万能增量式光电编码器控制的伺服电机零位调整技巧

合集下载

伺服电机编码器调零对位方法

伺服电机编码器调零对位方法

伺服电机编码器调零对位方法伺服电机编码器调零对位是一项重要的操作,它确保了伺服系统运行的准确性和稳定性。

在对伺服电机编码器进行调零对位时,首先需要明确编码器的作用和原理。

编码器是用来测量旋转角度和位置的装置,通过编码器可以准确地监测电机的位置,实现精准控制。

一、调零对位的原理伺服电机编码器的调零对位是通过将电机控制系统中的位置反馈信号归零来实现的。

在电机停止运动的时候,通过调整编码器信号,使得当前位置被定义为零点位置,从而实现对位。

这样可以确保电机在后续的运动过程中,能够准确地控制位置和角度。

二、调零对位的步骤1.停止电机运动:在进行编码器调零对位之前,必须先停止电机的运动,确保安全性和操作的准确性。

2.进入编码器调零模式:根据具体的伺服系统和编码器类型,进入编码器调零的设置界面或模式。

3.调整位置:根据系统的要求,调整编码器信号,使当前位置被定义为零点位置。

4.确认对位:确认调零后的位置是否准确,可以通过系统的显示界面或其他功能进行验证。

5.保存设置:对于一些系统来说,调零对位是一次性的操作,需要保存设置以确保后续操作的准确性。

三、注意事项1.在进行编码器调零对位时,需要谨慎操作,以避免对系统造成不必要的损坏。

2.在调零对位的过程中,要确保环境安全,避免因误操作导致事故发生。

3.对于初次进行编码器调零对位的操作者,建议在有经验的人员的指导下进行操作。

4.在进行编码器调零对位之前,需要确保系统处于正常工作状态,避免出现意外情况。

四、总结伺服电机编码器调零对位是伺服系统中重要的操作之一,它确保了电机位置控制的准确性和稳定性。

通过本文介绍的调零对位原理、步骤和注意事项,希望可以帮助操作者正确地进行编码器调零对位操作,保证系统的正常运行和工作效率。

伺服电机编码器的调整方法

伺服电机编码器的调整方法

这类绝对式编码器目前已经被采用EnDAT,BiSS,Hyperface等串行协议,以及日系专用串行协议的新型绝对式编码器广泛取代,因而最高位信号就不符存在了,此时对齐编码器和电机相位的方法也有所变化,其中一种非常实用的方法是利用编码器内部的EEPROM,存储编码器随机安装在电机轴上后实测的相位,具体方法如下:
5.来回扭转电机轴,撒手后,若电机轴每次自由回复到平衡位置时,Z信号都能稳定在高电平上,则对齐有效。
撤掉直流电源后,验证如下:
1.用示波器观察编码器的U相信号和电机的UV线反电势波形;
2.转动电机轴,编码器的U相信号上升沿与电机的UV线反电势波形由低到高的过零点重合,编码器的Z信号也出现在这个过零点上。
4.对齐过程结束。
由于此时电机轴已定向于电角度相位的-30度方向,因此存入的编码器内部EEPROM中的位置检测值就对应电机电角度的-30度相位。此后,驱动器将任意时刻的单圈位置检测数据与这个存储值做差,并根据电机极对数进行必要的换算,再加上-30度,就可以得到该时刻的电机电角度相位。
主题:伺服电机编码器的调整方法
来自工控网:
增量式编码器的相位对齐方式
在此讨论中,增量式编码器的输出信号为方波信号,又可以分为带换相信号的增量式编码器和普通的增量式编码器,普通的增量式编码器具备两相正交方波脉冲输出信号A和B,以及零位信号Z;带换相信号的增量式编码器除具备ABZ输出信号外,还具备互差120度的电子换相信号UVW,UVW各自的每转周期数与电机转子的磁极对数一致。带换相信号的增量式编码器的UVW电子换相信号的相位与转子磁极相位,或曰电角度相位之间的对齐方法如下:
如果用户连绝对值信息都无法获得,那么就只能借助原厂的专用工装,一边检测绝对位置检测值,一边检测电机电角度相位,利用工装,调整编码器和电机的相对角位置关系,将编码器相位与电机电角度相位相互对齐,然后再锁定。这样一来,用户就更加无从自行解决编码器的相位对齐问题了。

