物理化学-第六章

合集下载

物理化学(第二版)第六章 胶体和界面化学

物理化学(第二版)第六章 胶体和界面化学

比表面(specific surface area)与分散度
比表面--通常用来表示物质分散的程度,有两 种常用的表示方法: 一种是单位质量的固体所具有的表面积; 另一种是单位体积固体所具有的表面积。
S SV V
S SW W
式中,W 和V分别为固体的质量和体积,S为其表面 积。目前常用的测定表面积的方法有BET法和色谱法。 分散度--把物质分散成细小微粒的程度称为分散 度。物质分割得越小,分散度越高,比表面也越大。
r
弯曲液体表面上的蒸汽压
液体(T , pl ) === 饱和蒸汽( T , pg )
Gm (l) Gm (g)
Gm (g) Gm (l) dpg dpl pg T pl T
Vm (l)dpl Vm (g)dpg RTd ln pg
弯曲液体表面的附加压力
p凸 p0 p
(3)在凹面上:
p凹 p0 p
附加压力与曲率半径的关系
(忽略重力的影响)反抗压力 pi 移动活塞液滴体积增加 dV,对液 体所做的功为 pidV ; 液滴克服 pe 的压力增大体积 dV 对环境做 功 pedV,同时表面积增大dA付出表面功 σdA 。
比表面与分散度
把边长为1cm的立方体逐渐分割成小立方体的情况: 边长l/m 1×10-2 1×10-3 1×10-5 1×10-7 1×10-9 立方体数 1 103 109 1015 1021 比表面S/(m2/m3) 6 ×102 6 ×103 6 ×105 6 ×107 6 ×109
从表上可以看出,当将边长为10-2m的立方体分 割成10-9m的小立方体时,比表面增长了一千万倍。 可见达到nm级的超细微粒具有巨大的比表面积, 因而具有许多独特的表面效应,成为新材料和多相催 化方面的研究热点。

物理化学第6章可逆电池电动势习题及答案

物理化学第6章可逆电池电动势习题及答案

物理化学第6章可逆电池电动势习题及答案第六章可逆电池电动势6.1本章学习要求1.掌控对称电池、对称电极的类型、电极电势标准态、电动势、nernst公式及其应用领域;2.掌控对称电池热力学,对称电池电动势的测定方法及其在化学、生命体系及土壤体系等领域中的应用领域;3.了解pe、ph?电势图和生化标准电极电势。

6.2内容概述6.2.1可逆电池1.对称电池(reversiblecell)的条件:电池在充任、振动时出现的反应必须为可逆反应;电池充任、振动时的能量切换必须对称,即为通过电池的电流无限小,并无热功转变。

2.对称电极的类型(1)金属电极由金属浸在含有该金属离子的溶液中构成,包括汞齐电极。

如zn电极zn(s)│znso4(aq)电极电势(electrodepotential)φzn/zn=φ?ln(2)气体电极由惰性金属(通常用pt或au为导电体)插入某气体及其离子溶液中构成的电极,如氢电极,pt,h2(p)│h(ah)电极电势φ=φ?ln(3)金属难溶盐电极将金属表面覆盖一薄层该金属的难溶盐,浸入含有该难溶盐的负离子的溶液中构成。

如银?氯化银电极,ag(s),agcl(s)│cl(acl)电极电势φagcl,ag,cl=φ?lnacl(4)氧化还原电极由惰性金属(如pt片)插入某种元素两种不同氧化态的离子溶液中构成电极,如sn、sn电极,pt(s)│sn(a),sn(a)电极电势φ=φ?ln3.电池表示法电池的书面表示所采用的规则:负极写在左方,进行氧化反应(是阳极),正极写在右方,进行还原反应(是阴极);组成电池的物质用化学式表示,并注明电极的状态;气体要注明分压和依附的不活泼金属,温度,所用的电解质溶液的活度等,如不写明,则指298k,p,a=1;用单垂线“│”表示接触界面,用双垂线“u”表示盐桥(saltbridge);在书写电极和电池反应时必须遵守物料平衡和电荷平衡。

6.2.2电极电势1.标准氢电极(standardhydrogenelectrode)用镀铂黑的铂片插入氢离子活度为1的溶液中,用标准压力的干燥氢气不断冲击到铂电极上所构成的电极,规定其电极电势为零。

