电磁场与电磁波第三版 郭辉萍 第三章习题答案
电磁场与电磁波第三章作业题解答
第三章 恒定电流与恒定电场 作业习题解答3-1.半径为a 和b 的同心球,内球的电位为0u U =,外球的电位为0u =,两球之间介质的电导率为σ,试求这个球形电阻器的电阻。
解 设内球与外球之间的总电流为I ,而体电流密度矢量J V 在半径为r 的球面上大小相等,沿e r 方向,由此可写出电流密度矢量为24V r Ir =p J e 根据欧姆定律V =s J E 得到两球间的电场强度矢量24r Ir =ps E e由电场强度矢量,可计算两球间的电压,有2201444bbbrr aaa I IU d dr dr rr Ib aU ab πσπσπσ=⋅=⋅=-==⎰⎰⎰E l e e由此可得两球间的电阻为 014U b a R I ab-==ps 3-2.已知电流密度矢量22221022(A/m )V x y z y z x y x z J e e e =-+,试求:(1)穿过面积3x =,23y ≤≤,3.8 5.2z ≤≤,沿e x 方向的总电流;(2)在上述面积中心处电流密度的大小;(3)在上述面积上电流密度X 方向的分量J x 的平均值。
解 (1)根据电流I 与电流密度矢量J V 之间的通量关系()VS I d =⋅⎰⎰JS则穿过面积3x =,23y ≤≤,3.8 5.2z ≤≤,沿e x 方向的总电流为()33522222381022..x xy z x .I y z x y x z dydz =-+⋅⎰⎰ee e e()352223810399A ..y zdydz ==⎰⎰(2)面3x =,23y ≤≤,3.8 5.2z ≤≤中心处的坐标为3x =, 2.5y =, 4.5z = 代入J V 的表达式,得到2222222102210 2.5 4.523 2.523 4.5281.254581(A/m )V x y zx y z x y z y z x y x z J e e e e e e e e e =-+=⨯⨯-⨯⨯+⨯⨯=-+ 电流密度矢量的大小为2296.12(A/m )V V J J ==≈(3)面3x =,23y ≤≤,3.8 5.2z ≤≤上电流密度的平均值为()()()2399285A/m 325238x x I J S ..===-- 由此可以看出,由于电流密度矢量非均匀,X 方向平均电流密度的大小与该面中心处的电流密度大小不相等。
电磁场与电磁波:第三章作业答案
3.1 长度为L 的细导线带有均匀电荷,其电荷线密度为0l ρ。
(1)计算线电荷平分面上任意点的电位ϕ;(2)利用直接积分法计算线电荷平分面上任意点的电场E ,并用ϕ=-∇E 核对。
解 (1)建立如题3.1图所示坐标系。
根据电位的积分表达式,线电荷平分面上任意点P 的电位为2(,0,0)L L ϕρ-==⎰2ln(4L l L z ρπε-'+=04l ρπε=02l ρπε (2)根据对称性,可得两个对称线电荷元z l 'd 0ρ在点P 的电场为d d E ρρρθ'===Ee e 022320d 2()l z z ρρρπερ''+e故长为L 的线电荷在点P 的电场为2022320d d 2()L l z z ρρρπερ'==='+⎰⎰E E e20002L l ρρπερ'=e ρe 由ϕ=-∇E 求E ,有002l ρϕπε⎡⎢=-∇=-∇=⎢⎥⎣⎦E(00d ln 2ln 2d l L ρρρπερ⎡⎤-+-=⎢⎥⎣⎦e0012l ρρπερ⎧⎫⎪--=⎬⎪⎭e ρe可见得到的结果相同。
3.3 电场中有一半径为a 的圆柱体,已知柱内外的电位函数分别为2()0()()cos a a A aϕρρϕρρφρρ=≤⎧⎪⎨=-≥⎪⎩(1)求圆柱内、外的电场强度;L L -ρρ题3.1图(2)这个圆柱是什么材料制成的?表面有电荷分布吗?试求之。
解 (1)由ϕ=-∇E ,可得到a ρ<时, 0ϕ=-∇=Ea ρ>时, ϕ=-∇=E 22[()cos ][()cos ]a a A A ρφρφρφρρρφρ∂∂----=∂∂e e 2222(1)cos (1)sin a a A A ρφφφρρ-++-e e(2)该圆柱体为等位体,所以是由导体制成的,其表面有电荷分布,电荷面密度为0002cos S n a a A ρρρρεεεφ=====-e E e E3.4 已知0>y的空间中没有电荷,下列几个函数中哪些是可能的电位的解? (1)cosh y e x -; (2)x e y cos -;(3)cos sin e x x (4)z y x sin sin sin 。
电磁场与电磁波课后习题及答案三章习题解答
三章习题解答3.1 真空中半径为a 的一个球面,球的两极点处分别设置点电荷q 和q -,试计算球赤道平面上电通密度的通量Φ(如题3.1图所示)。
解 由点电荷q 和q -共同产生的电通密度为33[]4q R R π+-+-=-=R R D 22322232()(){}4[()][()]r z r z r z a r z a q r z a r z a π+-++-+-++e e e e 则球赤道平面上电通密度的通量d d zz SSS Φ====⎰⎰D S D e22322232()[]2d 4()()aq a ar r r a r a ππ--=++⎰ 22121)0.293()aqaq q r a =-=-+ 3.2 1911年卢瑟福在实验中使用的是半径为a r 的球体原子模型,其球体内均匀分布有总电荷量为Ze -的电子云,在球心有一正电荷Ze (Z 是原子序数,e 是质子电荷量),通过实验得到球体内的电通量密度表达式为02314ra Ze r r r π⎛⎫=- ⎪⎝⎭D e ,试证明之。
解 位于球心的正电荷Ze 球体内产生的电通量密度为 124rZer π=D e 原子内电子云的电荷体密度为 333434a a Ze Zer r ρππ=-=- 电子云在原子内产生的电通量密度则为 32234344r ra r Ze rr r ρπππ==-D ee 题3.1 图题3. 3图()a故原子内总的电通量密度为 122314ra Ze r r r π⎛⎫=+=- ⎪⎝⎭D D D e 3.3 电荷均匀分布于两圆柱面间的区域中,体密度为30C m ρ, 两圆柱面半径分别为a 和b ,轴线相距为c )(a b c -<,如题3.3图()a 所示。
求空间各部分的电场。
解 由于两圆柱面间的电荷不是轴对称分布,不能直接用高斯定律求解。
但可把半径为a 的小圆柱面内看作同时具有体密度分别为0ρ±的两种电荷分布,这样在半径为b 的整个圆柱体内具有体密度为0ρ的均匀电荷分布,而在半径为a 的整个圆柱体内则具有体密度为0ρ-的均匀电荷分布,如题3.3图()b 所示。
电磁场与电磁波课后习题及三章习题解答
三章习题解答3.1 真空中半径为 a 的一个球面, 球的两极点处罚别设置点电荷q 和 q ,试计算球赤道平面上电通密度的通量(如题 3.1 图所示 )。
q赤道平面aq题图解 由点电荷 q 和 q 共同产生的电通密度为Dq [ R3R3 ]4 RRq { e r re z ( z a)e r r e z ( z a) }4[ r 2 (z a)2 ]3 2[ r 2 ( z a) 2 ] 3 2则球赤道平面上电通密度的通量Dgd SD ge zz 0d SSSq a( a)a3 2 ]2 r d r4[(r 22 3 2(r 22a )a )qaa 1(r 2( 1)qa 2 )1 2 021911 年卢瑟福在实验中使用的是半径为r a 的球体原子模型,其球体内平均散布有总电荷量为Ze 的电子云,在球心有一正电荷 Ze ( Z 是原子序数, e 是质子电荷量) ,经过实验得到球体内的电通量密度表达式为D e Ze 1 r,试证明之。
0 r 4r 2 r a 3解位于球心的正电荷 Ze 球体内产生的电通量密度为D 1e r 4Zer 2原子内电子云的电荷体密度为Ze3Ze4 r 3 3 4 r 3baa4 r 33Ze r 0ca电子云在原子内产生的电通量密度则为D 2 e r e r4 r 24 r a 3题 3. 3 图 (a)Ze 1 r故原子内总的电通量密度为DD 1 D 2 e r 4 r 2 r 3a3.3 电荷平均散布于两圆柱面间的地区中,体密度为0 C m 3, 两圆柱面半径分别为 a 和b ,轴线相距为c (cb a) ,如题 图 (a) 所示。
求空间各部分的电场。
解 因为两圆柱面间的电荷不是轴对称散布,不可以直接用高斯定律求解。
小圆柱面内看作同时拥有体密度分别为 0 的两种电荷散布, 这样在半径为有体密度为 0 的平均电荷散布,而在半径为a 的整个圆柱体内则拥有体密度为但可把半径为 a 的b 的整个圆柱体内具0 的平均电荷散布,如题 3.3 图 (b) 所示。
