船用齿轮箱振动噪声分析及试验
HW15710齿轮箱振动噪声测试分析报告
大齿HW15710/19710(铸铁壳体)变速器振动与噪声测试及信号分析报告一、测试记录1.1 概述中北大学机械工程与自动化学院测控技术研究室,根据与中汽集团大齿公司的技术合作要求,于2009年10月20日在大齿生产车间,对HW18710型变速箱进行了振动与噪声测试。
测试记录如表1所示。
1.2 测点的选取测点的选取如下图1.2.1所示。
测点(一)图表示第一组测试点布置;测点(二)表示第二组测试点布置图。
每组包括4路加速度信号、一路声压信号以及一路输入轴转速信号。
图1.2.1测点布置简图图1.2.2至图1.2.5显示的是测点布置及测试现场的照片。
图1.2.2 No1Set测点布置照片图1.2.3 No1Set加速度传感器布置简图图1.2.4 No2Set测点布置照片其中,1号加速度计为参考测试点,两组相同,为固定的测试点。
1.3 测试系统测试系统框图如图2所示。
每组采集6路信号,包括4路振动加速度信号、一路声压信号和一路输入轴转速信号。
图1.3.1 测试系统框图1.4 数据采集通道分配数据采集系统通道分配情况如下表所示。
表1.4.2 数据采集通道分配1.5 测试数据记录及保存数据采样率:10000Hz;记录长度:2秒;输入轴转速1200rpm。
1.5.1 测点布置(一)数据记录测点布置(一)MA TLAB数据记录保存于No1Set.m,原始数据记录如下表所示.表1.5.1 测点(一)数据采集记录1.5.2 测点布置(二)的数据记录测点布置(二)的MATLAB数据记录保存于No2Set.m,原始数据记录如下表所示.表1.5.2 测点(一)数据采集记录升速过程MATLAB数据记录保存于shengsu.m,原始数据记录如下表所示表1.5.3 升速过程数据采集记录1.6 测试传感器的灵敏度测试系统使用的传感器的灵敏度如下。
1. AW A5633型声级计,AW A14421型预极化测试电容传声器,标称灵敏度:40mV/Pa;频率范围:20Hz-8kHz;2. 3YD34型加速度,计灵敏度0.01V/ms-2;量程:500 ms-2+10%;频率范围:0.5Hz-9kHz;3. 转速信号1200rpm/V1.7 测试信号的数据分析数据分析采用MATLAB软件平台。
船舶结构振动噪声分析及其进展
船舶结构振动噪声分析及其进展摘要:船舶的辐射噪声是影响其隐身性能的主要因素,其由机械噪声、螺旋桨噪声和水动力噪声三部分叠加而成。
机械噪声为船上机械设备在运行过程中引起结构的振动,并通过基座和管路传递到船体,引起船体振动而向水下辐射的噪声。
船舶在低、中速航行时,机械噪声将成为主要的辐射噪声。
关键词:船舶结构;振动噪声;进展引言船舶在运行过程中使用的运转设备是产生振动与噪声的根源。
船舶舱室里的振动噪声会使劳动条件恶化,对船员健康产生不利影响,给乘客带来诸多不便。
因此,国际上船级社和其他机构如美国海岸警备队(U.S.Coast Guard)都规定其噪声限制,这促使船舶设计师和建造师采取各种措施去降低船体结构的振动噪声。
在船舶领域,以往的实践大都是在已经设计完毕的船舶上采用特殊器材以达到减振降噪的目的。
然而,这种解决问题的办法所需费用较大,如果在一开始就结合声学要求进行结构设计,则不仅节省开支,而且可以获得更大、更好的效果。
因此在船舶设计阶段就进行结构的振动噪声分析是很有意义的。
1.噪声及其对人的危害噪声,一般包含两种含义:就物理学观点讲,噪声就是各种不同频率和声压之声音的无规律组合;就生理学和心理学观点讲,凡是声级很高,造成对人体的危害,或者声级不高而使人厌烦,干扰人们的休息、睡眠、工作等一切不需要的声音都称为噪声。
其危害也是多方面的:(1)噪声对语言清晰度的影响:噪声声级越强,语言清晰度就越低。
在80dB的噪声环境里人们交谈已经很困难,而90dB的噪声环境里面则无法交谈。
(2)噪声对人听觉的损伤:最常见的是“听觉疲劳”,即在噪声作用下,使人的听觉灵敏度暂时下降,过后很快就会恢复。
这种现象也称“暂时性听力损失”。
而当听觉长期暴露在强噪声环境中,至使听觉灵敏度下降变成长期的,以后不能再全部恢复,即造成“永久性听力损失”。
(3)噪声危害人的健康:长期处在噪声作用下会导致中枢神经功能性障碍,表现为植物神经衰弱症侯群;强噪声作用于中枢神经,往往引起消化不良及食欲不振,从而导致肠胃病;噪声会使交感神经紧张,引起心跳过速、心率不齐、血压升高等症状。
船用传动齿轮箱振动试验与分析
摘要:某多输入双级传动齿轮箱是舰船振动与噪声的主要根源之一。
文中在建立齿轮箱的试验模型后,采用固定锤击点改变测量点法采集各点的冲击数据和响应数据,在对同类型两部齿轮箱的模态试验的结果分析的基础上,通过对比找到了其中一部齿轮箱振动噪声增大的原因,经过对该齿轮箱的开箱测检结果表明,其分析结论是正确的。
对该型舰船齿轮箱的故障诊断、提高其可靠性和维修性,具有重要的指导意义。
关键词:齿轮箱; 振动; 噪声; 模态试验舰船齿轮箱不仅要求传递功率大、体积小、重量轻,还要求其振动小、噪声低[1 ] ,齿轮箱能否正常工作会影响整个系统的工作特性,齿轮箱本身的振动以及由轴系传来的齿轮的振动都是产生舰船辐射噪声的主要根源,继而直接影响舰船的战斗力。
某型舰船的多输入双级传动齿轮箱存在着较大的振动和噪声,表现为振动量级超大和有啸叫声,这一现象在其它同型齿轮箱中少见,通过对该型舰船齿轮箱箱体的模态对比测试,测试结果发现了某型舰船齿轮箱产生噪声振动的故障原因,并采取了相应的措施,排除了故障。
1 齿轮箱的振动信号分析从故障齿轮箱中录取信号,经数字信号分析,从中提取故障信息,是机器设备状态监测和故障诊断的有效方法[2 ,3 ] 。
振动信号的结构成分反映齿轮箱的振动特征及故障性质。
为此,通过对同型的两座齿轮箱的振动信号的拾取及分析对比,查找齿轮箱的主要故障源及其传递途径。
在齿轮箱上共布置了六个测点,测点布置在齿轮箱体罩壳轴承测温计的凸台上,测点如图1 所示。
图1 齿轮箱测点布置同时,还用声级计测试空气噪声,并分析其频谱,比较其与箱体振动的相关性。
主要测试仪器有: Kistler 8702250 加速度传感器、Kistler 5124A 放大器、TEAC TD2135 T 数据记录仪、HP25670 动态信号分析仪和QUEST MODEL 1800 声级计。
从齿轮箱的振动频谱图分析,其振动频谱的主频率为二级齿轮副的啮合频率及其倍频。
某型船舶推进器振动与噪声特性分析
某型船舶推进器振动与噪声特性分析一、引言船舶作为重要的交通运输工具,船舶推进器的性能关系到船舶的安全和运行效率。
然而,船舶推进器在运行过程中常常会产生振动和噪声,给人们的工作和生活带来不便与困扰。
因此,对某型船舶推进器的振动与噪声特性进行分析和研究,对于改善船舶运行环境,提高推进器的性能至关重要。
二、振动分析振动是船舶推进器在运行过程中普遍存在的现象,其主要来源有两个方面:其一,由于推进器叶轮的转动,叶轮受到流体介质的阻力和压力,产生周期性的振动;其二,推进器结构的不均匀性和不完美性都会引起振动。
而叶轮的振动又会通过轴线和机架传递给整个推进器系统。
在振动分析中,需要考虑诸多因素,包括轴承的磨损程度、推进器的运行状态、推进器的结构材料等。
通过系统性的实验和测试,可以了解振动的频率、幅度和相位等特性,进而找出振动产生的根本原因。
对于某型船舶推进器来说,精确的振动分析可以为推进器的结构设计和维护提供重要的依据。
三、噪声特性分析噪声是船舶推进器振动的副产品,其强度和频率特性直接影响船员们的工作效率与身心健康。
推进器噪声的产生机制可以归结为两方面:其一,由于船舶推进器的转动,会产生水流的湍流和流体的湍流噪声;其二,推进器结构的振动会通过流体介质产生辐射声波。
对于某型船舶推进器的噪声特性分析,需要进行声学测量与分析。
通过对推进器运行时产生的噪声进行采集和处理,可以获得噪声的频谱、频率、声压级等参数,从而评估噪声对人体的影响程度和工作环境的安全性。
四、振动与噪声的控制与改善为了降低船舶推进器的振动与噪声水平,可以从多个方面入手进行控制与改善。
首先,对推进器本身的设计进行优化,采用新型的材料和结构可以有效地改善叶轮的动力学性能。
其次,通过轴承的维护和保养,减少振动的传递路径,可以有效地降低噪声的辐射。
另外,结合流体力学与声学的理论方法,可以对推进器进行声学优化,从而减少噪声的产生。
在实际的推进器振动与噪声控制过程中,需要加强技术研究和实践应用的结合。
船用齿轮箱的有限元振动特性分析和试验
船用齿轮箱的有限元振动特性分析和试验胡磊;杨建国【摘要】主要介绍船用齿轮箱的振动激励力分析、多级齿轮传动系统和箱体的有限元建模,以及箱体表面的振动特性计算,试验验证了模型和计算方法的正确性。
研究表明:有限元分析为齿轮箱振动特性的分析提供了有效的分析方法。
