专题(题型详细分类)要点特殊的平⾏四边形讲义知识点归纳矩形,菱形和正⽅形之间的联系如下表所⽰:四边形分类专题汇总专题⼀:特殊四边形的判定矩形菱形正⽅形性质边对边平⾏且相等对边平⾏,四边相等对边平⾏,四边相等⾓四个⾓都是直⾓对⾓相等四个⾓都是直⾓对⾓线互相平分且相等互相垂直平分,且每条对⾓线平分⼀组对⾓互相垂直平分且相等,每条对⾓线平分⼀组对⾓判定 ·有三个⾓是直⾓; ·是平⾏四边形且有⼀个⾓是直⾓; ·是平⾏四边形且两条对⾓线相等. ·四边相等的四边形;·是平⾏四边形且有⼀组邻边相等;·是平⾏四边形且两条对⾓线互相垂直。

·是矩形,且有⼀组邻边相等; ·是菱形,且有⼀个⾓是直⾓。

对称性既是轴对称图形,⼜是中⼼对称图形(1)______________ (2)______________ (3)______________ (4)______________ (5)______________2.矩形的判定⽅法:(1)______________ (2)______________ (3)______________3.菱形的判定⽅法:(1)______________ (2)______________ (3)______________4.正⽅形的判定⽅法:(1)______________ (2)______________ (3)______________5.等腰梯形的判定⽅法:(1)______________ (2)______________ (3)______________【练⼀练】⼀.选择题1.能够判定四边形ABCD是平⾏四边形的题设是().A.AB∥CD,AD=BC B.∠A=∠B,∠C=∠DC.AB=CD,AD=BC D.AB=AD,CB=CD2.具备下列条件的四边形中,不能确定是平⾏四边形的为().A.相邻的⾓互补 B.两组对⾓分别相等C.⼀组对边平⾏,另⼀组对边相等 D.对⾓线交点是两对⾓线中点3.下列条件中,能判定四边形是平⾏四边形的条件是( )A.⼀组对边平⾏,另⼀组对边相等B.⼀组对边平⾏,⼀组对⾓相等C.⼀组对边平⾏,⼀组邻⾓互补D.⼀组对边相等,⼀组邻⾓相等4.如下左图所⽰,四边形ABCD的对⾓线AC和BD相交于点O,下列判断正确的是().A.若AO=OC,则ABCD是平⾏四边形;B.若AC=BD,则ABCD是平⾏四边形;C.若AO=BO,CO=DO,则ABCD是平⾏四边形;D.若AO=OC,BO=OD,则ABCD是平⾏四边形5.不能判定四边形ABCD是平⾏四边形的条件是()A.AB=CD,AD=BC B.AB∥CD,AB=CDC.AB=CD,AD∥BC D.AB∥CD,AD∥BC6.四边形ABCD的对⾓线AC,BD相交于点O,能判断它为矩形的题设是()A.AO=CO,BO=DO B.AO=BO=CO=DOC.AB=BC,AO=CO D.AO=CO,BO=DO,AC⊥BD7.四边形ABCD的对⾓线互相平分,要使它变为矩形,需要添加的条件是()A.AB=CD B.AD=BC C.AB=BC D.AC=BD8.在四边形ABCD中,O是对⾓线的交点,下列条件能判定这个四边形是正⽅形的是()A、AC=BD,AB∥CD,AB=CDB、AD∥BC,∠A=∠CC、AO=BO=CO=DO,AC⊥BDD、AC=CO,BO=DO,AB=BC9.在下列命题中,真命题是()A.两条对⾓线相等的四边形是矩形B.两条对⾓线互相垂直的四边形是菱形C.两条对⾓线互相平分的四边形是平⾏四边形D.两条对⾓线互相垂直且相等的四边形是正⽅形10.在下列命题中,正确的是()11.如图,已知四边形ABCD 是平⾏四边形,下列结论中不正确的是() A .当AB=BC 时,它是菱形 B .当AC ⊥BD 时,它是菱形C .当∠ABC=900时,它是矩形D .当AC=BD 时,它是正⽅形12.如图,在ABC △中,点E D F ,,分别在边AB ,BC ,CA 上,且DE CA ∥,DF BA ∥.下列四个判断中,不正确...的是() A .四边形AEDF 是平⾏四边形B .如果90BAC ∠=o ,那么四边形AEDF 是矩形C .如果AD 平分BAC ∠,那么四边形AEDF 是菱形D .如果AD BC ⊥且AB AC =,那么四边形AEDF 是菱形 13.下列条件中不能判定四边形是正⽅形的条件是()。