电磁场与电磁波课后答案 郭辉萍版1-6章
第一章 习题解答1.2给定三个矢量A ,B ,C : A =x a +2y a -3z a B = -4y a +z aC =5x a -2za求:错误!未找到引用源。
矢量A 的单位矢量A a ; 错误!未找到引用源。
矢量A 和B 的夹角AB θ; 错误!未找到引用源。
A ·B 和A ⨯B错误!未找到引用源。
A ·(B ⨯C )和(A ⨯B )·C ;错误!未找到引用源。
A ⨯(B ⨯C )和(A ⨯B )⨯C解:错误!未找到引用源。
A a =A A=(x a +2y a -3z a ) 错误!未找到引用源。
cos AB θ=A ·B /A BAB θ=135.5o错误!未找到引用源。
A ·B =-11, A ⨯B =-10x a -y a -4z a 错误!未找到引用源。
A ·(B ⨯C )=-42(A ⨯B )·C =-42错误!未找到引用源。
A ⨯(B ⨯C )=55x a -44y a -11z a(A ⨯B )⨯C =2x a -40y a +5z a1.3有一个二维矢量场F(r)=x a (-y )+y a (x),求其矢量线方程,并定性画出该矢量场图形。
解:由dx/(-y)=dy/x,得2x +2y =c1.6求数量场ψ=ln (2x +2y +2z )通过点P (1,2,3)的等值面方程。
解:等值面方程为ln (2x +2y +2z )=c 则c=ln(1+4+9)=ln14 那么2x +2y +2z =141.9求标量场ψ(x,y,z )=62x 3y +ze 在点P (2,-1,0)的梯度。
解:由ψ∇=x a x ψ∂∂+y a y ψ∂∂+z a zψ∂∂=12x 3y x a +182x 2y y a +ze z a 得ψ∇=-24x a +72y a +z a1.10 在圆柱体2x +2y =9和平面x=0,y=0,z=0及z=2所包围的区域,设此区域的表面为S: 错误!未找到引用源。
电磁场与电磁波(第三版)课后问题详解__谢处方
第二章习题解答2.1 一个平行板真空二极管内的电荷体密度为43230049U d x ρε--=-,式中阴极板位于0x =,阳极板位于x d =,极间电压为0U 。
如果040V U =、1cm d =、横截面210cm S =,求:(1)0x =和x d =区域内的总电荷量Q ;(2)2x d =和x d =区域内的总电荷量Q '。
解 (1) 43230004d ()d 9dQ U d x S x τρτε--==-=⎰⎰110044.7210C 3U S dε--=-⨯ (2)4320024d ()d 9dd Q U d x S x τρτε--''==-=⎰⎰11004(10.9710C 3U S d ε--=-⨯ 2.2 一个体密度为732.3210C m ρ-=⨯的质子束,通过1000V 的电压加速后形成等速的质子束,质子束内的电荷均匀分布,束直径为2mm ,束外没有电荷分布,试求电流密度和电流。
解 质子的质量271.710kg m -=⨯、电量191.610C q -=⨯。
由21mv qU = 得 61.3710v ==⨯ m s 故 0.318J v ρ== 2A m26(2)10I J d π-== A2.3 一个半径为a 的球体内均匀分布总电荷量为Q 的电荷,球体以匀角速度ω绕一个直径旋转,求球内的电流密度。
解 以球心为坐标原点,转轴(一直径)为z 轴。
设球内任一点P 的位置矢量为r ,且r 与z 轴的夹角为θ,则P 点的线速度为sin r φωθ=⨯=v r e ω球内的电荷体密度为343Qa ρπ=故 333sin sin 434Q Q r r a aφφωρωθθππ===J v e e 2.4 一个半径为a 的导体球带总电荷量为Q ,同样以匀角速度ω绕一个直径旋转,求球表面的面电流密度。
解 以球心为坐标原点,转轴(一直径)为z 轴。
设球面上任一点P 的位置矢量为r ,且r 与z 轴的夹角为θ,则P 点的线速度为sin a φωθ=⨯=v r e ω球面的上电荷面密度为24Q a σπ=故 2sin sin 44S Q Q a a aφφωσωθθππ===J v e e 2.5 两点电荷18C q =位于z 轴上4z =处,24C q =-位于y 轴上4y =处,求(4,0,0)处的电场强度。
电磁场与电磁波 第三章答案
x x x 2 ( y h) 2 x 2 ( y h) 2 e x ( y h) ( y h) x 2 ( y h) 2 x 2 ( y h) 2 e y
电场能量密度为
h 2 ( x 4 y 4 h 4 2x 2 h 2 2x 2 y 2 2 y 2 h 2 ) 1 w r E2 l 2 2 r [ x 2 ( y h ) 2 ] 2 [ x 2 ( y h) 2 ] 2
电磁场与电磁波课后答案第三章习题
s i n x s i n y s i n z s i n x s i n y s i n z s i n x s i n y s i n z 0
函数 sinxsinysinz 不是 y 0 空间中电位的解。
3.7无限大导体平板分别置于x=0 和 x=d处,板间充满电荷,其体
电荷密度为
函数 e 2ysinxcosx不是 y 0 空间中电位的解。
(4)
2
2
2 2
( s i n x s i n y s i n z ) ( s i n x s i n y s i n z ) ( s i n x s i n y s i n z )
x 2
y 2
x 2 z 2
M
ez
1
d
d
M
ez
0
20
I
1
d
d
1
0
由
B2
H
e
I 2
看出 0
处有奇异性,所以在磁介质中
0 处存在磁化线电流 I m 以z轴为中心、 为半径做一个圆形
回路C,由安培环路定律有
IIm10
BdlI
2eychx0
函数 e ychx 不是 y 0 空间中电位的解。
(2) x 2 2(e yc o sx) y 2 2(e yc o sx) z 2 2(e yc o sx) e yc o sx e yc o sx 0
函数 ey cos x 是 y 0 空间中电位的解。
(3)
x 2 2 ( e 2 y s in x c o s x ) y 2 2 ( e 2 y s in x c o s x ) z 2 2 ( e 2 y s in x c o s x )
电磁场与电磁波第三版-郭辉萍-第三章习题答案
电磁场与电磁波第三版-郭辉萍-第三章习题答案第一题题目一个半径为R的均匀带电球壳的电荷面密度为σ,以电荷面密度为0的球心C为球心作半径为R的球面S,球面上一点P的电场强度E的大小与距离R的关系。
### 答案由于球壳上各点带电量的方向相反,由球壳对球内外各一点的电场叠加,所以无论球面内或球面外,点P的电场强度大小与距离R 无关。
即E不随R的变化而变化。
第二题题目电势能缺少的条件是什么? ### 答案电势能缺少的条件有两个:第一是电势为零点的规定,第二是确定电势差。
电势能只能说是一个与地球或其他准零电位的参考体系有关的概念,它取决于选取零点时电势与参考体系的差,而不是取决于问题中的具体点或场点的电势。
题目在有限导体平面上有一面密度为质量面密度σ的均匀带电薄片,试推导在它所在面的垂直平分线上的电势。
### 答案在面上任选此点坐标为(x,0),显然它距离面上各点的距离和面在此点的电势分别为:r = (x^2 + y^2) ^ (1/2),V = kq / r。
这里面的q = σdx。
由于对称性可知任一垂直平分线上的电势是相等的,所以我们可以通过积分的方法求出垂直平分线上的电势。
电势V为此线两边同号。
所以,由于σdx$$ V=\\int_0^{+\\infty}\\frac{k\\sigma dx}{x^2}+\\int_0^{-\\infty}\\frac{k\\sigma dx}{x^2} =+\\infty $$两项分别收敛。
所以原版电势。
题目试推导导体表面任意点上电场强度的切线与导体表面的夹角θ与电势的关系。
### 答案任意一个点r(k)在导体表面上,电场E的方向就垂直于导体表面,从而与该点处的法向量n垂直。
另一方面,根据高斯定理得出E.EA=Φ/ε,导体表面n方向上在2S表面积内的电荷为,即σ*2S,而2S又等于dA。
从而得到该方向上场强为E的切向分量EEE=2EE其中,E=dΦ/dA=-dΦ2S/εdA这样就有了场强与导体表面的法线方向上单位面积上电荷量与电势的关系题目试设内半径为a,外半径为b,中心位于轴线上的两同心导体球壳A、B,A球壳带正电+q,B球壳不带电,试详细分析以下两种情况:(1)球壳之间无绝缘介质;(2)球壳之间有绝缘介质。