%The analysis of vibration exciting forces for a marine gearbox, the model establishments of a multi-stage gear transmission and the marine gearbox and the vibration characteristics calculation of the gearbox body surface are proved in the paper. The models and the calculation method are verified by the vibration experiment. The finite element analysis is an effective method for the vibration characteristics of the marine gearbox.【期刊名称】《机电设备》【年(卷),期】2013(000)001【总页数】5页(P38-42)【关键词】齿轮箱;振动特性;有限元【作者】胡磊;杨建国【作者单位】武汉理工大学能源与动力工程学院,武汉 430063;武汉理工大学能源与动力工程学院,武汉 430063; 船舶动力系统运用技术交通行业重点实验室,武汉 430063【正文语种】中文【中图分类】U661.44作为传递动能和连接动力机械的船用齿轮箱广泛应用于船舶动力系统,目前船用齿轮传动系统正朝着高速、重载、轻型自动化和高可靠性方向发展,船用齿轮箱振动特性的研究具有十分重要的意义。
船体振动分析的实船验证及改进方案
船体振动分析的实船验证及改进方案船体振动分析在船舶设计和运行中具有非常重要的作用。
通过分析船体的振动情况,可以减少船体的疲劳裂纹和振动噪声,保证船体的结构安全和生产效率。
但是,船体振动分析理论和实际情况存在差异,因此必须进行实船验证和改进方案。
实船验证主要是通过实际的船舶使用情况,对分析结果进行验证和校对,以改善振动计算模型的准确性。
根据验证结果,可以进一步优化船体结构和减少振动噪声。
具体来说,实船验证的基本步骤如下:首先,通过振动计算模型获得船体振动的振幅和频率,然后在船舶运行时进行振动测量。
在测量过程中,需要选择合适的测量仪器和测量位置,以保证测量结果的准确性。
此外,还需要考虑环境因素对振动测量的影响,例如海洋波浪和风力等。
通过对测量数据的分析和比较,可以确定振动计算模型的误差和缺陷,并针对性的对模型进行改进。
改进方案包括以下方面:1、结构优化船舶的结构设计是减少振动的重要因素之一。
通过对船体结构的优化设计,可以减少结构的自然频率,提高结构的刚度和强度,从而降低振动幅度。
在具体实践中,可以通过改变船体板材的厚度、强化船体结构的支撑和加强船体的刚度等方式进行优化。
2、船舶维护和保养船体振动的另一个重要原因是船舶的磨损和老化。
为了减少船体振动,需要对船舶进行定期维护和保养,确保船舶的各部件处于良好的状态。
例如,定期检查和更换船舶橡胶支座、平衡船体载荷和注意船舶的航速等都可以有效减少船体振动。
3、船舶运营管理船舶的运营管理对减少船体振动也非常重要。
通过合理的运营管理以及规范的操作规程,可以有效减少船体振动。
例如,合理控制船舶的载重量、稳定性和分布等,采取减速慢行的方式减少船体振动等。
综上,船体振动分析在船舶设计和运行中具有非常重要的作用。
通过实船验证和改进方案,可以提高振动计算模型的准确性,减少船体振动幅度和噪声,确保船舶结构的安全和效率。
相关数据分析是通过对各种数据的收集、整理、处理和分析,从中获取有用的信息和结论的过程。
船用齿轮箱装置试车状态振动异常解决措施
齿轮箱装置是柴油机将动力传递至螺旋桨的重要纽带。
振动是评定齿轮箱装置运转质量的主要指标,也决定了齿轮箱装置的质量。
本文针对某船用齿轮箱装置在实际试验时出现振动超标的情况,通过理论分析和试验验证定位引起振动超标的原因,并在此基础上探索预防和减小振动的措施。
一、齿轮箱装置试验方案被试齿轮箱形式为双输入、单输出。
通过该齿轮箱装置将两台柴油机动力传递到桨轴上。
按设计工况布置试验方案,如图1所示。
图1 试验布置采用两台拖动电机,通过扭矩仪后联接齿轮箱输入部分; 齿轮箱输出部分则通过一台陪试箱将转速转换至输入转速值后,通过扭矩仪联接后端加载电机,实现对齿轮箱装置的加载功能。
按设计要求,在齿轮箱装置的安装面上布置测点并安装振动传感器,以测量加载过程中各点的振动情况。
测点分布如图2所示。
图2 测点布置二、试验结果及分析齿轮箱装置在功率为2 ×1000kW、输入转速分别为480r/min和600r/min的工况下,机脚处测点平均加速度的总振级值分别为114.86 dB( 要求值为≤115dB) 和122.66 dB( 要求值为≤120dB) 。
可见该齿轮箱装置振动性能未达标。
分析振动数值并结合以往经验,列出导致振动超标的潜在因素如下:(1) 输入轴系线速度较高,达到28m/s,轴系动平衡精度等级设计不合理;(2) 齿轮箱装置与安装基座、安装基座与槽铁之间联接扭力不达标,或联接螺母有松动情况;(3) 齿轮箱装置冷、热态间温差与预计不一致,导致台架对中数据计算有偏差;(4) 箱体外部管路附件支撑不牢固,运转时发生抖动,导致齿轮箱装置整体振动增大。
三、解决措施根据原因分析,拟定以下解决方案:(1) 对输入轴轴系重新做动平衡试验,将动平衡精度等级从原先的G6.3 提升至G2.5;(2) 复查联接处紧固件扭力值;(3) 重新计算齿轮箱装置温升后的轴线偏移量,并在冷态对中时进行相应补偿;(4) 对外部油管及泵阀等油路部件支撑做加固。
舰船设备振动、噪声测试方法探析
式中:
(3)
L—经背景振动修正后的振级,dB;
La—实际测量振级,dB;
Lk—背景振级,dB。
其中结构振动加速度级 La 按下式(4)计算:
(4) 式中: a—测得的结构振动加速度 (rms),μm/s2; a0—振动振动加速度基准值 (rms),a0=1μm/s2。 被试设备与基础之间若采用弹性安装方式,测试时 隔振器的数量、安装位置与动刚度应尽量接近实际安装 情况,固定设备的基础或平台应当十倍于设备质量。 加速度测点布置:对于弹性安装的小型设备,测点 分别位于设备的四个安装脚处、靠近安装螺栓的减震器 上。对于弹性安装大型设备,可在中间适当增加 2~4 个
Equipment,Yangzhou 225001)
Abstract:Vibration and noise not only affect the structural stability and sound concealment of ship equipment, but also have a serious impact on the normal work and rest of the ships’ personnel. Based on GJB 4058-2000 and related standards, this paper focuses on the test method, acceptance limit, data processing method and so on. A specific test study is given, which has some guiding significance for the vibration and noise testing of ship equipment. Key words:ship equipment; air noise; vibration acceleration; vibration intensity
某船用齿轮振动分析
J n 0 8 u 2 0
某 船用 齿 轮 振 动 分 析
陈艳锋 。 吴新 跃 。 宋继 忠
( 军 3程 大 学 船 舶 与 动 力 学 院 , 汉 4 0 3 ) 海 - - 武 3 0 3
摘
要: 某船用 齿轮传动装置在齿轮辐板上添加阻尼层 以达到减振 的 目的 , 为准确了解此种结 构齿轮 的
振动 是结 构 系统 常 见 的 问题 之 一 , 态 分析 模 就 是将线 性定 常系 统振 动微分 方程 组 中的物理 坐 标 变换 为模 态坐标 , 使方 程组解 耦 , 为一组 以模 成 态坐标 及模 态参 数 描述 的独 立 方 程 , 以便 求 出系 统 的模 态参 数 4 _ 引。 任 意一个 典 型 的振 动 系 统 , 态分 析 基 本 方 模
维普资讯
第 3 7卷 第 3 期 20 0 8年 6 月
文 章 编 号 :6 17 5 ( 0 8O —0 80 17 —9 32 0 ) 30 6 —3
船 海 工 程
S P&OCEAN HI ENGI NEE NG RI
ቤተ መጻሕፍቲ ባይዱ
Vo. 7 No 3 13 .