物理化学 第六章 相 平 衡 课件

物理化学 第六章 相 平 衡 课件

第六章相平衡§6-1 相律1.基本概念(1)相和相数相:系统中物理性质和化学性质完全相同的均匀部分称为相,系统中相数目为相数。

相数用“P”表示。

相的确定:气体:无论有多少种物质都为一相液体:根据相互的溶解性可为一相、二相、三相固体:由固体的种类及晶型决定(固熔体除外)(2)自由度和自由度数自由度:能够维系系统原有相数,而可以独立改变的变量叫自由度,这种变量的数目叫做自由度数,用“F”表示。

说明:a)在一定范围内,任意改变F不会使相数改变。

b)自由度数和系统内的物种数和相数有关。

2.相律物种数:系统中所含独立物质的数目,用“S”表示。

依据:自由度数=总变量数-非独立变量数=总变量数-方程式数相律表达式:F = C – P + 2式中C = S –R- R’称组分数R 独立反应的方程式数R’独立限制条件3.几点说明(1) 每一相中均含有S种物质的假设,不论是否符合实际,都不影响相律的形式。

(2) 相律中的2表示整体温度、压强都相同。

(3) F = C – P + 2是通常的形式。

(4) 凝聚相系统的相律是F = C – P + 1§6.2单组分系统相图相图:表示相平衡系统的组成与温度、压力之间的图形。

单组分系统一相:P=1 则F=1-1+2=2(T,P)双变量系统二相:P=2 则F=1-2+2=1(T或P)单变量系统三相:P=3 则F=1-3+2=0 无变量系统1.水的相平衡实验数据由数据可得:(1)水与水蒸气平衡,蒸气压随温度的升高而增大;(2)冰与水蒸气平衡,蒸气压随温度的升高而增大;(3)冰与水平衡,压力增大,冰的熔点降低;(4)在0.01℃和610Pa下,冰、水和水蒸气共存,三相平衡。

2. 水的相图单相区:液态水,水蒸气,冰双相线:OA —液固共存线,冰的熔点曲线OB —气固共存线,冰的饱和蒸气压曲线OC —气液共存线,水的饱和蒸气压曲线三相点:冰、水和水蒸气共存相图的说明(1) 冰在熔化过程中体积缩小,故水的相图中熔点曲线的斜率为负,但大多数物质熔点曲线的斜率为正。

物理化学(傅献彩著)06章_化学平衡

物理化学(傅献彩著)06章_化学平衡
B ( T ,p ,x B ) B * ( T ,p ) R T l n x B
若对Henry定律发生偏差,得
B ( T ,p ,x B )B * ( T ,p ) R T ln a x ,B
B* (T, p) 不是标准态化学势
B * (T ,p )B * (T ,p)p pV B d p B * (T ,p)
上一内容 下一内容 回主目录
返回
2021/5/27
6.2 化学反应的平衡常数和等温方程式
理想气体混合物反应系统
Kp
B
pB p
B e
rG mRTlnKp
K p 为理想气体混合物反应系统的标准平衡常数 它仅是温度的函数,压力已指定为标准压力
下标 “p” 表示是“压力商”,以区别于其他标 准平衡常数
rGm (T) 称为化学反应标准摩尔Gibbs自由能变化值, 仅是温度的函数。
上一内容 下一内容 回主目录
返回
2021/5/27
6.2 化学反应的平衡常数和等温方程式
对于任意反应
d D e E g G h H
rG m rG m ( T ) R T ln ( (f fG D / /p p) ) g d ( (f fH E / /p p) ) e h
溶液中反应的平衡常数
显然,
B ( T , p , x B ) B ( T , p , m B ) B ( T , p , c B )
但是
x,B (T )m ,B (T )c,B (T )
因为对数项中的数值也都不相等。
上一内容 下一内容 回主目录
返回
2021/5/27
溶液中反应的平衡常数
上一内容 下一内容 回主目录
返回

物理化学-第六章__相平衡

物理化学-第六章__相平衡

第六章相平衡一.基本要求1.掌握相平衡的一些基本概念,会熟练运用相律来判断系统的组分数、相数和自由度数。

2.能看懂单组分系统的相图,理解相图中的点、线和面的含义及自由度,知道相图中两相平衡线的斜率是如何用Clapeyron方程和Clausius-Clapeyron方程确定的,了解三相点与凝固点的区别。