电磁场与电磁波(第三版)课后问题详解__谢处方
第二章习题解答2.1 一个平行板真空二极管内的电荷体密度为43230049U d x ρε--=-,式中阴极板位于0x =,阳极板位于x d =,极间电压为0U 。
如果040V U =、1cm d =、横截面210cm S =,求:(1)0x =和x d =区域内的总电荷量Q ;(2)2x d =和x d =区域内的总电荷量Q '。
解 (1) 43230004d ()d 9dQ U d x S x τρτε--==-=⎰⎰110044.7210C 3U S dε--=-⨯ (2)4320024d ()d 9dd Q U d x S x τρτε--''==-=⎰⎰11004(10.9710C 3U S d ε--=-⨯ 2.2 一个体密度为732.3210C m ρ-=⨯的质子束,通过1000V 的电压加速后形成等速的质子束,质子束内的电荷均匀分布,束直径为2mm ,束外没有电荷分布,试求电流密度和电流。
解 质子的质量271.710kg m -=⨯、电量191.610C q -=⨯。
由21mv qU = 得 61.3710v ==⨯ m s 故 0.318J v ρ== 2A m26(2)10I J d π-== A2.3 一个半径为a 的球体内均匀分布总电荷量为Q 的电荷,球体以匀角速度ω绕一个直径旋转,求球内的电流密度。
解 以球心为坐标原点,转轴(一直径)为z 轴。
设球内任一点P 的位置矢量为r ,且r 与z 轴的夹角为θ,则P 点的线速度为sin r φωθ=⨯=v r e ω球内的电荷体密度为343Qa ρπ=故 333sin sin 434Q Q r r a aφφωρωθθππ===J v e e 2.4 一个半径为a 的导体球带总电荷量为Q ,同样以匀角速度ω绕一个直径旋转,求球表面的面电流密度。
解 以球心为坐标原点,转轴(一直径)为z 轴。
设球面上任一点P 的位置矢量为r ,且r 与z 轴的夹角为θ,则P 点的线速度为sin a φωθ=⨯=v r e ω球面的上电荷面密度为24Q a σπ=故 2sin sin 44S Q Q a a aφφωσωθθππ===J v e e 2.5 两点电荷18C q =位于z 轴上4z =处,24C q =-位于y 轴上4y =处,求(4,0,0)处的电场强度。
电磁场与电磁波第三章习题及参考答案
第3章习题3-1 半径为的薄圆盘上电荷面密度为s ρ,绕其圆弧轴线以角频率旋转形成电流,求电流面密度。
解:圆盘以角频率旋转,圆盘上半径为r 处的速度为r ω,因此电流面密度为ϕωρρˆr v J s s s ==3-2 在铜中,每立方米体积中大约有28105.8⨯个自由电子。
如果铜线的横截面为210cm ,电流为A 1500。
计算 1) 电流密度;2) 电子的平均漂移速度; 解:1)电流密度m A S I J /105.11010150064⨯=⨯==- 2) 电子的平均漂移速度 v J ρ=,3102819/1036.1105.8106.1m C eN ⨯=⨯⨯⨯==-ρs m J v /101.11036.1105.14106-⨯=⨯⨯==ρ 3-3 一宽度为cm 30传输带上电荷均匀分布,以速度s m /20匀速运动,形成的电流,对应的电流强度为A μ50,计算传输带上的电荷面密度。
解:电流面密度为m A L I J S /7.1663.050μ===因为 v J S S ρ= 所以 2/33.8207.166m C v J S S μρ=== 3-4 如果ρ是运动电荷密度,U是运动电荷的平均运动速度,证明:0=∂∂+∇⋅+⋅∇tU U ρρρ证:如果ρ是运动电荷密度,U是运动电荷的平均运动速度,则电流密度为U J ρ=代入电荷守恒定律tJ ∂∂-=⋅∇ρ得0=∂∂+∇⋅+⋅∇t U U ρρρ3-5 由m S /1012.17⨯=σ的铁制作的圆锥台,高为m 2,两端面的半径分别为cm 10和cm 12。
求两端面之间的电阻。
解:用两种方法(1)如题图3.5所示⎰⎰==2122)(tan zz lz dzS dl R ασπσ)11()(tan 1212z z -=ασπ 01.0202.0tan ==α题3.5图m r z .1001.0/1.0tan /11===α,m r z 1201.0/12.0tan /22===αΩ⨯=-⨯⨯⨯=-=--647212107.4)121101(101012.11)11()(tan 1πασπz z R (2)设流过的电流为I ,电流密度为2rI S I J π==电场强度为 2r IJ E πσσ== 电压为 dz z IEdz V z z z z ⎰⎰==21212)tan (σαπ ⎰==2122)(tan zz zdz I V R απσΩ⨯=-6107.4 3-6 在两种媒质分界面上,媒质1的参数为2,/10011==r m S εσ,电流密度的大小为2/50m A ,方向和界面法向的夹角为030;媒质2的参数为4,/1022==r m S εσ。
电磁场与电磁波_章三习题答案
第3章 恒定磁场点评:1、3-5题2()20m z z z Az B Az =∇⨯=-⨯∇+=-⨯=J M e e e ,这里用到了恒等式,课本344页A3-6()22==()20m Az BAz B Az φφφφ∇⨯=∇⨯+∇⨯+=∇⨯=-⨯∇+=-⨯=z z z z A A AA e e e e 当,J M2、3-17题。
这是一个近似求解,题目表述不太清楚。
这里应该是l 1>>l 2,因为l 1>>l 2,因此w 1影响可以忽略不计。
1、一个半径为a 的导体球带电荷量为Q ,以匀角速度ω 绕一个直径旋转,求球心处的磁感应强度B 。
解:球面上的电荷面密度为:24s Q a ρπ= 当球体以均匀角速度ω绕一直径旋转时,球面上位置矢量r a =r e 点处的电流线密度为:sin sin 4s s s s z r s a a Q a ϕϕρρρωωρθωθπ⨯⨯=J =v =r =e e e =e ω 图3-1将球面划分为无数个宽度为dl ad θ=的细圆环,则球面上任一个宽度为dl ad θ=的细圆环的电流为sin 4s Q d dI J dl ωθθπ== 细圆环的半径为sin b a θ=,圆环平面到球心的距离|cos |d a θ=,利用电流圆环的轴线上的磁场公式可得该细圆环电流在球心处产生的磁感应强度为:2233000223/222223/2s i n s i n 2()8(s i n c o s )8z z z b d IQ a d Q d d b d a a a μμωθθμωθθπθθπ===++B e e e 故整个球面电流在球心处产生的磁感应强度为:3000sin 86z z Q d Q a aπμωθθμωππ==⎰B e e3、若无限长半径为a 的圆柱体中电流密度2(4)z r r =+J e ,r ≤a ,试求圆柱体内外的磁感应强度。
解:取圆柱坐标系,当r ≤a 时,通过半径为r 的圆柱电流为222430018(4)(4)23r i z z s s I J ds e r r e ds d r r rdr r r πφπ⎛⎫=⋅=+⋅=+=+ ⎪⎝⎭⎰⎰⎰⎰ 由 0r l B dl I μ⋅=⎰ 求得 3201443r r ϕμ⎛⎫=+⎪⎝⎭B e 当r ≥a 时 ()224300018423a I d r r rdr a a πφπ⎛⎫=+=+ ⎪⎝⎭⎰⎰ 由 00lB dl I μ⋅=⎰ 求得 4301443a a r ϕμ⎛⎫=+ ⎪⎝⎭B e 5、半径为a 的磁介质球,其磁化强度为2()z Az B =+M e ,其中A 、B 均为常数。
电磁场与电磁波第三版课后答案 谢处方
第一章习题解答1.1 给定三个矢量A 、B 和C 如下: 23x y z =+-A e e e4y z =-+B e e52x z =-C e e求:(1)A a ;(2)-A B ;(3)A B ;(4)AB θ;(5)A 在B 上的分量;(6)⨯A C ;(7)()⨯A BC 和()⨯A BC ;(8)()⨯⨯A BC 和()⨯⨯A B C 。
