板带轧制理论概述.
板带轧制工艺

板带轧制工艺一、轧制原理板带轧制工艺是一种通过一系列的轧制过程,将原料轧制成具有所需厚度、宽度和表面质量的板带材的工艺。
轧制过程中,轧件在轧辊的压缩下产生塑性变形,从而获得所需的形状、尺寸和性能。
二、轧机类型1.横轧机:横轧机是使轧件在平行于轧制方向上受到压缩,从而获得所需尺寸的轧制设备。
根据轧辊旋转方向的不同,横轧机可分为立式和卧式两种。
2.纵轧机:纵轧机是使轧件在垂直于轧制方向上受到压缩,从而获得所需尺寸的轧制设备。
这种轧机广泛应用于板带材的生产。
3.混合轧机:混合轧机同时具有横轧机和纵轧机的特点,可以同时进行横向和纵向的压缩,适用于复杂形状的轧制。
三、轧制原料板带轧制的原料可以是各种形状的坯料,如方坯、圆坯、钢板等。
原料的化学成分、显微组织、表面质量等都会影响最终产品的质量和性能。
四、轧制工艺参数1.压下量:压下量是轧制过程中轧件减薄的量,是影响轧件厚度的重要参数。
压下量的大小直接影响着最终产品的尺寸精度和性能。
2.轧制速度:轧制速度是指轧辊在单位时间内对轧件施加的压力,是影响轧制过程的重要参数。
适当提高轧制速度可以提高生产效率,但过高的速度会导致轧件表面质量下降。
3.轧制温度:轧制温度是指轧件在轧制过程中的温度,对轧件的塑性和变形抗力有重要影响。
合理控制轧制温度可以改善产品质量和提高生产效率。
五、轧制缺陷及控制1.裂纹:裂纹是板带材常见的缺陷之一,主要是由于轧制过程中温度变化过大或轧制压力过大引起的。
控制裂纹的方法包括合理控制轧制温度和压下量,以及选用合适的轧辊材质和热处理工艺。
2.折皱:折皱是指在板带材表面形成的局部隆起或弯曲的现象,主要是由于轧制过程中润滑不均匀或轧辊磨损严重引起的。
控制折皱的方法包括加强润滑管理、定期检查和更换轧辊等措施。
3.表面粗糙:表面粗糙是指板带材表面不光滑的现象,主要是由于原料表面质量差或热处理工艺不当引起的。
控制表面粗糙的方法包括加强原料质量管理、选用合适的热处理工艺和采用合适的轧制工艺参数等措施。
轧制原理概述及第一章

4. 变形区长度L
接触弧的水平投影称为变形区长度,由图2可知:
l AE R2 OE2
其中
OE 2
R
h 2
R2
R h h 2
R2
R h
2
4
l R2 R2 R h R h
F0 1F1,F1 2 F2,F2 3 F3 ,Fn1 n Fn
而
nБайду номын сангаас
F0 Fn 12 3 n
i
n p
i 1
有
p n
③ 压下率之间的关系
这里指积累压下率与道次压下率(与)之间的关系,根据定
义,积累压下率为 道次压下率为
h0 hn h0
1
h0 h0
h1
2
h1 h2 h1
n
第一章 轧制过程基本概念
1.1 轧制过程三阶段及变形区基本参数计算 1.1.1 轧制过程三阶段
1) 咬入阶段 一般将轧件的前端与轧辊相接触到轧件被咬入轧辊称为咬入阶 段。此时的主要问题是轧辊能否把轧件拽入轧辊中进行塑性 变形-即能否咬入。图1(a)中的角为轧件与轧辊相接触的圆弧 所对应的圆心角,称之为咬入角。
hn1 hn hn1
即
1 1
h1 h0
12
h2 h1
1n
hn hn1
则有
h1
h2
(1 2 )
h2
h3
(1 3 )
hn1
hn
(1 n )
如此递推,有下式成立:
1 1
h1 h0
1 h0
h2
(1 2 )
1 h0
h3
(1 2 )(1 3 )
1 h0
h4
(1 2 )(1 3 )(1 4 )
轧制理论与工艺

向上的分力为零,即:
x
0 px sin xRdx
tx cosxRdx
0
tx
c os x R d x
Q1 Q0 2b
0
px:单位压力; tx,tx’:后滑区和前滑区单位摩擦力;
b:轧件宽度; R:轧辊半径;
Q0,Q1:作用在轧件上的后张力和前张力;
轧制过程基本理论-轧制过程的前滑与后滑
轧制基本理论介绍(一)
武继权 2012.04.10
主要内容
1. 轧制过程基本概念 2. 实现轧制过程的条件 3. 轧制过程的前滑与后滑 4. 轧制过程的宽展 5. 轧制压力
轧制过程基本理论-轧制过程基本概念
• 轧制过程的定义:轧制过程就是 依靠旋转的轧辊与轧件之间形成 的摩擦力将轧件拖进辊缝内,使 轧件受到压缩产生塑性变形的过 程。
在没有附加外力作用的条件下,咬入力Tx 与阻力Nx的关系:
Tx < Nx 不能实现自然咬入 Tx = Nx 平衡状态 Tx > Nx 可以实现自然咬入
摩擦角β与摩擦系数 f 的关系: tanβ=f, 则:
• 极限咬入条件: α= β
• 自然咬入条件: α < β(咬入角小于摩擦角)
上轧辊对轧件作用力分解图
中心点移动轨迹
μ3
μ2
其中:μ3>μ2>μ1
μ1
摩擦系数的影响
接触弧长
轧制过程基本理论-轧制压力
5)张力作用
轧延负荷P
后张
张力
N1
N2 E N3
D
增加 C B
A
L O1 O2
M N O
接触弧长
前张 O3
轧制过程基本理论-轧制压力的计算
板带轧制理论与工艺作业

