物理实验金属薄膜电阻率的测量

合集下载

实验报告薄膜材料磁电阻效应实验

实验报告薄膜材料磁电阻效应实验

薄膜材料磁电阻效应实验一、 实验目的1. 了解磁性薄膜材料科学及磁电子学的一些基本概念和基础知识;2. 了解MR 、AMR 、GMR 等相关基本概念;3. 了解和学会利用四探针法测量磁性薄膜磁电阻的鱼原理和方法;4. 分析利用四探针法测量磁电阻可能的实验误差来源。

二、实验原理1. 磁性薄膜的磁电阻效应(MRE )磁电阻效应MRE 是指物质在磁场的作用下电阻会发生变化的物理现象。

表征磁电阻效应大小的物理量为MR ,其定义为:00100%MR ρρρρρ-∆==⨯ (1) 其中0ρ、ρ分别代表不加磁场和加了磁场以后的电阻率大小。

磁电阻效应按照产生的磁电阻大小以及机理不同可以分为:正常磁电阻效应(OMR )、各向异性磁电阻效应(AMR )、巨磁电阻效应(GMR )和超巨磁电阻效应(CMR )等。

(1)正常磁电阻效应(OMR )正常磁电阻效应(OMR)为普遍存在于所有金属中的磁场电阻效应,它由英国物理学家W.Thomson 于1856年发现。

其特点是:a .磁电阻MR >0b .各向异性,但//ρρ⊥> (⊥ρ和//ρ分别表示外加磁场与电流方向垂直及平行时的电阻率) c .当磁场不高时,MR 正比于H 2OMR 来源于磁场对电子的洛伦兹力,该力导致载流体运动发生偏转或产生螺旋运动,因而使电阻升高。

大部分材料的OMR 都比较小。

以铜为例,当H=10-3T 时,铜的OMR 仅为4⨯10-8%。

(2)各向异性磁电阻效应(AMR )在居里点以下,铁磁金属的电阻率随电流I 与磁化强度M 的相对取向而异,称之为各向异性磁电阻效应。

即⊥ρ≠//ρ。

各向异性磁电阻值通常定义为:0///)(/ρρρρρ⊥-=∆=AMR (2) 低温5K 时,铁、钴的各向异性磁电阻值约为1%,而坡莫合金(Ni 81Fe 19)为15%,室温下坡莫合金的各向异性磁电阻值仍有2~3%。

图1所示为厚度为200 nm 的NiFe 单层薄膜的磁电阻(MR )变化曲线。

实验二霍尔系数和电阻率的测量

实验二霍尔系数和电阻率的测量

实验二 霍尔系数和电阻率的测量把通有电流的半导体置于磁场中,如果电流方向与磁场垂直,则在垂直于电流和磁场的方向会产生一附加的横向电场,这个现象称为霍尔效应。

随着半导体物理学的发展,霍尔系数和电导率的测量已成为研究半导体材料的主要方法之一。

通过实验测量半导体材料的霍尔系数和电导率可以判断材料的导电类型、载流子浓度、载流子迁移率等主要参数。

若能测量霍尔系数和电导率随温度变化的关系,还可以求出材料的杂质电离能和材料的禁带宽度。

一、实验目的1. 了解霍尔效应实验原理以及有关霍尔元件对材料要求的知识;2. 学习用“对称测量法”消除副效应的影响,测量并绘制试样的V H -I S 和V H -I M 曲线;3. 确定试样的导电类型、载流子浓度以及迁移率。

二、实验原理霍尔效应从本质上讲是运动的带电粒子在磁场中受洛仑兹力作用而引起的偏转。

当带电粒子(电子和空穴)被约束在固体材料中,这种偏转就导致在垂直于电流和磁场的方向上产生正负电荷的积累,从而形成附加的横向电场,即霍尔电场。

对于图 (a)所示的N 型半导体试样,若在X 方向的电极D 、E 上通以电流I S ,在Z 方向加磁场B ,试样中载流子(电子)将受洛仑兹力:B v e F g ()其中,e 为载流子(电子)电量,v 为载流子在电流方向上的平均定向漂移速率,B 为无论载流子是正电荷还是负电荷,Fg 的方向均沿Y 方向,在此力的作用下,载流子发生偏移,则在Y 方向即试样A 、A ’电极两侧就开始聚集异号电荷,在A 、A ’两侧产生一个电位差V H ,形成相应的附加电场E H ——霍尔电场,相应的电压V H 称为霍尔电压,电极A 、A ’称为霍尔电极。