伺服电机编码器调零原理

伺服电机编码器调零原理

伺服电机编码器调零原理伺服电机编码器调零是在使用伺服系统时非常重要的一个步骤,它能够确保伺服电机在运行中的准确定位和运动控制。

编码器是伺服电机的重要组成部分,用于反馈电机转动的角度和速度信息。

调零过程就是让编码器信号与实际位置一致,从而实现准确的控制。

编码器的作用编码器是一种传感器,能够将机械运动转换成电信号。

在伺服系统中,编码器主要用于反馈电机的实时位置和速度信息,以便系统控制器根据需求进行精确的控制。

编码器通常分为绝对式编码器和增量式编码器两种类型,它们在伺服系统中的应用略有不同。

编码器调零的原理在进行伺服电机编码器调零时,需要确保电机处于静止状态。

调零的过程是通过设置一个参考点(零点),使编码器的信号与该零点对应的位置一致。

具体的步骤如下:1.停止电机运动:首先确保电机处于停止状态,可以通过控制器进行停机操作。

2.找到参考点:确定一个位置作为编码器的零点,通常选择电机的某个固定位置作为参考点。

这个过程需要精确测量,确保选定的点符合实际需要。

3.设置零点:将编码器的当前位置清零,并校准为设定的参考点位置,确保编码器信号与实际位置一致。

4.确认调零:再次检查编码器的位置是否正确,确认调零成功。

调零的重要性良好的编码器调零是伺服系统正常运行的基础,只有在准确调零的情况下,系统才能准确控制电机的位置和速度。

如果编码器未正确调零,可能导致电机位置偏差,影响系统的运行精度,甚至引起不可预料的故障。

总结伺服电机编码器调零是确保伺服系统正常运行的重要步骤。

通过逐步设置零点,校准编码器位置,可以确保系统精确控制电机的位置和速度,提高系统运行的稳定性和精度。

在实际应用中,操作人员应该严格按照操作流程进行调零操作,确保系统能够正常运行。

伺服电机的调试方法及操作规程

伺服电机的调试方法及操作规程

伺服电机的调试方法及操作规程伺服电机的调试方法1、初始化参数在接线之前,先初始化参数。

在掌控卡上:选好掌控方式;将PID参数清零;让掌控卡上电时默认使能信号关闭;将此状态保存,确保掌控卡再次上电时即为此状态。

在伺服电机上:设置掌控方式;设置使能由外部掌控;编码器信号输出的齿轮比;设置掌控信号与电机转速的比例关系。

一般来说,建议使伺服工作中的最大设计转速对应9V的掌控电压。

比如,山洋是设置1V电压对应的转速,出厂值为500,假如你只准备让电机在1000转以下工作,那么,将这个参数设置为111、2、接线将掌控卡断电,连接掌控卡与伺服之间的信号线。

以下的线是必需要接的:掌控卡的模拟量输出线、使能信号线、伺服输出的编码器信号线。

复查接线没有错误后,电机和掌控卡(以及PC)上电。

此时电机应当不动,而且可以用外力轻松转动,假如不是这样,检查使能信号的设置与接线。

用外力转动电机,检查掌控卡是否可以正确检测到电机位置的变化,否则检查编码器信号的接线和设置。

3、试方向对于一个闭环掌控系统,假如反馈信号的方向不正确,后果确定是祸害性的。

通过掌控卡打开伺服的使能信号。

这是伺服应当以一个较低的速度转动,这就是传说中的“零漂”。

一般掌控卡上都会有抑制零漂的指令或参数。

使用这个指令或参数,看电机的转速和方向是否可以通过这个指令(参数)掌控。

假如不能掌控,检查模拟量接线及掌控方式的参数设置。

确认给出正数,电机正转,编码器计数加添;给出负数,电机反转转,编码器计数减小。

假如电机带有负载,行程有限,不要接受这种方式。

测试不要给过大的电压,建议在1V以下。

假如方向不一致,可以修改掌控卡或电机上的参数,使其一致。

4、抑制零漂在闭环掌控过程中,零漂的存在会对掌控效果有确定的影响,建议将其抑制住。

使用掌控卡或伺服上抑制零飘的参数,认真调整,使电机的转速趋近于零。

由于零漂本身也有确定的随机性,所以,不必要求电机转速确定为零。

5、建立闭环掌控再次通过掌控卡将伺服使能信号放开,在掌控卡上输入一个较小的比例增益,至于多大算较小,这只能凭感觉了,假照实在不放心,就输入掌控卡能允许的最小值。

编码器确定零位的七种方法

编码器确定零位的七种方法

编码器确定零位的七种方法1、编码器轴转动找零,编码器在安装时,旋转转轴对应零位,一般增量值与单圈绝对值会用这种方法,而轴套型的编码器也用这种方法。

缺点,零点不太好找,精度较低。

2、与上面方法相当,只是编码器外壳旋转找零,这主要是对于一些紧凑型安装的同步法兰(也有叫伺服法兰)外壳所用,3、通电移动安装机械对零,通电将安装的机械移动到对应的编码器零位对应位置安装。

4、偏置计算,机械和编码器都不需要找零,根据编码器读数与实际位置的偏差计算,获得偏置量,以后编码器读数后减去这个偏置量。

例如编码器的读数为100,而实际位置是90,计算下在实际位置0位时,编码器的读数应该是10,而这个“10”就是偏置量,以后编码器读到的数,减去这个偏置量就是位置值。