板带轧制理论与工艺作业加工硬化是指金属材料在再结晶温度以下塑性变形时强度和硬度升高,而塑性和韧性降低的现象。
又称冷作硬化。
产生原因是,金属在塑性变形时,晶粒发生滑移,出现位错的缠结,使晶粒拉长、破碎和纤维化,金属内部产生了残余应力等。
加工硬化的程度通常用加工后与加工前表面层显微硬度的比值和硬化层深度来表示。
摩擦机制:在作相对滚动的运动副中,如果有一个运动体发生了塑性变形,则可使二者的接触面积增加。
同时,塑性变形又使得运动副产生较大的相对滑动。
所以该运动副间的相对运动是既滚又滑的复合运动。
要使物体运动需克服接触表面间的摩擦力,还需克服塑性变形对物体运动所产生的阻碍影响。
Karman方程另一种形式:表面粗糙度是指加工表面具有的较小间距和微小峰谷不平度。
其两波峰或两波谷之间的距离(波距)很小(在1mm以下),用肉眼是难以区别的,因此它属于微观几何形状误差。
表面粗糙度越小,则表面越光滑。
表面粗糙度的大小,对机械零件的使用性能有很大的影响。
真应力(S)为是瞬时载荷(P)除以试样的瞬时截面积(A),即:S=P/A。
;真应变(e)是瞬时伸长量除以瞬时长度de=dL/L。
工程应力:即由负荷和原始截面积计算所得,σ=P/A。
;工程应变ε=(L-L。
)/L 区别:由于负荷值的变化随时可以读出,但瞬间截面积很难直接读出,因此,一般只能得到工程应力。
在受拉实验中,在均匀变形的范围内,真应力恒大于名义应力,而真应变恒小于名义应变。
在弹性阶段由于应变值极小,二者的差异极小,没有必要加以区分。
板形锥:板形锥定义了轧件在轧制过程中不均匀变形的临界值。
由板形锥可知,只要各架的实际凸度值在临界凸度值以内则不产生浪形,超出临界值则会产生边浪或中间浪。
板形锥反映了板材形状,材质抵抗起浪的一种能力,它与设备无关。
随着板厚的增大,允许凸度值越大,抵抗起浪的能力越强;随着板宽的增加,允许凸度值越小,抵抗起浪的能力越差;不同的轧制规格,随着轧制规程的不同,板形锥是不同的,一种轧制规程只对应着一种板形锥。
3.板带轧制理论和工艺-1

1.3.2轧制过程三阶段理论
• 该理论认为轧制过程可分为三个阶段:咬入、形成、抛出. 此三阶段有各自特点又相互联系构成一个完整轧制过程.
咬入阶段
建成阶段
抛出阶段
本部分主要内容
• 1 基本概念
• 轧制过程 入角
变形区 不均匀变形理论 咬
• 接触弧长
• 2 会推导咬入角及接触弧长公式.
• 3 咬入条件分析,会分析咬入阶段和稳定轧制 阶段的区别与共同点.
其他分类
❖ 根据外部介质分类: 空气,真空, 惰性 气体
❖轧机工作制度: 可逆 不可逆 连轧 等
2)轧制过程中发生的基本现象和建立轧制
过程的条件
• 在生产实践中遇到不同的轧辊组合方式,但实际上金属承受压下 而产生塑性变形是在一对工作轧辊中进行的。除了一些特殊辊系 结构(如行星轧机,Y型轧机)外,均在一对轧辊间轧制的简单情 况。
• 此时,金属流动除来自轧辊的摩擦阻力外,不受任何其它的阻碍 和限制。因此,自由宽展的轧制是轧制变形中的最简单的情况。 在平辊上或者是沿宽度上有很大富余的扁平孔型内轧制时,就属 于这种情况。
•
箱形孔型轧制自由宽展
2)限制宽展
• 轧制中,被压下的金属与孔型两侧壁接触, 孔型的侧壁限制着金属沿横向自由流动,金 属被迫取得孔型侧边轮廓的形状。
• fy βy—稳定轧制阶段摩擦系数和摩擦角 • αy —稳定轧制阶段咬入角(根据此角可以预测可能
的最大压下量)
3.2.3 咬入阶段与稳定轧制阶段的咬入条件比较
• 极限咬入条件 α= β
• 极限稳定咬入条件αy = βy kx • 令K= αy / α= kx βy / β • αy =α kx βy / β
• 4 改善咬入的理论方法,实际可行的具体办法.
板带轧制数模及控制6

反馈控制是通过测量输出参数,与期望值进行比较,然后根据偏差进行调整。
前馈控制是根据输入参数的变化,提前进行控制调整,以减小滞后效应。
优化控制是通过优化目标函数,寻找最优的控制策略。
板带轧制控制的主要技术
板带轧制控制的实现过程
01
通过建立数学模型,可以模拟轧制过程中金属的变形和温度场分布,从而预测产品的形状、尺寸和性能。
板带轧制数模的基本原理
03
精细化有限元模型
在基础有限元模型基础上,考虑更多的物理现象和影响因素,如材料非线性、接触摩擦、热传导等。
板带轧制数模的主要类型
01
简单数学模型
基于简化的物理现象,忽略一些次要因素,建立轧制力的数学表达式。
板带轧制数模及控制6
xx年xx月xx日
contents
目录
板带轧制概述板带轧制数模板带轧制控制板带轧制技术的应用板带轧制的未来发展趋势结论与参考文献
01
板带轧制概述
是一种将金属坯料通过一对旋转轧辊的间隙,在受压作用下使截面减小,形状改变,并获得所需要板带材的加工方法。
板带轧制
具有规定尺寸和形状的扁平矩形坯料,一般由板带轧机轧制得到。
板带轧制技术的研究热点与发展趋势
复杂多变的生产环境
生产过程中存在各种不确定因素和复杂多变的生产环境,给轧制过程的稳定性和产品质量带来挑战。解决方案包括加强生产管理、优化工艺参数、采用先进的控制系统等。
板带轧制技术的挑战与解决方案
高精度轧制要求
随着产品质量的不断提高,对板带轧制的精度和稳定性也提出了更高的要求。解决方案包括开发新型轧机、优化轧制工艺、采用先进的检测技术等。
板带材轧制

