二次函数在实际问题中的应用
二次函数与实际问题典型例题
二次函数与实际问题典型例题【实用版】目录1.二次函数与实际问题的关系2.典型例题解析3.总结与建议正文二次函数与实际问题的关系二次函数是数学中的一个重要概念,它在实际问题中有着广泛的应用。
通过对二次函数的学习和理解,我们可以更好地解决实际问题,提高自己的数学素养。
典型例题解析例题 1:某商场在推出优惠活动,满 200 元打 8 折,满 300 元打7 折。
现在,小明想买一件价格为 x 元的商品,请问小明应该如何选择,才能使自己所花费的钱最少?解:将小明要购买的商品价格设为 x 元,那么他需要支付的金额可以表示为 f(x)=x+0.2(x-200)+0.3(x-300),其中 x>300。
通过求导,可以得到 f(x) 的最小值出现在 x=400,此时小明需要支付的金额为f(400)=360 元。
所以,小明应该选择购买价格为 400 元的商品,才能使自己所花费的钱最少。
例题 2:一个农民有一块形状为抛物线的土地,他想在土地上种植庄稼,使得种植的庄稼面积最大。
已知土地的顶点为 (1,2),抛物线方程为y=a(x-1)^2+2。
请问农民应该如何种植庄稼?解:由于 a<0,所以抛物线开口向下。
根据二次函数的性质,顶点是函数的最大值点。
所以,农民应该在土地的顶点处种植庄稼,即 x=1,此时庄稼的面积最大,为 2。
总结与建议通过对二次函数与实际问题的典型例题进行解析,我们可以发现数学知识在解决实际问题中的重要性。
为了更好地应对类似的问题,我们建议:1.加强对二次函数概念的学习,了解其性质和应用;2.多做练习题,提高自己对二次函数问题的解题能力;3.注重数学知识的实际应用,学会将理论知识运用到实际问题中。
生活中的数学(十一)—生活中的二次函数
生活中的数学(十一)—生活中的二次函数二次函数在中学数学中占据重要的地位,同时也是进行数学研究的一个重要的工具,它贯穿整个中学数学的数与学。
从最浅显的直观的利用图象解方程、解不等式、求最值,到利用数形结合的思想研究一元二次方程中根的分布问题,再进而用二次函数来解决现实生活中的实际问题,无不体现二次函数的重要性和它独特的魅力。
在中考中,二次函数的实际应用同样是一个考察的重难点,而很多学生在考试中暴露出一个问题:用数学解决实际问题的能力不足。
所以,我们需要进一步研究二次函数在实际生活中的应用和对实际生活的影响,从而培养学生解决实际问题的能力。
1.在桥梁建筑方面的应用抛物线在桥梁建筑方面有着广泛的应用。
在实际生活中,由于各种不同的需要,大多数的桥梁建筑都运用了二次函数的性质,将其形状设计为抛物线的形式。
所以,我们在现实生活中能够找到很多具有抛物线特征的建筑物,如下图所示:图1-1 图1-2同时,在现实生活中也存在许多与建筑、设计有关的二次函数的数学问题。
下面,我们用以下几个例子来进行说明。
例1.一座单行隧道的截面由抛物线和长方形构成,长方形的长为m 8,宽为m 2,隧道最高点P 位于AB 的中央且距地面m 6,建立如图1-3所示的坐标系。
(1)求抛物线的解析式;(2)一辆货车高m 4,宽m 2,能否从该隧道内通过,为什么?(3)如果隧道内设双行道如图1-4所示,那么这辆货车是否可以顺利通过,为什么?图1-3 图1-4解 (1)由题意可知抛物线经过点)(2,0A ,()6,4P ,()2,8B 。
设抛物线的方程为c ax ++=bx y 2,将A 、P 、D 三点的坐标代入抛物线方程。
解得抛物线方程为:2241y 2++-=x x . (2)令4=y ,则有422x 41-2=++x , 解得224x 224x 21-=+=,,而224x 12>=-x ,所以货车可以通过。
(3)由(2)可知222x 2112>=-x ,所以货车可以通过。
二次函数在生活中的运用
二次函数在生活中的运用
二次函数是一种常见的数学函数,在生活中有很多实际应用。
它的形式为 y = ax + bx + c,其中 a、b、c 是常数,而 x 和 y 分别表示自变量和因变量。
以下是二次函数在生活中的几个实际应用:
1. 物体的运动轨迹
当物体受到恒定的重力作用时,它的运动轨迹通常是一个二次函数。
这个函数的自变量可以是物体的时间或者位置,而因变量则是物体的高度或者速度。
通过分析这个函数,人们可以预测物体的落地时间和落点位置,为实际生活中的运动问题提供了重要的帮助。
2. 投资收益的计算
在投资领域,人们通常使用复利计算来估算投资收益。
而复利计算的公式可以转化为一个二次函数,其中自变量是投资时间,因变量是投资收益。
通过这个函数,人们可以预测不同投资方案的收益情况,为投资决策提供了参考依据。
3. 地址编码的设计
在物流配送领域,地址编码是非常重要的一环。
通过设计合适的地址编码,可以提高配送效率,减少误送和漏送的问题。
而地址编码通常采用的是二进制编码,其中每个位都是一个二次函数。
通过对这些二次函数的分析,人们可以设计出高效而准确的地址编码方案。
综上所述,二次函数在生活中有着广泛的应用。
人们可以通过学习和掌握二次函数的相关知识,更好地理解和应用这个数学概念,为
实际生活中的问题提供更加精准和科学的解决方案。
运用二次方程解决实际问题
运用二次方程解决实际问题二次方程是一种常见的数学方程,它可以解决许多实际问题。
本文将介绍二次方程的基本概念,并通过几个实际问题的例子来说明如何运用二次方程解决这些问题。
一、二次方程的基本概念二次方程是形如ax^2 + bx + c = 0的方程,其中a、b和c是已知的实数,且a不等于0。
该方程的解可以用以下公式求得:x = (-b ± √(b^2 - 4ac)) / (2a)这个公式叫做二次方程的根公式。
二次方程的解可能有两个,一个或者没有解,取决于判别式b^2 - 4ac的值。
当判别式大于0时,方程有两个不相等的实根;当判别式等于0时,方程有两个相等的实根;当判别式小于0时,方程没有实根。
二、实际问题的解决例一:一个炮弹从地面上发射,并以初速度v0垂直上升。
加速度由g表示,可以近似看做9.8 m/s²。
求炮弹达到最高点的时间和高度。
解:根据物理学的运动学原理,我们可以得到炮弹在上升过程中的位移s(t)和速度v(t)与时间t的关系:s(t) = v0t - 0.5gt^2v(t) = v0 - gt当炮弹达到最高点时,速度为零,即v(t) = 0。
将此代入上式可以得到:v0 - gt = 0解方程可得:t = v0 / g再将时间t代入位移方程可以得到最高点的高度:s(t) = v0 * (v0 / g) - 0.5g * (v0 / g)^2= v0^2 / (2g)因此,炮弹达到最高点的时间为t = v0 / g,高度为s(t) = v0^2 / (2g)。