可重复多次,修正偏置量。

对于增量值编码器,是读取原始机械零位到第一个Z点的读数,作为偏置量。

精度较高的编码器,或者量程较大的绝对值多圈编码器,多用这种方法。

5、智能化外部置零,有些带智能化功能的编码器,可提供外部置位功能,例如通过编码器附带的按键,或外带的软件设置功能置零。

6、需要说明的是,绝对值编码器的零位再往下就是编码的循环最大值,无论是单圈绝对值,还是多圈绝对值,如果置零位,那么再往下(下滑、移动,惯性过冲等),就可能数据一下子跳到最大了,对于高位数的绝对值多圈,可能数据会溢出原来的设定范围。

另外,绝对值编码器还有一个旋转方向的问题,置零后,如果方向不对,是从0跳到最大,然后由大变小的。

一些进口的编码器尽管带有外部置零功能,但建议还是不要用此功能。

(我们碰到很多用进口绝对值编码器会碰到这样的困惑,不要就迷信进口的)。

7、最好的置位方法,预置一个非零位(留下下滑、过冲的余量)并预置旋转方向+偏置计算的方法。

另外一种方法是置“中”,偏置量就是中点值,置位线与电源正相触后,编码器输出的就是中点位置,这样的行程是+/-半全程,在这样的行程范围内,无论旋转方向,确保不会经过零点跳变。

伺服电机编码器如何调零

伺服电机编码器如何调零

伺服电机编码器如何调零伺服电机编码器是一种重要的传感器,用于检测电机的位置。

调零是在安装和维护过程中必须经常进行的操作,它可以确保电机在正常运行时保持准确的位置信息。

本文将介绍如何调零伺服电机编码器。

第一步:准备工作在调零之前,需要确保电机系统处于关闭状态,并且没有通电。

另外,请查阅设备的技术手册以了解调零过程的具体步骤和要求。

第二步:进入调零模式启动电机控制器,进入编码器调零模式。

具体的操作方式因不同控制器而有所不同,通常需要通过按动某个特定的按钮或者输入特定的命令来进入调零模式。

第三步:调零操作在调零模式下,根据设备手册的指导,选择调零操作。

通常有两种调零方式:软件调零和手动调零。

•软件调零:通过电脑或者控制器的设置界面来实现调零操作。

在程序中指定一个位置作为零点,系统会将这个位置对应的编码器值设为零点。

•手动调零:在调零模式下,手动将电机旋转到一个已知的零点位置,然后按下确认按钮进行保存。

第四步:测试与验证完成调零后,需要进行测试和验证以确保调零操作正确无误。

可以通过手动操作电机或者运行预设的程序来检查调零效果,确保电机能够准确地返回到零点位置。

注意事项•在调零过程中,务必小心操作,避免误操作导致错误。

•调零前要确保所有相关设备处于安全状态,避免发生意外。

•如遇到问题或调零失败,应及时查阅设备技术手册或联系技术人员进行处理。

通过以上步骤,您可以成功地调零伺服电机编码器,确保电机系统正常运行并保持准确的位置信息。

希望本文对您有所帮助!。

伺服电机编码器调零对位方法

伺服电机编码器调零对位方法
以上转载深圳兴丰元机电技术资料中心,此公司专业生产和销售步进电机、步进电机驱动器、伺服电机、伺服驱动器,代理日本多摩川伺服、东元伺服、德科斯(TKS)行星减速机以及运动控制产品。
本信息来源于网络,不代表本站观点
如若转载请注明来源:中国自动化网
通过上述调整,你会发现增量式伺服电机其实有一个较宽的可调区域,而这个区域里的中间位置就是伺服电机最大力矩输出点,如果一个电机力矩不足或正反方向运行时有一个方向上力矩不足往往是因为编码器的Z信号削弱或该位置偏离中心所致,即零位发生了偏离,一般重新调整该零位即可.
对于一个新的编码器来说这个静止区域相对较小,如大幅增加则是编码器内部电路出了问题,表现为力矩不足或发热大幅增加.用电流表测量则空载电流明显增加.
伺服电机编码器调零对位方法
2013-1-9 10:24:00 来源:
[闭][打印]
一台AB伺服电机(MPL-B640F-MJ24AA),拆开检查刹车时由于客户无知,连装在电机尾部固定的编码器也拆了下来(没做标记),编码器是sick的SRM50-HFA0-K01。装上后刹车没问题,但出现飞车故障。伺服驱动器报错E18OVERSPEED或者E24velocityerror。
找到中心位置后并把这个位置擦干净,只要把编码器底座用502胶直接固定于电机侧面对应处即可.待502干了后再在上机涂上一层在硅橡胶即可投入正常运行.实践证明,正常情况下这样处理后的伺服电机使用一年是没有问题的,
从上面的调整可以看出,由于编码器的轴与电机轴心是可以随便以任一角度连接的,所以编码器零位与电机的机械位置只是相对位置而已,只有编码器的轴与电机轴固定了,那么编码器的实际零位位置也便固定下来了,如果活动底座位置确定了,那么轴间的柱头镙钉的位置也便固定了.
1、是电机高速反转,这是由于编码器与实际零位相差太大所致,不必惊慌,你可以把编码器转过一个角度直到电机能静止下来为止.、是电机在零速指令下处于静止状态,这时你可以小心地先反时针转动编码器,注意:一定要慢,直到电机开始高速反转,记下该位置同时立即往回调至静止区域.这里要求两手同时操作,一手作旋转,另一手拿好记号笔,记住动作一定要快,也不可慌乱失措,完全没必要,这是正常现象.然后按顺时针继续缓慢转动直到又一次高速反转的出现,记下该位置并立即往回调至静止区,