初三数学九年级上册知识点——特殊的平行四边形

初三数学九年级上册知识点——特殊的平行四边形

九年级数学上册知识点特殊的平行四边形一、平行四边形1.平行四边形的定义:两组对边分别平行的四边形叫做平行四边形。

2.平行四边形的性质(1)平行四边形的对边平行且相等。

(对边)(2)平行四边形相邻的角互补,对角相等(对角)(3)平行四边形的对角线互相平分。

(对角线)(4)平行四边形是中心对称图形,对称中心是对角线的交点。

常用点:(1)若一直线过平行四边形两对角线的交点,则这条直线被一组对边截下的线段的中点是对角线的交点,并且这条直线二等分此平行四边形的面积。

(2)推论:夹在两条平行线间的平行线段相等。

3.平行四边形的判定(1)定义:两组对边分别平行的四边形是平行四边形。

(对边)(2)定理1:两组对边分别相等的四边形是平行四边形。

(对边)(3)定理2:一组对边平行且相等的四边形是平行四边形。

(对边)(4)定理3:两组对角分别相等的四边形是平行四边形。

(对角)(5)定理4:对角线互相平分的四边形是平行四边形。

(对角线)4.两条平行线的距离两条平行线中,一条直线上的任意一点到另一条直线的距离,叫做这两条平行线的距离。

注意:平行线间的距离处处相等。

5.平行四边形的面积: S平行四边形=底边长×高=ah二、菱形1.菱形的定义:有一组邻边相等的平行四边形叫做菱形2.菱形的性质(1)菱形的四条边相等,对边平行。

(边)(2)菱形的相邻的角互补,对角相等。

(对角)(3)菱形的对角线互相垂直平分,并且每一条对角线平分一组对角。

(对角线)(4)菱形既是中心对称图形又是轴对称图形;对称中心是对角线的交点(对称中心到菱形四条边的距离相等);对称轴有两条,是对角线所在的直线。

3.菱形的判定(1)定义:有一组邻边相等的平行四边形是菱形。

(2)定理1:四边都相等的四边形是菱形。

(边)(3)定理2:对角线互相垂直的平行四边形是菱形。

(对角线)(4)定理3:对角线垂直且平分的四边形是菱形。

(对角线)4.菱形的面积:S菱形=底边长×高=两条对角线乘积的一半三、矩形1.矩形的定义:有一个角是直角的平行四边形叫做矩形。

新北师大九年级数学上册第一章特殊地平行四边形知识点

新北师大九年级数学上册第一章特殊地平行四边形知识点

二、菱形第一章特殊的平行四边形1、菱形的定义:有一组邻边相等的平行四边形叫做菱形一、平行四边形2、菱形的性质1、平行四边形的定义:两组对边分别平行的四边形叫做平行四边形。

(1)菱形的四条边相等,对边平行。

(边)2、平行四边形的性质(2)菱形的相邻的角互补,对角相等。

(对角)(1)平行四边形的对边平行且相等。

(对边)(3)菱形的对角线互相垂直平分,并且每一条对角线平分一组对角。

(对角线)(2)平行四边形相邻的角互补,对角相等(对角)(4)菱形既是中心对称图形又是轴对称图形;对称中心是对角线的交点(对称中(3)平行四边形的对角线互相平分。