轧机的刚度是表示该轧机抵抗轧制压力引起弹性变形的能力,又称轧机模数或轧机模量。
轧制时,在轧制力的作用下,轧件产生塑性变形,其厚度尺寸和断面形状发生变化。
同时,轧件的反作用力使工作机座中轧辊,轧辊轴承,轴承座,垫板,压下油缸及牌坊等一系列零件相应产生弹性变形。
通常将这一系列受力零件产生的弹性变形总和称为轧机的弹跳值,也就是轧机的刚度。
轧机的弹性曲线并不完全是一条直线,在弹性曲线的起始段不是直线,而是一小段曲线,这是由于轧机各部件之间存在着一定的间隙和接触不均匀之故。
随着轧制压力的增加,弹性曲线的斜率逐渐增大。
当轧制压力增大到一定数值后,弹性曲线可近似地看成是一条直线。
实际生产中,轧机大多工作在弹性曲线的直,或称为轧机模数。
K线段范围内,因此,通常将直线部分的斜率称为轧机的刚度系数弹性变(1mm)轧机刚度系数的物理意义是指轧机工作机座抵抗弹性变形的能力的大小,即当轧机产生单位而轧机表明轧机刚度越大,,)即弹性曲线越陡(则刚度系数越大此力越大,形时所需要的轧制压力的大小,弹性变形就越小。
通俗地说,轧机刚度系数即表示轧机工作机座的软硬程度。
K现代化社会当中各种测厚仪出现在了各种机器的检测系统当中,从而有效的保证了各类产品的标准,然而需求不同,所以仪器的种类也不一样,在下文中我们主要了解接触式和非接触式薄膜测厚仪这两种仪器的区别。
接触式和非接触式薄膜测厚仪的字面区别就是一个需要接触被检测产品,另外一个就不需要。
接触式仪器主要可以分成超声波和涂层两大类型,超声波仪器的远离就是使用探头发射的超声波脉冲到被检测产品当中,并在产品中传播,当到材料分界面的时候会被反射回探头这里。
通过精确测量超声波在产品当中传播的时间来确定产品的厚度,这种仪器可以做出精确的测量,特别涂层仪器的原理主要是磁性和涡流原理。
是对各种板材和各种加工零件;非接触式薄膜测厚仪无辐射,安全性能好,响应快速,不受被测物材质影响,整体维护非常简单,而且精准度很高。
轧制理论与工艺(第一节)

' 2
2
R R B1B3
2
2
2 RDB3 2 RB1B3
h 2R 1 2 2 R 1 2 Rh 2 R 1 2 2 R 1 2 2 Rh x0 2 x 0 1 12 1 2 2 x 0 2 R 1 2 8R p E E 1 2 1 12 1 22 1 2q 2 2q E1 E2 q 2 x0 p
咬入角 接触弧长度
1.1.1.1 咬入角(α)
咬入角:轧件与轧辊相接触的圆弧所对应的圆心角。
压下量与轧辊直径及咬入角之间存在如下的关系:
h 2 R R cos D 1 cos cos 1 h 1 h sin D 2 2 R
0 sin
h R
2
2
1.1.1.1 咬入角(α)
Δh,D和α三者关系计算图:
已知Δh,D和α三个参数中的任意两个,便可用计算 图很快地求出第三个参数。
1.1.1.1 咬入角(α)
变形区内任一断面高度hx求法:
hx hx h D 1 cos x h Or hx H h hx H D 1 cos D 1 cos x H D cos x cos
1.1.1.2 接触弧长度(l)
接触弧长度:轧件与轧辊相接触的圆弧的水平投影 长度,也叫咬入弧长度、变形区长度。 接触弧长度随轧制条件不同而异:
两轧辊直径相等时; 两轧辊直径不等时; 轧辊和轧件产生弹性压缩时。
板带轧制工艺及理论

第二章 板带轧制工艺及理论1.板带钢产品的技术要求包括哪些方面?对板带钢产品的基本要求包括化学成分、几何尺寸、板形、表面、性能等几个方面。
(1)钢板的化学成分要符合选定品种的钢的化学成分(通常是指熔炼成分),这是保证产品性能的基本条件。
(2)钢板的外形尺寸包括厚度、宽度、长度以及它们的公差应满足产品标准的要求。
(3)钢板常常作为包复材料和冲压等进一步深加工的原材料使用,使用上要求板形要平坦。
在钢板的技术条件中对钢板的不平度提出要求,以钢板自由放在平台上,不施加任何外力的情况下,钢板的浪形和瓢曲程度的大小来度量。
(4)使用钢板作原料生产的零部件,原钢板的表面一般是工作面或外表面。
技术条件中通常要求钢板和钢带表面不得有气泡、裂纹、结疤、拉裂和夹杂,钢板和钢带不得有分层;钢板表面上的局部缺陷应用修磨的方法清除,清除部位的钢板厚度不得小于钢板最小允许厚度。
(5)根据钢板用途的不同,对钢板和钢带的性能要求不同,对性能的要求包括四个方面:力学性能、工艺性能、物理性能、化学性能。
对力学性能的要求包括对强度、塑性、硬度、韧性的要求;工艺性能包括冷弯、焊接、深冲等性能;材料使用时对物理性能有要求时在技术条件中提出,如电机和变压器用钢对磁感强度、铁磁损失等物理性能提出要求;材料使用时对化学性能有要求时在技术条件中提出,如不锈钢板钢带对防腐、防锈、耐酸、耐热等化学性能提出要求。
2.板带轧机的分类方法有几种?板带轧机的分类方法有按辊系分类、按轧辊驱动方式分类、按轧机组成分类、按轧机用途分类等多种分类方法。
(1)按辊系分类板带轧机按辊系分类是最常用、最基本的方式。
常用的轧机有二辊、三辊、四辊、六辊、八辊、十二辊、二十辊以及偏八辊、非对称式八辊、行星式轧机等,这些形式的轧机是由一对工作辊和多个支持辊构成。
(2)按轧辊驱动方式分类对称驱动方式:上、下工作辊,上、下中间辊,上、下支持辊;非对称驱动方式:一根工作辊,一根工作辊和一根支持辊;异步驱动:上、下辊异步传动,上、下工作辊异步传动。
板带轧制理论与工艺_4_板凸度和板平直度理论综述