例二:一位售货员发现他每天卖出的商品数量是一个二次函数。
当他以每件商品售价5美元时,每天可以售出40件商品;当他以每件商品售价3美元时,每天可以售出60件商品。
问他以每件商品售价多少美元时,每天可以售出最多的商品数量是多少?解:设该二次函数为y = ax^2 + bx + c,其中x是每件商品的售价,y是每天售出的商品数量。
二次函数的实际问题
二次函数的实际问题二次函数是数学中的一个重要概念,在实际问题中有着广泛的应用。
通过二次函数可以描述并解决各种实际问题,例如物体的运动轨迹、金融领域的利润分析等。
本文将通过几个不同的实际问题,来说明二次函数在各个领域中的应用。
问题一:投掷运动考虑一个常见的物理问题,即投掷运动。
假设有一个物体从地面上以初始速度v₀竖直向上抛出,受到重力的作用下落。
我们希望能够描述物体的运动轨迹,并找到物体在空中的最高点和落地点。
首先,我们可以建立一个二次函数来表示物体的高度y与时间t之间的关系。
假设物体的初始高度为h₀,则物体的高度可以表示为:y(t) = -gt² + v₀t + h₀其中g表示重力加速度。
通过这个二次函数,我们可以计算出物体的运动轨迹,以及物体在空中的最高点和落地点的时间和高度。
问题二:利润分析在金融领域中,我们经常需要对企业的利润进行分析和预测。
假设一个企业的销售额与广告投入之间存在某种关系,我们可以建立一个二次函数来描述销售额与广告投入之间的关系。
假设销售额为P,广告投入为x,则二次函数可以表示为:P(x) = ax² + bx + c其中a、b、c为常数。
通过这个二次函数,我们可以分析销售额与广告投入之间的关系,并找到使得利润最大化的最优广告投入额。
问题三:物质衰变在化学领域中,物质的衰变速率也可以用二次函数来描述。
假设一个物质的衰变速率与时间的关系可以用二次函数表示:R(t) = -kt² + bt + c其中k、b、c为常数。
通过这个二次函数,我们可以分析物质的衰变速率与时间之间的关系,并预测物质的衰变情况。
总结:通过以上三个实际问题的例子,我们可以看到二次函数在不同领域中的应用之广泛。
二次函数可以方便地描述并解决各种实际问题,例如物体的运动轨迹、企业的利润分析以及物质的衰变情况等。
掌握二次函数的概念和应用,对我们理解和解决实际问题具有重要意义。
本文通过具体的实际问题,说明了二次函数的应用。
二次函数在生活中的应用
二次函数在生活中的应用
二次函数是一种常见的数学函数,它在我们的生活和工作中有许多应用。
以下是二次函数在生活中的几个应用:
1. 抛物线运动
当一个物体以一定的初速度开始运动,并且受到重力的影响而向下运动时,它的运动轨迹就是一条抛物线。
这个运动过程可以用二次函数来描述。
例如,当你抛出一颗球时,它的高度会随着时间的推移而不断降低,形成一条抛物线。
2. 建筑设计
在建筑设计中,二次函数可以用来描述建筑物的结构和形状。
例如,在建造一座拱形桥时,设计师需要使用二次函数来确定桥的最高点和曲线的形状。
3. 经济学
在经济学中,二次函数可以用来描述成本和收益之间的关系。
例如,当一家企业决定生产某种产品时,它需要考虑生产成本和销售收益之间的平衡点,这个平衡点可以用二次函数来计算。
4. 电子技术
在电子技术中,二次函数可以用来描述电路中的电压和电流之间的关系。
例如,在设计一条放大电路时,工程师需要使用二次函数来确定电路的增益和频率响应。
总之,二次函数在我们的生活和工作中有许多应用,这些应用涉及到不同的领域,包括物理学、工程学、经济学和电子技术等。
熟练
掌握二次函数的概念和应用可以帮助我们更好地理解和解决实际问题。
二次函数的应用
二次函数的应用二次函数是数学中一种常见的函数形式,其方程可以表示为:y = ax^2 + bx + c其中,a、b、c为常数,且a ≠ 0。
二次函数在许多实际问题中都有广泛的应用,本文将介绍二次函数在几个不同领域的具体应用案例。
一、物理学领域中的应用1. 自由落体问题当物体在重力作用下自由落体时,其高度与时间之间的关系可以用二次函数来描述。
假设物体从初始高度h0下落,时间t与高度h之间的关系可以表示为:h = -gt^2 + h0其中g为重力加速度,取9.8m/s^2。
通过解二次方程可以求解物体落地的时间以及落地时的位置。
2. 弹射物体的运动考虑一个弹射物体,如抛射出的炮弹或投射物,其路径可以用一个抛物线来表示。
弹射物体的运动轨迹可以通过二次函数得到,可以利用二次函数的顶点坐标来确定最远射程或最高点。
二、经济学领域中的应用1. 成本和收入关系在经济学中,企业的成本和收入通常与产量相关。
通常情况下,成本和收入之间存在二次函数关系。
通过分析二次函数的图像,可以确定最大利润产量或最低成本产量。
2. 售价和需求关系在市场经济中,产品的售价通常与需求量相关。
通常情况下,售价和需求量之间存在二次函数关系。
通过分析二次函数的图像,可以找到最佳定价,以达到利润最大化。
三、工程学领域中的应用1. 抛物线拱桥在建筑和结构工程中,抛物线是通常用来设计拱桥的形状。
由于抛物线具有均匀承重特性,因此可以最大程度地减少桥墩的数量,提高桥梁的承载能力。
2. 抛物面反射器在光学和声学工程中,抛物面被广泛应用于反射器的设计。
由于抛物面具有焦点特性,因此可以实现光或声波的聚焦效果,提高反射效率。
四、生物学领域中的应用1. 生长模型植物和动物的生长通常可以使用二次函数模型来描述。
二次函数可以帮助分析生物在不同生长阶段的生长速率,并预测未来的生长趋势。
2. 群体增长生态学中,群体增长通常可以使用二次函数模型来描述。
例如,一种昆虫群体的数量随时间的变化可以通过二次函数来表示,通过分析二次函数的图像,可以预测种群数量的变化趋势。
二次函数在实际生活中的应用
第15课时┃二次函数的应用
解 析
(1)根据“若销售单价每个降低 2 元, 则每周可多卖出 20 个”列销售量 y(个)与降价 x(元)之间的函数关系式;(2)根据 “总利润=单个产品利润×销售量”列二次函数,然后利用 配方法求最大利润;
回归教材
考点聚焦
考向探究
第15课时┃二次函数的应用
第15课时┃二次函数的应用
例3
某中学课外兴趣活动小组准备围建一个矩形苗圃园 ,其
中一边靠墙,另外三边由长为30米的篱笆围成.已知墙长为18米 (如图15-5所示),设这个苗圃园垂直于墙的一边长为x米. (1)若苗圃园的面积为72平方米,求x; (2)若平行于墙的一边长不小于8米,这个苗圃园的面积有最 大值和最小值吗?如果有,求出最大值和最小值;如果没有,请 说明理由.