3.能看懂二组分液态混合物的相图,会在两相区使用杠杆规则,了解蒸馏与精馏的原理,知道最低和最高恒沸混合物产生的原因。

4.了解部分互溶双液系和完全不互溶双液系相图的特点,掌握水蒸汽蒸馏的原理。

5.掌握如何用热分析法绘制相图,会分析低共熔相图上的相区、平衡线和特殊点所包含的相数、相的状态和自由度,会从相图上的任意点绘制冷却时的步冷曲线。

了解二组分低共熔相图和水盐相图在湿法冶金、分离和提纯等方面的应用。

6.了解生成稳定化合物、不稳定化合物和形成固溶体相图的特点,知道如何利用相图来提纯物质。

二.把握学习要点的建议相律是本章的重要内容之一,不一定要详细了解相律的推导,而必须理解相律中各个物理量的意义以及如何求算组分数,并能熟练地运用相律。

水的相图是最简单也是最基本的相图,要把图中的点、线、面的含义搞清楚,知道确定两相平衡线的斜率,学会进行自由度的分析,了解三相点与凝固点的区别,为以后看懂相图和分析相图打好基础。

超临界流体目前是分离和反应领域中的一个研究热点,了解一些二氧化碳超临界流体在萃取方面的应用例子,可以扩展自己的知识面,提高学习兴趣。

二组分理想液态混合物的相图是二组分系统中最基本的相图,要根据纵坐标是压力还是温度来确定气相区和液相区的位置,理解气相和液相组成为什么会随着压力或温度的改变而改变,了解各区的条件自由度(在二组分相图上都是条件自由度),为以后看懂复杂的二组分相图打下基础。

最高(或最低)恒沸混合物不是化合物,是混合物,这混合物与化合物的最根本的区别在于,恒沸混合物含有两种化合物的分子,恒沸点的温度会随着外压的改变而改变,而且两种分子在气相和液相中的比例也会随之而改变,即恒沸混合物的组成也会随着外压的改变而改变,这与化合物有本质的区别。

物理化学-09-06

物理化学-09-06

电化学:研究化学化学现象和电现象之间关系的科学。
•电能和化学能转化规律
•电解质溶液的特性
电化学的实质是电子在电子导体和离子导体界面上的 传递,特别是在金属和水溶液界面的传递。
本章学习内容:电解质溶液;原电池;电解和极化
(一)电解质溶液
电解质溶液是原电池及电解池的工作介质
导电机理
电极反应 --- 法拉第定律
A B Az+ Bz可看作是正负离子的摩尔电导率之和

m
m,

m,-
m,
,
因而弱电解质的摩尔电导率
m,+
无限稀释时正负离 子的摩尔电导率
HAC NaAC HCl NaCl m m m m H + AC m m
1 定义 电导(G): 电阻的倒数
G 1 R A l
单位1S = 1-1
电导率(): 电阻率的倒数
1
电导率的定义可由下式看出
单位为 S . m-1
1 1 A A G R l l
电导率的定义示意图
A l
长度 l
电导G
面积=A
单位立方体
电导率
• 电导率相当于单位面积,单位长度的导体的电导
由m / c 计算难溶盐的溶解度
1.81104 c 1.309 102 mol m3 m AgCl 138.26 104
AgCl
§6-4电解质离子的平均活度因子及 与平均活度系数
1 平均活度和平均活度因子 电解质的浓度较大时,应用活度来进行有关计算
c /c
弱电解质对电导有贡献只是已电离的部分分子,故 解离度