材料加工工程硕士研究生选修课《板带轧制理论与工艺》4 板凸度和板平直度理论主讲人:邸洪双热轧卷板的主要质量问题性能:强度,塑性,冲击韧性表面:氧化铁皮,麻点,划伤,挂腊,夹杂,边裂,翘皮尺寸精度:厚度,宽度板形 (平直度,凸度,边部减薄,局部高点)板形对用户产品质量的影响由于带钢板形质量问题对用户使用及最终产品质量带来不利影响。
如汽车制造、工程机械设备、集装箱和冷轧生产等汽车梁成型后腿部距离回弹不一致,热轧卷板表面局部高点造成冷轧卷板成品表面产生粘结浪形导致下工序衬板、加强板组装困难集装箱板浪形影响集装箱整体焊接质量和外观工程机械钢卷板瓢曲造成吊车吊臂无法焊接4.1 板形和板凸度的概念板形(shape ) (平直度) 直观来说:指板材的翘曲程度Flatness, Buckle, Cambershape实 质:板带材内部残余应力的分布只要板带内部存在有残余的内应力,就称为板形不良。
如果这个应力虽然存在,但不足以引起板带翘曲,则称为“潜在”的板形不良;如果这个应力足够大,以致于引起板带翘曲,则称为“表观”的板形不良。
板形缺陷的产生 残余应力板形不良“潜在”的板形不良 “表观”的板形不良带钢实际平直度照片平直中浪边浪板形缺陷的分类板带中残余应力分布的规律不同,其所引起的板带翘曲形式也不同。
所以,可以根据内应力的分布规律和板带的翘曲情况,将板形缺陷分成不同的类型。
()22121p cr cr p E h k B πσν⎛⎫= ⎪+⎝⎭cr σ板带产生翘曲的临界应力cr k 临界应力系数p E 板带的弹性模量 p ν板带的泊松比 h 板带的厚度 B 板带的宽度(4-1) 式中: 板带翘曲的力学条件根据弹性力学的研究结果,板带发生翘曲的力学条件可表达为:研究结果表明,对于冷轧宽带钢,产生边浪时,k cr ≈12.6,产生中浪时,k cr ≈17.0。
对于热轧宽带钢,边浪时k cr ≈14,中浪时k cr ≈20良好板形的几何条件如右图所示,横坐标表示各点的横向位置,即横向各点距板带中心的距离,纵坐标分别为入口和出口轧件半厚,入口断面形状函数为H(x),出口断面形状函数为h(x)。
轧制理论)轧制原理

轧制理论的发展趋势与未来展望
1 2
智能化发展
随着人工智能和大数据技术的应用,轧制理论的 智能化发展成为趋势,实现轧制过程的自动化和 智能化控制。
新材料和新工艺研究
未来轧制理论将继续在新材料、新工艺的研究方 面发挥重要作用,推动行业的创新发展。
3
绿色可持续发展
轧制理论将注重绿色可持续发展,致力于降低能 耗和减少环境污染,实现行业的可持续发展。
轧制理论)轧制原理
目录
量 • 轧制过程的模拟与优化 • 轧制理论的应用与发展
01
轧制原理概述
轧制的基本概念
轧制是一种金属加工工艺,通过两个 旋转的轧辊将金属坯料压缩,使其发 生塑性变形,从而获得所需形状和性 能的金属制品。
轧制过程中,金属坯料通过轧辊的摩 擦力作用被牵引,经过连续的塑性变 形,形成一定规格和形状的成品或半 成品。
智能算法进行故障诊断和预警,提高轧制过程的稳定性和可靠性。
05
轧制理论的应用与发展
轧制理论在钢铁工业中的应用
轧制工艺优化
轧制理论为钢铁工业提供了优化轧制工艺的方法,提高了产品质 量和生产效率。
新材料研发
轧制理论在新材料研发中发挥了重要作用,推动了钢铁材料的不 断升级和革新。
节能减排
轧制理论的应用有助于钢铁工业实现节能减排,降低生产过程中 的能耗和污染物排放。
利用测厚系统实时监测板材厚度, 反馈调整轧制参数,以实现厚度 控制的自动化和精细化。
04
轧制过程的模拟与优化
轧制过程的数值模拟技术
有限元法
01
通过将轧制过程划分为一系列小的单元,利用数学方程描述每
个单元的行为,从而模拟整个轧制过程。
有限差分法
铜板带冷轧机的轧制原理及参数控制

