六年级下册解比例应用题

合集下载

六年级数学解比例应用题练习题

六年级数学解比例应用题练习题

解比例应用题⑴一幅地图,图上的4厘米,表示实际距离200千米,这幅图的比例尺是多少?⑵甲、乙两地相距240千米,画在比例尺是1 : 3000000的地图上,长度是多少厘米?(3在一幅地图上,用3厘米的线段表示实际距离600千米。

量得甲、乙两地的距离是4.5厘米,甲、乙两地的实际距离是多少千米?(4)运来一批纸装订成练习本,每本36页,可订40本,若每本30页,可订多少本?(5)在一幅比例尺是1: 30000的地图上,量得东、西两村的距离是12.3厘米,东、西两村的实际距离是多少米?⑹甲地到乙地的实际距离是120千米,在一幅比例尺是1:6000000的地图上,应画多少厘米?⑺一幅地图,图上的4厘米,表示实际距离200千米,这幅图的比例尺是多少?(8)在一幅比例尺是1: 4000的平面图上,量得一块三角形的菜地的底是12厘米,高是8厘米,这块菜地的实际面积是多少公顷?(9)一辆汽车2小时行驶130千米。

照这样的速度,从甲地到乙地共行驶5小时。

甲、乙两地相距多少千米?(10)一辆汽车从甲地开往乙地,每小时行64千米,5小时到达。

如果要4小时到达,每小时需行驶多少千米?(11)修一条公路,原计划每天修360米,30天可以修完。

如果要提前5天修完,每天要修多少米?(12)修一条路,如果每天修120米,8天可以修完;如果每天修150米,可以提前几天可以修完?(13)修一条公路,总长12千米,开工3天修了 1.5千米。

照这样计算,修完这条路还要多少天?(14)修一条路,如果每天修120米,8天可以修完;如果每天多修30米,几天可以修完?(15)小明买4本同样的练习本用了 4.8元,138元可以买多少本这样的练习本?(16)工厂有一批煤,计划每天烧2.4吨,42天可以烧完。

实际每天节约1/8,实际可以烧多少天?(17)解放军某部行军演习,4小时走了22.4千米,照这样的速度又行了6小时,一共行了多少千米?(18)一对互相啮合的齿轮,主动轮有60个齿,每分转80转。

解比例应用题含答案

解比例应用题含答案

解比例应用题含答案第一题某车间要加工2220 个零件,单独做,甲、乙、丙三人所需工作时间的比是4:5 : 6。

现在由三人共同加工,问完成任务时,三人各加工了多少个?解答甲、乙、丙三人工作效率的比容易看出,因为5:4=15:12,6:5=12:10,所以,由上述“甲、乙二人工作效率的比是5:4,乙、丙二人工作效率的比是6:5”,也可以得到甲、乙、丙三人工作效率的比是是15:12:10。

第二题有两瓶同样重的盐水,甲瓶盐水盐与水重量的比是1:8,乙瓶盐水盐与水重量的比是1:5。

现将两瓶盐水并在一起,问在混合后的盐水中盐与水重量的比是多少?解答正确的解答是:1:8=2:16,2+16=18;1 : 5=3: 15, 3+ 15= 10。

( 2+ 3):( 16+ 15)= 5: 31答:在混合后的盐水中盐与水重量的比是5:31。

(1) 一幅地图,图上的 4 厘米,表示实际距离200 千米,这幅图的比例尺是多少?(2) 甲、乙两地相距240千米,画在比例尺是1:3000000的地图上,长度是多少厘米?(3 在一幅地图上,用3 厘米的线段表示实际距离600千米。

量得甲、乙两地的距离是4.5 厘米,甲、乙两地的实际距离是多少千米?(4) 运来一批纸装订成练习本,每本36 页,可订40 本,若每本30 页,可订多少本?(5) 在一幅比例尺是1: 30000的地图上,量得东、西两村的距离是12.3 厘米,东、西两村的实际距离是多少米?(6) 甲地到乙地的实际距离是120千米,在一幅比例尺是1:6000000 的地图上,应画多少厘米?(7) 一幅地图,图上的4厘米,表示实际距离200 千米,这幅图的比例尺是多少?(8) 在一幅比例尺是1:4000的平面图上,量得一块三角形的菜地的底是12厘米,高是8 厘米,这块菜地的实际面积是多少公顷?(9) 一辆汽车2小时行驶130千米。

照这样的速度,从甲地到乙地共行驶 5 小时。

精选解比例应用题(50道)

精选解比例应用题(50道)

1、甲地到乙地的实际距离是120千米,在一幅比例尺是1:6000000的地图上,应画多少厘米?2、幅地图,图上的4厘米,表示实际距离200千米,这幅图的比例尺是多少?3、在一幅比例尺是1:4000 的平面图上,量得一块三角形的菜地的底是12厘米,高是8厘米,这块菜地的实际面积是多少公顷?4、运来一批纸装订成练习本,每本36页,可订40本,若每本30页,可订多少本?5、在一幅比例尺是1:30000 的地图上,量得东、西两村的距离是12.3厘米,东、西两村的实际距离是多少米?6、甲地到乙地的实际距离是120千米,在一幅比例尺是1:6000000的地图上,应画多少厘米?7、一幅地图,图上的4厘米,表示实际距离200千米,这幅图的比例尺是多少?8、在一幅比例尺是1:4000 的平面图上,量得一块三角形的菜地的底是12厘米,高是8厘米,这块菜地的实际面积是多少公顷?9、一辆汽车2小时行驶130千米。

照这样的速度,从甲地到乙地共行驶5小时。

甲、乙两地相距多少千米?(用比例解)10、一辆汽车从甲地开往乙地,每小时行64千米,5小时到达。

如果要4小时到达,每小时需行驶多少千米?(用比例解)11、修一条公路,原计划每天修360米,30天可以修完。

如果要提前5天修完,每天要修多少米?(用比例解)12、修一条路,如果每天修120米,8天可以修完;如果每天修150米,可以提前几天可以修完?(用比例方法解)13、修一条公路,总长12千米,开工3天修了1.5千米。

照这样计算,修完这条路还要多少天?(用比例解答)14、修一条路,如果每天修120米,8天可以修完;如果每天多修30米,几天可以修完?(用比例方法解)15、小明买4本同样的练习本用了4.8元,138元可以买多少本这样的练习本?(用比例解答)16、工厂有一批煤,计划每天烧2.4吨,42天可以烧完。

实际每天节约12.5%,实际可以烧多少天?(比例解)17、解放军某部行军演习,4小时走了22.4千米,照这样的速度又行了6小时,一共行了多少千米?(用比例方法解)18、一对互相啮合的齿轮,主动轮有60个齿,每分转80转。