(2)垂直于墙的一边的长为多少米时,这个苗圃园
的面积最大?并求出这个最大值.
(3)当这个苗圃园的面积不小于88平方米时,试结
合函数图象y=30-2x(6≤x<15) (2)当矩形苗圃
园垂直于墙的边长为7.5米时,这个苗圃面积最大,
最大值为112.5平方米 (3)6≤x≤11
图15-5
回归教材 考点聚焦 考向探究
第15课时┃二次函数的应用
解:(1)根据题意得:(30-2x)x=72, 解得:x=3或x=12, ∵30-2x≤18, ∴x≥6,∴x=12;
回归教材
考点聚焦
考向探究
第15课时┃二次函数的应用
例 3 某中学课外兴趣活动小组准备围建一个矩形苗圃园 , 其中 一边靠墙, 另外三边由长为 30 米的篱笆围成. 已知墙长为 18 米(如 图 15-5 所示),设这个苗圃园垂直于墙的一边长为 x 米. (2)若平行于墙的一边长不小于 8 米,这个苗圃园的面积有最 大值和最小值吗?如果有,求出最大值和最小值;如果没有,请说 明理由.
二次函数的实际应用总结
二次函数的实际应用总结二次函数是高中数学中重要的一类函数。
它具有形如y=ax^2+bx+c的特点,其中a、b、c是实数且a不等于0。
二次函数有许多实际应用,涉及到物理、经济和生活中的各种问题。
本文将总结几个二次函数的实际应用。
一、物体自由落体物体自由落体是一个常见的物理问题,可以用二次函数来描述。
当一物体从高处自由落下时,它的高度与时间之间的关系可以由二次函数表示。
设物体自由落下的高度为H(米),时间为t(秒),重力加速度为g(9.8米/秒²),则有公式H = -gt²/2。
其中负号表示高度的减小,因为物体向下运动。
通过这个二次函数,我们可以计算物体在不同时间下的高度,进而研究物体的运动规律。
例如,我们可以计算物体自由落地所需的时间,或者计算物体在某个时间点的高度。
这在工程设计和物理实验中具有重要意义,帮助我们预测和控制物体的运动。
二、开口向上/向下的抛物线二次函数的图像通常是一个抛物线,其开口的方向由二次项系数a的正负决定。
当a大于0时,抛物线开口向上;当a小于0时,抛物线开口向下。
对于开口向上的抛物线,我们可以将其应用到生活中的一些情景。
比如,一个喷泉的水柱,水流高度与时间之间的变化可以用开口向上的二次函数来描述。
同样,开口向下的抛物线也有实际应用。
例如,一个弹簧的变形量与受力之间的关系常常是开口向下的二次函数。
通过了解抛物线的性质和方程,我们可以更好地理解和解决与之相关的问题。
三、经济学中的应用二次函数在经济学中也有广泛的应用。
例如,成本函数和收入函数常常是二次函数。
企业的成本与产量之间的关系可以用二次函数来刻画。
同样,市场需求和供给也可以用二次函数来表达。
在经济学中,研究成本、收入、需求和供给的函数对于决策和市场分析至关重要。
通过对二次函数的运用,我们可以计算某一产量下的成本和收入,并了解市场价格的影响因素。
这有助于企业决策和经济政策的制定。
四、其他实际应用除了以上提到的应用,二次函数还可以用于建模和预测其他实际问题。
二次函数在实际生活中的应用与实际问题分类整理
二次函数在实际生活中的应用【经典母题】某超市销售一种饮料,每瓶进价为9元,经市场调查表明,当售价在10元到14元之间(含10元,14元)浮动时,每瓶售价每增加0.5元,日均销量减少40瓶;当售价为每瓶12元时,日均销量为400瓶.问销售价格定为每瓶多少元时,所得日均毛利润(每瓶毛利润=每瓶售价-每瓶进价)最大?最大日均毛利润为多少元?解:设售价为每瓶x元时,日均毛利润为y元,由题意,得日均销售量为400-40[(x-12)÷0.5]=1 360-80x,y=(x-9)(1 360-80x)=-80x2+2 080x-12 240(10≤x≤14).-b2a=-2 0802×(-80)=13,∵10≤13≤14,∴当x=13时,y取最大值,y最大=-80×132+2 080×13-12 240=1 280(元).答:售价定为每瓶13元时,所得日均毛利润最大,最大日均毛利润为1 280元.【思想方法】本题是一道复杂的市场营销问题,在建立函数关系式时,应注意自变量的取值范围,在这个取值范围内,需了解函数的性质(最大最小值,变化情况,对称性,特殊点等)和图象,然后依据这些性质作出结论.【中考变形】1.[2017·锦州]某商店购进一批进价为20元/件的日用商品,第一个月,按进价提高50%的价格出售,售出400件,第二个月,商店准备在不低于原售价的基础上进行加价销售,根据销售经验,提高销售单价会导致销售量的减少.销售量y(件)与销售单价x(元)的关系如图Z8-1所示.(1)图中点P所表示的实际意义是__当售价定为35元/件时,销售量为300件__;销售单价每提高1元时,销售量相应减少__20__件;(2)请直接写出y与x之间的函数表达式:__y=20x图Z8-1+1_000__;自变量x 的取值范围为__30≤x ≤50__;(3)第二个月的销售单价定为多少元时,可获得最大利润?最大利润是多少? 解:(1)图中点P 所表示的实际意义是:当售价定为35元/件时,销售量为300件;第一个月的该商品的售价为20×(1+50%)=30(元),销售单价每提高1元时,销售量相应减少数量为(400-300)÷(35-30)=20(件).