固有 振 动 特 性 , 分别 计 算 自由状 态 、 刚性 支 撑 、 性 支 撑 3 情 况 下 齿 轮 的振 动 特 性 , 算 结 果 和 理 论 分 析 表 柔 种 计
明, 采用柔性 支撑边 界条件更符合 实际振动情况 。
关键词 : 轮 ; 动 ; 齿 振 阻尼 ; 固有 频 率
中 图分 类 号 : HI2 U6 4 2 T 3 ; 6. 文献 标 志 码 : A
Vi a i n An l ss o he Ge rSy t m fa Sh p br to a y i ft a s e o i
船舶机械设备的噪声分析与有效控制方案
船舶机械设备的噪声分析与有效控制方案摘要:船舶中的机械设备在运行过程中很容易产生严重的噪声,对船舶内及周边环境造成巨大危害,基于此,必须要找到控制船舶机械设备噪声的办法,在最大程度上降低其可能会造成的噪声污染和危害。
本文分析了船舶机械设备噪声可能会对船员和机械设备本身所造成的危害,并以此为出发点,给出了相应的控制噪声方案,并进行了相应的说明和阐释。
关键词:船舶;机械设备;噪声控制;引言:随着我国船舶制造业的快速发展,人们在追求船舶制造质量的同时对其舒适性的要求也越来越高。
在船舶机械设备的运行过程中,产生的噪声问题对环境造成的危害也越来越大,已受到越来越多人的重视。
其噪声主要来源于机械设备所产生的振动,因此,若想控制船舶机械设备的噪声必须要控制其在运行时所产生的振动,这样不但能降低噪音,还能防止机械设备出现老化现象,很好地提升其使用寿命。
1.船舶机械设备的噪声分析1.1船舶机械设备的噪声对船员健康的损害船舶机械设备所产生的噪声会对船员的身体健康产生多方面的损害,这主要体现在以下几个方面:1)船舶机械设备所产生的噪声会导致船员的听力受到严重的损害,噪声会严重降低船员的听力,长期噪声则会导致产生幻听,给船员的心脑血管系统和神经系统产生诸多不利影响,导致其工作效率的急剧下降;2)船员如果长时间处于噪声状态会出现中枢神经和心脑血管受损的情况,造成其长期失眠,视觉和听觉器官出现损伤,接着头晕、头痛、眼花、耳鸣、记忆力衰退等感官问题相继出现,继而引发船员身体上出现心脏病、高血压等严重不良后果。
1.2船舶机械设备的噪声对机械本身的损害除了损害船员身体健康之外,船舶机械设备所产生的噪声会对船舶机械本身的正常运转产生不利影响,这主要体现在以下几个方面:1)船舶机械设备的噪声大部分都是因机械设备之间发生振动所导致的,振动越严重产生的噪声就会越大,而严重的振动则会导致机械设备的部件出现损坏,导致其使用寿命的下降,给船舶的正常航行带来安全隐患,甚至造成不必要的经济损失;2)船舶机械设备所产生的噪声会导致机械设备操作人员长期处于高噪声环境中,导致其健康受到损害,很容易发生事故,间接中也会造成机械设备受到损坏[1]。
某型齿轮箱传动系统的噪声与振动分析
某型齿轮箱传动系统的噪声与振动分析随着科技的进步和人们对质量要求的提高,噪声和振动问题已经成为工业界面临的一个重要挑战。
对于某型齿轮箱传动系统来说,噪声和振动不仅会对设备的正常运行产生负面影响,还会对操作人员的健康和环境造成潜在风险。
因此,对齿轮箱传动系统的噪声与振动特性进行深入分析和优化是十分必要的。
首先,要了解齿轮箱传动系统中噪声和振动的产生机制。
齿轮箱主要由齿轮、轴、轴承等组成,当这些部件在工作过程中发生相对运动时,就会产生振动。
而由于材料、摩擦、结构等因素的限制,这种振动会以声波的形式传播出来,产生噪声。
齿轮、轴、轴承等部件的质量、结构、加工精度等都会对振动和噪声产生影响,因此,在设计和制造过程中应该注重提高部件的质量和加工精度,减少不必要的振动和噪声。
其次,齿轮箱传动系统噪声和振动的分析方法主要由试验和数值模拟两部分组成。
试验方法通常使用振动传感器和声学传感器来测量实际工作状态下的振动和噪声数据。
通过对实测数据的分析,可以了解不同工况下齿轮箱振动和噪声的变化规律,找出可能存在的问题和改进措施。
数值模拟方法则通过建立齿轮、轴、轴承等部件的有限元模型,并结合运动学和动力学分析方法,计算出齿轮箱在不同工况下的振动和噪声情况。
通过数值模拟可以在设计阶段就预测和评估齿轮箱的性能,提前采取相应的改进措施。
齿轮箱传动系统的噪声和振动问题涉及到多个方面的因素。
首先,振动和噪声的源头主要包括齿轮啮合、轴承摩擦、轴向不稳定等。
齿轮啮合时会产生周期性的振动和噪声,当齿轮啮合配合不良或齿轮质量不合格时,啮合过程中会产生不规则的振动和噪声。
轴承摩擦和轴向不稳定则会导致齿轮箱产生高频振动和噪声。
其次,传动系统的结构和材料也会对振动和噪声产生影响。
合理设计传动系统的结构和加强件的连结,选择合适的材料和表面处理方法,可以有效地减少振动和噪声的产生。
再次,传动系统的工作工况也会对噪声和振动产生不同程度的影响。
根据传动系统的工况,合理调整传动比、转速和负载等参数,可以减少振动和噪声的幅度和频率。
船舶机械设备的噪声分析与有效控制方案研究
船舶机械设备的噪声分析与有效控制方案研究船舶作为海上运输的重要工具,其机械设备的运转噪声对船员和环境都会造成影响。
对船舶机械设备的噪声进行分析和有效控制是十分必要的。
本文将对船舶机械设备的噪声进行分析,并提出一些有效的控制方案来减少噪声对船员和环境的影响。
一、船舶机械设备噪声分析船舶机械设备在运转过程中会产生不同程度的噪声。
主要来源包括发动机、液压系统、风扇、齿轮传动、泵等。
这些设备在运转过程中会产生振动和空气动力噪声,导致船舶内部和周围环境的噪声水平升高。
船舶机械设备噪声的特点主要包括以下几点:1. 低频噪声较为突出:船舶机械设备的噪声以低频噪声为主,这种类型的噪声会更容易传播到远处,对周围环境会造成更大的影响。
2. 复杂环境下的传播特性:船舶在海上运行,噪声会受到水面、气候等因素的影响,传播特性复杂。
3. 对船员健康和工作效率的影响:船员长时间处于高噪声环境下工作,会对其健康和工作效率产生不利影响。
为了减少船舶机械设备的噪声对船员和环境的影响,可以采取以下控制方案:1. 优化设备结构和布局:通过优化设备的结构和布局,减少振动和噪声的产生,降低噪声水平。
2. 使用隔振材料和隔音材料:在设备的固定座和周围墙壁等处使用隔振和隔音材料,有效地减少振动和噪声的传播。
3. 控制噪声源:对噪声源采取一定的控制措施,如提高设备的精度和平衡性,减少齿轮传动的噪声等。
4. 声学设计:对船舶机舱和船体的声学设计进行优化,改善声学环境,降低噪声传播。
在船舶机械设备噪声的有效控制方案中,关键是要综合考虑船舶的运营环境和工作特点,选择最合适的控制措施,减少噪声对船员和环境的影响。
船舶齿轮箱半主动吸振试验研究
第3 2卷第 8期
2 1 年 8月 01
哈
尔
滨
工
程
大
学
学
报
Vo . 2 № . 13 8 Au . g 201 1
J u n lo r i gn e n iest o r a fHabn En ie r gUnv ri i y
船用两级行星减速器箱体振动噪声分析
TT V ● l ' br a n0n J ● a nd 1 n0l ● S e anal ’ ys i - s o r ・ ■ t ・ wo -s t ・ a ̄ e
ma r i ne p l a ne t a r y r e d uc e r
声谱及声压分布云图。 就齿 轮箱壁厚 、 阻尼涂层以及约束阻尼对其噪声辐射的影响做 出了讨论 , 为船用齿轮箱 的
设 计 提 供 了 理论 依 据 。 关键词 : 齿 轮 箱 ;时变 啮合 刚 度 ; 振 动 ;噪声
中图分类号 : T H1 1 3
文献标识码 : A