伺服电机的调试方法

伺服电机的调试方法

1、初始化参数在接线之前,先初始化参数。

在控制卡上:选好控制方式;将PID参数清零;让控制卡上电时默认使能信号关闭;将此状态保存,确保控制卡再次上电时即为此状态。

在伺服电机上:设置控制方式;设置使能由外部控制;编码器信号输出的齿轮比;设置控制信号与电机转速的比例关系。

一般来说,建议使伺服工作中的最大设计转速对应9V的控制电压。

比如,山洋是设置1V 电压对应的转速,出厂值为500,如果你只准备让电机在1000转以下工作,那么,将这个参数设置为111。

2、接线将控制卡断电,连接控制卡与伺服之间的信号线。

以下的线是必须要接的:控制卡的模拟量输出线、使能信号线、伺服输出的编码器信号线。

复查接线没有错误后,电机和控制卡(以及PC)上电。

此时电机应该不动,而且可以用外力轻松转动,如果不是这样,检查使能信号的设置与接线。

用外力转动电机,检查控制卡是否可以正确检测到电机位置的变化,否则检查编码器信号的接线和设置3、试方向对于一个闭环控制系统,如果反馈信号的方向不正确,后果肯定是灾难性的。

通过控制卡打开伺服的使能信号。

这是伺服应该以一个较低的速度转动,这就是传说中的“零漂”。

一般控制卡上都会有抑制零漂的指令或参数。

使用这个指令或参数,看电机的转速和方向是否可以通过这个指令(参数)控制。

如果不能控制,检查模拟量接线及控制方式的参数设置。

确认给出正数,电机正转,编码器计数增加;给出负数,电机反转转,编码器计数减小。

如果电机带有负载,行程有限,不要采用这种方式。

测试不要给过大的电压,建议在1V以下。

如果方向不一致,可以修改控制卡或电机上的参数,使其一致。

4、抑制零漂在闭环控制过程中,零漂的存在会对控制效果有一定的影响,最好将其抑制住。

使用控制卡或伺服上抑制零飘的参数,仔细调整,使电机的转速趋近于零。

由于零漂本身也有一定的随机性,所以,不必要求电机转速绝对为零。

5、建立闭环控制再次通过控制卡将伺服使能信号放开,在控制卡上输入一个较小的比例增益,至于多大算较小,这只能凭感觉了,如果实在不放心,就输入控制卡能允许的最小值。

伺服控制器的调试与校准方法

伺服控制器的调试与校准方法

伺服控制器的调试与校准方法伺服控制器是一种用于控制伺服电机运动的设备,它通过对电机的电流、速度和位置进行精确控制,实现对机械系统的运动控制。

为了确保伺服控制器的正常工作,需要对其进行调试与校准。

本文将介绍伺服控制器调试与校准的方法。

首先,伺服控制器的调试是必要的。

调试的目的是确保伺服控制器的硬件和软件配置正确,各个参数设置合理。

下面是一些常见的调试步骤:1. 检查硬件连接:确保伺服控制器与伺服电机之间的电缆连接稳固,并检查电源供应是否正常。

2. 电机参数设置:根据实际情况,设置伺服控制器中的电机参数,如电机型号、额定电压、额定电流等。

3. 控制模式选择:选择合适的控制模式,常见的有位置控制、速度控制和力矩控制等。

4. 控制参数调节:根据实际需求,调节伺服控制器中的控制参数,如位置环PID参数、速度环PID参数等。

5. 反馈检测:使用示波器或其他仪器,检测伺服电机的转速、位置等反馈信号是否准确。

调试完成后,需要进行校准以提高伺服控制器的精度和稳定性。

下面是一些常见的校准方法:1. 零点校准:将伺服电机调至机械系统的零位位置,然后进行零点校准。

这样可以确保伺服电机在零位位置时输出为零。

2. 压力校准:对于力矩控制模式的伺服控制器,需要进行压力校准。

通过施加一定的外力,检查伺服电机输出的力矩是否与预期相符。

3. 速度校准:通过测量伺服电机的转速,根据设定值和反馈值之间的差异,调整速度环的参数,使得电机的输出速度与设定值一致。

4. 位置校准:对于位置控制模式的伺服控制器,需要进行位置校准。

将伺服电机移动到预定位置,然后将实际位置与预定位置进行比较,调整位置环的参数,使得电机的输出位置与预定位置精确匹配。