解 (1)23A x y z+-===e e e A a ee e A (2)-=A B (23)(4)x y z y z +---+=e e e e e 64x y z +-e e e (3)=A B (23)x y z +-e e e (4)y z -+=e e -11 (4)由cos AB θ=14-==⨯A B A B ,得1cos ABθ-=(135.5= (5)A 在B 上的分量 B A =A cos AB θ=1117=-A B B (6)⨯=A C 123502xy z-=-e e e 41310x y z ---e e e (7)由于⨯=B C 041502x yz-=-e e e 8520x y z ++e e e⨯=A B 123041x y z-=-e e e 1014x y z ---e e e所以 ()⨯=A B C (23)x y z +-e e e (8520)42x y z ++=-e e e ()⨯=A B C (1014)x y z ---e e e (52)42x z -=-e e(8)()⨯⨯=A B C 1014502x y z---=-e e e 2405x y z -+e e e()⨯⨯=A B C 1238520x y z -=e e e 554411x y z --e e e1.2 三角形的三个顶点为1(0,1,2)P -、2(4,1,3)P -和3(6,2,5)P 。
(1)判断123PP P ∆是否为一直角三角形; (2)求三角形的面积。
电磁场与电磁波(第三版)课后答案第3章
第三章习题解答3.1 真空中半径为a 的一个球面,球的两极点处分别设置点电荷q 和q -,试计算球赤道平面上电通密度的通量Φ(如题3.1图所示)。
解 由点电荷q 和q -共同产生的电通密度为33[]4q R R π+-+-=-=R R D 22322232()(){}4[()][()]r z r z r z a r z a q r z a r z a π+-++-+-++e e e e 则球赤道平面上电通密度的通量d d zz SSS Φ====⎰⎰D S D e22322232()[]2d 4()()aq a arr r a r a ππ--=++⎰ 221201)0.293()aqa q q r a =-=-+ 3.2 1911年卢瑟福在实验中使用的是半径为a r 的球体原子模型,其球体内均匀分布有总电荷量为Ze -的电子云,在球心有一正电荷Ze (Z 是原子序数,e 是质子电荷量),通过实验得到球体内的电通量密度表达式为02314ra Ze r r r π⎛⎫=- ⎪⎝⎭D e ,试证明之。
解 位于球心的正电荷Ze 球体内产生的电通量密度为 124rZer π=D e 原子内电子云的电荷体密度为 333434a a Ze Zer r ρππ=-=- 电子云在原子内产生的电通量密度则为32234344r r ar Ze rr r ρπππ==-D e e 故原子内总的电通量密度为 122314ra Ze r r r π⎛⎫=+=- ⎪⎝⎭D D D e 3.3 电荷均匀分布于两圆柱面间的区域中,体密度为30C m ρ, 两圆柱面半径分别为a 和b ,轴线相距为c )(a b c -<,如题3.3图()a 所示。
求空间各部分的电场。
解 由于两圆柱面间的电荷不是轴对称分布,不能直接用高斯定律求解。
但可把半径为a 的小圆柱面内看作同时具有体密度分别为0ρ±的两种电荷分布,这样在半径为b 的整个圆柱体内具有体密度为0ρ的均匀电荷分布,而在半径为a 的整个圆柱体内则具有体密度为0ρ-的均匀电荷分布,如题3.3图()b 所示。
电磁场与电磁波第三版-郭辉萍-第三章习题答案
电磁场与电磁波第三版-郭辉萍-第三章习题答案第一题问题一个磁感应强度为B的均匀磁场,在其中有一个长为l、电阻为R的长直导线。
导线与磁感应强度方向成夹角θ。
若导线被引出的两个端头A、B相距d,则导线两个端头的电势差是多大?解答根据电磁感应定律,导线两个端头的电势差可以通过导线所受的磁场力与电阻的乘积来计算。
设电流的方向与磁场方向成夹角α,则磁场力的大小为F = BIL sinα,其中I为电流的大小。
电流可以通过欧姆定律来计算,即I = U / R,其中U为电阻两端的电势差。
将电流的表达式代入磁场力的表达式中,得到F = B(U / R)l sinα。
根据电势差的定义,有U = Fd = B(U / R)l sinα * d. 移项整理得到U(1 - Bld sinα / R) = 0,解得U = 0 或者 1 - Bld sinα / R = 0。
如果U = 0,则代表导线两个端头的电势差为0,即没有电势差。
这种情况下,导线两个端头之间的电势相等。
如果1 - Bld sinα / R = 0,则导线两个端头的电势差为U = Bld sinα / R。
综上所述,导线两个端头的电势差为U = Bld sinα / R。
第二题问题一个半径为R的导线圈,通过其中的电流为I,产生的磁感应强度为B。
若导线圈的匝数为N,导线圈中心处的磁感应强度是多少?解答根据长直导线的磁场公式,通过导线圈中心点的磁感应强度的大小可以通过长直导线的磁场公式来计算。
长直导线的磁场公式为B = μ0I / (2πd),其中B为磁感应强度,μ0为真空中的磁导率,I为电流的大小,d为测量点到导线的距离。
对于导线圈来说,可以将导线分成无数个长直导线,然后将它们对应的磁场强度相加。
考虑到导线圈的几何形状,可以得到导线圈中心处的磁感应强度的大小为Bm = N * B,其中Bm为导线圈中心处的磁感应强度,N为导线圈的匝数,B为单根导线产生的磁感应强度。
电磁场与电磁波第三版答案第三章
《电磁场与电磁波》——习题详解第三章 恒定电流的电场和磁场3-1 一个半径为 a 的球内均匀分布着总量为 q 的电荷,若其以角速度 ω 绕一直径匀 速旋转,求球内的电流密度. 解:传导电流:导体中的自由电子或半导体中的自由电荷在电场作用下作定向 运动所形成的电流. 运流电流: 带电粒子在真空或气体中运动时形成的电流. 本题求的是运流电流. 选 取 球 坐 标系 . 设 转 轴和 直 角 坐 标系 的 z 轴 重 合 , 球 内 某 一点 的 坐标为 ( r , θ , φ ),则电流密度为v v J =ρv =q v 3qω r sin θ v eφ ω r sin θ eφ = 2 4π a 3 4π a 3注意到球面坐标的有向面积元为v v v v d S = er r 2 sin θ d θ d φ + eθ r sin θ d r d φ + eφ r d r d θ可以得到总电流为I=∫∫Sv v J dS =∫ ∫0πJr d r d θ =0aqω 2π2π总电流也可以通过电流强度的定义计算. 因为球体转动一周的时间为 T = 所以ω,I=3-2球形电容器内,外极板的半径分别为 a , b ,其间媒质的电导率为 σ ,当外加 电压为 U 0 时,计算功率损耗并求电阻. 解:设内,外极板之间的总电流为 I .由对称性,可以得到极板间的电流密q qω = T 2π度为v J= v E=I24π r I v e 2 r 4πσ rv er ,U0 = E d r =a∫bI 1 1 4πσ a b 25习题三从而I=v 4πσU 0 σU 0 v ,J = er 1 1 1 1 2 r a b a b2单位体积内功率损耗为 U0 J 1 1 p= =σ r 2 σ a b 2总功率损耗为P=∫b ap 4π r d r =24πσ U 02 1 1 a b2∫d r 4πσ U 02 = 2 1 1 a r a bb由P =U 02 ,得 R R= 1 1 1 4πσ a b 3-3土壤的电导率为 σ . 略去地面的影 一个半径为 a 的导体球作为电极深埋地下, 响,求电极的接地电阻. 解: 当不考虑地面影响时, 这个问题就相当于计算位于无限大均匀导电媒质中的导体球的恒定电流问题.设导体球的电流为 I ,则任意点的电流密度为v J=I 4π rI2v v er , E =I 4πσ rI2v er导体球面的电位为(选取无穷远处为电位零点)U =接地电阻为∫∞a4πσ r2dr =4πσ aR=3-4U 1 = I 4πσ a在无界非均匀导电媒质(电导率和介电常数均是坐标的函数)中,若恒定电流存 在,证明媒质中的自由电荷密度为 ρ = E (ε 证明:由方程 J = 0 得vε σ ) . σv26《电磁场与电磁波》——习题详解v v v v J = (σ E ) = E σ + σ E = 0即E = 故有vσ v Eσρ = D = (ε E ) = E ε + ε Ev ε σ v v = E ε ε E = E ε σ σ σ vvvv3-5如图 3-1,平板电容器间由两种媒质完全填充,厚度分别为 d1 和 d 2 ,介电常数 分别为 ε 1 和 ε 2 ,电导率分别为 σ 1 和 σ 2 ,当外加电压 U 0 时,求分界面上的自 由电荷面密度. 