第六章 物理化学 原电池和电解池

第六章 物理化学 原电池和电解池
E(理论分解 ) = E(可逆)
e上一内容 f下一内容 回主目录
2返回
极化作用
极化(polarization)
当电极上无电流通过时,电极处于平衡状态, 这时的电极电势分别称为阳极平衡电势 ϕ(阳,平) 和阴 极平衡电势ϕ(阴,平) 。
在有电流通过时,随着电极上电流密度的增 加,电极实际分解电势值对平衡值的偏离也愈来愈 大,这种对平衡电势的偏离称为电极的极化。
例如,只有控制溶液的pH,利用氢气的析出有超 电势,才使得镀Zn,Sn,Ni,Cr等工艺成为现实。
e上一内容 f下一内容 回主目录
2返回
电极反应的竞争
在电解质的水溶液中,正、负离子都不止一种,若为混合电 解质溶液,则正、负离子就更多了,原则上正离子都可以到阴 极去放电,负离子都可以到阳极去放电。但各离子的电极电势 不同,它们到电极上去放电有先有后,这种先后顺序要根据实 际电解中电极电势(即极化后的电极电势)来判断。实际电极 电势最大的先到阴极去放电,实际电极电势最小的先到阳极去 放电。在水溶液中有H+和OH-,需考虑H+和OH-的放电。在 中性水溶液中,
aH+ = 10−7 ,取p(H2) = 100kPa,25℃时有
ϕH+ /H2
= − RT F
ln
1 10−7
= −0.414V
e上一内容 f下一内容 回主目录
2返回
电极反应的竞争
若不考虑氢的超电势,则凡是电极电势大于-0.414V的离子都 可以先于H+到阴极放电并沉积出来。若考虑到氢的超电势, 许多电极电势比H+小得多的离子,如Zn2+、Cd2+,甚至Na+ 都可能先于H+到阴极放电沉积出来。
2返回
极化曲线(polarization curve)

物理化学 第六章 相平衡

物理化学 第六章 相平衡
NaCl(s) = Na++ Cl- 和 H2O = H+ + OH-
S = 6, R =2, R′= 2 C = S – R - R’ = 6 –2 -2 = 2 若 NaCl 溶解完,则只存在一个化学平衡 H2O = H+ + OH S = 5, R =1, R′= 2
C =S –R -R’ = 5 –1 -2 = 2
一、理想液态混合物的气—液平衡相图
1)蒸气压-组成图 因是理想液态混合物,任一组分都服从拉乌尔定律,即
p = pA*xA + pB*xB p = pA* ( 1- xB ) + pB*xB =pA* + ( pB* - pA* ) xB
即系统总压与液相组成xB 成线性关系,在p - x图中是一直线, 这是理想双液系相图的一个特点。
解:
(1) C = S - R - R´= 3 - 1 - 1=1
F=C-P +2= 1-2+2=1 (2) C = S - R - R´= 3 - 1 - 0 =2
F =C-P+2= 2-2+2=2
例2 (1) 仅由CaCO3(s)部分分解,建立如下反应平衡: CaCO3 (s) = CaO(s) + CO2(g) (2) 由任意量的 CaCO3 (s), CaO (s), CO2 (g)建立如下反应平衡:
2 相律(Phase rule)的推导
①系统中的变量总数 设系统中有 S 个物种,分布在 P 个相中,在温度T、压力p下 达到平衡。 在α 相中的变量为:T,p,xα 1,xα 2,…, xα S-1 在β 相中的变量为:T,p,xβ 1,xβ 2,…, xβ S-1 ………… 在P 相中的变量为:T,p,xP1,xP2,…, xPS-1

物理化学第六章-相平衡(72)

物理化学第六章-相平衡(72)

中的相对含量。
p
A
把表示溶液蒸气总压与
蒸气组成关系的线即p-y 线, 0
1
称之为气相线
A
B
理想液态混合物甲苯(A)-苯(B)系统相图
(3)读图
① 气相线、液相线
等温
② 各相区的相态及自由度 pa
a
pB
F=C-P+1 ③ 确定相组成
a.确定系统点 相点:表示平衡系统中各相
组成的点。
l
L2 L3
L1 M
(3) a→b系统加热过程状态变化分析
llg g
§6.4 二组分真实液态混合物的 气-液平衡相图
• 4.1 真实液态混合物与理想液态混合物的差别
两者区别: 理想液态混合物在全部组成范围内,每一组分的蒸气分压
均遵循拉乌尔定律,蒸气总压与组成(摩尔分数)成线性关系。 真实液态混合物除了组分的摩尔分数接近于1的极小范围
§6.2 单组分系统相图
• 2.1 单组分系统相律分析
F=C-P+2=3-P Pmin=1, Fmax=2 双变量系统 P=2, F=1 单变量系统 Pmax=3,Fmin=0 无变量系统
• 2.2 水的相平衡实验数据
见教材P.189 表6.2.1
结论:(1)水与水蒸气平衡,蒸气压力随着温度升高而增大 (2)冰与水蒸气平衡,蒸气压力随着温度升高而增大 (3)冰与水平衡,压力增加,冰的熔点降低 (4)在0.01℃,610Pa下,冰、水和水蒸气同时共存, 系统呈三相平衡状态。
内该组分的蒸气分压近似的遵循拉乌尔定律外,其他组分的液 相中组分的蒸气分压均对该定律产生明显的偏差,蒸气总压和 组分并不成线性关系。
正偏差--组分蒸气压大于按拉乌尔定律的计算值。 负偏差--组分蒸气压小于按拉乌尔定律的计算值。