在进行校准时,需要注意以下几点:1. 校准过程中要确保机械系统处于稳定状态,避免外界干扰。

2. 校准时要注意安全,避免伺服电机超出工作范围导致机械系统受损或人身伤害。

3. 根据校准结果,适时调整伺服控制器的参数,以达到理想的控制效果。

伺服电机相位调整方法

伺服电机相位调整方法

[PLC伺服与运动控制]伺服电机转子反馈的检测相位与转子磁极相位的对齐方式(转)转自工控网论坛主流的伺服电机位置反馈元件包括增量式编码器,绝对式编码器,正余弦编码器,旋转变压器等。

增量式编码器的相位对齐方式在此讨论中,增量式编码器的输出信号为方波信号,又可以分为带换相信号的增量式编码器和普通的增量式编码器,普通的增量式编码器具备两相正交方波脉冲输出信号A和B,以及零位信号Z;带换相信号的增量式编码器除具备ABZ输出信号外,还具备互差120度的电子换相信号UV W,UVW各自的每转周期数与电机转子的磁极对数一致。

带换相信号的增量式编码器的UVW电子换相信号的相位与转子磁极相位,或曰电角度相位之间的对齐方法如下:1.用一个直流电源给电机的UV绕组通以小于额定电流的直流电,U入,V出,将电机轴定向至一个平衡位置;2.用示波器观察编码器的U相信号和Z信号;3.依据操作的方便程度,调整编码器转轴与电机轴的相对位置,或者编码器外壳与电机外壳的相对位置;4.一边调整,一边观察编码器U相信号跳变沿,和Z信号,直到Z信号稳定在高电平上(在此默认Z信号的常态为低电平),锁定编码器与电机的相对位置关系;5.来回扭转电机轴,撒手后,若电机轴每次自由回复到平衡位置时,Z 信号都能稳定在高电平上,则对齐有效。

撤掉直流电源后,验证如下:1.用示波器观察编码器的U相信号和电机的UV线反电势波形;2.转动电机轴,编码器的U相信号上升沿与电机的UV线反电势波形由低到高的过零点重合,编码器的Z信号也出现在这个过零点上。

上述验证方法,也可以用作对齐方法。

需要注意的是,此时增量式编码器的U相信号的相位零点即与电机UV线反电势的相位零点对齐,由于电机的U相反电势,与UV线反电势之间相差30度,因而这样对齐后,增量式编码器的U相信号的相位零点与电机U相反电势的-30度相位点对齐,而电机电角度相位与U相反电势波形的相位一致,所以此时增量式编码器的U相信号的相位零点与电机电角度相位的-30度点对齐。

伺服电机回零不用怕,我教你三种方法

伺服电机回零不用怕,我教你三种方法

伺服电机回零不用怕,我教你三种方法回零是伺服控制的一个大课题。

系统对回零的要求各种各样,各厂家的运动控制器或驱动器支持的回零方式各不相同,且伺服电机也有多种反馈类型,由此衍生出多种回零方式。

另,各厂家对与回零相关的关键术语的描述也不尽相同,因此,有很多与伺服回零相关的话题和讨论。

实找零的方法有很多种,可根据所要求的精度及实际要求来选择。

可以伺服电机自身完成(有些品牌伺服电机有完整的回原点功能),也可通过上位机配合伺服完成,但回原点的原理基本上常见的有以下几种。

一、伺服电机寻找原点时,当碰到原点开关时,马上减速停止,以此点为原点。

这种回原点方法无论你是选择机械式的接近开关,还是光感应开关,回原点的精度都不高,就如一网友所说,受温度和电源波动等等的影响,信号的反应时间会每次有差别,再加上从回原点的高速突然减速停止过程,可以百分百地说,就算排除机械原因,每次回的原点差别在丝级以上。

二、回原点时直接寻找编码器的Z相信号,当有Z相信号时,马上减速停止。

这种回原方法一般只应用在旋转轴上,且回原速度不高,精度也不高。

三、此种回原方法是最精准的,主要应用在数控机床上:电机先以第一段高速去找原点开关,有原点开关信号时,电机马上以第二段速度寻找电机的Z相信号,第一个Z相信号一定是在原点档块上(所以你可以注意到,其实高档的数控机床及中心机的原点档块都是机械式而不会是感应式的,且其长度一定大于电机一圈转换为直线距离的长度)。