电场的指向取决于试样的导电类型。

N 型半导体的多数载流子为电子,P 型半导体的多(a (b图 样品示意图数载流子为空穴。

对N 型试样,霍尔电场逆Y 方向,P 型试样则沿Y 方向,有I S (X)、B (Z) E H (Y) < 0 (N 型)E H (Y) > 0 (P 型)显然,该电场是阻止载流子继续向侧面偏移。

实验三十六 金属箔式应变实验

实验三十六   金属箔式应变实验

150实验三十六 金属箔式应变实验练习一 金属箔式应变片——单臂电桥性能实验一、 实验目的了解金属箔式应变片的应变效应,单臂电桥工作原理和性能。

二、 基本原理:金属丝在外力作用下发生机械形变时,其电阻值会发生变化,这就是金属的电阻应变效应。

金属的电阻表达式为: SlR ρ= (1) 当金属电阻丝受到轴向拉力F 作用时,将伸长l ∆,横截面积相应减小S ∆,电阻率因晶格变化等因素的影响而改变ρ∆,故引起电阻值变化R ∆。

对式(1)全微分,并用相对变化量来表示,则有:ρρ∆+∆-∆=∆S S l l R R (2) 式中的ll ∆为电阻丝的轴向应变,用ε表示,常用单位με(1με=1×m mm m610-)。

若径向应变为r r∆,电阻丝的纵向伸长和横向收缩的关系用泊松比μ表示为)(l l rr∆-=∆μ,因为SS ∆=2(rr ∆),则(2)式可以写成:llk l l l l l l R R ∆=∆∆∆++=∆++∆=∆02121)()(ρρμρρμ (3) 式(3)为“应变效应”的表达式。

0k 称金属电阻的灵敏系数,从式(3)可见,0k 受两个因素影响,一个是(1+μ2),它是材料的几何尺寸变化引起的,另一个是)(ρερ∆,是材料的电阻率ρ随应变引起的(称“压阻效应”)。

对于金属材料而言,以前者为主,则μ210+≈k ,对半导体,0k 值主要是由电阻率相对变化所决定。

实验也表明,在金属丝拉伸比例极限内,电阻相对变化与轴向应变成比例。

通常金属丝的灵敏系数0k =2左右。

用应变片测量受力时,将应变片粘贴于被测对象表面上。

在外力作用下,被测对象表面产生微小机械变形时,应变片敏感栅也随同变形,其电阻值发生相应变化。

通过转换电路转换为相应的电压或电流的变化,根据(3)式,可以得到被测对象的应变值ε,而根据应力应变关系εσE = (4)式中 ζ——测试的应力; E ——材料弹性模量。

可以测得应力值ζ。

实验“测定金属电阻率”的方法步骤和技巧

实验“测定金属电阻率”的方法步骤和技巧

1实验“测定金属电阻率”的方法、步骤和技巧山东省沂源一中(256100)任会常材料的电阻率是材料的一种电学特性。

由电阻定律公式 R =ρL /S 知,电阻率ρ=RS/L 。

因此,要测定金属的电阻率,只须选择这种金属材料制成的导线,用刻度尺测出金属导线连入电路部分的长度L ,用螺旋测微器测出金属导线的直径d ,用“伏安法”测出金属导线的电阻R ,即可求得金属的电阻率ρ。

一、实验方法1、实验器材①金属丝 ②螺旋测微器(千分尺)③刻度尺 ④电流表 ⑤电压表 ⑥学生电源 ⑦滑动变阻器 ⑧单刀开关 ⑨导线若干。

【点拨】被测金属丝要选用电阻率大的材料,如铁铬铝合金、镍铬合金等或300W 电炉丝经细心理直后代用,直径0.4mm 左右,电阻5~10Ω之间为宜,在此前提下,电源若选3V 直流电源,安培表应选0~0.6A 量程,伏特表应选0~3V 档,滑动变阻器选0~20Ω。