物理化学第六章 相平衡

物理化学第六章 相平衡
设:nG-气相量
xM nL nG nG xG nL xL
整理可得:
nL-液相量
nL xM xL nG xG xM
即:
nL L2 M nG MG2
(3)
保持组成不变,得 T-p 图
不常用。
二组分系统相图:气—液平衡相图 液态完全互溶系统 p-x、t-x图 理想系统 真实系统
一般正偏差 最大正偏差 一般负偏差 最大负偏差
液态部分互溶系统 t-x图
气相组成介于两液相之间
气相组成位于两液相同侧
液态完全不互溶系统 t-x图
1. 理想液态混合物系统压力—组成图
第六章 相 平 衡
453
单相
TB
B
等压
等温
p
pB
T/K
373
A'
An
A"
T1
pA
两相
C 313 D 0.2 0.4 0.6 0 H2 O 质量分数
1.0 A 0.8 C6 H5 NH2
E
xB
B
相平衡是热力学在化学领域中的重要应用之一。 研究多相系统的平衡在化学、化工的科研和生产中有 重要的意义,例如:溶解、蒸馏、重结晶、萃取、提纯及 金相分析等方面都要用到相平衡的知识。 相平衡研究内容: 表达相平衡系统的状态如何随其组成、温度、压力 等而变化; 两种方法: 数学公式——如克拉佩龙方程、拉乌尔定律等等。 相图——直观。 本章主要介绍相律和一些基本的相图,以及如何由实验数 据绘制相图、如何应用相图等等。
例:
在一个密闭抽空的容器中有过量的NH4I(s),同时存
NH 4 I(s) NH3 (g) HI(g)
在下列平衡:

物理化学-第六章,相平衡-164

物理化学-第六章,相平衡-164

pC
A
临界点
647.30K

22.09MPa
ed c b a 冰
D O三相点 气
273.16K
B
610.62Pa
水的相图 T
OA、OB、OC三条线即两相平 衡线,可用克拉佩龙方程描述。
O:三相点 triple point(水在它 自身蒸气压力下的凝固点)。 通常所说的水的凝固点或冰点 (273.15 K)则是在101.325 kPa 下被空气所饱和的水的凝固点。
2020/9/7
相平衡
15
例4:某一纯理想气体的自由度为零,它必处于( )。 (A) 气液平衡共存; (B) 临界点; (C) 三相点; (D) 气相区
相律只能对系统作定性的描述,它只讨论“数目”而不 讨论“数值”:
根据相律可以确定有几个因素能对相平衡发生影响;在 一定条件下系统有几个相;等等。
但相律不能告诉我们这些数目具体代表哪些变量或哪些 相,也不知道各相的量之间的关系
2020/9/7
相平衡
29
第四节 理想的完全互溶双液系的相图
二组分系统: F = C – P + 2 = 4 – P
F最少为0,P最多为4; P最少为1,F最多为3——其相 图要用 p-T-x 三维立体图表示。
二组分系统相图的类型很多。
2020/9/7
相平衡
5
物种数 S:系统中所含化学物质的种数。 独立组分数 C:确定相平衡系统中所有各相组成所需的 最少物种数。
如:由 HI、H2、I2 三种气体组成的单相系统,S = 3。
① 如果各物质间没有任何化学反应,则组分数也是 3,即需要三 种物质才能确定气相的组成;
② 如果存在反应 2HI == H2 + I2,则组分数为 2,只需两种即可; ③ 如果还存在浓度限制如[H2]:[I2]=1:1,则组分数为1,只需一种