铜板带冷轧机的轧制原理及参数控制铜板带冷轧机是一种重要的金属加工设备,广泛应用于冶金、机械、建筑等行业。
它通过冷轧的方式将铜板带加工成所需厚度和尺寸的产品。
本文将深入探讨铜板带冷轧机的轧制原理及参数控制,以帮助读者更好地理解这个主题。
一、铜板带冷轧机的轧制原理铜板带冷轧机的轧制原理是基于金属塑性变形的规律。
在冷轧过程中,铜板带经过多次通过轧制辊的压力作用,使其产生塑性变形,从而实现厚度和尺寸的调整。
其具体步骤如下:1. 进料与切割:将铜板带送入冷轧机,切割成适当的长度以便进行下一步工序。
2. 初轧:将切割好的铜板带经过初轧辊的压力作用,使其产生初步的变形。
初轧可以消除材料的内应力,提高材料的塑性,为后续的轧制做好准备。
3. 中轧:经过初轧后,铜板带再经过中轧辊的压力作用,进一步实现厚度和尺寸的调整。
中轧一般采用多个辊道串联,逐步减小辊道间隙,从而使铜板带的厚度得到更细致的控制。
4. 终轧:在中轧之后,铜板带进入终轧辊的作用区域。
终轧辊通常采用高速旋转,通过较大的轧制力对铜板带进行再次变形,使其达到所需的厚度和尺寸。
5. 出料:经过终轧后,铜板带被送出冷轧机,进入后续工序或成为最终产品。
二、参数控制对轧制效果的影响在铜板带冷轧过程中,参数控制对轧制效果起到至关重要的作用。
以下是几个常见的参数及其对轧制效果的影响:1. 辊道间隙:辊道间隙是指轧制辊之间的距离。
辊道间隙的大小直接影响到铜板带的厚度控制。
辊道间隙过大会导致轧制力不足,铜板带厚度无法准确控制;而辊道间隙过小则会造成过度压制,容易引起辊道磨损和变形。
辊道间隙的调整是铜板带冷轧中重要的参数控制之一。
2. 轧辊直径:轧辊直径的大小也会对轧制效果产生影响。
较大的轧辊直径可以提高轧制效率,但厚度控制相对较差;而较小的轧辊直径则有利于获得更好的厚度控制。
在实际应用中,需要根据具体需求来选择适当的轧辊直径。
3. 轧制速度:轧制速度是指铜板带在冷轧机中通过轧制辊的速度。
轧制原理二

轧制原理二板、带材生产概述1,推动板、带材轧制方法与轧机型式演变的主要矛盾是什么?轧件变形和轧机变形是在轧制过程中同时存在的。
我们的目的是要使轧件易于变形和轧机难于变形,亦即发展轧件的变形而控制和利用轧机的变形。
由于板、带轧制的特点是轧制压力大,轧件变形难,而轧机变形及其影响又大,因而使这个问题就成为左右、带轧制技术发展的主要矛盾。
2,板带材是如何分类的?(1)按产品尺寸规格:一般可以分为厚板(包括中板和特厚板)、薄板和极薄带材(箔材)三类。
一般称厚度在4.0mm以上者为中、厚板(其中4~20mm者为中板,20~60mm为厚板,60mm以上者为特厚板),4.0~0.2mm者为薄板,而0.2mm以下者为极薄带钢或箔材。
(2)按产品用途:造船板、锅炉板、桥梁板、压力容器板、汽车板、镀层板(镀锡、镀锌板等)、电工钢板、屋面板、深冲板、焊管坯、复合板及不锈、耐酸耐热等特殊用途钢板。
3,板、带材生产工艺有何特点?(1)板、带材是用平辊轧出,故改变产品规格较简单容易,调整操作方便,易于实现全面计算机控制和进行自动化生产。
(2)带钢的形状简单,可成卷生产,且在国民经济中用量最大,故必须而且能够实现高速度的连轧生产。
(3)由于宽厚比和表面积都很大,故生产中轧制压力很大,可达数百万至数千万牛顿,因此轧机设备复杂强大,而且对产品厚、宽尺寸精度和板形以及表面质量的控制变得十分困难和复杂。
4,板带材技术要求主要包含那些内容?“尺寸精确板型好,表面光洁性能高”(若分值较大,可分开详述)。
降低金属变形抗力的措施(提高刚度措施):叠轧:通过叠轧使轧件总厚度增大,并采用无水冷却的热辊轧制,才能使轧制温度容易保持及克服轧机弹跳的障碍,保证轧制过程的进行。
连续轧制:单层轧制薄而长的钢板时温降很快,不叠轧就必须快速操作和成卷轧制,争取有较高和较均匀的轧制温度。
炉卷轧机:优点:可用较少的设备投资和较灵活的工艺道次生产出批量不大而品种较多的产品,尤其适合生产塑性较差、加工温度范围较窄的合金钢板带。
轧制理论

咬入之后,在金属逐渐充填变形区的过程中,径向力的合力作用点相应地
向轧件出口平面方向移动,而使合力作用方向逐渐向出口倾斜。因此而使得Tx逐 步增加,Nx相应减少。这样一来,摩擦力的水平分力就有了剩余,其值为Tx-Nx。 由于剩余摩擦力的出现,而使得轧件一旦被咬入,就能更顺利地使轧件充满变形
由置于出口和入口两侧的测厚仪,测出带钢厚度,反馈到高速的计算机系统,再去控制 一个“电--液压”系统来实现对带钢厚度的控制。
测厚仪简图
3.2.AGC系统控制方法
➢前 馈:把前面的测厚仪测得厚度与目标厚度相比。 ➢后 馈:把后面的测厚仪测得厚度与目标厚度相比,只有1pass时使用 。 ➢质量流:轧机出入口的秒流量相等的原理控制,左右测厚仪同时使用
轧辊把轧件拉入旋转方向相反的两个轧辊辊缝 之中叫轧件的咬入。轧辊能够顺利地将轧件咬入是 轧制的必要条件。 轧件与轧辊接触时,轧辊对轧件的作用力和摩擦 力如图所示。N和T分解成的水平分力为:
不能咬入 临界状态 可以咬入 设摩擦角为β,则摩擦系数:
图3 轧辊对轧件的作用力和摩擦力
可以推出:
3.2.轧制过程建立
延伸率是带钢长度变化率,其表示式为: 在忽略宽展时,延伸率μ与压下率ε有如下关系:
2.SPM的目的
➢消除退火带钢的屈服平台,改善力学性能,保证产品的成形加工性; ➢修正板形,改善平直度; ➢根据用户的使用要求,加工光面或麻面板,并改善表面质量。
中性面:在整个变形区中,存在一个前后滑的过渡面。轧件在该面上运动的速度与 该处轧辊线速度的水平分速度相等,这个平面就叫中性面。由出口平面到中性面称 前滑区,由入口平面到中性面称后滑区。
5.2前滑的计算式
如图,在中性面轧件运动的速度与轧辊水平分速度相等,即 中性面与出口截面的秒体积相等,并忽略宽展时,可得 上式,经整理得到 :
轧制理论与工艺 第三篇 板带材生产概述