2.实验方法(1)金属丝横截面积的测定:在金属丝上选择没有形变的点,用螺旋测微器在不同的方位上测金属丝的直径三次。

【点拨】测金属丝的直径时,每测一次转45°,如果金属丝上有漆,则要用火烧去漆,轻轻抹去灰后再测量。

切忌把金属丝放在高温炉中长时间的烧,也不要用小刀刮漆,以避免丝径变小或不均匀)。

求出该点的金属丝直径d ,在不同的点再测出金属丝的直径,求得金属丝直径的平均值后,计算出金属丝的横截面积。

(2)用刻度尺测出金属丝的长度。

(3)金属丝电阻的测定:按图1连接电路。

金属丝R 一定从它的端点接入电路。

滑动变阻器R 0先调至阻值最大的位置,闭合开关,根据电阻丝的额定电流和电流表、电压表的指针位置,适当调节变阻器的阻值大小,使电流表和电压表指针在刻度盘的1/3-2/3的区间。

改变电压几次,读出几组U 、I 值,由欧姆定律R =U /I 算出金属丝的电阻R ,再由公式ρ=RS/L 求得金属的电阻率。

二、实验步骤1.用螺旋测微器三次测量导线不同位置的直径取平均值D ,求出其横截面积S =πD 2/4.2.将金属丝两端固定在接线柱上悬空挂直,用毫米刻度米尺测量接入电路的金属丝长度L ,测三次,求出平均值L 。

四探针测试电阻率和方块电阻的实验教案

四探针测试电阻率和方块电阻的实验教案

四探针测试电阻率和方块电阻的实验教案第一篇:四探针测试电阻率和方块电阻的实验教案《四探针测试电阻率和方块电阻》的实验教案一、实验教学目的通过该实验,通过让学生测试不同样品的电阻率和方块电阻。

增强学生的实际动手能力,加深对电阻率和方块电阻的认识,为将来从事微电子相关的研究和测试方面的工作打好基础。

二、实验教学原理及要求1、实验教学原理电阻率是决定半导体材料电学特性的重要参数,它为自由载流子浓度和迁移率的函数。

半导体材料电阻率的测量方法有多种,其中四探针法具有设备简单、操作方便、测量精度高,以及对样品的形状无严格的要求等优点,是目前检测半导体材料电阻率的主要方法。

直线型四探针法是用针距为s(通常情况s=1mm)的四根金属同时排成一列压在平整的样品表面上,如图1所示,其中最外部二根(图1中1、4两探针)与恒定电流源连通,由于样品中有恒电流I通过,所以将在探针2、3之间产生压降V。

图1测量方阻的四探针法原理对半无穷大均匀电阻率的样品,若样品的电阻率为ρ,点电流源的电流为I,则当电流由探针流入样品时,在r处形成的电势V(r)为V(r)=Iρ………………………(1)2πr同理,当电流由探针流出样品时,在r处形成的电势V(r)为V(r)=-Iρ...........................(2)2πr可以看到,探针2处的电势V2是处于探针点电流源+I 和处于探针4处的点电流源-I贡献之和,因此:Iρ11V2=(-) (3)2πs2s同理,探针3处的电势V3为V3=Iρ11(-)……………………(4)2π2ss 探针2和3之间的电势差V23为V23=V2-V3=Iρ………………..(5)2πs由此可得出样品的电阻率为V ρ=2πs23 (6)I从式(1)至式(6),对等距直线排列的四探针法,已知相连探针间距s,测出流过探针1和探针4的电流强度I、探针2和探针3之间的电势差V23,就能求出半导体样品的电阻率ρ。

北京科技大学工科物理实验总结

北京科技大学工科物理实验总结

4.9用四端法测量Fe-Cr-Al丝的电阻率(测量低值电阻)①要求画电路图并连线,连接好线后叫老师,注意电压要设定为9V,标准电阻P端为电压端,J为电流端;待测电阻测电压的线要接在铜质基座上面。