找到第一个Z相信号后,此时有两种方试,一种是档块前回原点,一种是档块后回原点(档块前回原点较安全,欧系多用,档块后回原点工作行程会较长,日系多用)。

以档块后回原为例,找到档块上第一个Z相信号后,电机会继续往同一方向转动寻找脱离档块后的第一个Z相信号。

一般这就算真正原点,但因为有时会出现此点正好在原点档块动作的中间状态,易发生误动作,且再加上其它工艺需求,可再设定一偏移量;此时,这点才是真正的机械原点。

伺服电机调节方法

伺服电机调节方法

伺服电机调节方法
调节伺服电机的方法会有一些不同,具体取决于所使用的伺服电机的型号和控制系统。

以下是一个一般的调节方法,供参考:
1. 确定目标:首先,需要确定希望伺服电机实现什么样的运动或控制应用。

根据目标,调节参数将会有所不同。

2. 参数设置:根据伺服电机的参数手册和控制系统的说明,设置伺服电机的参数。

这些参数可能包括:位置回差、加速度、减速度、速度、位置环控制参数等。

不同的控制系统可能有不同的参数设置方式,例如通过面板、软件或者命令行。

3. 零点设定:根据实际情况,设定伺服电机的零点位置。

这可以通过手动调节伺服电机到所需位置,然后将此位置设定为零点。

4. 运动测试:进行一系列的运动测试,观察伺服电机是否能够完成所需的运动,并且运动是否平滑。

如果发现问题,可以通过调整参数来进行优化。

5. 反馈调整:根据运动测试的结果,可能需要调整伺服电机的反馈控制回路。

例如,根据实际位置和目标位置之间的差异,调整位置环控制参数,使控制更加准确。

6. 稳定性调整:根据实际情况,调整伺服电机的稳定性。

这可以通过增加或减少伺服电机的增益来实现。

增加增益可以提高控制的响应速度,但可能会导致系统不稳定;减少增益可以提
高系统的稳定性,但可能会降低控制的响应速度。

7. 再次测试:最后,进行一次综合性的测试,确认伺服电机能够按照预期进行运动。

请注意,以上仅为一般的调节方法,具体调整方法可能会因伺服电机的型号、控制系统和应用需求而有所不同。

强烈建议参考伺服电机的用户手册和控制系统说明进行实际操作,并在需要时咨询专业人士的建议。

伺服系统中的零偏校正和位置复位的方法

伺服系统中的零偏校正和位置复位的方法

伺服系统中的零偏校正和位置复位的方法伺服系统中的零偏校正和位置复位是非常重要的技术手段,其对伺服系统的动态性能和精度具有关键影响。

本文将介绍伺服系统中常见的零偏校正和位置复位的方法。

一、零偏校正1. 原理伺服系统的位置反馈装置存在着不可避免的误差,如机械间隙、电子噪声等原因,它们都会导致伺服系统的位置偏差。

零偏校正就是通过调整系统中各个环节的参数,使得伺服系统在无负载或零位时输出为零,从而达到位置精度的要求。

2. 方法常规的零偏校正方法包括:硬件零偏校正和软件零偏校正。

硬件零偏校正是通过修改位置反馈装置或电机控制器的相关参数,使得零位输出为零。

这种方法需要根据具体硬件设备进行操作,需要较高的技术水平。

软件零偏校正是通过调整伺服系统的控制算法或者参数,实现对零位误差的补偿。

这种方法比较简单,但是需要根据不同的硬件设备,采用不同的控制算法和参数,进行调整。

二、位置复位1. 原理位置复位是指在伺服系统中,通过一定的方法将电机和位置反馈装置的差错积累清零,使得系统能够重新回到初始位置,并继续实现正常的控制操作。

2. 方法常见的位置复位方法包括光电门复位、机械复位和零速复位。

光电门复位是通过光电门来检测机械位置,并在信号发生改变时,对伺服系统进行位置复位。

这种方法对硬件要求比较高,但是可以实现较高的位置精度。

机械复位是通过机械开关或机械装置来实现位置复位。

这种方法可以被广泛应用,但是需要保证机械装置的稳定性和耐久性。

零速复位是通过减小电机的速度,将机械系统的动量减小到较小的范围,然后在到达指定零位时执行位置复位。

这种方法可以避免电机突然停转造成的机械冲击,但是需要根据实际情况进行应用。

总结零偏校正和位置复位是伺服系统中的重要技术手段,可以有效提高伺服系统的动态性能和精度。

通过本文的介绍,我们可以了解到常见的零偏校正和位置复位方法,同时也需要根据具体情况进行合理的选择和应用,以达到最优的控制效果。

伺服电机编码器的使用方法

伺服电机编码器的使用方法

伺服电机编码器的使用方法
伺服电机编码器的使用方法包括以下几步:
1. 确定编码器的类型和规格:伺服电机编码器有很多不同的类型和规格,如增量式编码器和绝对式编码器,分辨率等等。