物理化学-第6章 可逆电池

物理化学-第6章 可逆电池
方法一:
E (Cu2 | Cu)
(Zn2 | Zn)
[
RT 1 - 2F ln a ] [ (Cu2 | Cu)
Cu 2
RT 1 - 2F ln a ] (Zn2 | Zn)
Zn 2
上一内容 下一内容 回主目录
返回
方法二
上一内容 下一内容 回主目录
返回
6.3 电化学与热力学的联系
上一内容 下一内容 回主目录
返回
电化学与热力学的联系
热力学第二定律:
吉布斯自由能变化的物理意义:在等温等压下,体系的吉布斯自由能的降低 等于它对外所做的可逆的非体积功。
• 若非膨胀功 Wf 仅电功一种,即对于可逆电池反应: W Pt EIt QE nEF
总反应:PbCl2 (s) + SO42 (a1) PbSO4 (s) + 2 Cl (a2)
上一内容 下一内容 回主目录
返回
2 、从化学反应设计电池
(1)氧化还原反应
Zn(s)+H2SO4(a)→H2(p)+ZnSO4(a’)
(-) Zn(s) →Zn2+(a’)+2e(+) 2H+(a)+2e-→H2(p)
εc
ε-
εj
ε+
E = εc + ε - + εj + ε+
上一内容
若用盐桥 “ ”,则消除 j
下一内容 回主目录
返回
• 事实上,无论是实验测定还是理论计算,都无法确 定单个电极的电极电势 绝对值。
• 实际工作中我们只能知道电池的电动势 E,即正、 负电极的电极电势之差 值(其相对大小)

物理化学完整ppt课件

物理化学完整ppt课件

数称为(独立)组分数。 S:物种数
CSRR'
R:独立的化学平衡数 R′独立限制条件数
说明:★独立限制条件数只有在同一相中才能起作用
CaCO3(s)=CaO(s)+CO2(g) R′= 0 ★独立的化学平衡数:指物质间构成的化学平衡是相互独立的
C+H2O=CO+H2 C+CO2=2CO CO+H2O=CO2+H2 R=2 S=5 C=5-2=3
(1)因外压增加,使凝固点下降 0.00748K (2)因水中溶有空气,使凝固点下降 0.00241K
可编辑课件
16
例:如图为CO2的相图,试问: (1)将CO2在25℃液化,最小需加多大压力? (2)打开CO2灭火机阀门时,为什么会出现少量白色固体(俗称于冰)?
解:(1)根据相图,当温度为25℃ 液一气平衡时,压力应为67大气压, 在25℃时最小需要67大气压才能使 CO2液化。
2、水的相图
可编辑课件
13
◎组分数
S:物种数
CSRR'
R:独立的化学平衡数 R′独立限制条件数
总结1
说明:★独立限制条件数只有在同一相中才能起作用 ★独立的化学平衡数:指物质间构成的化学平衡是相互独立的
◎相律
◎单组分系统相图 F=C-P十2=3-P
单组分系统最多三相共存 单组分系统是双变量系统
可编辑课件
可编辑课件
7
杠杆规则还可以表示为:
(1)
m() 1 wB() wB 1
m( )
wB wB ()
m() m() wB() wB wB wB()
m( )
wB wB ()
m() wB wB() m wB() wB()

物理化学第六章相变化

物理化学第六章相变化


第六章 相平衡
相变化: 物质从一个相转移到另一相的过程 相平衡: 相变过程的极限,达到相平衡的体系,宏观上 没有物质在相间的净转移 相 图: 相平衡时,T、p及各相组成间的关系图
相平衡原理 ——化学化工生产中单元操作(蒸馏、结晶等) 的理论基础 ——在冶金、材料、采矿、地质等生产中也必不可少 相平衡研究内容: 表达相平衡系统的状态如何随其组成、温度、压力 等而变化 两种方法: 数学公式——如克拉佩龙方程、拉乌尔定律等等 相图——直观 本章主要介绍相律和一些基本的相图,以及如何由实验数 据绘制相图、如何应用相图等等。
????ms??m??s???h?????????m?m?m?m?m?m?m?m?m?m?m????rrrbbrffffbbsthggsgcogohchsbsghhgcohgohchhbhh????????????????????222323r因此???????????????rtgkkrtgmrmr????expln第六章相平衡第六章相平衡相变过程的极限达到相平衡的体系宏观上没有物质在相间的净转移相变化
பைடு நூலகம்