解:设电容器极板之间的电流密度为 J ,则J = σ 1 E1 = σ 2 E2E1 =于是Jσ1, E2 =Jσ2U0d1 d2ε1,σ1 ε2,σ2U0 =即Jd1σ1+Jd 2σ2图 3-1J=U0σ1 σ 2分界面上的自由面电荷密度为d1+d2ρ S = D2 n D1n = ε 2 E2 ε 1 E1 = ε ε U0 = 2 1 σ σ d1 d 2 1 2 +3-6 ε2σ2ε1 J σ1 σ1 σ 2内,外导体半径分别为 a , c 的同轴线,其间填充两种漏电媒质,电导率分别27习题三为 σ 1 ( a < r < b )和 σ 2 ( b < r < c ),求单位长度的漏电电阻. 解:设每单位长度从内导体向外导体的电流为 I ,则电流密度为v J=各区域的电场为I2π rv erv E1 = v E2 =内,外导体间的电压为I2πσ 1rv er ( a < r < b ) v er ( b < r < c )I2πσ 2 rU0 =∫c av v E dr =∫I dr + 2πσ 1 r ab∫ 2πσ r = 2πσb 2cI drIln1b I c + ln a 2πσ 2 b因而,单位长度的漏电电阻为R=3-71 1 U b c = ln + ln I 2πσ 1 a 2πσ 2 b一个半径为 10cm 的半球形接地电极,电极平面与地面重合,如图 3-2,若土 壤的电导率为 0.01S/m,求当电极通过的电流为 100A 时,土壤损耗的功率. 解:半球形接地器的电导为G = 2πσ a接地电阻为I σ a图 3-21 1 R= = G 2πσ a土壤损耗的功率为100 2 = ≈ 1.59 ×106 W P=I R= 2πσ a 2π × 0.01× 0.12I23-8一个正 n 边形(边长为 a )线圈中通过的电流为 I ,试证此线圈中心的磁感应强 度为B= 0 nI π tan 2π a n解:先计算有限长度的直导线在线圈中心产生的磁场.使用公式B=0 I (sin α1 sin α 2 ) 4π r28《电磁场与电磁波》——习题详解并注意到α1 = α 2 =2π π = 2n n设正多边形的外接圆半径是 a .由于r π = cos a n所以,中心点的磁感应强度为B=3-9 0 nI π tan 2π a n求载流为 I ,半径为 a 的圆形导线中心的磁感应强度. 解:电流元 I d l 在中心处产生的磁场为vv v v 0 I d l × er dB = 4π r2各电流元在中心处产生的磁场在同一方向,并注意 的磁场为 3-100 I2a∫rdl2=2π ,所以,圆心处 a.一个载流 I1 的长直导线和一个载流 I 2 的圆环(半径为 a )在同一平面内,圆心 与导线的距离是 d .证明两电流之间的相互作用力为 0 I1 I 2 1 d a d22BdF解:选取图 3-3 所示的坐标.直线电流产生的 I1 磁感应强度为I2 d图 3-3v I v 0 I1 v B1 = 0 1 eφ = eφ 2π r 2π (d + a cos θ )v v v F = I 2 d l 2 × B1θ a∫由对称性可以知道,圆电流环受到的总作用力仅仅有水平分量, d l2 × eφ 的 水平分量为 a cos θ d θ ,再考虑到圆环上,下对称,得vvF=使用公式 0 I1 I 2 2π∫π20 0 I1 I 2 a cos θ dθ = π d + a cos θ∫π0d 1 d θ d + a cos θ 29习题三∫π0dθ = d + a cos θπd a22最后得出二回路之间的作用力为 0 I1 I 2 力). 3-11 d 1 (负号表示吸引 2 2 d a 内,外半径分别为 a , b 的无限长空心圆柱中均匀分布着轴向电流 I ,求柱 内,外的磁感应强度. 解:法一:取积分回路为半径为 r ,圆心在轴上的圆,由安培定律 r≤a 时∫lv v v v H dl = 0 H = 0 B = 0a<r≤b 时 v v H dl =∫lI π (r 2 a 2 ) π (b a 2 )2(r 2 a 2 ) I H 2π r = 2 b a2 H = (r 2 a 2 ) I 2π r (b 2 a 2 )v v (r 2 a 2 ) I 0 v er B = 0 H = 2π r (b 2 a 2 )r >b时∫lv v H dl = I v H= I v er2π r v v I v B = 0 H = 0 er 2π r法二:使用圆柱坐标系.电流密度沿轴线方向为30《电磁场与电磁波》——习题详解 r<a 0, I J = , a<r <b 2 2 π (b a ) 0, b<r 由电流的对称性,可以知道磁场只有圆周分量.用安培定律计算不同区域的磁 场.当 r < a 时,磁场为零.当 a < r < b 时,选取安培回路为半径等于 r 且与导电 圆柱的轴线同心的圆.该回路包围的电流为I ′ = Jπ (r 2 a 2 ) =由 B dl = 2π rB =I (r 2 a 2 ) b2 a2∫vv 0 I ′ ,得 0 I (r 2 a 2 ) B= 2π r (b 2 a 2 )当 r > b 时,回路内包围的总电流为 I ,于是 B = 3-120 I . 2π r两个半径都为 a 的圆柱体,轴间距为 d , d < 2a (如图 3-4).除两柱重叠部 分 ( R 区域) 外,柱间有大小相等,方向相反的电流,密度为 J ,求 R 区域 的B.v解:在重叠区域分别加上量值相等(密度为 J ),方向相反的电流分布,可以 将原问题电流分布化为一个圆柱体内均匀分布正向电流,另一个圆柱体内均匀分布 反向电流.由其产生的磁场可以通过叠加原理计算. 由沿正方向的电流(左边圆柱)在重叠y区域产生的磁感应强度为 B1 :∫B1 d l = 2π r1 B1 = 0π r12 JJ r1r2JB1 = 0 r1 J2o1 vdo2x其方向为左边圆周方向 eφ 1 .图 3-4由沿负方向的电流(右边圆柱)在重叠区域产生的磁感应强度为 B2 :B2 = 0 r2 J231习题三其方向为右边圆柱的圆周方向 eφ 2 . 注意:vv v v v v v eφ1 = ez × eρ1 , eφ 2 = ez × eρ 2 v v v Jv v v B = B1 + B2 = 0 ez × (r1eρ 1 r2 eρ 2 ) 2 Jv J v v = 0 ez × (d ex ) = 0 d e y 2 2 v v v v v 3-13 证明矢位 A1 = ex cos y + e y sin x 和 A2 = e y (sin x + x sin y ) 给出相同的磁场 v B ,并证明它们得自相同的电流分布.它们是否均满足矢量泊松方程?为什么? 证明:与给定矢位相应的磁场为v v ex ey v v B1 = × A1 = x y cos y sin x v ex v v B2 = × A2 = x 0v ez v = ez (cos x + sin y ) z 0 v ez v = ez (cos x + sin y ) z 0v ey y sin x + x sin y所以,两者的磁场相同.与其相应的电流分布为v v 1 1 v v J1 = × B1 = (ex cos y + e y sin x)00v 1 v v J2 = (ex cos y + e y sin x)0可以验证,矢位 A1 满足矢量泊松方程,即vv v v v v 2 A1 = 2 (e x cos y + e y sin x) = (e x cos y + e y sin x) = 0 J 1但是,矢位 A2 不满足矢量泊松方程,即v32《电磁场与电磁波》——习题详解v v v v 2 A2 = 2 [e y (sin x + x sin y )] = e y (sin x + x sin y ) ≠ 0 J 2这是由于 A2 的散度不为零.当矢位不满足库仑规范时,矢位与电流的关系为vv v v v × × A2 = 2 A2 + ( A2 ) = 0 J 2可以验证,对于矢位 A2 ,上式成立,即vv v v 2 A2 + ( A2 ) = e y (sin x + x sin y ) + ( x cos y )v v v = e y (sin x + x sin y ) + ex cos y e y x sin y v v = e y sin x + ex cos y v = 0 J 23-14 半径为 a 的长圆柱面上有密度为 J S 的面电流, 电流方向分别为沿圆周方向和 沿轴线方向,分别求两种情况下柱内,外的 B . 