苏教版数学六年级下册专项~比例解决问题【含答案】

苏教版数学六年级下册专项~比例解决问题【含答案】

苏教版数学六年级下册专项-比例解决问题1.一个精密零件,长5厘米,画在图纸上长0.4米.这张图纸的比例尺是多少?2.填空并按要求作图。

(1)以AB为轴,将三角形ABC旋转一周能形成________。

(填几何体名称)(2)在适当的位置按2∶1的比画出三角形ABC放大后的图形。

(3)在适当的位置按1∶2的比画出长方形缩小后的图形。

3.在一幅比例尺是1∶4000000的地图上量得甲、乙两地的距离是16厘米。

若画在比例尺是1∶8000000的地图上,两地间的图上距离是多少厘米?4.画一画,填一填。

(1)按3∶1的比画出图形A放大后得到的图形B。

(2)按1∶2的比画出图形B缩小后得到的图形C。

我发现:放大或缩小前后的图形()变了,但()没有变,而且图形各部分长度是按一定的比变化的。

5.在一张比例尺是1∶150的建筑图纸上,量得一座大楼的长是6分米,这座大楼的实际长与宽的比是3∶1,这座大楼的实际宽是多少米?6.下图中小平行四边形按比放大后得到大平行四边形,求大平行四边形的高。

(单位:分米)12.根据图中提供的信息,完成下列问题。

(1)自来水厂要从水库取水,取水管道怎样铺最短,请在图中画出来。

(2)自来水厂到城区的送水管道经测算最短是2000米,请你测算:自来水厂到水库的取水管道最短需多少米?13.在一幅地图上,用5厘米长的线段表示实际距离100千米,这幅地图的比例尺是多少?如果甲市至乙市的铁路线路长150千米,那么这段铁路线路在这幅地图上的长度是多少厘米?14.江苏省云龙湖景区杏花坞广场是人们夏天避暑纳凉的佳处。

广场绿地面积与铺装面积的比是6∶5,其中铺装面积共5000平方米,绿地面积有多少平方米?15.甲乙两城相距150千米,在一幅地图上量得甲乙两城之间的距离是5厘米,同时在这幅地图上量得乙丙两城之间的距离是8厘米。

乙丙两城之间的实际距离是多少千米?20.下图中A点是游乐场所在的位置,B点是电影院所在的位置,两地实际距离相距2千米。

比例应用题(专项训练)数学六年级下册人教版

比例应用题(专项训练)数学六年级下册人教版

比例应用题(专项训练)20232024学年数学六年级下册人教版典例分析一.工程队修一段公路,原计划每天修4.8千米,18天修完。

实际提前2天修完,实际每天修多少千米?【答案】5.4千米【分析】根据题意可知:工作总量是一定的,工作效率和工作时间成反比例关系,设实际每天修x千米,据此列比例解答。

【详解】解:设实际每天修x千米。

(18-2)x=4.8×1816x=86.4x=86.4÷16x=5.4答:实际每天修5.4千米。

【点睛】明确工作总量一定,工作效率和工作时间成反比例关系,据此列出比例是解答本题的关键。

典例分析二.如图,学校大门在孔子雕像的正东方240米处。

1号教学楼在孔子雕像北偏东45°的200米处。

(1)分别计算出学校大门、1号教学楼到孔子雕像的图上距离。

(2)在图纸上画出学校大门和1号教学楼的位置。

【答案】(1)学校大门6厘米;1号教学楼5厘米(2)见详解【分析】(1)根据进率“1米=100厘米”以及“图上距离=实际距离×比例尺”,分别求出学校大门、1号教学楼到孔子雕像的图上距离。

(2)以图上的“上北下南,左西右东”为准,在孔子雕像的正东方画6厘米长的线段,即是学校大门;在孔子雕像的北偏东45°方向画5厘米长的线段,即是1号教学楼。

【详解】(1)240米=24000厘米24000×14000=6(厘米)200米=20000厘米20000×14000=5(厘米)答:学校大门到孔子雕像的图上距离是6厘米,1号教学楼到孔子雕像的图上距离是5厘米。

(2)如图:【点睛】本题考查比例尺的应用、根据比例尺画图以及根据方向、角度和距离确定物体的位置。

典例分析三.旗杆有多长?(1)操场上,同学们正在阳光下测量不同长度的竹竿、木棒、大树的长度及它们的影长,测量数据如表:实际长度(米)影长(米)实际长度与影长的比值跟踪训练1.在比例尺是1∶400000的地图上量得甲、乙两地的距离是6厘米。

六年级比例应用题50道含答案难

六年级比例应用题50道含答案难

六年级比例应用题50道含答案难
一、题目
1. 小明有50元,买了一件衣服,价格是30元,小明还剩多少钱?
答案:小明还剩20元。

2. 小红有100元,买了一双鞋,价格是60元,小红还剩多少钱?
答案:小红还剩40元。

3. 小刚有120元,买了一件外套,价格是90元,小刚还剩多少钱?
答案:小刚还剩30元。

4. 小芳有150元,买了一件裙子,价格是100元,小芳还剩多少钱?
答案:小芳还剩50元。

5. 小强有200元,买了一件衬衫,价格是120元,小强还剩多少钱?
答案:小强还剩80元。

6. 小李有250元,买了一条裤子,价格是150元,小李还剩多少钱?
答案:小李还剩100元。

7. 小燕有300元,买了一件外套,价格是180元,小燕还剩多少钱?
答案:小燕还剩120元。

8. 小虎有350元,买了一双鞋,价格是210元,小虎还剩多少钱?
答案:小虎还剩140元。

9. 小龙有400元,买了一件衣服,价格是240元,小龙还剩多少钱?
答案:小龙还剩160元。

10. 小马有450元,买了一件裙子,价格是270元,小马还剩多少钱?
答案:小马还剩180元。

(完整版)六年级下册数学解比例练习题

(完整版)六年级下册数学解比例练习题

(完整版)六年级下册数学解比例练习题六年级下册数学解比例练习题经典题型一、填空:1. 甲乙两数的比是11:9,甲数占甲、乙两数和的,乙数占甲、乙两数和的。

甲、。

乙两数的比是3:2,甲数是乙数的倍,乙数是甲数的2. 在3:5里,如果前项加上6,要使比值不变,后项应加。

91吨大豆可榨油吨,1吨大豆可榨油吨,要榨1吨油需大豆吨。

3224. 甲数的等于乙数的,甲数与乙数的比是。

353.5. 把甲数的1给乙,甲、乙两数相等,甲数是乙数的,甲数比乙数多。

1,甲数与乙数比是。

乙数比甲数少。

6. 甲数比乙数多7. 车库中停放若干辆双轮摩托车和四轮小卧车,车的辆数与车的轮子数的比是2:5.问:摩托车的辆数与小卧车的辆数的比是。

8. 一种盐水是由盐和水按1 :30 的重量配制而成的。

其中,盐的重量占盐水的,水的重量占盐水的。

9. 光明小学有三个年级,一年级学生占全校学生人数的25%,二年级与三年级学生人数的比是3:4,已知一年级比三年级学生少40人,一年级有学生人。

10. 加工零件的总个数一定,每小时加工的零件个数的加工的时间比例;订数学书的本数与所需要的钱数比例;加工零件的总个数一定,已经加工的零件和没有加工的零件个数比例。

11. 如果x÷y = 1×2,那么x和y成比例;如果x:4=5:y,那么x 和y成比例。

12. 甲、乙两人步行的速度比是13:11.如果甲、乙分别由A、B两地同时出发相向而行,0.5小时后相遇,如果它们同向而行,那么甲追上乙需要小时二、选择1 /1. 图上6厘米表示表示实际距离240千米,这幅图的比例尺是。