d o i : 1 0 . 3 9 6 9  ̄ . i s s n . 1 0 0 7 — 7 2 9 4 . 2 0 1 4 . h i . 0 2 5
第1 8卷第 1 - 2期 2 0 1 4年 2月
文 章编 号 :1 0 0 7 — 7 2 9 4 ( 2 0 1 4 ) 0 1 — 0 2 0 1 — 0 8
船 舶力 学
J o u r n a l o f S h i p Me c h a n i c s
Vo 1 . 1 8 No . 1 — 2
Z HOU J i a n - x i n g , L I U G e n g , MA S h a n g - j u n
( 1 S c h o o l o f Me c h a n i c a l E n g i n e e r i n g , X i n j i a n g U n i v e r s i t y , U r u mq i 8 3 0 0 4 7 , C h i n a ;
2 N o r t h w e s t e m P o l y t e c h n i c a l U n i v e r s i t y , X i ’ a n 7 1 0 0 7 2 , C h i n a )
齿轮箱中齿轮故障的振动分析与诊断
齿轮箱中齿轮故障的振动分析与诊断摘要:齿轮箱常见的失效类型为齿轮箱,所以定期监控其工作状况,以减少故障率,提供预测型的检修计划。
应用结果显示,该技术能够对变速箱进行有效的判断,并能正确地判断出变速箱的故障部位和严重性,从而为船员制定相应的检修计划,降低无用维护费用,防止机械和机械的非计划停运。
关键词:风力发电机组;齿轮箱;故障诊断引言:在回转机构中,最常见的是齿轮,它的工作状态对整个机器的工作情况有很大的影响。
齿面磨损、表面接触疲劳、齿面塑性、齿面弯曲和齿面折断等是常见的失效类型。
一、齿轮箱故障诊断的意义在风力发电机组中,齿轮箱作为重要传动设备,为风能转化为电能提供源源不断的动力,发挥着十分重要的功能。
风力发电机组中的齿轮箱,不仅体积、质量较大,而且结构十分复杂,这也导致在发电机组运转过程中,齿轮箱容易发生各种故障,进而使发电机组的运行受到较大影响,甚至蒙受重大损失。
近年来,陆续爆发出多起因为齿轮箱故障而导致风力发电机组停运的实践,不仅让发电机组受到极大影响,而且带来重大经济损失。
所以说,对风力发电机组齿轮箱实施有效的故障诊断措施,从而尽发现问题,解决问题,保证其稳定性,不仅具有极大的经济意义,而且有很强的社会意义[1]。
传统的齿轮箱故障诊断主要是通过人工方式实现的,通过人工巡检加定期维护的方式,排除齿轮箱故障。
然而,这种模式,一方面带有很强的滞后性,通常都是齿轮箱发生故障以后,并且对发电机组造成影响之后,才能够去被动的应对,依然无法完全避免损失;另一方面,齿轮箱结构复杂,人工方式诊断故障,不仅准确率不高,而且耗费大量的时间和人力。
因此,通过对齿轮箱实施在线监控,并通过监控数据对齿轮箱实施故障诊断,一旦发现异常立刻予以维护、维修,只有这样,才能够真正有效的预防齿轮箱故障,将隐患消除,从而最大程度降低对风力发电机组的影响。
二、齿轮箱故障诊断机理实现齿轮箱的故障诊断,首先必须了解齿轮箱的故障机理,以此为基础选择合适的诊断技术,才能有有效保障故障诊断的及时性与准确性。
齿轮与齿轮箱振动噪声机理分析及控制
齿轮与齿轮箱振动噪声机理分析及控制写在前面噪声是指发声体做无规则振动时发出的声音。
声音由物体的振动产生,以波的形式在一定的介质(如固体、液体、气体)中进行传播。
一、齿轮振动的实例1齿轮轮毂的振动齿轮传递扭矩首先从轴传至轮毂,由轮毂传递到轮齿,再由主动轮轮齿传递到被动轮轮毂和轴系。
在传递过程中,由于受到轴向激励力的作用,齿轮轮毂产生轴向振动。
另外,由于啮合力的作用,轮毂也会产生横向和沿周向的振动。
2轴承及轴承座的振动齿轮系统通过轴系安置于轴承及其轴承座上,由于齿轮本体的轴向和周向振动必引起轴承支承系统的振动,相反,外界干扰力(如螺旋桨的轴承力)也可能通过轴承传递给齿轮系统。
3齿轮箱的振动齿轮的振动由轴系传到齿轮箱,激励箱体振动,从而辐射出噪声。
另外,齿轮在箱内振动的辐射声激励箱体,使箱体形成二次辐射噪声,这类噪声大部在中低频范围内。
齿轮箱体本身的振动也直接产生辐射声。
4齿轮的振动在啮合过程中,轮齿先由一点接触而扩展到线接触,或一次实现线接触,使得接触力大小、方向改变,产生机械冲击振动,从而辐射出噪声。
这类噪声呈现高频冲击的形式,其典型的齿轮振动时程曲线示于图2。
轮齿啮合时不断变化的啮合力,既激发齿轮的强烈振动,即各个轮齿的响应很大,也激发了齿轮箱箱体较弱的振动。
通常认为齿轮产生噪声的主要原因是轮齿之间的相对位移。
这类噪声源产生的噪声可以用付氏变换法把噪声表示为稳定频率的分量的集合。
图1 齿轮啮合振动及噪声传播图2 齿轮振动时程曲线二、齿轮振动噪声产生的机理1齿轮啮合激励产生的噪声齿轮的轮齿在啮合时因传动误差产生交变力,在交变力作用下产生线性及扭转响应,使齿轮产生振动辐射出噪声。
这是一种主要的噪声源,接触力变化越大,则齿轮相应的振动响应越大。
另外,齿轮的周节差产生的由复杂的或调制频率及其倍频组成的噪声,含有重复的基频(轴频),频率很低。
由于周节差产生了不规则的脉冲序列。
这种脉冲序列包括了众多的频率成份,但还不能认为是宽带随机噪声。
船舶机械设备的噪声分析与有效控制方案研究
船舶机械设备的噪声分析与有效控制方案研究一、前言船舶作为海上运输的重要交通工具,其机械设备的运行必然会产生一定的噪音。
而船舶上的噪音不仅会影响船员的工作和生活质量,也会对周围海洋生态系统产生影响。
对船舶机械设备的噪声进行分析与有效控制是至关重要的。
本文将对船舶机械设备噪声进行分析,并提出一些有效的控制方案,以期在保障船员健康和提高船舶工作效率的也能减少对周围环境的影响。
二、船舶机械设备噪声的来源与特点1. 噪声的来源船舶机械设备的噪声主要来自以下几个方面:- 主机和辅机的运转:例如柴油机、螺旋桨、泵等设备的运行会产生振动和噪声;- 冷却系统:船舶上的冷却系统通常包括冷却水泵、冷却塔等,其运行也会产生较大的噪声;- 压缩空气系统:空气压缩机的运行会产生高频噪音;- 船舶结构:船体结构以及内部装配的设备都会对噪音的传播产生影响。
2. 噪声特点船舶机械设备的噪声具有以下几个特点:- 高频:空气压缩机、涡轮机等设备产生的噪音往往具有较高的频率;- 低频:柴油机、螺旋桨等设备产生的噪音往往具有较低的频率;- 远距离传播:船舶上的噪音往往会在水中通过远距离传播,影响范围广。
1. 噪声测试与分析针对船舶机械设备产生的噪音,可以采用噪声测试仪进行实地测试,获取各处的噪声数据。
通过对噪声数据的分析,可以确定各个设备产生的噪音强度和频谱特性,找出主要的噪音来源。
2. 噪声传播途径分析船舶机械设备产生的噪音不仅会在空气中传播,也会通过船体结构传播到水中。
需要对噪音的传播途径进行详细的分析,确定哪些部位受到噪音的影响最大,从而有针对性地进行控制。
3. 噪声对周围环境的影响分析船舶机械设备的噪声对周围的海洋生态系统和居民生活产生影响,需要进行相关的环境影响评估。
通过对噪声对周围环境的影响进行分析,可以确定合理的噪声控制目标,并合理地进行控制措施的制定。
1. 设备改造与升级对于噪音较大的设备,可以考虑进行设备改造与升级,采用更加先进的设备或者改进原有设备的结构与工艺,以减少设备运转时产生的噪音。
影响船用齿轮箱噪声的因素及其控制方法
影响船用齿轮箱噪声的因素及其控制方法本文论述了船用齿轮箱噪声的产生及其危害,提出了設计和制造等方面对齿轮箱噪声的影响。