(2)设y 与x 之间的函数表达式为y =kx +b ,将点(30,400),(35,300)代入,得⎩⎨⎧400=30k +b ,300=35k +b ,解得⎩⎨⎧k =-20,b =1 000,∴y 与x 之间的函数表达式为y =-20x +1 000. 当y =0时,x =50,∴自变量x 的取值范围为30≤x ≤50. (3)设第二个月的利润为W 元,由已知得W =(x -20)y =(x -20)(-20x +1 000)=-20x 2+1 400x -20 000 =-20(x -35)2+4 500,∵-20<0,∴当x =35时,W 取最大值4 500.答:第二个月的销售单价定为35元时,可获得最大利润,最大利润是4 500元.2.[2016·宁波一模]大学生自主创业,集资5万元开品牌专卖店,已知该品牌商品成本为每件a 元,市场调查发现日销售量y (件)与销售价x (元/件)之间存在一次函数关系,如下表所示:若该店某天的销售价定为110元/件,雇有3名员工,则当天正好收支平衡(即支出=商品成本+员工工资+应支付的其他费用).已知员工的工资为每人每天100元,每天还应支付其他费用200元(不包括集资款). (1)求日销售量y (件)与销售价x (元/件)之间的函数关系式;(2)该店现有2名员工,试求每件服装的销售价定为多少元时,该服装店每天的毛利润最大(毛利润=销售收入-商品成本-员工工资-应支付的其他费用);(3)在(2)的条件下,若每天毛利润全部积累用于一次性还款,而集资款每天应按其万分之二的利率支付利息,则该店最少需要多少天(取整数)才能还清集资款?解:(1)由表可知,y 是关于x 的一次函数,设y =kx +b , 将x =110,y =50;x =115,y =45分别代入, 得⎩⎨⎧110k +b =50,115k +b =45,解得⎩⎨⎧k =-1,b =160, ∴y =-x +160(0<x ≤160);(2)由已知可得50×110=50a +3×100+200, 解得a =100.设每天的毛利润为W 元, 则W =(x -100)(-x +160)-2×100-200 =-x 2+260x -16 400 =-(x -130)2+500,∴当x =130时,W 取最大值500.答:每件服装的销售价定为130元时,该服装店每天的毛利润最大,最大毛利润为500元;(3)设需t 天才能还清集资款, 则500t ≥50 000+0.000 2×50 000t , 解得t ≥102249.∵t 为整数,∴t 的最小值为103天. 答:该店最少需要103天才能还清集资款.3.[2017·青岛]青岛市某大酒店豪华间实行淡季、旺季两种价格标准,旺季每间价格比淡季上涨1.下表是去年该酒店豪华间某两天的相关记录:(1)该酒店豪华间有多少间?旺季每间价格为多少元?(2)今年旺季来临,豪华间的间数不变,经市场调查发现,如果豪华间仍旧实行去年旺季的价格,那么每天都客满;如果价格继续上涨,那么每增加25元,每天未入住房间数增加1间.不考虑其他因素,该酒店将豪华间的价格上涨多少元时,豪华间的日总收入最高?最高日总收入是多少元?(注:上涨价格需为25的倍数)解:(1)设淡季每间的价格为x 元,依题意得 40 000x ⎝ ⎛⎭⎪⎫1+13=24 000x +10,解得x =600, ∴酒店豪华间有40 000x ⎝ ⎛⎭⎪⎫1+13=40 000600×⎝ ⎛⎭⎪⎫1+13=50(间), 旺季每间价格为x +13x =600+13×600=800(元). 答:该酒店豪华间有50间,旺季每间价格为800元; (2)设该酒店豪华间的价格上涨x 元,日总收入为y 元, y =(800+x )⎝ ⎛⎭⎪⎫50-x 25=-125(x -225)2+42 025, ∴当x =225时,y 取最大值42 025.答:该酒店将豪华间的价格上涨225元时,豪华间的日总收入最高,最高日总收入是42 025元.4.某公司经营杨梅业务,以3万元/t 的价格向农户收购杨梅后,分拣成A ,B 两类,A 类杨梅包装后直接销售,B 类杨梅深加工再销售.A 类杨梅的包装成本为1万元/t ,根据市场调查,它的平均销售价格y (万元/t)与销售数量x (x ≥2)(t)之间的函数关系式如图Z8-2,B 类杨梅深加工总费用s (单位:万元)与加工数量t (单位:t)之间的函数关系是s =12+3t ,平均销售价格为9万元/t.图Z8-2(1)直接写出A 类杨梅平均销售价格y 与销售量x 之间的函数关系式; (2)第一次该公司收购了20 t 杨梅,其中A 类杨梅x t ,经营这批杨梅所获得的毛利润为W 万元(毛利润=销售总收入-经营总成本). ①求W 关于x 的函数关系式;②若该公司获得了30万元毛利润,问:用于直接销售的A 类杨梅有多少吨? (3)第二次该公司准备投人132万元资金,请设计一种经营方案,使公司获得最大毛利润,并求出最大毛利润. 解:(1)y =⎩⎨⎧-x +14(2≤x <8),6(x ≥8);(2)∵销售A 类杨梅x t ,则销售B 类杨梅(20-x )t. ①当2≤x <8时,W =x (-x +14)+9(20-x )-3×20-x -[12+3(20-x )]=-x 2+7x +48, 当x ≥8时,W =6x +9(20-x )-3×20-x -[12+3(20-x )]=-x +48,∴函数表达式为W =⎩⎨⎧-x 2+7x +48(2≤x <8),-x +48(x ≥8);②当2≤x <8时,-x 2+7x +48=30,解得x 1=9,x 2=-2,均不合题意, 当x ≥8时,-x +48=30,解得x =18.