解:(1)当面电流沿圆周方向时,由问题的对称性可以知道,磁感应强度仅仅 是半径 r 的函数,而且只有轴向方向的分量,即vvv v B = ez Bz (r )由于电流仅仅分布在圆柱面上,所以,在柱内或柱外, × B = 0 .将 B = ez Bz (r ) 代入 × B = 0 ,得vvvvv v B × B = eφ z = 0 r即磁场是与 r 无关的常量.在离柱面无穷远处的观察 点,由于电流可以看成是一系列流向相反而强度相同的电流 元之和,所以磁场为零.由于 B 与 r 无关,所以在柱外的任 一点处,磁场恒为零 . 为了计算柱内的磁场, 选取安培回路为图 3-5 所示的矩 形回路vh图 3-533习题三∫lv v B d l = hB = h 0 J S因而柱内任一点处, B = e z 0 J S (2) 当面电流沿轴线方向时,由对称性可知,空间的磁场仅仅有圆周分量,且 只是半径的函数.在柱内,选取安培回路为圆心在轴线并且位于圆周方向的圆.可 以得出,柱内任一点的磁场为零.在柱外,选取圆形回路, B d l =lvv∫vv 0 I ,与该回路交链的电流为 2π aJ S , B d l = 2π rB ,所以l∫vvv v a B = eφ 0 J S r 3-15 一对无限长平行导线,相距 2a ,线上载有大小相等,方向相反的电流 I (如 v v 图 3-6),求磁矢位 A ,并求 B .解:将两根导线产生的磁矢位看作是单个导线产生的磁矢位的叠加,对单个 导线,先计算有限长度产生的磁矢位.设导线长度为 l ,导线 1 的磁矢位为(场点选 在 xoy 平面)A1 =0 I 4π∫ I l / 2 + [(l / 2) 2 + r12 ]l / 2 dz = 0 ln 2 2 12 2π r1 l / 2 (r + z ) 1l/2当 l → ∞ 时,有y A1 =0 I l ln r1 2π-ar2 I图 3-6r1 a I x同理,导线 2 产生的磁矢位为A2 = 由两个导线产生的磁矢位为0 I l ln r2 2πv v l v I l A = ez ( A1 + A2 ) = ez 0 ln ln r 2π 1 r2 v 0 I r2 v 0 I ( x + a) 2 + y 2 = ez ln = ez ln 2π r1 4π ( x a) 2 + y 2相应的磁场为34《电磁场与电磁波》——习题详解v v A v A v B = × A = ex z e y z y x v I = ex 0 2π y y ( x + a) 2 + y 2 ( x a) 2 + y 2 x+a xa v I ey 0 2 2 2 2 2π ( x + a) + y ( x a) + y v v v v v v 3-16 由无限长载流直导线的 B 求矢位 A (用 B d S = A d l , 并且 r = r0 处为∫S∫C磁矢位的参考零点),并验证 × A = B . 解:设导线和 z 轴重合.由于电流只有 z 分量,磁矢位也只有 z 分量.用安培 环路定律,可以得到直导线的磁场为vvv I v B = 0 eφ 2π r 选取矩形回路 C ,如图 3-7 所求.在此回路上,注意到磁矢位的参考点.磁矢位的线积分为∫ ∫SCv v A d l = Az hv v BdS =∫∫0 I Ih r d r d z = 0 ln r0 2π r 2πIBh r0 r图 3-7由此得到I r Az (r ) = 0 ln r0 2π可以验证rv v I v A v B = × A = z eφ = 0 eφ 2π r r3-17 证明 xoy 平面上半径为 a , 圆心在原点的圆电流环(电流为 I )在 z 轴上的磁标 位为 m = 1 2 2 1 2 2 (a + z ) 证明:法一:由毕奥萨伐尔定律可求得,z 轴上某一点的磁感应强度为:Iz35习题三v B=Ia 22( a + z )2 2 3/ 2v ezv v B H = =Ia 2 v e 2 2 3/ 2 z 2(a + z )由 H = m = (v m v m v m v e + e + e ) x x y y z z可得 m Ia 2 = z 2( a 2 + z 2 ) 3 / 2 m = ∫ Ia 2 Iz dz = +C 2 2 3/ 2 2 2( a + z ) 2(a + z 2 )1 / 2当 z → ∞ 时, m = 0 ,求得C=所以I 2 z ) ( a + z 2 )1 / 22 m = (1 I 2法二:整个圆形回路在轴线上产生的磁场,由于对称,仅仅有轴向分量.使用 叠加原理,可以计算出轴线上任一点的磁场强度为Ia 2 H= 2( a 2 + z 2 ) 3 2由磁标位与磁场强度的关系式 H = m ,可以得到m =3-18∫∞zHdz =∫∞z Ia 2 I z d z = 1 2 2 12 2 2 32 2 (a + z ) 2(a + z )一个长为 L ,半径为 a 的圆柱状磁介质沿轴向方向均匀磁化(磁化强度为M 0 ),求它的磁矩.若 L = 10cm , a = 2cm , M 0 = 2 A / m ,求出磁矩的值. 解:均匀磁化介质内的磁化电流为零.在圆柱体的顶面与底面,有v v v Jms = M × n = 036《电磁场与电磁波》——习题详解在侧面v v v v v v J m s = M × n = M 0 ez × er = M 0 eφ侧面的总电流为I = JmsL = M 0L磁矩为m = IS = Iπ a 2 = M 0 Lπ a 2代入相关数值后得m = M 0 Lπ a 2 = 2 × 0.1× π × 0.02 2 = 2.512 × 10 4 A m 23-19 球心在原点,半径为 a 的磁化介质球中, M = M 0 磁化电流的体密度和面密度. 解:磁化电流的体密度为vz2 v ez ( M 0 为常数) ,求 a2v v Jm = × M = 0在球面上v v v z2 v v v J m s = M × n = M 0 ez × er = M 0 2 sin θ eφ a注意,在球面上v v z = a cos θ , J m s = M 0 cos 2 θ sin θ eφ3-20 证明磁介质内部的磁化电流是传导电流的( r 1 )倍. 证明:由于 J = × H , J m = × Mvvvv因而 3-21v v v v v v v B = H = 0 ( H + M ) , M = 1 H = ( r 1) H 0 v v J m = ( r 1) J已知内,外半径分别为 a , b 的无限长铁质圆柱壳(磁导率为 )沿轴向有恒 定的传导电流 I ,求磁感应强度和磁化电流.37习题三解: 考虑到问题的对称性, 用安培环路定律可以得出各个区域的磁感应强度. 当 r < a 时, B = 0vv I (r 2 a 2 ) v 当 a < r < b 时, B = eφ 2π r (b 2 a 2 )当 r > b 时, B = 当 a < r < b 时,v0 I v eφ 2π rv v I (r 2 a 2 ) v 1 v M = ( r 1) H = ( r 1) B = ( r 1) eφ 2π r (b 2 a 2 ) v v v 1 (rM ρ ) v ( r 1) I J m = × M = ez = ez r r π (b 2 a 2 )当 r > b 时, J m = 0 在 r = a 处,磁化强度 M = 0 ,所以vvv v v v v J m s = M × n = M × (er ) = 0在 r = b 处,磁化强度 M =v Jms3-22( r 1) I v eφ ,所以 2π b v v v v ( 1) I v = M × n = M × er = r ez 2π b v设 x < 0 的半空间充满磁导率为 的均匀磁介质, x > 0 的空间为真空,线电流 I 沿 z 轴方向,如图 3-8,求磁感应强度和磁场强度. 解:由恒定磁场的边界条件,可以判断出,在磁介质和真空中,磁感应强度相 同,而磁场强度不同.由问题的对称性,选取以 z 轴为轴线,半径为 r 的圆环为安 培回路,有∫注意到lv v H d l = π rH 1 + π rH 2 = Iy0H1 =1B1, H2 =2B2, B1 = B2 = BIx图 3-838《电磁场与电磁波》——习题详解1 = 0 , 2 = 因而得B= 0 I π ( 0 + )r其方向沿圆周方向. 3-23 已知在半径为 a 的无限长圆柱导体内有恒定电流 I 沿轴向方向.设导体的磁 导率为 1 ,其外充满磁导率为 2 的均匀磁介质,求导体内,外的磁场强度, 磁感应强度,磁化电流分布. 解:考虑到问题的对称性,在导体内,外分别选取与导体圆柱同轴的圆环作 为安培回路,并注意电流在导体内是均匀分布的.