A、1:40000B、1:400000C、1:40000002. 小正方形和大正方形边长的比是2:7小正方形和大正方形面积的比是A、2:B、6:21C、4:14. 三角形的高一定,它的面积和底A、成正比例B、成反比例C、不成比例4. 与15:16能组成比例的是。

A、16:1 B、16: C、:D、6:55. 在盐水中,盐占盐水的110,盐和水的比是。

解比例练习题(共10篇)

解比例练习题(共10篇)

解比例练习题(共10篇)解比例练习题(一): 解比例计算练习题1.1.8:x=9:12.x:4/5=3/4:2/13.0.16:4/5=x:154.0.14:4.8=x:125.2/7:x=3/5:1/76.3/8:2/5=x:5/67.1/10:x=5/1:78.1.6/4.8=0.2/x【解比例练习题】解比例练习题(二): 不是应用题,就是解比例的练习题,要20道,简便计算20道!X:20=0.4:66X=20*0.4X=4/345:9=x:332:4=X:838:60=x:3025:40=x:6011:50=x:10018:25=x:7585:1664=x:612414%:X=4.75:57/81) 3X-(1/2+1/4)=7/123X=7/12+3/43X=4/3X=4/9(2) 6.6-5X=3/4-4X6.6-0.75=-4X+5XX=5.85(3) 1.1X+2.2=5.5-3.3X1.1X+3.3X=5.5-2.24.4X=3.3X=3/4=4/3还有(0.5+x)+x=9.8÷22(X+X+0.5)=9.825000+x=6x3200=450+5X+X简便运算:1、475+254+3612、615+475+1253、860-168+1594、465+358-275、647-(85+265)6、476+(65-29)7、154×8÷16 8、400÷25×75 9、16×25÷16×2510、552÷69×8 11、600-120÷10 12、(600-120)÷1013、(466-25×4)÷6 14、(43+32)÷(357-352)15、138+(27+48)÷25 16、56×19+25×817、368+2649+1351 18、 89+101+11119、24+127+476+573 20、400-273-127【解比例练习题】解比例练习题(三): 解比例填空数学题12比6=(),2.4比1.2=(),所以这两个比组成的比例是().12:6=( 2 )2.4:1.2=( 2 )所以这两个比组成的比例是( 12:6=2.4:1.2 ).解比例练习题(四): 解比例计算题要计算,不要应用题,50道,最好有答案,好的再加十分26×1.5= 2x0.5×16―16×0.2=4x9.25-X=0.40316.9÷X=0.3X÷0.5=2.63-5x=801.8-6x=546.7x-60.3=6.79 +4x=400.2x-0.4+0.5=3.79.4x-0.4x=16.212-4x=201/3x+5/6x=1.412x+34x=118x-14x=1223 x-5×14=1412+34x=5622-14x=12解比例练习题(五): 解比例练习题 2和8=9和x2 9一=一8 X2X=8*9=72X=36解比例练习题(六): 六年级解比例计算题50道六年级化简比计算题30道O(∩_∩)O谢谢...甲,乙两人骑自行车从A,B两地同时相向而行,经过三小时两人相遇,甲,乙相遇时所行的路程比是3:2,相遇时,甲比乙多行18千米,甲每小时行多少千米3-2=1(份),也就是如果甲比乙多一份就是多走18千米了,那么甲走了3份.也就*3,就是18*3=54(千米)小明从家去图书馆,去时每小时行6千米,回来时每小时行9千米,来回共用3小时,小明来回共走了多少千米甲出资金2400元,乙出资金4000元,合资经商得利润1700元,因甲特别劳累,先提取利润的十七分之一作酬劳,其余按本金比例分配.问甲、乙各得红利多少元(红利金额不包括酬劳金额)小王骑摩托车往返A、B两地、平均速度是每小时48千米,如果他去时每小时行42千米,那么它返回时的平均速度是每小时多少千米(1)妈妈有10块糖,平均分给哥哥和弟弟.每人可以得到几块糖(每人可分到5块糖.)提问:妈妈是怎样分的(平均分)(2)如果妈妈分给弟弟6块,分给哥哥4块,弟弟和哥哥糖数的比是多少(弟弟和哥哥糖数的比是3∶2.)提问:这样分还是平均分吗日常生活中,很多分配问题并不是平均分配,那么,你们想知道还可以按照什么分配吗好,今天我们继续研究有关分配的问题.(二)学习新课1.讲解例2.例2 一个农场计划在100公顷的地里种大豆和玉米,播种面积的比是3∶2.两种作物各播种多少公顷(1)这道题是一道分配问题的应用题,想一想:分谁按照什么分求的是什么(2)分析思考:看到“播种大豆和玉米面积的比是3∶2”这句话你想到了哪些倍数关系小组讨论.④玉米的面积与播种总面积的比是2∶5,玉米面积是播种面积的各小组选代表汇报,教师提前把学生要汇报的内容制成活动投影片,逐步出现.(3)解答例2.①试试看,用你学过的知识来解答例2,并在学习小组内说说你是怎样想的②说说你是怎样做的方法a:3+2=5播种大豆的面积100÷5×3=60(公顷)播种玉米的面积100÷5×2=40(公顷)方法b:总面积平均分成的份数为3+2=5③比较一下这几种方法中哪种方法更好一些为什么(第二种方法好,好想好算.)说说这种方法的思路(播种大豆和玉米面积的比是3∶2,就是说,在100公顷的地里,大豆地占3份,玉米地占2份,一共是5份,也就(4)这道题做得对不对如何进行检验请你检验一下同组同学做得对不对(可以把求得的大豆和玉米的总面积相加,看是不是等于播种的总面积.或者可以把求得的大豆和玉米写成比的形式,看化简后是不是等于3∶2.)2.练习:第62页中的“做一做”(1).六一班和六二班订《少年科学》的人数比是3∶4,两个班共订了49份.两个班各订了多少份(1)弄懂题意.(2)提问:这道题分配的是什么按照什么进行分配(这道题分配的是49份报纸,按照3∶4的比例分给六一班和六二班.)(3)独立完成.组员之间互相检验.3.学习例3.例3 学校把栽280棵树的任务,按照六年级三个班的人数分配给各班.一班有47人,二班有45人,三班有48人.三个班各应栽树多少棵(1)小组讨论:这道题分配的是什么按照什么来分配(分配的是280棵树,按照一班、二班、三班的人数的比来分配.)(2)提问:根据一班、二班、三班人数怎样算出各班栽的棵数占总棵数的几分之几(3)请你在练习本上独立完成.①三个班的总人数:47+45+48=140(人)②一班应栽的棵数:③二班应栽的棵数:④三班应栽的棵数:答:一班、二班、三班分别栽树94棵、90棵、96棵.(4)同组同学互相检验.4.练习:第62页中的“做一做”(2).一种什锦糖是由奶糖、水果糖和酥糖按照3∶5∶2混合成的.要配制这样的水果糖500千克,需要奶糖、水果糖和酥糖各多少千克(1)在练习本上独立完成.(2)同组同学互相检验.(三)课堂总结今天这节课我们学习了什么知识(板书课题:按比例分配应用题)想想看这种应用题有什么特点(已知总数量和部分量的比,求部分量是多少.)解答这种应用题怎样想(把一个总数量按照一定的比来进行分配,就要先求出总份数,再看各部分量占总数量的几分之几,接着就可以求出各部分量.)回到准备题,问:平均分按几比几分配的是不是按比例分配的应用题指出平均分应用题是按比例分配的应用题的一种特殊情况.(四)巩固反馈1.填空练习:①把35千克苹果平均分成7份,每份( )千克,2份( )千克,5份是( )千克. 2.专业户王大伯共养鸡和鸭2100只.鸡和鸭只数的比是4∶3.王大伯各养了多少只鸡和鸭第62页的“做一做”(3).一个三角形三条边的长度比是3∶5∶4,这个三角形的周长是36厘米.三条边的长度分别是多少厘米与练习题2有什么区别如果求它的最短边、最长边怎么求判断练习:(正确举√,错误举×)一个长方形的周长是20分米,长与宽的比是3∶2,这个长方形的长和宽各是多少分米1.小明从家去图书馆,去时每小时行6千米,回来时每小时行9千米,来回共用3小时,小明来回共走了多少千米2.甲出资金2400元,乙出资金4000元,合资经商得利润1700元,因甲特别劳累,先提取利润的十七分之一作酬劳,其余按本金比例分配.问甲、乙各得红利多少元(红利金额不包括酬劳金额)3.三人坐出租车回家,车费合理分摊.小王在全程1/3处下车,老李在全程3/4处下车,林林到终点后共付车费35元,设计三人车费分摊方案4.比和比例单元练习一、填空.1.________又叫做两个数的比.比的基本性质是____________________. 2.____________________叫做这幅图的比例尺.3.___________________叫做比例,把× =× 该写成比例_______.4.50000000厘米=_________千米, 5千米=___________厘米.5.