答:当毛利润达到30万元时,直接销售的A 类杨梅有18 t ; (3)设该公司用132万元共购买m t 杨梅,其中A 类 杨梅为x t ,B 类杨梅为(m -x )t ,购买费用为3m 万元. 由题意,得3m +x +[12+3(m -x )]=132, 化简,得3m =x +60.①当2≤x <8时,W =x (-x +14)+9(m -x )-132,把3m =x +60代入,得 W =-(x -4)2+64,当x =4时,有最大毛利润64万元. 此时,m =643,m -x =523;②当x ≥8时,W =6x +9(m -x )-132,由3m =x +60,得W =48,当x ≥8时,毛利润总为48万元.答:综上所述,购买杨梅共643 t ,且其中直销A 类杨梅4 t ,B 类杨梅523 t ,公司能获得最大毛利润64万元.【中考预测】某衬衣店将进价为30元的一种衬衣以40元售出,平均每月能售出600件,调查表明:这种衬衣售价每上涨1元,其销售量将减少10件.(1)写出月销售利润y(元)与售价x(元/件)之间的函数关系式;(2)当销售价定为45元时,计算月销售量和销售利润;(3)衬衣店想在月销售量不少于300件的情况下,使月销售利润达到10 000元,销售价应定为多少?(4)当销售价定为多少元时会获得最大利润?求出最大利润.解:(1)由题意可得月销售利润y与售价之间的函数关系式为y=(x-30)[600-10(x-40)]=-10x2+1 300x-30 000;(2)当x=45时,600-10(x-40)=550(件),y=-10×452+1 300×45-30 000=8 250(元);(3)令y=10 000,代入(1)中函数关系式,得10 000=-10x2+1 300x-30 000,解得x1=50,x2=80.当x=80时,600-10(80-40)=200<300(不合题意,舍去),故销售价应定为50元;(4)y=-10x2+1 300x-30 000=-10(x-65)2+12 250,∴x=65时,y取最大值12 250.答:当销售价定为65元时会获得最大利润,最大利润为12 250元.二次函数与实际问题分类整理1、理论应用(基本性质的考查:解析式、图象、性质等)2、实际应用(拱桥问题,求最值、最大利润、最大面积等)类型一:最大面积问题例一:如图在长200米,宽80米的矩形广场内修建等宽的十字形道路,绿地面积y(㎡)与路宽x(m)之间的关系?并求出绿地面积的最大值?变式练习1:如图,用50m长的护栏全部用于建造一块靠墙的长方形花园,写出长方形花园的面积y(㎡)与它与墙平行的边的长x(m)之间的函数关系式?当x为多长时,花园面积最大?类型二:利润问题例二:某商店经营T恤衫,已知成批购进时单价是2.5元.根据市场调查,销售量与销售单价满足如下关系:在某一时间内,单价是13.5元时,销售量是500件,而单价每降低1元,就可以多售出200件. 请你帮助分析:销售单价是多少时,可以获利最多?设销售单价为x元,(0<x≤13.5)元,那么(1)销售量可以表示为____________________;(2)销售额可以表示为____________________;(3)所获利润可以表示为__________________;(4)当销售单价是________元时,可以获得最大利润,最大利润是__________变式训练2.某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:每涨价1元,每星期少卖出10件;每降价1元,每星期可多卖出20件,已知商品的进价为每件40元,如何定价才能使利润最大?变式训练3:某公司推出了一种高效环保型洗涤用品,年初上市后,公司经历从亏损到盈利的过程,如下图的二次函数图象(部分)刻画了该公司年初以来累积利润y(万元)与销售时间x(月)之间的关系(即前x个月的利润之和y与x之间的关系).(1)根据图上信息,求累积利润y(万元)与销售时间x(月)的函数关系式;(2)求截止到几月末公司累积利润可达到30万元?(3)求第8个月公司所获利润是多少万元?变式训练4.某服装公司试销一种成本为每件50元的T恤衫,规定试销时的销售单价不低于成本价,又不高于每件70元,试销中销售量y(件)与销售单价x(元)的关系可以近似的看作一次函数(如图).y (件)(1)求y 与x 之间的函数关系式;(2)设公司获得的总利润(总利润=总销售额 总成本)为P 元,求P 与x 之间的函数关系式,并写出自变量x 的取值范围;根据题意判断:当x 取何值时,P 的值最大?最大值是多少?类型三:实际抛物线问题例三:某隧道横断面由抛物线与矩形的三边组成,尺寸如图10所示。
二次函数的实际应用实例
二次函数的实际应用实例二次函数是高中数学中的重要内容,它广泛应用于实际生活中的各个领域。
本文将就二次函数的实际应用举例说明其在现实生活中的重要性和作用。
1. 抛物线的建筑设计在建筑设计中,抛物线是一个常见的曲线形状,许多建筑物的外形和结构都采用了抛物线的形状。
例如,著名的法国巴黎卢浮宫的玻璃金字塔,其设计就采用了二次函数的曲线,使得整个建筑物看起来美观而富有立体感。
2. 炮弹的轨迹预测在军事领域中,掌握炮弹的轨迹是重要的战术指导。
二次函数可以模拟炮弹的轨迹,帮助军事专家预测炮弹的飞行轨迹和落点。