(对角线)心到菱形四条边的距离相等);对称轴有两条,是对角线所在的直线。

(4)平行四边形是中心对称图形,对称中心是对角线的交点。

3、菱形的判定常用点:(1)若一直线过平行四边形两对角线的交点,则这条直线被一组对边截(1)定义:有一组邻边相等的平行四边形是菱形。

下的线段的中点是对角线的交点,并且这条直线二等分此平行四边形的面积。

(2)定理1:四边都相等的四边形是菱形。

(边)(2)推论:夹在两条平行线间的平行线段相等。

(3)定理2:对角线互相垂直的平行四边形是菱形。

(对角线)3、平行四边形的判定(4)定理3:对角线垂直且平分的四边形是菱形。

(对角线)(1)定义:两组对边分别平行的四边形是平行四边形。

(对边)4、菱形的面积:S菱形=底边长×高=两条对角线乘积的一半(2)定理1:两组对边分别相等的四边形是平行四边形。

(对边)三、矩形(3)定理2:一组对边平行且相等的四边形是平行四边形。

(对边)1、矩形的定义:有一个角是直角的平行四边形叫做矩形。

(4)定理3:两组对角分别相等的四边形是平行四边形。

(对角)2、矩形的性质(5)定理4:对角线互相平分的四边形是平行四边形。

(对角线)(1)矩形的对边平行且相等。

(对边)4、两条平行线的距离(2)矩形的四个角都是直角。

(内角)两条平行线中,一条直线上的任意一点到另一条直线的距离,叫做这两条(3)矩形的对角线相等且互相平分。

完整版九年级上册-特殊的平行四边形知识点

完整版九年级上册-特殊的平行四边形知识点

九年级上册-特殊的平行四边形知识点总结一、平行四边形1、定义:两组对边分别平行的四边形叫做平行四边形。

2、表示:字母按顺序书写。

3、性质:①边:对边平行且相等;②角:对角相等;③对角线:互相平分4、判定:①以定义证明:两组对边平行的四边形是平行四边形;②对角线互相平分的四边形是平行四边形;③两组对边分别相等的四边形是平行四边形;④一组对边平行且相等的四边形是平行四边形。

二、矩形1、定义:有一个角是直角的平行四边形。

2、性质:①边:对边平行且相等(具有平行四边形的一切性质);②角:四个角相等,都是直角;③对角线:相等,互相平分。

3、判定:①以定义证明:有一个角是直角的平行四边形;②有三个角是90°的四边形;③对角线相等的平行四边形;④对角线互相平分且相等的四边形。

三、菱形1、定义:有一组邻边相等的平行四边形叫做菱形。

2、性质:①边:四条边相等;②角:对角相等(具有平行四边形的一切性质);③对角线:互相平分且垂直,并且每一条对角线平分一组对角。

④菱形的面积等于对角线乘积的一半。

3、判定:①以定义证明:有一组邻边相等的平行四边形叫做菱形;②四条边都相等的平行四边形是菱形;③对角线互相垂直的平行四边形是菱形;四,正方形的性质-具有矩形的性质,也具有菱形的性质。

1,定义:有一组邻边相等并且有一个角是直角的平行四边形叫做正方形.2,性质:①边:对边平行,四边相等;②角:四个角都是直角;③对角线:对角线相等,互相垂直平分,每条对角线平分一组对角3,判定:①有一个角是直角的菱形是正方形;②对角线相等的菱形是正方形;③有一组邻边相等的矩形是正方形.④对角线垂直的矩形是正方形;五,直角三角形斜边中线的性质与直角三角形的判定①直角三角形斜边上的中线等于斜边的一半;②判定:如果一个三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

新天宇教育授课讲义授课科目初三上册授课时间(2016.9.11)授课内容特殊的平行四边形1基础知识1.基础知识点(概念、公式)1.菱形菱形定义:有一组邻边相等的平行四边形叫做菱形.(1)是平行四边形;(2)一组邻边相等.菱形的性质性质1菱形的四条边都相等;性质2 菱形的对角线互相平分,并且每条对角线平分一组对角;菱形的判定菱形判定方法1:对角线互相垂直的平行四边形是菱形.菱形判定方法2:四边都相等的四边形是菱形.2.矩形矩形定义: 有一个角是直角的平行四边形叫做矩形(通常也叫长方形或正方形).矩形是中心对称图形,对称中心是对角线的交点,矩形也是轴对称图形,对称轴是通过对边中点的直线,有两条对称轴;矩形的性质:(具有平行四边形的一切特征)矩形性质1: 矩形的四个角都是直角.矩形性质2: 矩形的对角线相等且互相平分.矩形的判定方法.矩形判定方法1:对角钱相等的平行四边形是矩形.矩形判定方法2:有三个角是直角的四边形是矩形.矩形判定方法3:有一个角是直角的平行四边形是矩形.矩形判定方法4:对角线相等且互相平分的四边形是矩形.2.正方形正方形是在平行四边形的前提下定义的,它包含两层意思:①有一组邻边相等的平行四边形(菱形②有一个角是直角的平行四边形(矩形)正方形不仅是特殊的平行四边形,并且是特殊的矩形,又是特殊的菱形.正方形定义:有一组邻边相等.......的平行四边形.....叫做正方形.正方形是中心对称......并且有一个角是直角图形,对称中心是对角线的交点,正方形又是轴对称图形,对称轴是对边中点的连线和对角线所在直线,共有四条对称轴;因为正方形是平行四边形、矩形,又是菱形,所以它的性质是它们性质的综合,正方形的性质总结如下:边:对边平行,四边相等;角:四个角都是直角;对角线:对角线相等,互相垂直平分,每条对角线平分一组对角.注意:正方形的一条对角线把正方形分成两个全等的等腰直角三角形,对角线与边的夹角是45°;正方形的两条对角线把它分成四个全等的等腰直角三角形,这是正方形的特殊性质.正方形具有矩形的性质,同时又具有菱形的性质.正方形的判定方法:(1)有一个角是直角的菱形是正方形;(2)有一组邻边相等的矩形是正方形.注意:1、正方形概念的三个要点:(1)是平行四边形;(2)有一个角是直角;(3)有一组邻边相等.2、要确定一个四边形是正方形,应先确定它是菱形或是矩形,然后再加上相应的条件,确定是正方形.2.本节课的重点、难点(1)对平行四边形和特殊的几种图形的性质要注意理解(2)对证明特殊平行四边形的方法进行掌握3.学生容易混淆的知识点(1)各种四边形对角线的特点。