因为= ,所以_____× ______=______ ×______.6.分数值一定,分数的___________和___________成正比例.7.________________一定,平行四边形的底和面积成正比例.8.如果6a=5b,那么a:b=_____: ____, a:5=____:____.9.甲数乙数的比值是2 ,甲数与乙数的比是_______:______.10.π是圆的________与________的比的比值.11.将2、5、8再配上一个数组成比例,这个数可以是().12.3:4.5的比值是_________,化成最简单的整数比是__________.13.在一幅1:6000000地图上,量得两个城市之间的距离是5厘米,两城市之间的实际距离是_________千米.14.甲数的和乙数的相等,甲数和乙数的比是_________.如果甲数5.甲、两袋糖的重量是4:1,从甲袋中取出10千克放入乙袋,这时它们的比是7:5.求两袋之和.解比例练习题(七): 求50道解比例题.例如:20:x=4:5.六)正比例、反比例应用题例题10:(1)用一批纸装订练习本,如果每本30页,可以装订600本.如果每本少用5页,可以装订多少本分析:这批纸的总页数不变,也就是积不变,每本页数和装订本数成反比例,列成乘积式设:可以装订x本30-5=25(页)25x=30×60025x=18000x=720答:可以装订720本.(2)用同样砖铺地,如果铺15平方米要用165块,如果铺50平方米要多用多少块砖分析:同样砖铺地,每平方米用块数一定,商一定,平方米数和块数成正比例,列成比例式设:如果铺50平方米要用x块砖.15:165=50:x15x=50×165x=550550-165=385(块)答:如果铺50平方米要多用385块砖.(3)一项工程,10人做24天可以完成.如果每人的工作效率不变,现在要提前4天完成,需要多少人分析:一项工程不变,每人的工作效率不变,前后的总工时数是相等的,所以设:需要x人.(24-4)x=10×2420x=240x=12答:现在要提前4天完成,需要12人.【模拟试题】(答题时间:50分钟)一、填空:1、有三种量,A B C,它们之间的关系可以用A×B=C表示.(1)如果A一定,BC成()比例;(2)如果B一定,AC成()比例;(3)如果C一定,AB成()比例.2、有三种量,A B C,它们之间的关系可以用A÷B=C表示.(1)如果A一定,BC成()比例;(2)如果B一定,AC成()比例;(3)如果C一定,AB成()比例.3、在一个比例式中,两个比的比值都是5,这个比例式的内项分别是3.5和2,这个比例式为或 .二、判断下面各题中两种量成不成比例,成什么比例(1)圆柱的侧面积一定,底面周长与高. ()(2)三角形面积一定,它的底和高. ()(3)天数一定,总产量和每天的产量. ()(4)圆柱体积一定,底面半径和高. ()(5)比的前项一定,后项和比值. ()(6)出粉率一定,原料和面粉. ()(7)一幅设计图,图上距离和实际距离. ()(8)每页书的字数一定,书的页数和这本书的总字数. ()(9)长方形长一定,周长和宽. ()(10)和一定,两个加数. ()(11)平形四边形面积一定,底和高. ()(12)装配一批电视机,每天装配台数和所需的天数. ()(13)正方形的周长和边长. ()(14)水池的容积一定,水管每小时注水量和所用时间. ()(15)房间面积一定,每块砖的面积和砖的块数. ()(16)每块砖的面积一定,砖的块数和铺地面积. ()(17)在一定时间里,加工每个零件所用时间和加工零件数. ()三、判断,对的打√,错的打×.1、比的后项不能是0. ()2、一个圆的半径和它周长的比为1:2л ()3、A与B的比是5:3,A比B多40% ()4、圆锥体体积一定,底面积和高成反比例()四、求比值6.3:1.8=五、化简比=:=:0.75=六、用1.4、10、7和2这四个数组成比例.你组成了多少个比例七、选择长方形周长14米,长和宽的比是6:1.长与宽各多少米()(1)6+1=7 (2)6+1=714×=12(米)7×=6(米)14×=2(米)7×=1(米)八、应用题1、人的血液与体重的比是1:13.小明体重52千克,他的血液有多少千克2、配制黑色火药的原料是火硝、硫磺和木炭,这三种原料的重量比是15:2:3,水利专业队要配制黑色火药80千克,需要这三种原料各多少千克3、一种药水中药和水的比是1:300,现要配制药水1204千克,需要水多少千克加药多少千克4、长方形周长是56厘米,如果长方形长与宽的比是4:3,这个长方形的面积是多少平方厘米5、甲、乙两地相距360千米,客车和货车同时从两地相对开出,4小时后相遇,客车和货车的速度比是5:4,求客车和货车的速度6、甲、乙、丙三个修路队,合修一条长200千米的公路,已知甲队修路的千米数是50,乙、丙两队修路的千米数的比是2:3,丙队修了多少千米7、甲与乙生产零件个数的比是5:3,乙比甲少生产40个,甲、乙各生产多少8、装订练习本,装订200本要用6000张纸.有15000张纸可以装订同样练习本多少本9、安装一条下水管道,计划每天安装120米,15天完成,实际只用了10天就完成了.实际每天安装多少米10、运一堆煤,计划每天运150吨,20天运完.实际2天就运了400吨,照这样计算,实际几天运完【试题答案】一、填空:1、有三种量,A B C,它们之间的关系可以用A×B=C表示.(1)如果A一定,BC成(正)比例;(2)如果B一定,AC成(正)比例;(3)如果C一定,AB成(反)比例.2、有三种量,A B C,它们之间的关系可以用A÷B=C表示.(1)如果A一定,BC成(反)比例;(2)如果B一定,AC成(正)比例;(3)如果C一定,AB成(正)比例.3、在一个比例式中,两个比的比值都是5,这个比例式的内项分别是3.5和2,这个比例式为17.5:3.5=2:0.4或10:2=3.5:0.7.二、判断下面各题中两种量成不成比例,成什么比例(1)圆柱的侧面积一定,底面周长与高. (反)(2)三角形面积一定,它的底和高. (反)(3)天数一定,总产量和每天的产量. (正)(4)圆柱体积一定,底面半径和高. (不成)(5)比的前项一定,后项和比值. (反)(6)出粉率一定,原料和面粉. (正)(7)一幅设计图,图上距离和实际距离. (正)(8)每页书的字数一定,书的页数和这本书的总字数. (正)(9)长方形长一定,周长和宽. (不成)(10)和一定,两个加数. (不成)(11)平形四边形面积一定,底和高. (反)(12)装配一批电视机,每天装配台数和所需的天数. (反)(13)正方形的周长和边长. (正)(14)水池的容积一定,水管每小时注水量和所用时间. (反)(15)房间面积一定,每块砖的面积和砖的块数. (反)(16)每块砖的面积一定,砖的块数和铺地面积. (正)(17)在一定时间里,加工每个零件所用时间和加工零件数. (反)三、判断,对的打√,错的打×.1、比的后项不能是0. (√)2、一个圆的半径和它周长的比为1:2л (√)3、A与B的比是5:3,A比B多40% (×)4、圆锥体体积一定,底面积和高成反比例(√)四、求比值6.3:1.8==3.5÷0.25=5五、化简比=:=(×24):(×24)=15:7:0.75=125:75==六、用1.4、10、7和2这四个数组成比例.你组成了多少个比例(1)1.4:2=7:10 (2)1.4:7 =2:10(3)2:1.4 =10:7 (4)7:1.4=10:2(5)2:10 =1.4:7 (6)10:2 =7:1.4(7)7:10 =1.4:2 (8)10:7 =2:1.4七、选择长方形周长14米,长和宽的比是6:1.长与宽各多少米( 2 )(1)6+1=7 (2)6+1=714×=12(米)7×=6(米)14×=2(米)7×=1(米)八、应用题1、人的血液与体重的比是1:13.小明体重52千克,他的血液有多少千克52×=4(千克)答:他的血液有4千克.2、配制黑色火药的原料是火硝、硫磺和木炭,这三种原料的重量比是15:2:3,水利专业队要配制黑色火药80千克,需要这三种原料各多少千克15+2+3=20火硝:80×=60(千克)硫磺:80×=8(千克)木炭:80×=12(千克)验算:①60+8+12=80(千克)②60:8:12=15:2:3答:需要火硝60千克,硫磺8千克,木炭12千克.3、一种药水中药和水的比是1:300,现要配制药水1204千克,需要水多少千克加药多少千克300+1=301水:1204×=4(千克)药:1204×=1200(千克)答:需要水4千克.