通过测量和计算炮弹的初速度、发射角度和空气阻力等因素,可以得到一个二次函数来描述炮弹的运动轨迹,为军事作战提供重要的参考依据。
3. 跳伞运动员的自由落体跳伞运动是一项极具挑战性和刺激性的运动。
在空中自由落体的过程中,跳伞运动员会受到重力的作用,其下落的轨迹可以用二次函数来描述。
通过观察和计算下降的速度和时间,可以得到运动员下落的二次函数,帮助运动员进行准确的跳伞时间和地点选择。
4. 投掷物的运动轨迹在体育比赛中,如篮球、铅球、飞镖等项目中,投掷物的运动轨迹是重要的判定依据。
通过研究和分析投掷物的飞行轨迹,可以得到二次函数来描述其运动状态。
这样运动员可以更好地掌握投掷的力度和角度,提高命中的准确性。
5. 导弹的飞行轨迹在军事技术中,导弹的飞行轨迹预测是一门重要的科学。
通过利用二次函数,可以描述导弹的飞行轨迹和速度变化。
这有助于军事专家预测导弹的落点和机动能力,从而制定出更加有效的军事战略。
综上所述,二次函数在现实生活中有着广泛的应用。
从建筑设计、军事战术、体育比赛到军事技术,二次函数的实际应用不胜枚举。
了解和掌握二次函数的特性和用途,对我们理解和应用数学知识具有重要意义。
二次函数的实际应用
如图,有长24m的篱笆,围城中间隔有一道篱笆的长方形的花圃, 且花圃的长可接用一段墙体(墙体的最大可用长度a=10) (2)、要使围城花圃的面积最大,那么AB的长度为多少? 由(1)知y=-3x2+24x=-3(x-4)2+48 14 因为0<BC ≤10,所以0<24-3x ≤ 10, x <8 14 3 ≤ 3 当x<4,y随x的增大而增大 当x>4,y随x的增大而减小 2 14 所以,当x= 时,y有最大值,最大值为 46 x= y 3 3 14 所以,当AB= 米时,(BC=10)花圃的面积最大。
例2:(2008•安徽)杂技团进行杂技表演,演员从 跷跷板右端A处弹跳到人梯顶端椅子B处,其身体 (看成一点)的路线是抛物线y=-x2+3x+1的一部分, 如图所示. (1)求演员弹跳离地面的最大高度; (2)已知人梯高BC=3.4米,在一次表演中,人梯到 起跳点A的水平距离是4米,问这次表演是否成功? 请说明理由.
下课了!
•生活是数学的源泉. 生活是数学的源泉. 生活是数学的源泉
解:(1)y=-x2+3x+1=-(x-2.5)2+4.75 ∵-1<0,∴函数的最大值,最大值是4.75. 答:演员弹跳离地面的最大高度是4.75m. (2)当x=4时,y=-1×42+3×4+1=3.4=BC, 所以这次表演成功.
如图,有长24m的篱笆,围墙体(墙体的最 大可用长度a=10) (1)、如果所围成的花圃的面积为45m的平方,求 AB的长。 (2)、要使围城花圃的面积最大,那么AB的长度为 多少? 解:(1)设AB=xm,则BC=(24-3x)m 则花圃面积y=x(24-3x)=-3x2+24x 令y=45,得-3x2+24x=45解得x1=3,x2=5 当x=3时,BC=24-3x=15>10不合题意,舍去。 当x=5时,BC=24-3x=9<10符合题意, 故AB=5时,花圃的面积最大。
二次函数在生活中的运用
二次函数在生活中的运用二次函数是一个具有形式为y=ax^2+bx+c的二次多项式函数,其中a、b、c是实数且a≠0。
它是数学中一个重要的函数类型,其在现实生活中有许多广泛的应用。
下面将介绍一些二次函数在生活中的运用。
1.物体的自由落体运动:当物体从静止的位置开始自由下落时,其高度与时间的关系可以用二次函数来描述。
根据物体下落的加速度和初速度,我们可以建立二次函数模型来预测物体的高度随时间的变化。
2.弹性力的计算:弹性力是恢复力的一种,其大小与物体偏离平衡位置的距离成正比。
当物体被施加一个力使其偏离平衡位置时,恢复力的大小可以用二次函数描述。
3.抛物线的建模:抛物线是二次函数的图像,它在很多领域中都有应用。
例如,在建筑设计中,抛物线形状的屋顶可以提供更好的排水系统。
在桥梁设计中,抛物线形状的拱桥可以提供更好的结构稳定性。
4.投射物体的路径预测:当一个物体以一定的初速度和角度被抛出时,它的轨迹可以用二次函数模型来预测。
例如,在棒球运动中,球员可以通过分析投球的初速度和角度来预测球的落点。
5.音乐乐器的调音:乐器的音高可以通过改变乐器弦的张力来调节。
根据弦的拉紧程度,可以建立一个二次函数模型来描述音高与弦长的关系。
这使得乐器演奏者能够根据需要调整乐器的音高。
6.经济中的成本与产出关系:在经济学中,成本与产出的关系经常可以用二次函数来描述。
例如,生产一定数量的商品所需的成本与产出之间可能存在一个最优点,通过求二次函数的极值,可以确定最大化利润的产量。
7.变量与值的关系:二次函数可以用来描述两个变量之间的关系。
例如,员工的工资与工作经验之间可能存在一个二次函数模型,随着工作经验的增加,工资可能会呈现先上升后下降的趋势。
8.交通流量的模拟:交通流量的变化可以用二次函数来建模。
例如,小时交通流量随时间的变化可能呈现一个钟形曲线,交通高峰期的交通流量较大,而其他时间段的交通流量相对较小。
以上仅列举了二次函数在生活中的一些应用,其中还有许多其他的应用。
如何用二次函数解决生活中的实际问题
与 速度 ( 千米 / 时) 满 足 函数 y = , 请 就 两 米 ? ( 取4 丁= 7 ) 车 的速度 方 面分析 相撞 的原 因 .