可以求出磁场强度如下:Ir v eφ 2π a 2 v I v r > a 时, H = eφ 2π r磁感应强度如下:v r ≤ a 时, H =v Ir v r ≤ a 时, B = 1 2 eφ 2π a v 2 I v r > a 时, B = eφ 2π r为了计算磁化电流,要求出磁化强度:v v v v Ir I v , J m = × M = e z 1 1 r ≤ a 时, M = eφ 1 1 2 2π a 2 0 0 π av v v v I r > a 时, M = eφ 2 1 , Jm = × M = 0 0 2π r在 r = a 的界面上计算面电流时,可以理解为在两个磁介质之间有一个很薄的 真空层.这样,其磁化面电流就是两个磁介质的磁化面电流之和,即v v v v v J m s = M 1 × n1 + M 2 × n2这里的 n1 , n2 分别是从磁介质到真空的单位法向.如果取从介质 1 到介质 2 的单位法向是 n ,则有vvvv v v v v J m s = M1 × n M 2 × n39习题三代入界面两侧的磁化强度,并注意到 n = er ,得vvv I v v 2 I J m s = e z 1 1 2π a + ez 1 2π a 0 0 I v = ez 2 1 0 0 2π a3-24 试证长直导线和其共面的正三角形之间的互感为M=0 a (a + b) ln1 + b a π 3 其中 a 是三角形的高,b 是三角形平行于长直导线的边至直导线的距离(且该 边距离直导线最近). 证明:取如图 3-9 所示的坐标.直线电流 I 产生的磁场为B=0 I 2π x由图 3-9 知道,三角形三个顶点的坐标分别为 A(b, a3 ) , B (b, a3) ,C (a + b,0) ,直线 AC 的方程为 z=互感磁通为z A I1 b B图 3-91 (a + b x) 3C b+axΨ = BdS = 2∫∫a +b b0 I 1 (a + b x) d x 2π x 3=0 I a (a + b) ln1 + b a π 3 0 a (a + b) ln1 + b a π 3 直线与矩形回路的互感为M=3-25无限长的直导线附近有一矩形回路(二者不共面,如图 3-10),试证它们之间 的互感为40《电磁场与电磁波》——习题详解M =0 a R ln 2 2 12 2π [2b( R c ) + b 2 + R 2 ]1 2b a R R1图 3-10IIc证明:直线电流 I 产生的磁场为 B =0 I ,作积分,得出磁通量 2π rΨ = BdS =注意:∫∫R1 R 0 Ia Ia R d r = 0 ln 1 R 2π r 2π1 2 1 2 1 2R1 = [c + (b + R c ) ] = [2b( R c ) + b + R ]2 2 2 2 2 2 2 2将其代入,即可得到互感. 3-26 外导体的内半径为 b , 通过的电流为 I . 空气绝缘的同轴线, 内导体半径为 a , 设外导体壳的厚度很薄,因而其储存的能量可以忽略不计.计算同轴线单位 长度的储能,并由此求单位长度的自感. 解:设内导体的电流均匀分布,用安培环路定律可求出磁场.r < a 时, H =Ir 2π a 2 I a < r < b 时, H = 2π rWm =单位长度的磁场能量为∫a01 H 2 2π r d r + 2 0∫b a1 H 2 2π r d r 2 0=0 I 2 0 I 2 b ln + 16π 4π aL=故得单位长度的自感为0 0 b + ln 8π 2π a41习题三其中第一项是内导体的内自感. 3-27 一个长直导线和一个圆环(半径为 a )在同一平面,圆心与导线的距离是 d , 证明它们之间互感为M = 0 (d d 2 a 2 )证明:设直导线位于 z 轴上,由其产生的磁场I r d θB=0 I 0 I = 2π x 2π (d + r cos θ ) 0 I其中各量的含义如图 3-11 所示,磁通量为图 3-11Φ = BdS =∫∫∫0 2π 0a2π 02π (d + r cos θ )2πr dθ d r上式先对 θ 积分,并用公式∫得dθ = d + a cos θd 2 a2Φ = 0 I所以互感为 3-28∫ardr d r2 20= 0 I (d d 2 a 2 )M = 0 (d d 2 a 2 )如图 3-12 所示的长密绕螺线管(单位长度 n 匝),通过的电流为 I ,铁心的磁 导率为 ,面积为 S ,求作用在它上面的力. 解:在忽略边缘影响时,密绕螺线管内部的磁场是一个均匀磁场,其值为H = NI , 管外磁场为零. 设螺线管的长度为 L , 铁心位于螺线管内的部分长度为 x , 总的磁场能量为Wm =1 1 Sx( NI ) 2 + 0 S ( L x)( NI ) 2 2 2Wm xL● ● ● ● ● ● ●用电流不变情形下的虚位移公式,得到铁心受力 x0SF==I1 ( 0 ) SN 2 I 2 2× × × × × × × 图 3-12力的方向沿 x 增加的方向.42。
《电磁场与电磁波》课后习题解答(第三章)
【习题 3.1】
解:设导线沿 ez 方向,电流密度均匀分布 则
J ez
4
I d
2
ez
4
2 (10 )
3
2
cos(2 50t ) ez
8
106 cos(2 50t( ) A
m2
)
导线内的电场
E
J
ez
8 106 cos 2 50t ez 4.39 102 cos 2 50t (V / m) 7 5.8 10
J s n H er H ez 395.1cos(4 108 t ) A / m
(3) r 20mm, z 25mm 处的表面电荷密度
7 2 s n D 0 r er E 0. 7 8 1 0 sin ( 48 t1 0 C ) m /
B 1.328 6 107 0 sin 6 107 t cos zex t
1.328 6 107 4 107 sin 6 107 t cos zex 100sin 6 107 t cos zex
所以有
E
B t
ex
又因为
ey y 0
ex 1 1 E ( D) [ ( z 6 107 t )ex ] 2.5 0 2.5 0 x Ex (e y Ex E 1 ez x ) ey 4.52 1010 ey z y 2.5 0
ey y 0
ez z 0
12
= 4 81 8.854 10
i 6.28 109 E = i 4.5 i 4 E
6
电磁场与电磁波第三版 郭辉萍 第三章习题答案
第三章 习题答案3.1设一点电荷与无限大接地导体平面的距离为d ,如图3.1所示。
求: q(1)空间的电位分布和电场强度; (2)导体平面上感应电荷密度; (3)点电荷所受的力。
q解:(1)(,,)1r x y z d =−u r2(,,)r x y z d =+u r1211(4qr r φπε=−04q πε=E φ=−∇u u r 3333330212121[()()(]4a a a x y z q x x y y z d z d r r r r r r πε+−=−−+−+−uu r uur ur u(2)在导体平面上有z=0 则 12==r r 3222202()E a z qdx y d πε=−++u u rur u032222.2()z a E s qd x y d ρεπ==−++uu r u u r(3)由库仑定律得22200()4(2)16q q q d d πεπε−==−u u r uu r ur z z u F a a或22320,0,002[()]4(2)16z x y z dq d q q d dπεπε=====−=−u u r uu r urvzu F E a a 3.6两无限大接地平行板电极,距离为,电位分别为0和U ,板间充满电荷密度为d 00xdρ的电荷,如题3.6图所示。
求极板间的电位分布和极板上的电荷密度。
解: 板间电位满足泊松方程 200ρφε∇=x−d由于平行电容器y 与z 方向都为无穷大,故待求函数仅为x 的函数泊松方程可以写为:2020x d dx dρφε=−边界条件为0U φφ(0)=0,(d)= 对方程进行两次积分得301206ρφε=−++x C x C d代入边界条件得 002100,6U dC d ρε==+C 所以板间电位分布为:300000()66x U d x d d ρρφεε=−++2000()2600E a x x U d d d ρρφεε=−∇=−−u u r uu r2000()2600D E a x x U d d d ρερε==−−u u r u u r uu rx =0的极板上的电荷密度000060x a Ds x U dd ερρ==⋅=−−uu r u u rx =d 的极板上的电荷密度00()30x a Dsd x dU ddερρ==−⋅=−uu r u u r3.9一个沿+y 方向无限长的导体槽,其底面保持电位为,其余两面的电位为零,如图3.9所示。