加药1200千克.4、长方形周长是56厘米,如果长方形长与宽的比是4:3,这个长方形的面积是多少平方厘米56÷2=28(厘米)4+3=7长:28×=16(厘米)宽:28×=12(厘米)面积:16×12=192(平方厘米)答:这个长方形的面积是192平方厘米.5、甲、乙两地相距360千米,客车和货车同时从两地相对开出,4小时后相遇,客车和货车的速度比是5:4,求客车和货车的速度360÷4=90(千米)5+4=9客车:90×=50(千米)货车:90×=40(千米)答:客车和货车的速度分别是50千米,40千米.6、甲、乙、丙三个修路队,合修一条长200千米的公路,已知甲队修路的千米数是50,乙、丙两队修路的千米数的比是2:3,丙队修了多少千米(200-50)×=150×=90(千米)答:丙队修了90千米.7、甲与乙生产零件个数的比是5:3,乙比甲少生产40个,甲、乙各生产多少5+3=840÷(-)=40÷=160(个)160×=100(个)160×=60(个)答:甲、乙各生产100个,60个.8、装订练习本,装订200本要用6000张纸.有15000张纸可以装订同样练习本多少本15000÷(6000÷200)=15000÷30=500(本)答:有15000张纸可以装订同样练习本500本.9、安装一条下水管道,计划每天安装120米,15天完成,实际只用了10天就完成了.实际每天安装多少米120×15÷10=1800÷10=180(米)答:实际每天安装180米.10、运一堆煤,计划每天运150吨,20天运完.实际2天就运了400吨,照这样计算,实际几天运完设:实际x天运完.150×20=400÷2×x3000=200xx=15答:实际15天运完.解比例练习题(八): 《比和比例》练习题本人参考一下……有的话可以加悬赏!《比和比例》练习题一、填空题.1、2.1:0.9化成最简单的整数比是(),比值是().2、甲乙两数的比是4:5,甲数是乙数的(——),乙数是甲乙和的(——).3、一个最简单的整数比的比值是1.5,这个比是():().4、4.5与它的倒数的比是():().5、—— =():()= 四成 = ()%=――6、如果a×7 = b÷2(a、b都不为0 ),那么a:b =( ):( )7、走完同一段路,甲用12分钟,乙用8分钟,甲与乙的速度比是():().8、判断一些生活中的实例.①用煤的天数一定,每天用煤量与总用煤量成()比例.②一本书的页数一定,已看的页数与未看的页数成()比例.③三角形的面积一定,三角形的底与高成()比例.二、解比例.75%:x = -- :20.5 -- :14 = -- --- = ---三、\x05用比例知识解决问题.1、\x05在一个月里,亮亮前7天共看书210页,照这样计算,这个月亮亮一共看书多少页2、如果用边长30㎝的方砖给一个房间铺地,需100块.如果改用边长50㎝的方砖铺地,需要多少块一、填空题.1、2.1:0.9化成最简单的整数比是( 7:3 ),比值是( 7/3 ).2、甲乙两数的比是4:5,甲数是乙数的(4/5),乙数是甲乙和的(5/9).3、一个最简单的整数比的比值是1.5,这个比是( 3 ):( 2 ).4、4.5与它的倒数的比是( 81):(4 ).5、2/5 =( 2):(5 )= 四成 = ( 40 )%= 0.46、如果a×7 = b÷2(a、b都不为0 ),那么a:b =(1 ):( 14 )7、走完同一段路,甲用12分钟,乙用8分钟,甲与乙的速度比是( 2):( 3).8、判断一些生活中的实例.①用煤的天数一定,每天用煤量与总用煤量成(正)比例.②一本书的页数一定,已看的页数与未看的页数成(不成)比例.③三角形的面积一定,三角形的底与高成(反)比例.二、解比例.75%:x = -- :20.5 -- :14 = -- --- = ---不完整三、\x09用比例知识解决问题.1、\x09在一个月里,亮亮前7天共看书210页,照这样计算,这个月亮亮一共看书多少页设这个月一共看x页.210:7=x:307x=210×307x=6300x=6300÷7x=900 答:这个月一共看900页.2、如果用边长30㎝的方砖给一个房间铺地,需100块.如果改用边长50㎝的方砖铺地,需要多少块设需要x块.30×30×100=50×50×x90000=2500xx=36答:需要36块.解比例练习题(九): 我需要有关小学六年级比例的练习题比例练习题一、想一想,填一填.1、在4 :7 =48 :84中,4和84是比例的(),7和48是比例的(). 2.4 :5 = 24 ÷()= ():153、大圆的直径是4厘米,小圆的直径是2厘米,大圆和小圆周长最简单的整数比是(),面积最简单的整数比是().4.12的约数有(),选择其中的四个约数,把它们组成一个比例是().5、在一个比例中,两个外项互为倒数,其中一个内项是 16 ,则另一个内项是().二、请你来当小裁判.(9分)1、由两个比组成的式子叫做比例.()2、把一个比的前项扩大2倍,后项缩小2倍,这个比的比值不变.()3、如果8A = 9B,那么B :A = 8 :9 .()4、由2、3、4、5四个数,可以组成比例.()5、在比例里,两个外项积除以两个内项积商是1.()三、选择正确答案的序号填在括号内.1.下面第 ( ) 组的两个比不能组成比例.A、 8:7 和 14:16B、 0.6:0.2 和 3:1C、 19:110 和 10:92、在钟面上,分针和时针旋转速度的比是().①60:1 ②360:1 ③12:13、因为3a=4b,所以().①a∶b=3∶4 ②a∶4=3∶b ③b∶3=a∶4 ④3∶a=4∶b四、写出下列解比例的解法依据.85∶X=20∶4 20X=34020X=85×4 根据X=340÷20 根据五、解比例X:14=6:28 0.25 ∶ x=7.5∶ 15 x∶ 8=3:0.51、合唱组男女生人数的比是5∶7,其中有女生25人,这个合唱组男生多少人 1、一辆客车和一辆小汽车的速度比是1:2,如果小汽车的速度是120千米,那么客车的速度是多少千米2、花园小区1号楼的实际高度是45米,它的高度与模型高度的比是500:1.模型的高度是多少厘米解比例练习题(十): 谁有50道解比例的题!一、判断题.1.两个比一定能组成比例.2. 5x =y,x和y成反比例.3.在比例里,两个外项积除以两个内项积,商是1.4.同时同地,竿高和影长成正比例.5.圆的面积和半径的长度成正比例.二、将正确答案的序号填入括号里.1.4厘米:4千米的比值是() (1)十万分之一(2)1:100000 (3)1 (4)110000 2.能与15 :13 组成比例的比是().(1)13 :15 (2) 3:5 (3)5:3 (4)15 :115 3.某校学生总人数一定,男生人数和女生人数().(1)成正比例(2)成反比例(3)不成比例 4.把线段比例尺改写成数值比例尺是()(1)1:50 (2)1:200 (3) 1:5000 (4)1:500000 5.生产同样多的零件,小张用4小时,小李用了6小时,小李和小张的工效简比是().(1)16 :14 (2)2:3 (3)3:2 (4)14 :16 6.被除数一定,除数和商().(1)成正比例(2)成反比例(3)不成比例三、填空.1.写出比值都是34 的两个比,并组成比例.():()=():() 2.如果4a=7b那么b:a=():() 3.在比例里两个外项互为倒数,其中一个内项是38 ,另一个内项是().4.根据4.5×2=9×1,写出一个比值最小的比例是().5.北京到天津的实际距离是120千米,在比例尺15000000 的地图上,两地距离是().6.根据比例关系填空.7.在一个比例中,两个比的比值都等于2,这个比例的外项为14和5,这个比例式是().8.一个减法算式,被减数、减数、差三数的和是60,减数和差比是3:2,被减数是(),差是().四、计算.1.求比值.0.02:0.82:0.25 12 :56 4:13 2.化简比.85 :230.14:0.56 12 :14 2:0.5 3.解比例 x::14=6:28 0.75x =0.253 38 :13 =x:16五、应用题.1.挖一条水渠,在比例尺是1300 的地图上,量得这条水渠长40厘米,这条水渠实际长是多少米2.某工程队修一条公路,已修了1200米,这时已修的未修的比是3:2,这条公路全长是多少米3.一辆汽车三天共行720千米,第一天行驶5小时,第二天行驶6小时,第三天行驶7小时,如果每小时行驶的路程都相同,这三天各行多少千米4.某工地要运一堆土,每天运150车,需要24天运完,如果在20天内完成,每天要运多少车(用比例方法解) 5.某工厂要生产一批机器零件,5天生产410个,照这样计算,要生产1066个机器零件需要多少天(用比例方法解) 6.甲、乙两地相距350千米,一列快车和一列慢车同时从两地相对开出,3.5小时后相遇.已知快车和慢车的速度比是3:2,这两列火车的速度分别是多少7.甲、乙两堆煤原来吨数比是5:3,如果从甲堆运90吨放入乙堆,这时两堆吨数相等,甲、乙原来各有多少吨。