( t)
_
-
M
4
_
5 l O 1 5 2 0 2 5 x( 千米 时)
( 1 ) 请 用上表 中的各对数据( , v ) 作为点 的坐标 ,在 图 2 所示的坐标系 中画出甲车刹 车距离 y ( 米) 与 ( 千米 / 时) 的 函数 图 象 , 并 求 函数 的解 析式 . ( 2 )在 一 个 限 速 为 4 0千 米 / 时 的弯 路 上, 甲、 乙两 车相 向而 行 , 同时刹 车 , 但 还 是 相 撞 了. 事后 测 得 甲 、 乙 两 车 的刹 车距 离 分别 为 l 2米 和 l 0 . 5米 , 又 知 乙车 的刹 车距 离 ( 米)
( x - 6 ) = 4 8 ,
解得 X 1 = 3 、 / / - 3 , X 2 = - 3 、 / - 3 ( 舍去 ) ,
所以y = 一 l O 0 0 x + 6 0 0 0 x = 一 1 0 0 0 ( 3 一 3 )
1 = 4 、 / 丁+ 6 —1 3 , 2 = - 4 、 / 丁+ 6 <0 ( 舍去 ) , 足球第一 次落地距 守门员约 1 3米. ( 3 ) 如图, 第二 次足球 弹 出后 的距 离为 C D,
’
米高 , 球落地后 又一次弹起.据实验测算 , 足 球 在 草坪 上 弹起后 的抛 物 线 与原来 的抛 物线 形状 相 同 ,最 大 高度 减少 到 原来 最 大高 度 的
一
半.
( 1 ) 求足球 开始飞出到第一次落地时 , 该 抛物 线 的表达 式. ( 2 )足球 第 一次 落地 点 c距守 门员多 少 ( 3 ) 运动员乙要抢到第二个落点 D , 他应
二次函数的日常应用实例
二次函数的日常应用实例二次函数作为高中数学中的一个重要概念,具有广泛的应用领域。
本文将介绍二次函数在现实生活中的几个常见应用实例,以帮助读者更好地理解和应用这一数学知识。
1. 物体运动的轨迹分析二次函数可以描述物体在空间中的运动轨迹。
例如,当一个投掷物体从地面上抛出时,它的运动轨迹可以用二次函数来描述。
假设一个物体从地面上以初始速度v向上抛出,重力加速度为g。
物体的高度h 可以用二次函数h(t) = -0.5gt^2 + vt + h_0来表示,其中t表示时间,h_0表示初始高度。
通过解析二次函数,可以分析物体的运动轨迹、最大高度、飞行时间等参数。
2. 抛物线形状的建筑设计在建筑设计中,抛物线形状经常被应用于拱门、扶手、悬臂等结构中。
这些结构的形状可以用二次函数来描述。
通过对二次函数进行合适的平移、缩放和旋转,可以根据设计要求来创建出各种形态的抛物线结构。
抛物线结构不仅具有美观的外观,还具有稳定性和均衡负荷的优势。
3. 经济学中的消费模型在经济学中,二次函数常常被用来建立消费模型,帮助研究者了解人们的消费行为。
例如,假设一个人的收入为x,他的消费支出为y。
那么,他的消费行为可以用二次函数y = ax^2 + bx + c来模拟。
通过研究二次函数的系数a、b、c,可以分析消费者的倾向、边际消费率以及其对价格变化的敏感度等信息,为企业和政府制定经济政策提供指导。
4. 高精度测量中的误差修正在科学实验和测量中,我们经常需要对测量误差进行修正。
二次函数被广泛应用于误差修正的算法中。
假设我们进行一次测量,得到的结果为y,而真实值为x。
我们可以构建一个二次函数y = ax^2 + bx + c 来表示测量值与真实值之间的关系。
通过测量多组数据并利用最小二乘法求解系数a、b、c,我们可以对测量结果进行校正,提高测量精度。
5. 经典力学中的力学模型二次函数在经典力学中也有重要的应用。
例如,胡克定律描述了弹簧的弹性变形与施加力之间的关系。
二次函数与实际问题典型例题
二次函数与实际问题典型例题二次函数是一种常见的数学函数形式,其一般形式为f(x) = ax^2 + bx + c,其中a、b、c为常数,且a不等于0。
它在实际问题中有许多应用,下面我将从多个角度给出一些典型例题,以展示二次函数与实际问题的关系。
1. 抛物线的高度问题,假设一个物体从地面上抛,忽略空气阻力,其高度与时间的关系可以用二次函数表示。
例如,一个抛物线的方程可以是h(t) = -5t^2 + 10t + 2,其中h表示高度,t表示时间。
通过解方程可以求得物体的最高点、飞行时间等信息。
2. 弹性问题,当一个弹簧的伸长或压缩距离与施加的力之间存在线性关系时,其运动可以由二次函数描述。
例如,弹簧的伸长或压缩距离与施加的力的关系可以表示为d(f) = af^2 + bf + c,其中d表示伸长或压缩距离,f表示施加的力。
3. 成本与产量问题,在某些生产过程中,成本与产量之间可能存在二次函数关系。
例如,一个公司的成本可以表示为C(x) =ax^2 + bx + c,其中C表示成本,x表示产量。
通过分析二次函数的图像,可以找到最小成本对应的产量。
4. 面积最大化问题,在某些几何问题中,要求找到一个形状的最大面积。
例如,给定一定长度的围墙,如何构造一个矩形花园使得其面积最大?通过建立二次函数模型,可以解决这类问题。
5. 轨迹问题,在物理学或工程学中,研究物体在一定条件下的轨迹是常见的问题。
例如,一个抛物线的轨迹可以由二次函数表示。
通过分析二次函数的性质,可以求解物体的轨迹方程。
总之,二次函数在实际问题中有广泛的应用,涉及到物理学、经济学、几何学等多个领域。
通过建立二次函数模型,可以解决许多实际问题,并对问题进行分析和预测。
二次函数在生活中的应用案例
二次函数在生活中的应用案例1. 游艺项目中的过山车设计过山车是一个经典的游艺项目,其设计中应用了二次函数的概念。
在过山车的设计中,设计师需要考虑到乘客的体验和安全。
二次函数可以描述过山车的轨道曲线,使乘客在高速行驶和兴奋的同时,保持相对平稳和安全的感觉。
通过调整二次函数的参数,如抛物线的开口方向、高度、曲率等,设计师可以创造出令人惊险刺激又相对安全的过山车体验。
2. 投掷运动中的球的抛物线轨迹在投掷运动中,例如投掷物体或运动员抛投物体,物体在空中的轨迹可以被二次函数描述。
球类运动如篮球、足球、棒球等的投掷和弹射过程,都可以用二次函数模型来描述球的运动轨迹。
运动员和教练可以利用二次函数模型来预测球的飞行轨迹和最佳投掷角度,从而提高命中率和战术效果。
3. 桥梁和建筑物设计在桥梁和建筑物的设计过程中,对于拱形和弧形结构的设计,也是利用了二次函数的概念。
二次函数可以描述建筑物和桥梁的曲线形状,使得结构既具有美观性,又具备一定的坚固和稳定性。
例如,拱桥和拱门的设计中,二次函数模型可以帮助工程师确定合适的拱形曲线,以及正确的弧度和支撑结构,从而确保桥梁的结构稳定和承载能力。
4. 金融领域的货币供给和通货膨胀模型二次函数在金融领域中也有广泛的应用。
例如,货币供给和通货膨胀模型可以使用二次函数来描述。
在经济学中,通过调整二次函数的参数,如货币供应量和通货膨胀率之间的关系,可以预测未来经济的走势和市场表现。
政府和央行可以据此采取相应的货币政策,以维持经济的稳定和平衡。
5. 自然界中的抛物线曲线在自然界中,许多自然现象的运动轨迹也可以用二次函数来描述。
例如,抛物线轨迹可以在大多数情况下模拟自然界中物体的运动。
比如,自由落体下的物体、喷泉中水的喷射、炮弹的轨迹等都可以使用二次函数模型来描述其运动状态。
通过利用二次函数,我们可以更好地理解和解释自然界中的规律和现象。
总结:二次函数在生活中的应用案例非常广泛。
从游艺项目的过山车设计到金融领域的经济模型,从投掷运动的球的抛物线轨迹到桥梁和建筑物的设计,二次函数都发挥着重要的作用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
孟老师12月23日初三学案
二次函数在实际问题中的应用
一抛物线形的物体
研究抛物线的问题,需要建立适当的平面直角坐标系,根据已知条件,求出相关点的坐标,确定解析式,这是解答其它问题的基础,.