②测量直径三次,算体积或者截面面积;1、什么是误差等分配原则?各个直接测量量所对应的误差分量尽量相等,同时间接测量量对应的误差合成项又满足精度的要求。

2、四端法可以消除导线与接触电阻对测量结果的影响。

3、实验中标准电阻的作用有哪些?实验中如何选用标准电阻?(1)实验是采用的比较法测量低值电阻,即通过与标准电阻的比较得出待测电阻值。

xxnnUR RU,另外串联一个标准电阻一定程度上对电路起到限流保护作用。

(2)选用阻值与待测电阻相近的标准电阻。

4、当标准电阻R为0.1级时,其误差为多少?(在实验中实验器材里有)0.1%5.4落球法测定液体不同温度下的黏度及温度的PID调节(蓖麻油黏度随温度呈负指数变化)1、黏度的大小取决于液体的性质与温度,温度升高,黏度将迅速减小5.9光栅光谱仪装置图:P286、2891、什么是光谱仪?光谱仪是一种将复色光分解为光谱线并进行测量的光学仪器。

2、对单色仪光学系统进行分析,说明为什么出射狭缝S2处可得到单色光?复合光从狭缝进入单色仪,由第一反射镜反射到光栅上,光栅衍射后将第一级衍射光(一般用一级衍射光)射到第二反射镜后从狭缝出射得到单色光.(整个过程中通过提调节棱镜和光栅的角度可以得到不同的单色光.)5、光电倍增管使用注意事项:使用光电倍增管时,切勿使入射光太强,工作时不能打开密封罩,否则因曝光而引起的阳极电流会使管子烧坏。

6、光电倍增管的作用:完成光电转换,即将光信号转换为电信号5.10光电效应1、什么是光电效应?具有适当频率的光照射在金属表面上时,从金属表面会发射出电子。

2、什么是截止频率?有一个最小频率v0,当入射光频率低于该值时,不论光的强度如何大,都没有光电流产生,这个最小频率称为截止频率,也称红限。

实验十八 四探针法测量薄膜电阻率

实验十八 四探针法测量薄膜电阻率

实验十八 四探针法测量薄膜电阻率一、实验目的1.熟悉四探针法测量薄膜电阻率的原理和特点; 2.测定一些薄膜材料的电阻率;3.了解薄膜厚度对薄膜电阻率的影响(尺寸效应);薄膜材料是微电子技术的基础材料。

薄膜是人工制作的厚度在1微米(10-6米)以下的固体膜,“厚度1微米以下”并不是一个严格的区分定义。

薄膜一般来说都是被制备在一个衬底(如:玻璃、半导体硅等)上,由于薄膜的厚度(简称:膜厚)是非常薄的,因此膜厚在很大程度上影响着薄膜材料的物理特性(如,电学性质、光学性质、磁学性质、力学性质、铁电性质等)。

这种薄膜材料的物理特性受膜厚影响的现象被称为尺寸效应。

尺寸效应决定了薄膜材料的某些物理、化学特性不同于通常的块体材料,也就是说,同块体材料相比,薄膜材料将具有一些新的功能和特性。

因此,尺寸效应是薄膜材料(低维材料)科学中的基本而又重要的效应之一。

金属薄膜的电阻率是金属薄膜材料的一个重要的物理特性,是科研开发和实际生产中经常测量的物理特性之一,在实际工作中,通常用四探针法测量金属薄膜的电阻率。

四探针法测量金属薄膜的电阻率是四端子法测量低电阻材料电阻率的一个实际的应用。

二、实验原理在具有一定电阻率ρ的导体表面上,四根金属探针在任意点1、2、3、4处与导体良好地接触,如图1所示。

其触点是最够的小,可以近似认为点接触。

取其中的任意两个探针作为电极,如1和4。

当它们之间有电流通过时,薄膜表面和内部有不均匀的电流场分布,因此在表面上各点有不同的电势。

通过测量探针1,2间的电流、探针2,3间的电势差和距离,就可计算该薄膜的电阻率ρ。

如图2所示,设电流I 从探针1处流入,在触点附近,半径为r 的球面上,电流密度为:2r2Ij π=(1)如果金属的表面和厚度远大于探针之间的距离,则电场强度为2r 2Ij j E πρ=ρ=σ=(2) 图 1 任意间距的四探针示意图设探针1和2、1和3、4和2、4和3之间的距离分别为r 12、r 13、r 24和r 34。