解比例:六年级数学下册解方程求未知数计算与解答应用题

解比例:六年级数学下册解方程求未知数计算与解答应用题

解方程或比例比例计算题:96-x=6415= 5x820%x+12x=2801.6x:613=269:0.5x+14x=10x:2.4=2.5:50.45(x-2)=9154.5=2x x︰32=34︰2170%︰x=1.2︰0.6 2.5x-7.5=1055-30%×=16比例解答题:1、学校要修建一个长方体水池,在比例尺是1:200的设计图上,水池的长为12cm,宽为10cm,深为2cm。

(1)工程队按图施工,这个水池的长、宽、深各应挖多少米?(2)这个水池的四周和底面要贴上瓷传,贴瓷砖的实际面积是多少平方米?2、在比例尺是1:5000000的地图上,量得甲、乙两城之间的距离是4.2厘米。

一辆汽车以70千米/时的速度在上午8时从甲城开出,到达乙城的时间是几时?3、甲乙两地相距312千米,一辆汽车从甲地开往乙地,前2小时行了130千米,照这样计算,甲地开往乙地需几小时?(用比例解)x:28%= 74:0.740%x+25=12x:78=2.4:4.2511x- 14x=4.5x1.25=0.6:3103.5x-3.05x=4.52×(1.7-x)= 256.8×3+7x=29.510:x=23:4547x-4.5=7.5x+ 37x=58314:18=712:x比例解答题:1、在比例尺是1:500000的地图上,量得甲、乙两城之间的距离是3.2厘米。

一辆汽车以80千米/时的速度在上午9时从甲城开出,到达乙城的时间是几时?2、学校文印室新购一批打印纸,计划每天用60张,可以用15天。

由于注意了节约用纸,实际每天只用45张,这些打印纸实际用了多少天?(用比例知识解答)3、在一张比例尺为1:500的图纸上,量得一块长方形土地的周长是50cm,已知这块土地的宽是长的23,这块地的实际面积是多少?4、据统计,少浪费1500张A4纸,就可以保留1棵树。