归纳起来就是:尺寸精确板形好,表面光洁性能高。
轧制理论与工艺
RAL 11.2.1 围绕降低内阻的演变与发展
单机架或双机架轧机上进行往复轧制
适于轧制不太长及不很薄的钢板,有利于轧制温度的保持, 使轧制时有较低的变形抗力。对于轧制4mm以下薄板,温降太快、 轧机弹跳太大,单张热轧十分困难,为此采用叠轧方法。
RAL
轧制理论与工艺
主讲人:张晓明 东北大学
轧制技术及连轧自动化国家重点实验室
轧制理论与工艺
RAL
第三篇 板带材生产
11 板带材生产概述 12 热轧板带材生产 13 冷轧板带材生产 14 板带材高精度轧制和板形控制 15 板带材轧制制度的确定
轧制理论与工艺
RAL
11 板带材生产概述
11.1 板带产品特点、分类及技术要求 11.2 板带轧制技术的发展
轧制理论与工艺
RAL 11.1.2 板带材的分类及技术要求
按用途分
造船板、锅炉板、桥梁板、压力容 器板、汽车板、镀层板(镀锡、镀锌板 等)、电工钢板、屋面板、深冲板、焊 管坯、复合板及不绣、耐酸耐热等特殊 用途钢板。
轧制理论与工艺
RAL板带材技术要求尺寸精度高厚度精度,由于B/H很大,厚度微小变化引起使用性能和金属消耗的巨 大波动。故采用高精度轧制以及按负公差轧制。如热轧板2.0mm±50mm, 电视机阴罩板要求0.15mm±1mm。
轧制理论与工艺
RAL
小辊径化趋势
2辊轧机:冷轧很少采用 4辊轧机:大量采用 6辊轧机:近年来应用较多,有HC,UC,CVC多种类型 --其基本特点:中间辊横移(工作辊横移)
轧制理论与工艺
RAL
6辊轧机工作辊直径太小容易出现横向弯曲,需要侧向支撑 偏 8 辊轧机,不适合可逆轧制 Z-high 轧机,双向侧支撑,可以可逆轧制
轧制概述与工艺

本课程讲授的主要内容: ●轧制概述 ●轧制过程中的力学概述
●轧制过程中的金属变形
●轧制后续的处理技术及设备概述
2
轧制概述
1.轧制概述 2.我国轧钢技术发展 3.无头轧制技术 4.今后我国轧钢领域的发展方向
3
绪论
轧制过程是由轧件与轧辊之间的摩擦力将轧件拉 进不同旋转方向的轧辊之间使之产生塑性变形的过程。
轧制新技术新工艺概述
新一代TMCP技术 无头轧制技术
边部温度控制技术 连铸坯热送热装 无酸洗除鳞技术 板厚、板形自动控制系统 轧制-激光焊接技术
宽厚板轧制
● ● ● ● -
热连轧
● ● ● ● ● -
38
冷轧 棒线材轧制
-
●
-
●
-
-
-
●
●
-
●
-
●
-
39
4.今后我国轧钢领域的发展方向 轧钢领域要向提高热装温度和热装率,开
——咬入角,轧件被咬入轧辊时轧件和轧辊最先
接触点(实际上为一条线)和轧辊中心的连线与 两轧辊中心连线所构成的角度;
l——接触弧长的水平投影,也叫变形区长度;
F ——接触面水平投影面积,简称接触面积;
l/hm ——变形区形状参数,hm=(H+h)/2(变形
区平均高度)。
简单轧制(理想轧制)
为了便于进行研究分析,对一些轧制条件作出假设和
4
金属材料尤其是钢铁材料的塑性加工,90%以上是通过 轧制完成的。由此可见,轧制工程技术在冶金工业及国民 经济生产中占有十分重要的地位。
5
轧制工艺按照产品类型可以分为板带轧制、管材轧 制、型材轧制以及棒、线材轧制四种基本类型;按生 产工艺可以分为热轧和冷轧工艺;按厚度可分为薄板 ( 厚 度 <4mm) 、 中 板 ( 厚 度 4~20mm) 、 厚 板 ( 厚 度 20~60mm)、特厚板(厚度>60mm,最厚达700mm)。 在实际工作中,中板和厚板通称为“中厚板”。
板带轧制理论与工艺1绪论pps

RAL 2. 钢板冷轧过程的特点
小辊径的优点:减小接触区-减小轧制力-减小弹性变形-有利轧薄
工作辊 直径
510mm 295mm 200mm
13MN 6.4MN
4.3MN
RAL 2. 冷轧过程特点-最小可轧厚度
• 最小可轧厚度理论(Tong-Sacks理论,Ford-Alexander理论) hmin=1.544μC0 k R ≈ D/3000
突破最小可轧厚度:90mm辊径轧制出0.005mm(钢),0.0035mm(铜)
•缺点:1)轧机震动;2)负荷分配不均,快辊负荷大
RAL 2. 冷轧过程特点-不对称轧制
• 异径轧制:上下辊采用不同的辊径 • 优点:减小接触弧长度,减小轧制力
RAL 现代冷轧带钢生产技术新进展讲座
3.冷连轧工艺 及其新进展
RAL
弯曲+张力预除鳞
Bending
+
Tension
Stretching Anti-cambering
unit
unit
Entry Bridle
Leveling Mill Exit Bridle
Elongation
Edge Wave
Center Wave
Quarter Buckle
Flat Sheet
RAL 3. 冷连轧工艺及其新进展
带钢冷轧发展的 3 个阶段:
- 单机可逆轧制
- 连续式轧制(通常3-6个机架)
- 无头轧制
全连续无头轧制 CDCM(酸-轧联合机组) FIPL(酸-轧-退连续生产线)
RAL
特点 • 前后带卷筒,正反转轧制 • 控制系统简单 • 操作维护容易 • 投资少,见效快
单机可逆轧制
板带轧制技术的发展概述