解:
对于反应 rG m

2Ag(s) H 2 S ( g ) Ag 2 S ( s ) H 2 ( g ), 有
B

B
f G m B ,



f G m Ag 2 S , s f G m H 2 , g 2 f G m Ag , s f G m H 2 S , g

而非ln(1/10)
-1
r G m r G m RT ln
p(H 2S , g ) p
-3
r G m RT ln 10

物理化学 第六章 相平衡

物理化学 第六章  相平衡

l +β(s)
β(s) α(s)+β(s)
不断析 出α相
α、β
同时析出
开始析 出β相
液相消失 固相降温
xB
B
α相:B溶于A中的固态溶液。 β相:A溶于B中的固态溶液。
S1LS2线: l 加冷热却(s) (s) ,F=2-3+1=0,温度不变。
2. 系统有一转变温度
T
基本概念 相律的推导 几点说明
一、基本概念
1. 相:体系中物理性质和化学性质完全相同的部分。
相与相之间有明显的界面,其物理性质、化学性质发生突 变。
(1)气相:因任何气体均可以无限地均匀混合,则无 论体系内有多少种气体,只能有一相。
(2)液相: 不同种类的液体相互间的溶解不同,因此 体系中可出现一个液相,也可以出现多个液相。
子、原子或离子大小相互
均匀混合的一种固相,则
此固相为固溶体。
A
xB
B
Tb
L2
P
a
l
Q
L1
S1
l+s
液相降温 开始析出固相
S2
s
液相消失
固相降温
A
xB
B
PL1L2Q线:液相线或凝固点曲线。表示液态混合物的凝固点 与其组成的关系。
PS1S2Q线:固相线或熔点曲线。表示固态混合物的熔点与其 组成的关系。
若有R个独立的化学平衡反应存在(每个反应不一定和 这S种物质全有关系)。
对化学平衡,有 vBB 0 B
共有R个方程式
(3)独立限制条件
若有 R/ 个浓度限制条件。
例:若反应
N2
(
g
)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解:S=3,P=2,R=1,R’=0
F=(3-1-0)-2+2=2
§6.3 单 组 分 系 统相图
The Diagram of One-Component Systems
相(phase) 体系内部物理和化学性质完 全相同的均匀部分。相与相之间在指定条件 下有明显的界面,在界面上宏观性质的改变 是飞跃式的。 气体:不论有多少种气体混合,只有一个气相。
自由度(F):可独立改变而不影响系统
原有相数的变量的数目
2.相律的推导
数学原理: F=总变量数-限制方程数
设系统有S个组分,分布于P个相的每一相中
强度性质总数
限制方程个数
T(1),p(1),x1 (1),x2 (1)xS (1)
T(2),p(2),x1 (2),x2 (2)xS (2) T (P ),p(P ),x 1 (P ),x2 (P )xS (P )
例如:C(s)+O2(g)=CO2(g)
(1)
C(s)+1/2O2(g)=CO(g)
(2)
CO(g)+1/2O2(g)=CO2(g) (3)
C(s)+CO2(g)=2CO(g)
(4)
(1)-(2)=(3)
2(2)-(1)=(4)
R=2 C=4-2=2
2、独立(浓度)限制条件R’
例:在抽空容器中,放入NH4HS(s) NH4HS(s)=NH3(g)+H2S(g) R’=1 C=3-1-1=1
(2)C=3-1-0=2
F=2-1+2=3
(3)C=4-1-2=1
F=1-1+1=1
例水2:合已物知有NNaa22CCOO33(·sH)和2OH2(Os)(、l)可以组成的 Na2CO3·7H2O (s)和Na2CO3·10H2O (s) ,在100kPa下与水溶液及冰平衡共 存的固相含水盐最多可有几种?
单组分系统最大自由度为2,可用p-T图来描述。
2.水的相图
g F=2 l 面
s
g+l F=1 g+s 线
s+l
F=0 g+l+s