要确定您使用的编码器的类型和规格。

2. 连接编码器:将编码器正确地连接到伺服电机上。

通常,编码器会有两个输出通道,一个是A相通道,一个是B相通道,还有一个Z相通道用于零点标定。

3. 配置伺服驱动器:进入伺服驱动器的配置界面或菜单,设置编码器参数。

这包括设置分辨率、编码器类型(增量式还是绝对式)、零点标定等。

4. 零点标定:进行零点标定以确定编码器的初始位置。

这可以通过驱动器菜单或使用专门的零点标定工具来完成。

5. 监测编码器反馈:使用编码器反馈信号来监测电机的位置和运动状态。

这可以通过读取驱动器的反馈信号或使用编码器输出的脉冲信号来实现。

6. 调整编码器参数:根据应用需求和实际情况,可能需要调整编码器的一些参数,如分辨率、速度限制等。

需要注意的是,不同的伺服电机和编码器可能具有不同的使用
方法和配置步骤。

建议参考伺服电机和编码器的相关说明手册或咨询厂家获得更详细的使用指导。

伺服电机编码器的调整方法

伺服电机编码器的调整方法

伺服电机编码器的调整方法增量式编码器的相位对齐方式在此讨论中,增量式编码器的输出信号为方波信号,又可以分为带换相信号的增量式编码器和普通的增量式编码器,普通的增量式编码器具备两相正交方波脉冲输出信号A和B,以及零位信号Z;带换相信号的增量式编码器除具备ABZ输出信号外,还具备互差120度的电子换相信号UVW,UVW各自的每转周期数与电机转子的磁极对数一致。

带换相信号的增量式编码器的UVW电子换相信号的相位与转子磁极相位,或曰电角度相位之间的对齐方法如下:1.用一个直流电源给电机的UV绕组通以小于额定电流的直流电,U入,V 出,将电机轴定向至一个平衡位置;2.用示波器观察编码器的U相信号和Z信号;3.调整编码器转轴与电机轴的相对位置;4.一边调整,一边观察编码器U相信号跳变沿,和Z信号,直到Z信号稳定在高电平上(在此默认Z信号的常态为低电平),锁定编码器与电机的相对位置关系;5.来回扭转电机轴,撒手后,若电机轴每次自由回复到平衡位置时,Z信号都能稳定在高电平上,则对齐有效。

撤掉直流电源后,验证如下:1.用示波器观察编码器的U相信号和电机的UV线反电势波形;2.转动电机轴,编码器的U相信号上升沿与电机的UV线反电势波形由低到高的过零点重合,编码器的Z信号也出现在这个过零点上。

上述验证方法,也可以用作对齐方法。

需要注意的是,此时增量式编码器的U相信号的相位零点即与电机UV线反电势的相位零点对齐,由于电机的U相反电势,与UV线反电势之间相差30度,因而这样对齐后,增量式编码器的U相信号的相位零点与电机U相反电势的-30度相位点对齐,而电机电角度相位与U相反电势波形的相位一致,所以此时增量式编码器的U相信号的相位零点与电机电角度相位的-30度点对齐。

有些伺服企业习惯于将编码器的U相信号零点与电机电角度的零点直接对齐,为达到此目的,可以:1.用3个阻值相等的电阻接成星型,然后将星型连接的3个电阻分别接入电机的UVW三相绕组引线;2.以示波器观察电机U相输入与星型电阻的中点,就可以近似得到电机的U 相反电势波形;3.依据操作的方便程度,调整编码器转轴与电机轴的相对位置,或者编码器外壳与电机外壳的相对位置;4.一边调整,一边观察编码器的U相信号上升沿和电机U相反电势波形由低到高的过零点,最终使上升沿和过零点重合,锁定编码器与电机的相对位置关系,完成对齐。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

万能增量式光电编码器控制的伺服
电机零位调整技巧
下述述两种调法完全取决于你的手工能力和熟练程度,一般来说,每款伺服电机都有自己专门的编码器自动调零软件.不外传仅是出于商业羸利和技术保密.如果你是一家正规的维修店,请不要采用以下方法,应通过正常渠道购买相应的专业设备.实践证明,手工调整如果技巧掌握得当,
工作仔细负责,也可达到同样的效果.
大批量更换新编码器调零方法
第一步:折下损坏的编码器
第二步:把新的编码器按标准固定于损坏的电机上第三步:按图纸找出Z信号和两根电源引出线,一般电源均为5V.
第四步:准备好一个有24V与5V两组输出电源的开关电源和一个略经改装的断线报警器,把0V线与Z 信号线接到断线报警器的两个光耦隔离输入端上。

第五步:在电机转动轮上固定一根二十厘米长的横杆,这样转动电机时转角精度很容易控制.
第六步:所有连线接好后用手一点点转动电机轮子
直到报警器发出报警时即为编码器零位,前后反复感觉一下便可获得最佳的位置,经实测用这种方法校正的零位误差极小,很适于批量调整,经实际使用完全合格.报警器也可用示波器代替,转动时当示波器上的电压波形电位由4V左右跳变0V时或由0V跳变为4V 左右即是编码器的零位.这个也很方便而且更精确.杆子的长度越长精度则越高,实际使用还是用报警器更方便又省钱.只要用耳朵感知就行了.在编码器的转子与定圈相邻处作好零位标记,然后拆下编码器。