分析了传动件和油路系统产生噪声的原因,并根据不同噪声的产生机理提出了控制措施。
对船用齿轮箱的降噪提出了展望。
标签:齿轮箱噪声;传动件;控制措施第一章齿轮箱传动件产生的噪声分析1.1 齿轮一对渐开线齿轮在传动过程中,各对齿轮的接触点所走的轨迹始终在啮合线上连续地依次运转,因此,齿轮的传递功率越大,转速越高,齿轮表面粗糙度越差,则节点脉动冲击也就越大,这种脉动冲击使齿轮产生震动并伴有摩擦声,所以对一对“理想”的齿轮来说,在啮合过程中产生的脉动冲击是难以避免的,这使齿轮传动产生震动与噪声。
一对齿轮在啮合过程中,由于轮齿受力后必将产生一定程度的弹性变形,因此,每当一个轮齿啮合上时,原来啮合的轮齿的载荷就会相对减少,它们就会立即向着载荷位置恢复变形,从而给齿轮体一个切向加速度,再加上原有啮合轮齿在受载下的弯曲变形,使新啮合的轮齿不能得到设计齿廓的平滑接触而发生碰撞,形成所谓“啮合冲击力”,齿轮在这种激振力作用下,也将激发起齿轮的周向振动、径向振动、轴向振动,从而产生出噪声并通过空气及固体媒介传播出去。
因此齿轮啮合过程中所产生的脉动冲力和啮合冲力使一对传动齿轮产生振动,从而辐射出噪声。
1.2 轴及轴系高速回转的不平衡轴运转时会产生周期性的强迫振动。
轴不平衡振动的基频就是轴的回转频率。
轴的回转频率通常是很低的(一般在100Hz以下),在低频时噪声对人耳并不敏感,但轴的强烈振动会引起轴系及箱体等的振动。
另外,一般轴上多装有齿轮、轴承及其它传动件,当轴振动时,会使齿轮及轴承等在运转时发生振动撞击,这样又会发射出较大的噪声。
有些传动轴虽经过精确的平衡,但由于轴或轴系的刚度不足,容易产生弯曲和扭转振动,所以装在轴上的键、销、齿轮及轴承会发出噪声。
轴的振摆越严重,轴及轴系的刚度越差,则轴的回转噪声就越大。
海上风力发电用齿轮箱的振动与噪声控制
海上风力发电用齿轮箱的振动与噪声控制随着全球对可再生能源的不断需求增长,海上风力发电逐渐成为解决能源供应和环境保护的可持续发展选择之一。
然而,海上风力发电机组运行中的振动和噪声问题一直以来都是困扰行业的挑战。
特别是齿轮箱作为风力发电机组的核心部件,其振动和噪声的控制对于提高装机容量、延长设备寿命和保障运行安全至关重要。
首先,海上环境的特殊性决定了齿轮箱的设计和材料选用需要具备高度的防水和耐腐蚀性能。
海上风力发电机组需要在恶劣的天气条件下运行,包括强风、巨浪和盐雾等。
因此,齿轮箱的结构和材料选择必须能够保证设备的可靠性和稳定性,减少振动和噪声的产生。
其次,齿轮箱的振动产生主要与不平衡、偏心、齿轮啮合误差、齿轮磨损等因素有关。
为了控制振动,可以考虑以下几个方面的措施:1. 齿轮箱的结构设计:合理的结构设计可以降低振动的产生。
例如,采用刚性足够的支撑结构和减震装置,以降低振动的传递和放大。
2. 齿轮的制造和装配:精确的齿轮制造和装配可以减少齿轮啮合误差,从而降低振动和噪声的产生。
采用先进的加工设备和工艺,并实施严格的质量控制,以确保齿轮的高精度和互换性。
3. 振动检测与监测:通过安装振动传感器和监测设备,对齿轮箱的振动进行实时监测和分析。
这样可以及时发现异常振动,并进行相应的调整和修复,以降低振动和噪声水平,保障设备的正常运行。
对于齿轮箱噪声的控制,可以考虑以下措施:1. 声学材料的选择:合适的声学材料可以有效地吸收和隔离噪声。
在齿轮箱内部和外部表面覆盖吸音层,可以减少机械振动传至外部结构的噪声。
2. 噪声的隔离和消除:通过采取隔振和消声措施,可以有效地减少齿轮箱噪声的传播。
例如,采用悬挂隔振装置或弹性支座等,可以降低齿轮箱噪声对周围环境的影响。
3. 噪声监测与控制:安装噪声传感器和监测设备,对齿轮箱的噪声进行实时监测和控制。
这样可以及时发现、识别和解决噪声问题,保持设备的正常运行和生产效率。
除了以上措施,海上风力发电用齿轮箱的定期维护和保养也是控制振动和噪声的重要一环。
齿轮箱振动测试与分析
文章编号:1009-3486(2004)06-0083-06齿轮箱振动测试与分析Ξ程广利1,朱石坚1,黄映云1,王 基2,伍先俊1(1.海军工程大学振动与噪声研究所,湖北武汉430033;2.海军工程大学动力工程学院,湖北武汉430033)摘 要:在对某型齿轮箱的模态、振动烈度和振动加速度进行测试的基础上,详细分析了测试结果.模态测试得到了齿轮箱的振型和模态参数,振动烈度测试结果表明该齿轮箱处于良好工作状态,振动加速度测试结果显示该齿轮箱的减振措施达到了预期的效果.最后,对测试提出了建议.关键词:齿轮箱;振动;模态测试;振动烈度;振动加速度中图分类号:TH132.41 文献标识码:AVibration measurement and analysis of gearboxCHEN G Guang 2li 1,ZHU Shi 2jian 1,HUAN G Y ing 2yun 1,WAN G Ji 2,WU Xian 2jun 1(1.Inst.of Noise &Vibration ,Naval Univ.of Engineering ,Wuhan 430033,China ;2.Power Eng.College ,Naval Univ.of Engineering ,Wuhan 430033,China )Abstract :On the basis of the measurement of model ,vibration severity and vibration acceleration of a cer 2tain kind of gearbox ,the measurement results are presented in detail.The result of modal mea 2surement gets the vibration model and modal parameters of the gearbox ,and the result of vibration severity mea 2surement makes it clear that the gearbox is in good condition ,and the result of vibration acceleration 2measurement indicates that the vibration reduction reaches the prospective effect.Some advice for the mea 2surement is given finally.K ey w ords :gearbox ;vibration ;modal measurement ;vibration severity ;vibration acceleration现代舰船动力装置的数量和类型繁多,而各设备的重要程度差别较大,其中保障包括主动力和齿轮箱等在内的对舰船航行影响较大的机械设备的正常运行就显得更加重要.齿轮箱本身的振动以及由轴系传来的齿轮的振动都是产生舰船辐射噪声的主要根源[1].研究齿轮箱的振动时,除了要了解系统的激励因素外,还要知道齿轮箱的固有振动特性[2].由于振动监测分析法具有诊断速度快、准确率高和能够实现在线诊断等特点,所以它是对齿轮箱进行故障诊断最有效、最常用的方法.其中试验是振动监测分析法的一个重要的途径,通常的试验包括模态试验和航行振动试验[3].模态测试是在静态、无任何运行影响的条件下进行的,可以得到齿轮箱的固有特性.振动烈度是衡量齿轮箱在实际运行过程中振动强弱的指标.振动加速度则反映了齿轮箱的振动传递特性.