节约用纸,就是保护森林、保护环境。

(完整版)小学六年级解比例及解方程练习题应用题

(完整版)小学六年级解比例及解方程练习题应用题

六年级解方程及解比例练习题
解比例:X:10=: 0.4:x=1.2:2 :=:x = =41
3121
514192x 8x 363
54解方程
X - X= 70%X + 20%X = 3.6 4X -6×=2 ÷X= (x- 4.5) = 727433
21253102
3运用比例解决问题
1、某班男生和女生人数的比是6:5,女生有30人,男生有多少人?
2、一种农药药液和水的比是2:500,现有药液500千克,配制成农药需要多少千克的水?
3、一条路全长12千米,前3天修了1.8千米,按这样计算,修完这条路还要多少天?
4、玩具公司按1:20的标准制作模型,一架飞机模型长110厘米,这架飞机实际长多少米?
5、配制一种农药,药粉和水的比是1:500.
(1) 现有水6000千克,配制这种农药需要药粉多少千克?
(2) 现有药粉3.6千克,配制这种农药需要水多少千克?。

六年级数学解答应用题训练20篇(精编版)带答案解析

六年级数学解答应用题训练20篇(精编版)带答案解析

六年级数学解答应用题训练20篇(精编版)带答案解析一、苏教小学数学解决问题六年级下册应用题1.在一幅比例尺是1:18000000的地图上,量得甲、乙两地的距离是6厘米。

张师傅凌晨4时从甲地出发,平均每时行驶90千米,到达乙地时是几时?2.某学校安排学生宿舍,如果每间住12人,那么有34人没有宿舍;如果每间住14人,则空出4间宿舍。

那么有多少间宿舍?有学生多少人?3.一张设计图纸的比例尺是1:600,图中的一个长方形大厅长4厘米,宽2.5厘米。

这个大厅的实际面积是多少平方米?4.甲、乙两个车间工人的工作时间和耗电量如下表。

工作时间/时123456甲车间耗电量/千瓦∙时40 80 120 160 200 240乙车间耗电量/千瓦∙时4085 130170 205 260(2)根据表中的数据,在下图中描出甲车间工人的工作时间与耗电量所对应的点,再把它们按顺序连接起来。

(3)根据图像估计,甲车间工人工作2.5小时,耗电量大约是________千瓦・时。

5.一种儿童玩具﹣陀螺(如图),上面是圆柱体,下面是圆锥体,经过测试,只有当圆柱直径4厘米,高5厘米,圆锥的高是圆柱高的时,才能旋转时又稳又快,试问这个陀螺的体积是多大?(保留整立方厘米)6.一个圆柱形的容器,底面周长是62.8厘米,容器里面水面高0.8分米,现把一个小圆柱体和一个与圆柱等底、高是圆柱一半的圆锥放入容器中,结果圆锥完全浸没在水中,圆柱有在水面之上,容器内的水比放入前上升了3厘米,求圆柱和圆锥的体积?7.小明调制了两杯蜂蜜水。

第一杯用了30毫升蜂蜜和360毫升水。

第二杯用了500毫升水,按照第一杯蜂蜜水中蜂蜜和水体积的比计算,第二杯应加入蜂蜜多少毫升?8.鸡和免一共有8只,它们的腿有22条。

鸡和兔各有多少只?9.一个圆锥形沙堆,底面积是28.26m²,高是2.5m。

用这堆沙在10m宽的公路上铺2cm 厚的路面,能铺多少米?10.如图,圆柱形(甲)瓶子中有2厘米深的水,长方体(乙)瓶子里水深6.28厘米,将乙瓶中的水全部倒入甲瓶,甲瓶的水深是多少厘米?11.下面的图象表示斑马和长颈鹿的奔跑情况。

解比例应用题及答案

解比例应用题及答案

解比例应用题及答案1. 题目:小明和小华在同一个操场上跑步,小明的速度是小华的1.5倍,如果小明跑了300米,小华跑了多少米?答案:设小华跑的距离为x米,根据题意可得比例关系式:1.5x = 300。

解方程得:x = 300 ÷ 1.5 = 200。

所以小华跑了200米。

2. 题目:甲乙两地相距300公里,一辆汽车从甲地开往乙地,速度是每小时60公里,另一辆汽车从乙地开往甲地,速度是每小时40公里,两车同时出发,几小时后两车相遇?答案:设两车相遇的时间为t小时,根据题意可得比例关系式:60t + 40t = 300。

解方程得:100t = 300,所以t = 300 ÷ 100 = 3。

因此,两车3小时后相遇。

3. 题目:一个班级有男生和女生,男生人数是女生人数的2倍,如果男生人数是40人,那么女生有多少人?答案:设女生人数为x人,根据题意可得比例关系式:2x = 40。

解方程得:x = 40 ÷ 2 = 20。

所以女生有20人。

4. 题目:一个工厂生产两种型号的机器,A型号机器的产量是B型号机器的3倍,如果A型号机器生产了90台,那么B型号机器生产了多少台?答案:设B型号机器生产了x台,根据题意可得比例关系式:3x = 90。

解方程得:x = 90 ÷ 3 = 30。

所以B型号机器生产了30台。

5. 题目:一个果园里,苹果树和梨树的比例是3:2,如果果园里有苹果树120棵,那么梨树有多少棵?答案:设梨树有x棵,根据题意可得比例关系式:3/2 = 120/x。

解方程得:3x = 120 × 2,所以x = (120 × 2) ÷ 3 = 80。

因此,梨树有80棵。

六年级比例的应用题及答案

六年级比例的应用题及答案

六年级比例的应用题及答案【篇一:六年级数学按比分配应用题及答案】>1、把300本作业按4∶5∶6分给四、五、六年级的同学,四、五、六年级的同学各得多少本作业本?解:4+5+6=15答:四年级得80本,五年级得100本,六年级得120本。

2、一种生理盐水是把盐水和水按照1∶100配制而成,要配制这种生理盐水5050千克,需要盐水多少千克?解:1+100=101答:需要盐水50千克。

答:山羊和绵羊一共有140头。

4、一种石灰水是用石灰和水按1∶100配成的,要配制5656千克的石灰水,需石灰多少千克?解:1+100=101答:需石灰56千克。

5、体育室有200根跳绳,按人数分配给六年级一、二两个班,一班有52人,二班有48人,两个班各得跳绳多少根?解:52+48=100(人)答:一班可得跳绳104根,二班可得跳绳96根。

6、一个分数,它的分子和分母的和是40,分子和分母的比是4∶6,这个分数是几分之几?解:4+6=10答:这个分数是24分之16。

7、一种药水是用药粉和水按1∶80配制成的。

⑴、40千克药粉,可配制成多少千克的药水?3200+40=3240(千克)答:40千克药粉,可配制成3240千克的药水。

⑵、60千克水,需要药粉多少千克?答:60千克水,需要药粉0.75千克。

⑶、配制这种药水1620千克,需要药粉多少千克?解:1+80=81答:配制这种药水1620千克,需要药粉20千克。

8、把96分米长的铁丝焊成一个长方体框架,长、宽、和高的比是3∶2∶1,这个长方体的体积和表面各是多少?3+2+1=6答:这个长方体的体积是384立方分米,表面是352平方分米。

9、五年级有140人,六年级有130人,从六年级调多少人到五年级,才能使五年级、六年级的人数比为5∶1?解:140+130=270(人)5+1=6130-45=85(人)答:从六年级调85人到五年级。