第七步:找一个好的电机,用上述方法测定零位后在电机转轴与处壳相邻处作好电机的机械零位标记第八步:引出电机的U V W动力线,接入一个用可控制的测试端子上,按顺序分别对其中两相通入24V 直流电,通电时间设为2秒左右,观察各个电机最终停止位置(即各相的机械零位位置)其中一个始必与刚才所作的机械零位标记是同一个位置.这就是厂方软件固定的电机机械零位,当然能通过厂方专用编码器测试软件直接更改编码器的初始零位数据就更方便了.如果你只有一台坏掉的伺服电机,你就要根据以上获得的几个相对机械零位逐个测试是不是我们所要的那个位置,这一步由伺服放大器的试运行模式来进行测试.有关资料是必须的,否则不要轻易动手,以
免损坏编码器。

第九步:把编码器装上电机后端,这一步要小心,以确保编码器零位记号和电机械械零位位置无偏移,最后固定柱头镙钉和可调固定底座..对于同类电机来说获得了一个正确的零位位置后以后也就知道了24V 的正负极该正确地连接至U V W的哪两个端子上,以后就不必再逐个搞试验了,这一型号的编码器调零算是搞定了
第十步:正确连接电机与伺服放大器,并把工作模式定为试运行,各厂商的测试方式均有些差异,请仔细阅读说明书,如无任何硬件损坏,测试应当一次成功.
第十一步:用自动调谐功能自动设定合适的PID数据.以保证平稳运行的实际需要.由于损坏的有些电机很难判别电机轴承是否能承受额定高速运转的要求,经这样处理的电机还应进行抽样力矩测试和轴承测试,如果轴承磨损严重,应同时更换轴承.
二:应急调零方法,简单而且实用.但必须把电机拆离设备并依靠设备来进行调试.试好后再装回设备再可.
事实上经过大量的调零试验,每个伺服电机都有一个角度小于10度的零速静止区域,和350度的高速反转区域,如果你是偶而更换一只编码器,这样的做
法确实是太麻烦了,这里有一个很简便的应急方法也能很快搞定.
第一步:拆下损坏的编码器
第二步:装上新的编码器,并与轴固定.而使可调底座悬空并可自由旋转,把电机重新连入电路,把机器速度调为零,通电正常后按启动开关后有几种情况会发生,一是电机高速反转,这是由于编码器与实际零位相差太大所致,不必惊慌,你可以把编码器转过一个角度直到电机能静止下来为止.
二是电机在零速指令下处于静止状态,这时你可以小心地先反时针转动编码器,注意:一定要慢,直到电机开始高速反转,记下该位置同时立即往回调至静止区域.这里要求两手同时操作,一手作旋转,另一手拿好记号笔,记住动作一定要快,也不可慌乱失措,完全没必要,这是正常现象.然后按顺时针继续缓慢转动直到又一次高速反转的出现,记下该位置并立即往回调至静止区,通过上述调整,你会发现增量式伺服电机其实有一个较宽的可调区域,而这个区域里的中间位置就是伺服电机最大力矩输出点,如果一个电机力矩不足或正反方向运行时有一个方向上力矩不足往往是因为编码器的Z信号削弱或该位置偏离中心所致,即零位发生了偏离,一般重新调整该零位即可.对于一个
新的编码器来说这个静止区域相对较小,如大幅增加则是编码器内部电路出了问题,表现为力矩不足或发热大幅增加.用电流表测量则空载电流明显增加.找到中心位置后并把这个位置擦干净,只要把编码器底座用502胶直接固定于电机侧面对应处即可.待502干了后再在上机涂上一层在硅橡胶即可投入正常运行.实践证明,正常情况下这样处理后的伺服电机使用一年是没有问题的,
从上面的调整可以看出,由于编码器的轴与电机轴心是可以随便以任一角度连接的,所以编码器零位与电机的机械位置只是相对位置而已,只有编码器的轴与电机轴固定了,那么编码器的实际零位位置也便固定下来了,如果活动底座位置确定了,那么轴间的柱头镙钉的位置也便固定了。

用上述方法最大的问题是偏离了原来的固定镙丝口造成无法固定.但由于502胶可快速定位,硅橡胶的耐温又超过150度,硬度又不像环氧树脂,用了后难以清除,第二次更换时只要用刮刀刮干净即可.
如果编码器再次损坏从硅橡胶外表即可看出是轴承的缘故还是电路损坏.一般情况下总是电机的轴承先坏,从而导致电机温度过大进而使编码器的轴承也接着损坏,一旦出现轴承高度磨损的现象,应立即
更换轴承,以防编码器也跟着损坏.。

相关文档
最新文档