作者在对某型齿轮箱的模态、振动烈度和振动加速度进行实际测试的基础上,详细分析了测试的结果.由于该齿轮箱体积庞大、结构复杂,且已经安装在舰艇上,导致测试中存在测试点数目多、测试环境限制条件多等不利因素,对于此类大型齿轮箱尚无振动测试的全面资料,所以此次测试意义重大,为该型齿轮箱的保养和维修提供了第一手资料.1 齿轮箱模态测试和分析对齿轮箱进行模态分析或实验模态分析为其动态特性、结构设计和性能评估提供了一个强有力的 第16卷 第6期 2004年12月 海军工程大学学报 JOURNAL OF NAVAL UN IV ERSIT Y OF EN GIN EERIN G Vol.16 No.6 Dec.2004 Ξ收稿日期:2004206208;修订日期:2004207212作者简介:程广利(19762),男,硕士生.工具,可靠的实验结果往往作为产品性能评估的有效标准[4].根据模态测试的结果可进行模态参数识别,其主要任务是从测试所得的数据中确定振动系统的模态参数,其中包括模态固有频率、模态阻尼比和振型等.同时在实际工作中还可利用模态参数等结果进行故障判别,使其日益成为一种有效的故障诊断和安全检测方法.1.1 模态试验理论试验模态测试的基本原理是将齿轮箱箱体离散化,箱体的振动可以假设为具有n 自由度的线弹性振动系统,其振动微分方程表示为[5]:M x ・・(t )+C x ・(t )+K x (t )=P (t )(1)式中:M 、C 、K 分别为系统的质量矩阵、阻尼矩阵和刚度矩阵,各为n ×n 阶的实对称矩阵;x (t )、x・(t )、x ・・(t )分别为系统位移、速度和加速度响应列向量,各为n 阶;P (t )为n 阶激振力列阵.将(1)式两边分别作傅立叶变换,令x (t )=X e j ωt 可得到X (ω)=H (ω)P (t )(2)式中:H (ω)为位移频向函数矩阵.当在i 坐标激振,j 坐标测量的频率响应函数为:H ji (ω)=∑nr =1φjr φirω2M r +jωC r +K r (3)但在实际测试中,一般通过功率谱密度来求得系统的频率响应函数如下式[6]:H (ω)=G PX (ω)G PP (ω)(4)式中:G PX (ω)、G PP (ω)分别为输入输出互功率谱密度和自功率谱密度.采用互谱分析多次平均后可减少噪声,利于模态识别. 图1 模态测试分析系统框图1.2 测试方案本次测试采用锤击模态测试方法,即单点敲击单点测响应,固定敲击点移动响应点的测试方法.要求力锤敲击时没有连击,用力大小均匀且测试对象响应适中,每点平均锤击4次,信号大小满足信噪比.选择敲击点要避开节点、接近区域几何中心等因素.为了避免因响应点选择不当可能造成的模态泄漏,响应点应选择在非对称轴线(或对称平面上),并经多次初步反复测试后确定.该齿轮箱采用减振橡胶器弹性隔振方式,所以测试中采用原装支承方式.系统的采用频率分别采用2000Hz 和5000Hz.模态测试分析系统框图如图1所示.1.3 测点布置 为了对齿轮箱的模态进行测试,首先对齿轮箱进行结构分析和几何尺寸测绘,并对其进行初步有限元计算和固有频率分布范围估计.预估结果表明由上下箱体组成的齿轮箱的上箱体各阶模态较为密集,所以在上箱体布置了416个测点,下箱体布置了96个测点,共计512个测点.布点原则是保证可以激发出齿轮箱体的各阶模态,对于轴承座等重要部位以及能够引发较大噪声的部位多布点.在箱体上标出各测点的位置,并逐一进行编号.舰艏端轴侧测点布置图(前端面和左立面)如图2所示.・48・海 军 工 程 大 学 学 报 第16卷 图2舰艏端轴侧测点布置图(前端面和左立面)1.4 数据处理和分析用U TEK 系统中通过U TEKSS 数据采集处理与分析软件包对所采集的数据进行处理,建立该齿轮箱工程数据.向U TEK 系统U TEKMA 结构模态分析软件包中输入各测点坐标,连线使之形成模态几何网格.模态分析计算过程中,采用实模态分析法.根据固有频率的密集程度,选择适当带宽,进行初始估计,然后进行整体曲线拟合,求出频响函数,并对模态振型进行综合化处理,即对测量方向、约束方程和模态振型按模态质量归一化处理.通过上面的数据处理后,可以获得如表1所示的1100Hz 以内前18阶模态的模态参数.表1 1100H z 以内有前18阶模态的模态参数模态阶数频率/Hz阻尼比/%11325.421712.332185.442413.052905.463584.673925.484704.595372.7模态阶数频率/Hz阻尼比/%106093.6116753.1127732.7138132.7148893.6158991.9169423.6179692.71810042.3 从分析得到的振型图来看,1阶振型大体沿轴向摆动;2阶振型情况不定;3阶振型大体沿横向摆动;4阶振型大体绕垂向扭转,其它振型皆是上述振型的复合运动.从振型动画图3(a )和(b )来看,齿轮箱上箱体的振动远比下箱体的振动大,这与预估的结果是一致的.轴承座位于上箱体,所以上箱体的大幅度振动使得轴承座的振动也比较大,这就使得齿轮在运转过程中的对中受到影响,进而敲击齿面引发振动与噪声,这也是齿轮箱产生振动与噪声的一个重要根源,在对齿轮箱进行振动控制时要对其进行相应的处理.・58・ 第6期 程广利等:齿轮箱振动测试与分析 图3 振型动画图2 齿轮箱振动烈度测试和分析振动烈度是指在机组测点上测得的3个正交方向上振动速度有效值的向量和的模.它是衡量机组振动强弱的指标,可以用来评价隔振后机组振动是否满足规定的要求,实际上它反映的是测点上机组振动能量的大小[1].图4 某型舰主汽轮机及减速齿轮箱测点布置示意图本次测试仪器采用B &K2513测振仪.测试环境为3级海况以下、直线航行,非航行必须启动设备处于关闭状态,齿轮箱处于正常、稳定工作状态.测试工况依次分别为双车进四、主轴转速为150r/min ;双车进三、主轴转速为105r/min ;单车进三、主轴转速为105r/min ;单车进四、主轴转速为150r/min.分别在机脚、轴承盖、齿轮箱顶部等能反映齿轮箱振动全貌的位置处布置10个测点,对其进行逐一编号,要求各测点无明显局部振动,测点布置如图4所示(图中左为主汽轮机,中间为轴承座,右为齿轮箱).测试分析频率范围为10Hz 到1000Hz.通过计算得出该齿轮箱测试各工况下的振动烈度依次是1.18mm/s ,1.21mm/s ,0.60mm/s ,1.16mm/s ,按照G B11347-89《大型旋转机械振动烈度现场测量与评定》考察,该齿轮箱振级评定为A 级,机器处于良好工作状态.工况为单车进三、主汽轮机转速105r/min 的各点各方向的振动速度如表2所示.表2 工况为单车进三、主汽轮机转速105r/min 的各点各方向的振动速度测点号垂向振动速度V 垂/mm ・s -1纵向振动速度V 轴/mm ・s -1横向振动速度V 横/mm ・s -110.350.300.3520.450.400.4030.350.55-40.300.500.2650.300.260.1860.180.260.2270.300.28-80.700.40-90.350.400.30100.50-0.35测点数目N i1097各向振动速度平均值∑V iN i0.380.370.29 注:表中“-”表示由于机械结构原因,该点此方向上不能测量到振动速度.・68・海 军 工 程 大 学 学 报 第16卷 按照H JB 38.75-90《常规动力潜艇系泊、航行试验规程———机组振动》评定,该设备属于第四类,振级评定为A 级,机器处于良好工作状态.