实验二 霍尔系数和电阻率的测量

实验二  霍尔系数和电阻率的测量

实验二 霍尔系数和电阻率的测量把通有电流的半导体置于磁场中,如果电流方向与磁场垂直,则在垂直于电流和磁场的方向会产生一附加的横向电场,这个现象称为霍尔效应。

随着半导体物理学的发展,霍尔系数和电导率的测量已成为研究半导体材料的主要方法之一。

通过实验测量半导体材料的霍尔系数和电导率可以判断材料的导电类型、载流子浓度、载流子迁移率等主要参数。

若能测量霍尔系数和电导率随温度变化的关系,还可以求出材料的杂质电离能和材料的禁带宽度。

一、实验目的1. 了解霍尔效应实验原理以及有关霍尔元件对材料要求的知识;2. 学习用“对称测量法”消除副效应的影响,测量并绘制试样的V H -I S 和V H -I M 曲线;3. 确定试样的导电类型、载流子浓度以及迁移率。

二、实验原理霍尔效应从本质上讲是运动的带电粒子在磁场中受洛仑兹力作用而引起的偏转。

当带电粒子(电子和空穴)被约束在固体材料中,这种偏转就导致在垂直于电流和磁场的方向上产生正负电荷的积累,从而形成附加的横向电场,即霍尔电场。

对于图2.1 (a)所示的N 型半导体试样,若在X 方向的电极D 、E 上通以电流I S ,在Z 方向加磁场B ,试样中载流子(电子)将受洛仑兹力:B v e F g (2.1)其中,e 为载流子(电子)电量,v 为载流子在电流方向上的平均定向漂移速率,B 为磁感无论载流子是正电荷还是负电荷,Fg 的方向均沿Y 方向,在此力的作用下,载流子发生偏移,则在Y 方向即试样A 、A ’电极两侧就开始聚集异号电荷,在A 、A ’两侧产生一个电位差V H ,形成相应的附加电场E H ——霍尔电场,相应的电压V H 称为霍尔电压,电极A 、A ’称为霍尔电极。

电场的指向取决于试样的导电类型。

N 型半导体的多数载流子为电子,P 型半导体的多数载流子为空穴。

对N 型试样,霍尔电场逆Y 方向,P 型试样则沿Y 方向,有(a) (b) 图2.1 样品示意图I S (X)、B (Z) E H (Y) < 0 (N 型)E H (Y) > 0 (P 型)显然,该电场是阻止载流子继续向侧面偏移。

双臂电桥实验报告(金属箔式应变片)

双臂电桥实验报告(金属箔式应变片)

金属箔式应变片实验报告一、实验目的了解金属箔式应变片的应变效应,1/4桥电桥工作原理和性能。

二、基本原理电阻应变式传感器是在弹性元件上通过特定工艺粘贴电阻应变片来组成。

此类传感器主要是通过一定的机械装置将被测量转化成弹性元件的形变,然后由电阻应变片将弹性元件的形变转化为电阻的变化,再通过测量电路将电阻的变化转换成电压或者电流变化信号输出。

它可用于能转化成形变的各种物理量的检测。

所谓电阻应变效应是指具有规则外形的金属导体或半导体材料在外力的作用下发生应变而其电阻值也会产生相应的改变。

应变灵敏度是指电阻应变片在单位应变作用下所产生的电阻的相对变化量。

金属导体的应变灵敏度K主要取决于其几何效应,半导体的应变灵敏度主要取决于其压阻效应, 半导体材料之所以具有较大的电阻变化率,是因为它具有远比金属导体显著得多的压阻效应。

在半导体受力变形时会暂时改变晶体结构的对称性,因而改变了半导体的导电机理,使得它的电阻率发生变化,这种物理变化称为半导体的压阻效应。

不同材质的半导体材料在不同受力条件下产生的压阻效应不同,可以是正或者负的压阻效应。

也就是说,同样是拉伸变形,不同材质的半导体将得到完全相反的电阻变化效果。

在贴片式工艺的传感器上普遍应用金属箔式应变片,贴片半导体应变片很少应用(温漂、稳定性、线性度不好且易损坏),一般半导体应变片采用N型单晶硅为传感器的弹性元件,在它上面直接蒸镀扩散出半导体电阻应变薄膜(扩散出敏感栅),制成扩散型压阻式(压阻效应)传感器。