10、甲做3000个零件比乙做2400个零件多用1小时,甲、乙的工作效率的比是6∶5。

六年级解比例应用题

六年级解比例应用题

六年级解比例应用题一、解比例的基本概念1. 比例的定义表示两个比相等的式子叫做比例。

例如公式,其中公式、公式是外项,公式、公式是内项,根据比例的基本性质公式。

2. 解比例的方法根据比例的基本性质,如果已知比例中的任何三项,就可以求出这个比例中的另外一个未知项。

求比例中的未知项,叫做解比例。

例如对于比例公式,根据比例的基本性质公式,然后求解公式,公式。

二、解比例应用题的步骤1. 审题认真读题,理解题意,找出题目中的已知条件和所求问题。

例如:“配制一种农药,药粉和水的比是1:500,现有水6000千克,配制这种农药需要药粉多少千克?”这里已知水的重量和药粉与水的比例关系,所求的是药粉的重量。

2. 设未知数一般设所求的量为公式。

在上面的例子中,设需要药粉公式千克。

3. 列出比例式根据题目中的比例关系列出比例式。

在这个例子中,因为药粉和水的比是公式,现在有公式千克药粉和6000千克水,所以比例式为公式。

4. 解比例根据比例的基本性质解比例。

对于公式,根据比例基本性质公式,解得公式千克。

5. 检验并作答把求出的未知数的值代入原比例式中进行检验,看比例是否成立。

然后写出答案,如:配制这种农药需要药粉12千克。

三、解比例应用题例题1. 例题一题目:学校图书馆的科技书与故事书的数量比是4:5,科技书有320本,故事书有多少本?解析:设故事书有公式本。

根据科技书与故事书的数量比是公式,可列出比例式公式。

根据比例的基本性质公式,即公式,解得公式本。

2. 例题二题目:某车间按1:10的比例生产了一个汽车模型,汽车模型的长度是25厘米,汽车的实际长度是多少米?解析:设汽车的实际长度是公式厘米。

因为模型与实际长度的比是公式,所以比例式为公式。

根据比例基本性质公式厘米,因为1米 = 100厘米,所以公式厘米=公式米。

六年级数学解比例应用题练习题

六年级数学解比例应用题练习题

解比例应用题(1)一幅地图,图上的4厘米,表示实际距离200千米,这幅图的比例尺是多少?(2)甲、乙两地相距240千米,画在比例尺是1∶3000000的地图上,长度是多少厘米?(3在一幅地图上,用3厘米的线段表示实际距离600千米。

量得甲、乙两地的距离是4.5厘米,甲、乙两地的实际距离是多少千米?(4) 运来一批纸装订成练习本,每本36页,可订40本,若每本30页,可订多少本?(5)在一幅比例尺是1:30000 的地图上,量得东、西两村的距离是12.3厘米,东、西两村的实际距离是多少米?(6)甲地到乙地的实际距离是120千米,在一幅比例尺是1:6000000的地图上,应画多少厘米?(7)一幅地图,图上的4厘米,表示实际距离200千米,这幅图的比例尺是多少?(8)在一幅比例尺是1:4000 的平面图上,量得一块三角形的菜地的底是12厘米,高是8厘米,这块菜地的实际面积是多少公顷?(9)一辆汽车2小时行驶130千米。

照这样的速度,从甲地到乙地共行驶5小时。

甲、乙两地相距多少千米?(10)一辆汽车从甲地开往乙地,每小时行64千米,5小时到达。

如果要4小时到达,每小时需行驶多少千米?(11)修一条公路,原计划每天修360米,30天可以修完。

如果要提前5天修完,每天要修多少米?(12)修一条路,如果每天修120米,8天可以修完;如果每天修150米,可以提前几天可以修完?(13)修一条公路,总长12千米,开工3天修了1.5千米。

照这样计算,修完这条路还要多少天?(14)修一条路,如果每天修120米,8天可以修完;如果每天多修30米,几天可以修完?(15)小明买4本同样的练习本用了4.8元,138元可以买多少本这样的练习本?(16)工厂有一批煤,计划每天烧2.4吨,42天可以烧完。

实际每天节约1/8,实际可以烧多少天?(17)解放军某部行军演习,4小时走了22.4千米,照这样的速度又行了6小时,一共行了多少千米?(18)一对互相啮合的齿轮,主动轮有60个齿,每分转80转。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《解比例应用题》教学设计
【教学内容】
义务教育课程标准实验教科书《数学》(人教版六年级下册)教材P59
【教学目标】
1.理解用比例解决问题的一般方法和技巧,学会用比例解决一般问题。

2.通过与前面旧知识的解决问题的方法对比,理解应用比例解决问题的优势和好处,培养学生一题多解的解决问题的能力。

3. 发展学生的应用意识和实践能力。

【教学重点】运用正比例解决实际问题。

【教学难点】正确判断两种量成什么比例。

通过本节的教学,使学生加深对正、反比例意义的理解,能够正确判断成正、反比例的量,会用比例的知识解答比较容易的应用题.
【教学过程】
一、铺垫孕伏(课件演示:比例的应用)
判断下面每题中的两种量成什么比例关系?
1、速度一定,路程和时间.
2、路程一定,速度和时间.
3、单价一定,总价和数量.
4、每小时耕地的公顷数一定,耕地的总公顷数和时间.
5、全校学生做操,每行站的人数和站的行数.
二、探究新知
(一)引入新课:我们已经学过了比例,正比例和反比例的意义,还学过了解比例,应用这些比例的知识可以解决一些实际问题.这节课我们就来学习比例的应用.(板书:解比例应用题)
(二)教学例5(课件演示:教材对话主题图)
例5、张大妈上个月用了8吨水,水费是12.8元,李奶奶家用了10吨水,李奶奶家上个月的水费是多少元?
1、用以前的方法怎样列式?
先算出每吨水的价钱,再算10吨水的多少钱?
12.8÷8×10
=1.6×10
=16(元)
2、利用比例的知识解答.
思考:这道题中涉及哪三种量?(水的单价、数量和总价三种量)
哪种量是一定的?你是怎样知道的?(水的单价一定.)
用水的数量和水费总价成什么比例关系?(水的数量和总价成正比例关系.)
教师板书:单价一定,水的数量和总价成正比例
教师追问:两家水的总价和用水量的什么相等?(比值相等,也就是水的单价相等)
怎么列出等式?
解:设李奶奶家上个月水费x元.
8x=12.8×10
x=16
答:李奶奶家上个月水费16元.
3、怎样检验这道题做得是否正确?(学生自主完成)
4、变式练习:张大妈上个月用了8吨水,水费是12.8元,王大爷上个月水费是19.2元,他们家上个月用了多少吨水?
三、全课小结
用比例知识解答应用题的关键,是正确找出题中的两种相关联的量,判断它们成哪种比例关系,然后根据正反比例的意义列出方程.
四、随堂练习
五、布置作业
【板书设计】
解比例应用题
例5:
单价一定,总价和数量成正比例。

解:设李奶奶家上个月水费x元.
8 x=12.8×10
答:(略)。

相关文档
最新文档