电磁场与电磁波第三版课后答案 谢处方
第一章习题解答1.1 给定三个矢量A 、B 和C 如下: 23x y z =+-A e e e4y z =-+B e e52x z =-C e e求:(1)A a ;(2)-A B ;(3)A B ;(4)AB θ;(5)A 在B 上的分量;(6)⨯A C ;(7)()⨯A B C 和()⨯A B C ;(8)()⨯⨯A B C 和()⨯⨯A B C 。
解 (1)23A x y z+-===e e e A a e e e A (2)-=A B (23)(4)x y z y z +---+=e e e ee 64x y z +-e e e (3)=A B (23)x y z +-e e e (4)y z -+=e e -11 (4)由c o sAB θ=11238=A B A B ,得1c o s AB θ-=(135.5= (5)A 在B 上的分量 B A =A c o s AB θ==A B B (6)⨯=A C 123502xy z-=-e e e 41310x y z ---e e e (7)由于⨯=B C 041502x y z-=-e e e 8520x y z ++e e e ⨯=A B 123041xyz-=-e e e 1014x y z ---e e e所以 ()⨯=A B C (23)x y z +-e e e (8520)42x y z ++=-e e e ()⨯=A B C (1014)x y z ---e e e (52)42x z -=-e e(8)()⨯⨯=A B C 1014502x y z---=-e e e 2405x y z -+e e e()⨯⨯=A B C 1238520xy z -=e e e 554411x y z --e e e1.2 三角形的三个顶点为1(0,1,2)P -、2(4,1,3)P -和3(6,2,5)P 。
(1)判断123PP P ∆是否为一直角三角形; (2)求三角形的面积。
电磁场与电磁波(第三版)课后答案__谢处方
1 z02 )1 2
0
ez
2 0
而半径为 3z0 的圆内的电荷产生在 z 轴上 z z0 处的电场强度为
E ez
3z0 r z0 d r 0 20 (r2 z02 )3 2
ez
z0 20
1 (r2 z02 )1 2
3z0 0
ez
40
1E 2
2.10 一个半径为 a 的导体球带电荷量为 Q ,当球体以均匀角速度
(cos 30
cos150
) ey
3l1 2 0 L
E2
(ex cos 30
ey sin 30
)
3l 2 2 0 L
(ex
3
e
y
)
3l1 8 0 L
E3
(ex cos 30
ey sin 30
) 3l3 2 0 L
(ex
3
e
y
)
3l1 8 0 L
故等边三角形中心处的电场强度为
E E1 E2 E3
215图可知sincossincos如题216图所示设则电偶极子p绕坐标原点所受到的力矩为第三章习题解答31真空中半径为a的一个球面球的两极点处分别设置点电荷试计算球赤道平面上电通密度的通量如题31图所示321911年卢瑟福在实验中使用的是半径为的球体原子模型其球体内均匀分布有总电荷量为ze的电子云在球心有一正电荷ze是原子序数e是质子电荷量通过实验得到球体内的电通量密度表达式为位于球心的正电荷ze球体内产生的电通量密度为zeze33电荷均匀分布于两圆柱面间的区域中体密度为如题33所示
x
y
a
0 I 4 a
( 2
1)
0I 4 a
By
a a
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章 习题答案
3.1设一点电荷与无限大接地导体平面的距离为d ,如图3.1所示。
求: q
(1)空间的电位分布和电场强度; (2)导体平面上感应电荷密度; (3)点电荷所受的力。
q
解:
(1)(,,)1r x y z d =−u r
2(,,)r x y z d =+u r
1211
(4q
r r φπε=
−04q πε=
E φ=−∇u u r 3333330212121
[()()(]4a a a x y z q x x y y z d z d r r r r r r πε+−=−−+−+−
uu r uu
r ur u
(2)在导体平面上有z=0 则 12==
r r 32
2
22
02()
E a z qd
x y d πε=−
++u u r
ur u
032222
.2()
z a E s qd x y d ρεπ==−
++uu r u u r
(3)由库仑定律得
222
00()4(2)16q q q d d πεπε−=
=−u u r uu r ur z z u F a a
或22320,0,002[()]4(2)16z x y z d
q d q q d d
πεπε=
====−=−u u r uu r ur
v
z
u F E a a 3.6两无限大接地平行板电极,距离为,电位分别为0和U ,板间充满电荷密度为d 00x
d
ρ
的电荷,如题3.6图所示。
求极板间的电位分布和极板上的电荷密度。
解: 板间电位满足泊松方程 2
00ρφε∇
=x
−
d
由于平行电容器y 与z 方向都为无穷大,故待求函数仅为x 的函数
泊松方程可以写为:2020x d dx d
ρφ
ε=−
边界条件为0U φφ(0)=0,(d)= 对方程进行两次积分得
3
01206ρφε=−++x C x C d
代入边界条件得 00210
0,6U d
C d ρε==+
C 所以板间电位分布为:
300000
()66x U d x d d ρρφεε=−++
2000()2600E a x x U d d d ρρφεε=−∇=−−u u r uu r
2000()26
00D E a x x U d d d ρερε==−−u u r u u r uu r
x =0的极板上的电荷密度
00
00
60x a D
s x U d
d ερρ==⋅=−
−
uu r u u r
x =d 的极板上的电荷密度
00
()3
0x a D
sd x d
U d
d
ερρ==−⋅=
−
uu r u u r
3.9一个沿+y 方向无限长的导体槽,其底面保持电位为,其余两面的电位为零,如图3.9所示。
求槽内的电位函数。
0U 解:
电位分布满足拉普拉斯方程
2
0φ∇
=由于金属管在z 方向为无穷大,电位只跟x 、y 有关,得
222
20x y
φφ
∂∂+=∂∂ 边界条件
00
(1)0 (2)0(3)0 (4)U x x a y y φφφ
φ
===∞
=====
设()()f x g y φ=
已知边界条件(1)、(2)得:(0)0,()0f f a ==
故()f x 的合理的解为:12()sin()cos()x x f x A k x A k x =+, 根据边界条件(1)、(2)得1()sin()n f x A x a
π
= 由于
2
2
0x y k k +=设
12()()()x x g y B sh k y B ch k y =+由于 2x x k y k y x e e shk y −−=,2
x x k y k y
x e e chk y −+=
再根据边界条件(3)得,则()0g ∞=12B B =− 故 1()n y a
g y B e
π−=
则电位的通解为a 1
sin()a n y n n n D x e ππ
φ∞
−==∑ 代入边界条件00
y U φ
==得01
sin(
)a
n n n U D x π
∞
==∑ 两边同时乘以m x a
π
sin(
),并对x 从0到a 积分,并由三角函数的正交特性: 0sin()sin()2a n m m n x x dx a a a
ππ==∫时
0sin()sin()0a n m m n x x dx a a
ππ
≠=∫时得
001sin sin()sin()2a
a 0n n m n m U x D x x dx a a a πππ∞==∑∫∫()=n a D 0
(1cos )2n a a U n n πD π
−=
则0
4(1,3,5n U D n n )π==K
代入电位的通解方程得
0a
1,3,54sin()a n y n U n x e n ππφπ∞
−==∑K。