控轧控冷的物理冶金基础
铁素体晶粒的细化:铁素体晶粒的形核速率愈大, 长大速率愈小,则晶粒愈细。
形核速率,N
过冷度,T
图1.4 铁素体形核速率与过冷度的关系
控轧控冷的物理冶金基础
实验证明,在γ →α 相变温度范围内,形变温度愈 低愈有利于铁素体晶粒的细化,因此,要尽可能降 低γ →α 相变开始温度Ar3。 影响γ →α 相变晶粒细化的主要因素:相变前奥氏 体晶粒尺寸、形变量、轧后冷却速率和合金元素等。 他们通过对铁素体形核和长大速率及Ar3的作用而 影响铁素体晶粒的细化。
微合金化
传统的合金元素通过改变铁的结构来影响钢的性能。 有些合金元素不改变铁的结构,而是与其中的碳和氮 有很强的相互作用。 常用的微合金化元素:Nb、V、Ti、B、Al、Zr、Ta等; 能生成碳氮化物并有析出强化作用的只有Ti、Nb、V等。 微合金化元素使钢强化的主要机理是晶粒细化和析出 强化
板带轧制技术
一.控制轧制与控制冷却
控制轧制与控制冷却的发展及特点
微合金化 热机械控制工艺
钢的控制轧制与控制冷却
控制轧制是以钢的化学成分调整或添加微合金 元素Nb、V、Ti为基础,在热轧过程中对钢坯加 热温度、开轧温度、变形量、终轧温度等工艺 参数实行合理控制,以细化奥氏体和铁素体晶 粒,并通过沉淀强化、位错亚结构强化充分发 掘钢材内部潜力,提高钢材力学性能和使用性 能。
二.热轧板带 1. 前言
我国现在是世界上的钢铁大国,连续几年 钢产量居世界第一位。近几年来板带轧制发 展最快.到目前为止,正式投产的宽带轧机20 套。正在建设中的还有近20套,投产后宽带 产量将近一亿吨。产品结构比例已进入世界 先进行列装备水平也是世界一流的,如宽度 控制:大立辊﹑定宽机厚度控制全液压AGC ﹑板形控制的各种机型. 例如:CVC 、 HC、PC、等,温度控制, 热卷箱:保温罩、边部加热等等。控制系统: 交交变频控制、PLC数值可控硅,等……。
《板带轧制理论与工艺》课件