对各测点测试结果进行比较后,发现振动烈度较大的点大都集中在轴承座附近.3 齿轮箱加速度测试和分析齿轮箱是形成水噪声主要来源之一,极大地影响了舰船的隐蔽性,所以要实测齿轮箱机脚的振动能量大小和隔振效果.通常通过测量齿轮箱1/3倍频程加速度振级来衡量齿轮箱机脚的振动能量大小,通过测量齿轮箱的单层隔振装置加速度振级落差对其隔振效果进行评估.振级落差是指被隔振设备振动响应有效值与对应基础响应有效值之比的常用对数的20倍[1].测试环境和测试工况同振动烈度测试.测试仪器包括丹麦B &K4371加速度传感器、B &K 2635电荷放大器、美国DP104动态信号采集及分析系统.在机组机脚四周靠近隔振器安装点处选取5个测点(称为上测点),对应每个机脚测点选取舰体安装基座测点(称为下测点).参照标准为G JB763.4-89《舰船设备结构振动加速度测量方法》和G JB763.2-89《舰船噪声限值和测量方法———舰船设备结构振动加速度验收限值》.频率范围为10Hz 到10000Hz.3.1 齿轮箱1/3倍频程加速度振级测试结果和分析根据G JB763.2-89可知齿轮箱属第三类设备,结构振动加速度验收限值为105μm/s 2.从各工况上测点结构振动加速度1/3倍频程谱图可知,在400Hz 以下的低频段各工况绝大多数上测点结构振动加速度1/3倍频程中心频率的加速度振级在验收限值以内.工况为单车进三、主轴转速为105r/min 时5号测点加速度振级实际测量值与限值比较如图5所示.图5 单车进三、主轴转速为105r/min 时5号测点加速度振级实际测量值与限值的比较图3.2 齿轮箱的单层隔振装置加速度振级落差测试结果和分析在各工况下齿轮箱单层隔振装置隔振效果(振级落差)依次为19.3dB ,13.4dB ,17.6dB ,17.0dB ,参照标准可知齿轮箱处于正常工作状态.4 结 论(1)从模态实验分析的结果看,该型齿轮箱的频率比较密集,这与其复杂结构是相对应的;通过比较测得的固有频率来看,其固有频率都不在传动系统的共振区;振动烈度测试结果表明该齿轮箱处于良好工作状态;齿轮箱1/3倍频程加速度振级测试结果表明该齿轮箱机脚的振动符合标准;齿轮箱的单层隔振装置加速度振级落差的测试结果表明对该齿轮箱的减振达到了预期的效果.这些结果充分说明该齿轮箱的设计较为合理,齿轮箱使用正常.(2)本次实验测试结果对于提高该型齿轮箱的可靠性和维修性起着重要作用,对其日常保养、状态检测有着重要的现实意义.・78・ 第6期 程广利等:齿轮箱振动测试与分析 (3)运用模态分析法得到的齿轮箱的动态特性具有其局限性,因为它仅适合于低中频段,而在高频段因模态叠加无法分辨,实际上高频振动对于分析齿轮箱的振动机理和隔振有着重要意义,所以应结合其它方法如能量分析法等对其高频动态特性进行更为精确的分析.(4)测试中环境噪声对测试影响应在分析中予以充分考虑,才能使测试结果更加准确.参考文献:[1] 朱石坚,何 琳.船舶机械振动控制[M ].北京:国防工业出版社,2003.[2] 吴新跃,朱石坚.人字形齿轮传动的振动理论分析模型[J ].海军工程大学学报,2001,13(5):13-19.[3] 金咸定.船舶结构动力学的进展与信息化[J ].振动与冲击,2002,21(4):1-6.[4] 曹树谦,张文德,萧龙翔.振动结构模态分析———理论、实验与应用[M ].天津:天津大学出版社,2002.[5] 傅志方,华宏生.模态分析理论与应用[M ].上海.上海交通大学出版社,2000.[6] 卢文祥,杜润生.机械工程测试・信息・信号分析[M ].武汉:华中科技大学出版社,2003.(上接第40页)表2 基本层厚度固定计算阻尼层厚度条件 算例内容 结 果(a )梁1基本层厚度0.03m ;梁2基本层厚度0.01m 梁1阻尼层厚度0.00001m ;梁2阻尼层厚度0.0515m (b )梁1基本层厚度0.01m ;梁2基本层厚度0.03m梁1阻尼层厚度0.044m ;梁2阻尼层厚度0.00001m (2)将基本层厚度和阻尼层厚度都设定设计变量设结构基本层最小厚度大于0.005m ,阻尼层最小厚度大于0.00001m.优化计算得数值:梁1基本层厚度0.025m ,梁1阻尼层厚度0.00001m ,梁2基本层厚度0.005m ,梁2阻尼层厚度0.028m.尽管梁1阻尼层厚度值和梁2的基本层厚度值都取边界值,但仍可以看出趋势:增大梁1基本层厚度和增加梁2阻尼层厚度有利于减小梁2的振动能量.通过(13)和(17)式,可见增大梁1基本层厚度能够很快减小结构导纳实部G ,所以减小力对梁1的输入功率,η12也略有减小,而此时n 1<n 2,所以应增大η2,由(11)式分析出有利于减小梁2的能量.以上只是对简单的2结构系统进行分析,随着结构复杂度的增大,结构参数的寻优过程是在优化算法中完成的.由于统计能量法具有阻尼灵敏度分析功能,其合理性是不言而喻的.3 结 论由统计能量法计算得出的结构频段平均能量值具有很好的鲁棒性,适于优化程序.文中建立了统计能量法的通用优化模型,并对一个由2根梁构成的模型进行了优化设计.计算结果表明该模型具有阻尼布置寻优和结构优化设计功能.该优化模型可用于复杂系统的优化设计中.参考文献:[1] 姚德源,王其政.统计能量分析及其应用[M ].北京:北京理工大学,1995.[2] 文功启.高速船结构噪声传播及其阻尼被动控制的研究[D ].武汉:武汉理工大学,2002.[3] 吴玉恒.噪声与振动控制设备选用手册[M ].北京:机械工业出版社,1988.・88・海 军 工 程 大 学 学 报 第16卷 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图 2 动力有限元分析模型
2. 2 振动模态分析 通过模态分析可对齿轮传动系统的转速是否合
理, 齿轮箱结构有无薄弱环节做出判断, 并可据此对 箱体结构进行优化设计, 从而避开其固有频率。本 节应用 AN SYS 软件分别求解箱体及齿轮系统的固 有频率和固有振型。图 3 给出了箱体及整个齿轮系 统的第 1 阶固有振型, 表 2 和表 3 分别为箱体及整 个齿轮箱前 10 阶固有频率及振型。
第8期
刘 文, 等: GWC6066 船用齿轮箱振动噪声分析及试验
49
元法[ 6-8] , 还可将 2 种方法结合运用[ 9-10] 。分析振动 响应时, 首先计算齿轮系统的内部动态激励[ 11-12] , 然 后将内部动态激励施加在齿轮副上, 最后通过求解 微分方程得到其振动响应, 还可进一步对振动响应 进行频谱分析, 从而预估齿轮系统的振动烈度及结 构噪声[ 7] 。对于齿轮系统辐射噪声, 有限元法及边 界元法是广泛运用的声学数值仿真方法[ 13-15] 。分析 时, 以箱体表面振动为边界条件, 经仿真计算可得到 箱体外表面声压、声强等声学量, 进而预估系统的空 气噪声[ 14] 。
第8期
刘 文, 等: GWC6066 船用齿轮箱振动噪声分析及试验
51
指定点振动速度在频率从 10~ 1 000 H z 范围内有 效值的合成值来表征振动烈度, 即
VS =
2
VX + NX
2
VY + NY
2
VZ 。 (2) NZ
式中, V S 为振动烈度; V X 、V Y 、V Z 分别为 X 、Y 、Z 方
元分析模型及声学边界元模型; 分析了齿轮箱在内部动态激励下的动态响应, 预估了齿轮箱的振动
烈度、结构噪声及空气噪声, 并对齿轮箱进行实验模态分析及振动噪声测试, 与仿真结果对比分析,
二者吻合良好。
关键词: 船用齿轮箱; 动态响应; 振动; 噪声
中图分类号: T H 113. 1
文献标志码: A
Analysis and test on vibration and acoustic noise of GWC6066 marine gearbox