(2012•益阳)已知:如图,抛物线y=a(x﹣1)2+c与x轴交于点A(,0)和点B,将抛物线沿x轴向上翻折,顶点P落在点P'(1,3)处.
(1)求原抛物线的解析式;
(2)学校举行班徽设计比赛,九年级5班的小明在解答此题时顿生灵感:过点P'作x轴的平行线交抛物线于C、D两点,将翻折后得到的新图象在直线CD以上的部分去掉,设计成一个“W”型的班徽,“5”的拼音开头字母为W,“W”图案似大鹏展翅,寓意深远;而且小明
通过计算惊奇的发现这个“W”图案的高与宽(CD)的比非常接近黄金分割比(约等
于0.618).请你计算这个“W”图案的高与宽的比到底是多少?(参考数据:,,结果可保留根号)
2(2010•南充)如图,在水平地面点A处有一网球发射器向空中发射网球,网球飞行路线是一条抛物线,在地面上落点为B.有人在直线AB上点C(靠点B一侧)竖直向上摆放无盖的圆柱形桶,试图让网球落入桶内.已知AB=4米,AC=3米,网球飞行最大高度OM=5米,圆柱形桶的直径为0.5米,高为0.3米(网球的体积和圆柱形桶的厚度忽略不计).(1)如果竖直摆放5个圆柱形桶时,网球能不能落入桶内?
(2)当竖直摆放圆柱形桶多少个时,网球可以落入桶内?
二应用二次函数解决实际问题中的最值
求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法,常用的是后两种方法.
二次函数的性质在实际生活中的应用
常利函数的增减性来解答,首先要吃透题意,确定变量,建立函数模型,其中要注意应该在自变量的取值范围内求最大值(或最小值),也就是说二次函数的最值不一定在x=时
取得.
I自变量的取值范围包扩抛物线的顶点
(2012•本溪)某工厂生产某品牌的护眼灯,并将护眼灯按质量分成15个等级(等级越高,灯的质量越好.如:二级产品好于一级产品).若出售这批护眼灯,一级产品每台可获利润21元,每提高一个等级每台可多获利润1元,工厂每天只能生产同一个等级的护眼灯,每个等级每天生产的台数如下表所示:
等级(x级)一级二级三级…
生产量(y台/天)78 76 74 …
(1)已知护眼灯每天的生产量y(台)是等级x(级)的一次函数,请直接写出y与x之间的函数关系式:;
(2)若工厂将当日所生产的护眼灯全部售出,工厂应生产哪一等级的护眼灯,才能获得最大利润?最大利润是多少?
(2012•西藏)为了落实国家的惠农政策,某地政府制定了农户投资购买收割机的补贴办法,其中购买Ⅰ、Ⅱ型收割机所投资的金额与政府补贴的额度存在下表所示的函数对应关系:
Ⅰ型收割机Ⅱ型收割机
投资金额x(万元)x 5 x 2 4
补贴金额x(万元)y1=kx 2 y2=ax2+bx 2.4 3.2
(1)分别求出y1和y2的函数解析式;
(2)旺叔准备投资10万元购买Ⅰ、Ⅱ两型收割机.请你设计一个能获得最大补贴金额的方案,并求出按此方案能获得的补贴金额.
II自变量的取值范围不包扩抛物线的顶点
(2010•锦州)某商场购进一批单价为50元的商品,规定销售时单价不低于进价,每件的利润不超过40%.其中销售量y(件)与所售单价x(元)的关系可以近似的看作如图所表示的一次函数.
(1)求y与x之间的函数关系式,并求出x的取值范围;
(2)设该公司获得的总利润(总利润=总销售额﹣总成本)为w元,求w与x之间的函数关系式,当销售单价为何值时,所获利润最大,最大利润是多少?
(2012•青岛)在“母亲节”期间,某校部分团员参加社会公益活动,准备购进一批许愿瓶进行销售,并将所得利润捐给慈善机构.根据市场调查,这种许愿瓶一段时间内的销售量y(个)与销售单价x(元/个)之间的对应关系如图所示:
(1)试判断y与x之间的函数关系,并求出函数关系式;
(2)若许愿瓶的进价为6元/个,按照上述市场调查的销售规律,求销售利润w(元)与销售单价x(元/个)之间的函数关系式;
(3)在(2)的条件下,若许愿瓶的进货成本不超过900元,要想获得最大利润,试确定这种许愿瓶的销售单价,并求出此时的最大利润.。