金属箔式应变片是在用苯酚、环氧树脂等绝缘材料的基板上,粘贴直径为0.025 mm左右的金属丝或者金属箔制成。

金属箔式应变片是通过光刻、腐蚀等工艺制成的应变敏感元件,与丝式应变片工作原理相同。

电阻丝在外力的作用下发生机械形变时,其电阻值发生变化,这就是电阻应变效应。

电路电桥按其工作方式分有1/4桥、半桥、全桥三种如图17 -2所示,1/4桥工作输出信号最小,线性、稳定性较差;半桥输出是1/4桥的2倍,性能比1/4桥有所改善;全桥工作时的输出是1/4桥的4倍,性能最好。

金属箔式应变片三种桥路性能比较的实验原理和方法

金属箔式应变片三种桥路性能比较的实验原理和方法

金属箔式应变片三种桥路性能比较一、实验目的:1、了解金属箔片式应片及应变电桥的原理和性能;2、验证单臂、半桥、全桥的性能及相互间的关系;3、比较单臂、半桥、全桥输出时的灵敏度和非线性度,得出相应的结论。

二、基本原理:电阻应变式传感器是在弹性元件上通过特定工艺粘贴电阻应变片来组成。

一种利用电阻材料的应变效应,将工程结构件的内部变形转换为电阻变化的传感器,此类传感器主要是通过一定的机械装置将被测量转化成弹性元件的变形,然后由电阻应变片将变形转换成电阻的变化,再通过测量电路进一步将电阻的改变转换成电压或电流信号输出。

可用于能转化成变形的各种非电物理量的检测,如力、压力、加速度、力矩、重量等。

1、应变片的电阻应变效应所谓电阻应变效应是指具有规则外形的金属导体或半导体材料在外力作用下产生应变而其电阻值也会产生相应地改变,这一物理现象称为“电阻应变效应”。

以圆柱形导体为例:设其长为L 、半径为r 、材料的电阻率为ρ时,根据电阻的定义式得2r L A L R ⋅==πρρ(3-1)当导体因某种原因产生应变时,其长度L 、截面积A 和电阻率ρ的变化为dL 、dA 、dρ相应的电阻变化为dR 。

对式(3—1)全微分得电阻变化率dR /R 为:ρρd r dr L dL R dR +-=2(3-2)式中:dL /L 为导体的轴向应变量εL ;dr /r 为导体的横向应变量εr由材料力学得:εL =-μεr (3-3)式中:μ为材料的泊松比,大多数金属材料的泊松比为0.3~0.5左右;负号表示两者的变化方向相反。

将式(3—3)代入式(3—2)得:()ρρεμd R dR ++=21(3-4)式(3—4)说明电阻应变效应主要取决于它的几何应变(几何效应)和本身特有的导电性能(压阻效应)。

2、应变灵敏度它是指电阻应变片在单位应变作用下所产生的电阻的相对变化量。

(1)、金属导体的应变灵敏度K :主要取决于其几何效应,可取()l R dR εμ21+≈(3-5)其灵敏度系数为:()με21+==RdR K l 金属导体在受到应变作用时将产生电阻的变化,拉伸时电阻增大,压缩时电阻减小,且与其轴向应变成正比。

磁控溅射法制备薄膜材料实验报告

磁控溅射法制备薄膜材料实验报告

实验一磁控溅射法制备薄膜材料一、实验目的1、详细掌握磁控溅射制备薄膜的原理和实验程序;2、制备出一种金属膜,如金属铜膜;3、测量制备金属膜的电学性能和光学性能;4、掌握实验数据处理和分析方法,并能利用 Origin 绘图软件对实验数据进行处理和分析。

二、实验仪器磁控溅射镀膜机一套、万用电表一架、紫外可见分光光度计一台;玻璃基片、金属铜靶、氩气等实验耗材。

三、实验原理1、磁控溅射镀膜原理(1)辉光放电溅射是建立在气体辉光放电的基础上,辉光放电是只在真空度约为几帕的稀薄气体中,两个电极之间加上电压时产生的一种气体放电现象。