oa-水的气液平衡线;
水的饱和蒸气压 随温度的变化; 水的沸点随压力 的变化
Hale Waihona Puke 终止于临界点★如果系统中存在互 相平衡的气液两相,它 的温度与压力必定正好 处于曲线上
t / ℃ -10 -5 0.01 20 100
374 ℃
p* / Pa 285.7 421.0 610.5 2337.8 101325 22.04 MPa
oa-水的气液平衡线;水
的饱和蒸气压随温度 的变化;水的沸点随 压力的变化
ob-水的气固平衡线;冰
的饱和蒸气压随温度 的变化
理论上可延长至0 K附近
★如果系统中存在互 相平衡的气固两相,它 的温度与压力必定正好 处于曲线上
注意:浓度限制条件必须是对同一相而言
例如:将CaCO3(s)放入抽空容器中 CaCO3(s)=CaO(s)+CO2(g) R’ =0
3、相律中的“2”是指t与p 当考虑外场(如电、磁、重力场)存在时
F=C-P+n 4、若某些相中物质的数目少于S个,相律仍适用
因为浓度变量与相平衡等式相应减少。
5、相律的意义 多组分多相系统是十分复杂的,但借助相律可以确 定研究的方向。它表明相平衡系统中有几个独立变量, 当独立变量选定之后,其他变量必为这几个独立变量的 函数,(尽管我们不知这些函数的具体形式)。
一个单组分系统的相态与其所处的温度、压力 有关。而一个多组分系统的相态,则不仅取决于温 度、压力,还与系统的组成有关。
在101.325kPa、95 ℃下:
x总=0.5 xl=0.40 xg=0.62
将处于相平衡的系统的相态及相组成与系统的温度、 压力、总组成等变量之间的关系用图形表示出来,这种
图称为相图。
液体:按其互溶程度可以组成一相、两相或三 相共存。
固体,一般有一种固体便有一个相。两种固 体粉末无论混合得多么均匀,仍是两个相 (固体溶液除外,它是单相)。
1.何谓相图
相平衡时,将p、T、x之间 的关系描绘成图,就是相图
对单组分而言:F=C-P+2=1-P+2=3-P
F+P=3
当 P=1 单相 F=2 双变量系统 P=2 两相 F=1 单变量系统 P=3 三相 F=0 无变量系统
解:若有K 种含水盐,就有K个化学反应 C=(2+K)-K=2 F=C-P+1=2-P+1=3-P 当F=0时,P=3,相数最多
因系统中已有水溶液及冰两相,所以含 水盐最多只能有一种。
例3:3molH2(g)与3molI2(s)构成一系统,可进 行化学反应H2(g)+I2(g)=2HI(g) 平衡时仍有 I2(s)存在,求F。
6-1 相 律 The Phase Rule
1.自由度 Degrees of freedom
对于H2O(l)系统: 当p=101.325kPa时,t可以从5℃→95℃; 当t=25 ℃时,p可从100kPa →10MPa
系统有两个独立可变的强度性质:t和p 对于处于气液平衡的纯水系统:
要保持气液两相平衡共存,t与p只能有一个 独立可变。
相律的应用举例
例1:试确定下述平衡系统中的C及F
(1)NaCl固体及其饱和水溶液
(2)在高温下,NH3(g)、N2(g)、H2(g)达成平衡 的系统.
(3)在700℃时,将物质的量之比为1:1 的H2O(g) 及CO(g)充入一抽空的密闭容器,使之发生下述 反应并达平衡
H2O(g)+ CO(g)= CO2(g)+ H2 (g) 解:(1)C=S-R-R’=2-0-0=2 F=C-P+2=2-2+2=2
F=S-P-R-R’+2
自由度 F—平衡系统的强度性质中独立变量的数目
◆确定一个系统的状态所必须确定的独立强度 性质的数目
◆在一定范围内可以独立变动而不致引起旧相 消失或新相产生的强度性质的数目
令 : S- R - R’ = C
(独立)组分数
F = C-P + 2
应用相律应注意的问题:
1、R是系统中独立的化学反应的个数
SP+2
每一 项 xB 中 1 P个
μμ μ 1 (1)1 (2)1 (P)
μμ μ 2 (1 ) 2 (2)2 (P)
μμ μ (1) S
S (2)
(P) S
S(P-1)个
νBμB0 R个
F= SP+2 -[P+S(P -1 )+R+R’]独立的限制条R件 个
=S-P-R-R’+2
P+S(P -1 )+R+R’
相关文档
最新文档