(2)各种特殊平行四边形的证明方式。

4.针对不同层次学生的题型例1.矩形1已知:如图,矩形ABCD,AB长8 cm ,对角线比AD边长4 cm.求AD的长及点A到BD 的距离AE的长.2已知:如图,矩形ABCD中,E是BC上一点,DF⊥AE于F,若AE=BC.求证:CE=EF.3.如图,已知矩形ABCD中,E是AD上的一点,F是AB上的一点,EF⊥EC,且EF=EC,DE=4cm,矩形ABCD的周长为32cm,求AE的长.4、如图,在 ABCD 中,E 为BC 的中点,连接AE 并延长交DC 的延长线于点F .(1)求证:AB=CF ;(2)当BC 与AF 满足什么数量关系时,四边形ABFC 是矩形,并说明理由.例2.菱形1 已知:如图,四边形ABCD 是菱形,F 是AB 上一点,DF 交AC 于E . 求证:∠AFD=∠CBE .2已知:如图ABCD 的对角线AC 的垂直平分线与边AD 、BC 分别交于E 、F .求证:四边形AFCE 是菱形.3、如图,在 ABCD 中,O 是对角线AC 的中点,过点O 作AC 的垂线与边AD 、BC 分别交于E 、F ,求证:四边形AFCE 是菱形.F E DC B AABCDEFO124、已知如图,菱形ABCD 中,E 是BC 上一点,AE 、BD 交于M , 若AB=AE,∠EAD=2∠BAE 。

求证:AM=BE 。

5. (10湖南益阳)如图,在菱形ABCD 中,∠A =60°,AB =4,O 为对角线BD 的中点,过O 点作OE ⊥AB ,垂足为E .(1)求线段BE 的长.6、如图,四边形ABCD 是菱形,DE ⊥AB 交BA 的延长线于E ,DF ⊥BC ,交BC 的延长线于F 。

请你猜想DE 与DF 的大小有什么关系?并证明你的猜想例3.正方形1 已知:如图,正方形ABCD 中,对角线的交点为O ,E 是OB 上的一点,DG ⊥AE 于G ,DG 交OA 于F . 求证:OE=OF .BM ADCED A B CO E602精讲例题2 已知:如图,四边形ABCD是正方形,分别过点A、C两点作l1∥l2,作BM⊥l1于M,DN⊥l1于N,直线MB、DN分别交l2于Q、P点.求证:四边形PQMN是正方形3. 如图所示,在正方形ABCD中,M为AB的中点,MN MD⊥,BN平分∠CBE并交MN于N。