辉光放电时,两个电极间的电压和电流关系关系不能用简单的欧姆定律来描述,以气压为 1.33Pa 的 Ne 为例,其关系如图 5 -1 所示。

图 5-1 气体直流辉光放电的形成当两个电极加上一个直流电压后,由于宇宙射线产生的游离离子和电子有限,开始时只有很小的溅射电流。

随着电压的升高,带电离子和电子获得足够能量,与中性气体分子碰撞产生电离,使电流逐步提高,但是电压受到电源的高输出阻抗限制而为一常数,该区域称为“汤姆森放电”区。

一旦产生了足够多的离子和电子后,放电达到自持,气体开始起辉,出现电压降低。

进一步增加电源功率,电压维持不变,电流平稳增加,该区称为“正常辉光放电”区。

当离子轰击覆盖了整个阴极表面后,继续增加电源功率,可同时提高放电区内的电压和电流密度,形成均匀稳定的“异常辉光放电”,这个放电区就是通常使用的溅射区域。

随后继续增加电压,当电流密度增加到~0.1A/cm 2时,电压开始急剧降低,出现低电压大电流的弧光放电,这在溅射中应力求避免。

(2)溅射通常溅射所用的工作气体是纯氩,辉光放电时,电子在电场的作用下加速飞向基片的过程中与氩原子发生碰撞,电离出大量的氩离子和电子,电子飞向基片。

氩离子在电场的作用下加速轰击靶材,溅射出大量的靶材原子,这些被溅射出来的原子具有一定的动能,并会沿着一定的方向射向衬底,从而被吸附在衬底上沉积成膜。

北京科技大学工科物理实验总结

北京科技大学工科物理实验总结

4.9用四端法测量Fe-Cr-Al丝的电阻率(测量低值电阻)①要求画电路图并连线,连接好线后叫老师,注意电压要设定为9V,标准电阻P端为电压端,J为电流端;待测电阻测电压的线要接在铜质基座上面。

②测量直径三次,算体积或者截面面积;1、什么是误差等分配原则?各个直接测量量所对应的误差分量尽量相等,同时间接测量量对应的误差合成项又满足精度的要求。

2、四端法可以消除导线与接触电阻对测量结果的影响。

3、实验中标准电阻的作用有哪些?实验中如何选用标准电阻?(1)实验是采用的比较法测量低值电阻,即通过与标准电阻的比较得出待测电阻值。

xxnnUR RU,另外串联一个标准电阻一定程度上对电路起到限流保护作用。

(2)选用阻值与待测电阻相近的标准电阻。

4、当标准电阻R为0.1级时,其误差为多少?(在实验中实验器材里有)0.1%5.4落球法测定液体不同温度下的黏度及温度的PID调节(蓖麻油黏度随温度呈负指数变化)1、黏度的大小取决于液体的性质与温度,温度升高,黏度将迅速减小5.9光栅光谱仪装置图:P286、2891、什么是光谱仪?光谱仪是一种将复色光分解为光谱线并进行测量的光学仪器。

2、对单色仪光学系统进行分析,说明为什么出射狭缝S2处可得到单色光?复合光从狭缝进入单色仪,由第一反射镜反射到光栅上,光栅衍射后将第一级衍射光(一般用一级衍射光)射到第二反射镜后从狭缝出射得到单色光.(整个过程中通过提调节棱镜和光栅的角度可以得到不同的单色光.)5、光电倍增管使用注意事项:使用光电倍增管时,切勿使入射光太强,工作时不能打开密封罩,否则因曝光而引起的阳极电流会使管子烧坏。