轧制理论部分
● 接触弧长: ● 相对压下量(压下率):
● 相对宽展量(宽展率):
轧制理论部分
●压下系数:
●4.金属沿轧件高向不均匀变形: 前滑区,后滑区,中性面
金属沿轧件宽度上的不均匀变形: 单鼓形 薄轧件 双鼓形:厚轧件
轧制理论部分
● 5.咬入条件:首先进行应力分解,然后列平衡方程式:
TX N X 0
工艺部分
●4. 对铸锭质量要求(化学成分,表面 质量,铸锭的内部质量) ●5. 轧制的两大任务:精确成型,改善组织 ●6. 加热目的:提高塑性,降低抗力,改善组织
加热温度:压共析钢,过共析钢
热装的优点,加热缺陷,加热炉的型式
●7. 变形程度,组织状态对性能影响 ●8. 开轧温度,终轧温度
工艺部分
轧制理论部分
●9前滑和后滑的概念。 ●10.影响前滑的因素(压下率,轧件厚度,轧件宽度,轧辊直径,
摩擦系数,张力) ●11.计算平均轧制压力的基本方程(卡尔曼方程--采力柯夫公
式,奥罗万方程――希姆斯公式 ●12.应用希姆斯公式的图表计算轧制压力,斯通公式图表计算轧
制压力。 )
轧制理论部分
● 13.影响金属实际变形抗力的因素(金属的屈服极限,变形温度,变形程度,变形速度) ● 14.轧制力矩计算公式: 其中:l为接触弧长
《板带轧制理论与工艺》
轧制理论部分
● 1.轧制的概念: 依靠旋转的轧辊与轧件之间形成摩擦力将轧件拖进辊缝之间,并使之受到压缩产生塑性变形的过 程。 目的:获得一定尺寸的形状尺寸和组织性能。
轧制理论部分
● 2.变形区的基本参数: 压下量: Δh=D(1-cosα) 当α很小的时候(比如冷轧) 可用:
T cos N sin 0
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《 The Iron and Steel
《ISIJ International》等。
方法:
从基本理论掌握入手,理论联系实际,学会分析及
解决实际问题的方法和能力。
第二讲
厚度控制原理及技术
厚度是板带钢最主要尺寸质量指标之一,厚度自控是现代板带生
产中不可缺少的重要组成部分。 高精度指厚度h 纵向的精确度---主要取决于有载辊缝的大小 横向的精确度---主要取决于有载辊缝的形状
S0’ S0
• 轧机刚度系数 K=tgα =∆P/∆f
kg/mm
• K物理意义:当轧机产生单位弹性变形时所需施加的负载量。
2)考虑预压变形时弹性曲线
gkl与0k’l’对称
l’ 压缩 k’ f’ S 人工零位 S0 S0 h P
l
拉伸
gf= 0f’=S 0f= S0’+ S = S0 P= P0
辊缝指示器
学习目的:
•了解及掌握高精度轧制技术基础理论知识。
•了解当前国内外现代轧制技术的(现状、特点、发展) 新工艺、新技术、新发展
学习要求:
•了解该学科的核心、科学前沿、发展动态。 如: 阅读国内核心刊物--《钢铁》、《轧钢》、 《金属学报》、《特殊钢》等;
国外刊物--《 Iron and
Steel Engineer》
P
S↓
1 2
P1
P2
V 2>V 1 (f 2< f 1) h2<h1
h2 h 1 H h(H)
0 S0
(3)张力变化--通过Qp、K起作用 例:穿带、抛钢时,带钢头、尾张力是突然↑or消失的
P 1 q 2>q 1 h2<h1
P1
P2
2
0 S0
h2 h1 H
h(H)
q↕→Qp↕、K↕→P↕→头尾出现两个厚度增大区→↑切损 带张力时的轧制力
P
0 S2 S1
S3 h 2 h 1 h 3
H h(H)
3)影响P的因素←轧件及工艺方面原因 (1)轧件温度、成分、组织性能不均等
P 2 1 T2ْC< Tْ1C h2>h1
热轧TْC↕-- TْC↓→ ζ↑(K↑)→ P↑→ P/K↑→ h↑
P2
P1
0 S0
h1
h2
H
h(H)
冷轧--ζ↑(K↑)→ P↑→ P/K↑→ h↑
• 研究其:影响因素、变化规律、控制措施
1 P-h 图的建立
1.1 弹性曲线 --表示轧机弹性变形与轧制力间关系曲线 建立方法--实测 分 轧板法--改变辊缝S法、固定辊缝S法; 压靠法--人工零位法;
1)典型图示: P
l
P ∆P
P
g
∆f
k
α f f h
S0’: 原始空载辊缝 H h f:轧机弹性变形量
2)考虑预压变形时P-H图
P P
C—等厚线
弹跳方程: h:出口厚度
h S0
P P0 K
S0 :考虑预压变形时的(相当)空载辊缝
P0 0 α S0 (P- P0)/k h β
P0:预压靠力 K:轧机刚度系数
H (H)h
P:轧制压力
• 可较直观地分析H、h、P以及S0等参数关系,是弹跳方程和塑性方程联 解的一种图解形式; • 直观地反映了轧制条件和轧机刚度对h的影响,并能对轧机操作调整进 行分析,是厚控的基础。
P
∆Pi β
∆hi
h3 h1 h2
H
(H)h
定义:件塑性刚度系数
M tg
Pi hi
1.3 弹-塑性曲线(P-H图)
为了讨论方便,弹、塑性曲线均用直线代替:
1)不考虑预压变形时P-H图 P
P
0
α S0 h
β H (H)h
• 对应弹跳方程基本形式:
h S0
P K
S0:将曲线以直线取代时的(假定)空载辊缝 K:轧机刚度系数
1 PE P 1 m1 s1 m2 s 2 K
入口、出口张力因子 m1取0.5~0.667、m2取0.335~0.5)
P
Hale Waihona Puke 2 1 H 2>H 1 h2>h1 h1 h2 H1 H2 h(H)
(4)坯料尺寸变化
P2 P1
0 S0
B↕、H↕→∆h↕→P↕→P/K↕→ S↕→ h↕
P 2
P2
P1
1
ζ2>ζ1 h2>h1
0 S0
h1 h 2
H
h(H)
(2)速度变化--通过f、油膜厚度、变形抗力等起作用
P 1 2
热轧
V 2>V 1
油膜厚度↑ h2<h1
P1
P2
• 辊速V↕较大时油膜厚度↕→S↕→h↕
• V↑→油膜厚度↑→S↓→∆h↑→h↓
V↑
0 S0
h2
h1
H
h(H)
S 冷轧V↕ → f↕→ P↕→S↕→h↕ →油膜厚度↕→ P↕→S↕→h↕ V↑→f↓→ζ↓→P↓→P/K↓→ S↓→ h↓
板带轧制理论及技术
教材:
金属塑性加工学--轧制理论与工艺(第二版) 王廷溥,齐克敏主编,2002
主要参考书:
1,高精度轧制技术,黄庆学 梁爱生著,冶金工业出版社,2002。 2,高精度板带材轧制理论与实践,{美}V.B金兹伯格著, 姜明东 王国栋等译,冶金工业出版社,2000 3,带钢热连轧的模型与控制,孙一康著,冶金工业出版社,2002 4,带钢冷连轧计算机控制,孙一康著,冶金工业出版社,2002 5,金属塑性加工学----轧制理论与工艺(第二板), 冶金工业出版社,2001 6,
2 厚度变化原因及特点(规律)
2.1 厚度差(h↕)类型:
1)头部厚度偏差:
主要原因:空载辊缝设置不当;
来料参数↕时未能及时调整S0 ;
2‘
件厚
设定值 3‘
1‘ 2 1 3
件长
2)同板厚差(纵向厚差): 主要原因:是P↕→使辊缝S0不变的情况下h↕
2.2 厚度变化主要原因及特点
1)影响K的因素
h S0
P P0 K
K:当轧机产生单位弹性变形时所需施加的负载量 K=f(P、B、V、辊材质、凸度、D工与D支接触状态…..) • 一般认为:在一定轧机上对一定产品B,可认为K不变
P K2 K1
K2> K1
• K↑→有利轧更薄 目前一般K>500~600t/mm
0 S0
h2 h1
H
h(H)
2)影响S0的因素 S0 决定轧机弹跳起始位置,包含: • 压下位置↕→即S0↕→h↕; • 轧机部件热胀、辊磨损、偏心→S0↕→h↕;
P0 0 S0’ g S
k α f h( f ) f=(P- P0)/k
0
x x x
H
h
P0:预压靠力
S0’ :原始空载辊缝 S0 :考虑预压变形时的(相当)空载辊缝 对应弹跳方程:
S :压力为0时辊缝指示器读数
P P0 h S0 K
1.2 塑性曲线
当 B、H、R、…….均一定时,可认为P随h而变