求证:MD=MN。

D CNA MB E4课后作业作业:1.以不在同一直线上的三个点为顶点作平行四边形,最多能作()A.4个B.3个C.2个D.1个2.若平行四边形的一边长为10cm,则它的两条对角线的长度可以是();A.5cm和7cm B.18cm和28cmC.6cm和8cm D.8cm和12cm3.如图,平行四边形ABCD中,经过两对角线交点O的直线分别交BC于点E,交AD于点F. 若BC=7,CD=5,OE=2,则四边形ABEF的周长等于().A.14 B.15 C.16 D.无法确定4.如图,矩形ABCD的对角线AC、BD相交于点O,CE∥BD,DE∥AC,若AC=4,则四边形CODE的周长()A.4 B.6 C.8 D.105.如图,把一个长方形的纸片对折两次,然后剪下一个角,为了得到一个钝角为120°的菱形,剪口与第二次折痕所成角的度数应为()A.15°或30°B.30°或45°C.45°或60°D.30°或60°6.如图,菱形ABCD 中,对角线AC、BD交于点O,菱形ABCD周长为32,点P是边CD的中点,则线段OP的长为()A.3 B.5 C.8 D.47.如图,在平行四边形ABCD中,过对角线BD上一点P,作EF∥BC,HG∥AB,若四边形AEPH和四边形CFPG的面积分另为S1和S2,则S1与S2的大小关系为()A.S1=S2B.S1>S2C.S1<S2D.不能确定8.矩形的两条对角线所成的钝角为120°,若一条对角线的长是2,那么它的周长是()A.6 B.C.2(1+)D.1+9.如图,菱形ABCD中,∠A=120°,E是AD上的点,沿BE折叠△ABE,点A恰好落在BD上的点F,那么∠BFC的度数是()A.60°B.70°C.75°D.80°10.如图,在四边形ABCD中,对角线AC⊥BD,垂足为O,点E、F、G、H分别为边AD、AB、BC、CD的中点.若AC=8,BD=6,则四边形EFGH的面积为()A.14 B.12 C.24 D.4811.如图,在菱形ABCD中,AC,BD是对角线,如果∠BAC=70°,那么∠ADC等于.12.如图,矩形ABCD的对角线AC、BD相交于点O,DE∥AC,CE∥BD,若AC=4,则四边形CODE的周长为13.如图,在梯形ABCD中,AD∥BC,AD=4,BC=12,E是BC的中点.点P以每秒1个单位长度的速度从点A出发,沿AD向点D运动;点Q同时以每秒2个单位长度的速度从点C出发,沿CB向点B运动.点P停止运动时,点Q也随之停止运动.当运动时间为2或秒时,以点P,Q,E,D为顶点的四边形是平行四边形.14.如图,折叠矩形纸片ABCD,使点B落在边AD上,折痕EF的两端分别在AB、BC上(含端点),且AB=6cm,BC=10cm.则折痕EF的最大值是cm.15.如图,将两条宽度都是为2的纸条重叠在一起,使∠ABC=45°,则四边形ABCD的面积为_________ .16.如图,在矩形ABCD中,AB=8,BC=10,E是AB上一点,将矩形ABCD沿CE折叠后,点B落在AD 边的F点上,则DF的长为.17.如图,菱形ABCD的边长为4,∠BAD=120°,点E是AB的中点,点F是AC上的一动点,则EF+BF 的最小值是.18.如图,菱形ABCD中,AB=2,∠BAD=60°,E是AB的中点,P是对角线AC上的一个动点,则PE+PB 的最小值是.19.如图,点E、F、G、H分别为矩形ABCD四条边的中点,证明:四边形EFGH是菱形.20.如图,在平行四边形ABCD中,E为BC边上的一点,连结AE、BD且AE=AB.(1)求证:∠ABE=∠EAD;(2)若∠AEB=2∠ADB,求证:四边形ABCD是菱形.21.如图,在菱形ABCD中,∠ABC=60°,过点A作AE⊥CD于点E,交对角线BD于点F,过点F作FG ⊥AD于点G.(1)求证:BF=AE+FG;(2)若AB=2,求四边形ABFG的面积.22.如图,△ABC中,AD是边BC上的中线,过点A作AE//BC,过点D作DE//AB,DE与AC、AE分别交于点O、点E,连接EC.(1)求证:AD=EC;(2)当∠BAC=Rt∠时,求证:四边形ADCE是菱形.23.将平行四边形纸片ABCD按如图方式折叠,使点C与A重合,点D落到D′处,折痕为EF.(1)求证:△ABE≌△AD′F;(2)连接CF,判断四边形AECF是什么特殊四边形?证明你的结论.24.已知:矩形ABCD中,对角线AC与BD交与点O,∠BOC=120°,AC=4cm.求:矩形ABCD的周长和面积。

第11页共11 页。

相关文档
最新文档