6、光电倍增管的作用:完成光电转换,即将光信号转换为电信号5.10光电效应1、什么是光电效应?具有适当频率的光照射在金属表面上时,从金属表面会发射出电子。

2、什么是截止频率?有一个最小频率v0,当入射光频率低于该值时,不论光的强度如何大,都没有光电流产生,这个最小频率称为截止频率,也称红限。

金属薄膜的电阻率实验报告

金属薄膜的电阻率实验报告

金属薄膜的电阻率实验报告研究金属薄膜的电阻率与其厚度和材料的关系,并探究金属薄膜的导电性质。

实验原理:金属薄膜是一种特殊的材料,具有导电性质。

一般来说,金属的导电性能与其电阻率有密切的关系。

金属薄膜的电阻率可以通过测量其电阻和尺寸计算出来。

电阻可以通过电流和电压之间的关系进行测量,而尺寸则可以通过显微镜等仪器进行测量。

实验步骤:1. 准备金属薄膜样品:选择合适厚度的金属薄膜,并将其固定在导电基板上。

2. 测量电阻:将电流流过金属薄膜,并测量两端的电压,根据欧姆定律计算出电阻值。

3. 测量尺寸:使用显微镜等仪器测量金属薄膜的长度、宽度和厚度。

4. 计算电阻率:将测得的电阻值和尺寸代入相应的公式,计算出金属薄膜的电阻率。

5. 重复实验:使用不同厚度和材料的金属薄膜进行实验,并进行多次重复测量,以提高结果的准确性。

6. 分析结果:根据实验数据,分析金属薄膜的电阻率与其厚度和材料的关系。

实验结果:经过多次实验测量和计算,得出了不同厚度和材料的金属薄膜的电阻率。

从实验结果可以看出,金属薄膜的电阻率与其厚度和材料的关系密切。

一般来说,金属薄膜的电阻率随着厚度的增加而减小,即金属薄膜越厚,其导电性能越好。

此外,不同材料的金属薄膜的电阻率也有所不同,不同金属的导电性能也不尽相同。

实验讨论:金属薄膜的电阻率与其厚度和材料的关系有一定的规律,但具体的机理还需要进一步研究探索。

在实验中,由于实验条件、仪器精度等因素的限制,实验结果可能存在一定的误差和偏差。

为了提高实验结果的准确性,可以进行多次重复实验,并采用不同的测量方法和仪器,以减小误差的影响。

实验应用:金属薄膜的电阻率是描述其导电性能的重要指标,具有广泛的应用价值。

金属薄膜广泛应用于电子器件、光学器件和导电涂层等领域。

通过研究金属薄膜的电阻率,可以对金属薄膜的导电性能进行优化和改善,使其在实际应用中发挥更好的作用。

总结:金属薄膜的电阻率与其厚度和材料的关系密切。

金属箔式应变片三种桥路性能比较的实验原理和方法

金属箔式应变片三种桥路性能比较的实验原理和方法

金属箔式应变片三种桥路性能比较一、实验目的:1、了解金属箔片式应片及应变电桥的原理和性能;2、验证单臂、半桥、全桥的性能及相互间的关系;3、比较单臂、半桥、全桥输出时的灵敏度和非线性度,得出相应的结论。

二、基本原理:电阻应变式传感器是在弹性元件上通过特定工艺粘贴电阻应变片来组成。

一种利用电阻材料的应变效应,将工程结构件的内部变形转换为电阻变化的传感器,此类传感器主要是通过一定的机械装置将被测量转化成弹性元件的变形,然后由电阻应变片将变形转换成电阻的变化,再通过测量电路进一步将电阻的改变转换成电压或电流信号输出。

可用于能转化成变形的各种非电物理量的检测,如力、压力、加速度、力矩、重量等。

1、应变片的电阻应变效应所谓电阻应变效应是指具有规则外形的金属导体或半导体材料在外力作用下产生应变而其电阻值也会产生相应地改变,这一物理现象称为“电阻应变效应”。

以圆柱形导体为例:设其长为L 、半径为r 、材料的电阻率为ρ时,根据电阻的定义式得2r L A L R ⋅==πρρ(3-1)当导体因某种原因产生应变时,其长度L 、截面积A 和电阻率ρ的变化为dL 、dA 、dρ相应的电阻变化为dR 。

对式(3—1)全微分得电阻变化率dR /R 为:ρρd r dr L dL R dR +-=2(3-2)式中:dL /L 为导体的轴向应变量εL ;dr /r 为导体的横向应变量εr由材料力学得:εL =-μεr (3-3)式中:μ为材料的泊松比,大多数金属材料的泊松比为0.3~0.5左右;负号表示两者的变化方向相反。

将式(3—3)代入式(3—2)得:()ρρεμd R dR ++=21(3-4)式(3—4)说明电阻应变效应主要取决于它的几何应变(几何效应)和本身特有的导电性能(压阻效应)。

2、应变灵敏度它是指电阻应变片在单位应变作用下所产生的电阻的相对变化量。

(1)、金属导体的应变灵敏度K :主要取决于其几何效应,可取()l R dR εμ21+≈(3-5)其灵敏度系数为:()με21+==RdR K l 金属导体在受到应变作用时将产生电阻的变化,拉伸时电阻增大,压缩时电阻减小,且与其轴向应变成正比。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档