齿轮系统运行时, 由于同时参与啮合轮齿对数的 变化、轮齿受载产生的弹性变形以及齿轮加工装配误 差等原因, 齿轮副将产生动态啮合激励并引起振动, 经传动轴及轴承传递至轴承座及箱体, 激起箱体振动 并辐射噪声[ 1] 。在齿轮系统设计阶段就对其振动响 应及声辐射特性进行研究, 从而制定合理的减振降噪
措施[ 2] , 已成为目前齿轮系统设计中一项重要任务。 因此通过理论分析, 借助有限元法及边界元法对齿轮 系统振动噪声进行数值仿真及试验研究具有重要的 理论意义和工程实用价值。
齿轮系统的振 动噪声一 直受到 人们的广 泛关 注, 振动响应的分析方法包括集中参数法[ 3-5] 或有限
收稿日期: 2011- 02- 28 基金项目: 国家科技支撑计划资助项目( 2011BA F09B07) ; 重庆市自然科学基金计划资助项目( CST C, 2009BB3201) 作者简介: 刘文( 1968- ) , 男, 博士, 主要从事 计算机辅助工程分析、机械动力学研究, ( E- mail) liuw en@ cqu. edu. cn。
( 1. 重庆大学 机械传动国家重点实验室, 重庆 400044; 2. 重庆齿轮箱有限责任公司, 重庆 402263)
摘 要: 采用弹簧单元模拟轮齿啮合刚度, 杆单元模拟箱体间的联结螺栓, 弹簧阻尼单元模拟
滑动轴承和滚动轴承, 建立由齿轮、传动轴、轴承和箱体等组成的 GWC6066 船用齿轮箱动态有限
6
243. 11 箱体沿 Y 向伸缩
7
262. 24 箱体沿 Z 向伸缩
8
289. 87 箱体及轴承座扭摆
9
304. 65 下箱体底部 Z 向 伸缩
10
329. 86 箱体沿 Y 向伸缩
图 4 齿轮箱节点位置
表 3 齿轮 系统前 10 阶固有频率及振型
模态阶次 频率/ H z
振型特征
1
49. 65 输入轴、正车轴、倒车轴转动
50
重庆大学学报
第 34 卷
2. 3 振动响应分析 齿轮系统动力学方程可表示为:
[ M] { x ( t) } + [ C] { x ( t) } + [ K ] { x ( t) } = { P ( t) } 。 ( 1)
式中, [ M] 、[ C] 、[ K ] 分别为系统的质量、阻尼和刚
度矩阵; { x ( t) } 、{ x ( t) } 、{ x ( t ) } 分别为节点位移、速 度和加速度向量; { P ( t ) } 为动态激励向量。
LIU Wen 1 , LIN Teng-jiao 1 , LV He-s he ng 1, 2
( 1. Stat e Key Laboratory of Mechanical Transmission , Chongqing University, Chongqing 400044, P. R. China; 2. Chongqing Gearbox Co. L td. , Chongqing 402263, P. R. China)
表 4 各节点振动速度计算值 ( mm/ s)
速度
X向
Y向
7
110. 41 沿 Y 向移动
8 115. 40 箱体、传动轴沿 Z 向移动
9 119. 46 箱体绕 Z 轴摆动, 齿轮轴、输出 轴转动
10 140. 48 输入轴、正车轴转动
图 5 齿轮箱表面节点 18912 垂向振动响应曲线
2. 4 船用齿轮箱振动烈度计算 振动烈度是表示系统振动强烈程度的量, 采用
在利用有限元法对整个 齿轮装配 系统进行 动 态特性分析时, 如何建立较为精确的有限元分析模 型, 这些文献 未作 介绍。笔者 利用 ANSYS 软件, 在齿轮副间建立弹簧单元以模拟轮齿啮合刚度, 在 轴与轴承座间建立弹簧单元以模拟轴承支承刚度; 用杆单元模 拟箱 体间 的联 结螺栓, 建 立了 包括 齿 轮、轴、轴承和箱 体的整个系统 的有限元动力分 析 模型, 对 GWC6066 船用齿轮箱在内部动态 激励下 的振动响应进行了仿真, 预估其振动烈度及结构噪 声。在此基础上, 利用 SYSNOISE 软件, 建立齿 轮 箱的边界元模型, 将振动响应分析结果作为边界条 件加载到边 界元 模型 中, 分析齿 轮箱 的声 辐射 特 性, 预估其空气噪声, 并通过振 动噪声测试验证 仿 真结果。
表 1 齿轮系统参数
中心距/ 模数/ 齿 数比 mm mm
齿宽/ mm
螺旋角/ 精度 ( ) 等级
输入 660 14 42/ 48 146. 5/ 146. 86 320/ 320
8
6
反向 600 12 48/ 48 140/ 140
12
6
内部激励包括刚度激励、误差激励和啮合冲击 激励。刚度激励是一种参数激励, 啮合冲击是一种 载荷激励, 误差激励是一种位移激励。本文采用三 维冲击动力接触有限元混合法计算啮合冲击时的动 态激励[ 11-12] 。图 1 给出了输 入 750 r / min, 400 kW 时输入级与输出级齿轮副内部动态激励曲线。
图 3 齿轮系统第 1 阶固有振型
表 2 齿轮箱箱体前 10 阶固有频率及振型
模态阶次 频率/ Hz
振型特征
1
112. 75 箱体绕 X 轴摆动
2
162. 71 箱体及轴承座绕 X 轴摆动
3
178. 68 箱体绕 Z 轴摆动
4
179. 12 轴承座绕 X 轴摆动
5
240. 93 箱体及轴承座绕 Y 轴扭摆动
Abstract: T he mesh st iffness of gear toot h is simulat ed by spring element s, the connect ed bolt between various housings are simplif ied as bar elements, and the sliding bearing and rolling bearing are simplified as spring dumping element s. Based on t hem, t he gear- shaf-t bearing- housing coupled finit e element model and boundary element model of GWC6066 marine gearbox are established. Finally, the dynamic response under int ernal dynamic excitation is analyzed and t he vibrat ion severity, structura-l borne noise and air- borne noise of the gear system are forecasted. T hrough the experimental modal analysis of gear system, and the test of vibrat ion response and air pressure, t he nat ural frequencies, vibration severity, struct ura-l borne noise and air- borne noise are obtained. Compared with numerical results, t wo results show good agreement . Key words: marine gearbox; dynamic response; vibrations; acoustic noise