不等式与不等式组复习教案

合集下载

中专不等式复习教案

中专不等式复习教案

中职数学备课教案模板观察法直接写出答案,如:63.1531< 作差法分三步:先添括号(遇到多项式)再作差变形判断正、0、负实数性质解大小2、区间两数之间成区间。

用数轴表示很关键。

“—∞”永远左开,“+∞”永远右开。

集用区间“画轴”求,数形结合“交、并、补” 3、不等式的基本性质 性质1:传递性c a c b b a >⇒>>,性质2:加同同向(加法性)c b c a b a +>+⇔>性质3:乘法性乘正同向乘负反向bc ac c b a >⇒>>0, bc ac c b a <⇒<>0,性质4:反对称性a b b a <⇔>补充性质(不作要求,技能高考班高三时可补充)d b c a d c b a +>+⇒>>,(同向可加性)00,0>>⇒>>>>bd ac d c b a (同向同正可乘性)ba ab b a 110,<⇒>>(同号两数比较,较大的数其倒数反而小)4、不等式(组)的解法(1)一元一次不等式的解法:“去、去、移、合、1”[注意]:“去、去、移、合”4步同向(不等号不变),“系数化为1”的“正系数化1”同向,“负系数化1”反向(2)一元二次不等式的图像解法(格式按例题执行)原不等式化为“0>a ”的不等式解对应方程02=++c bx ax ,并说明根的情况(2交点,1交点,无交点)画出简图写不等式的解集0>a0>∆0=∆0<∆一元二次函数cbx ax y ++=2的图象一元二次方程2=++c bx ax 的根 有两实根21x x x x ==或有两相等的实根21x x x ==无实根一元二次不等式2>++c bx ax 的解12,x x x x <>或2b x a≠-的全体实数全体实数。

人教版数学七年级下册第61课时《不等式与不等式组复习》教案

人教版数学七年级下册第61课时《不等式与不等式组复习》教案

人教版数学七年级下册第61课时《不等式与不等式组复习》教案一. 教材分析《不等式与不等式组复习》这一课时,是人教版数学七年级下册的教学内容。

本课时主要对不等式与不等式组的概念、性质、解法等进行复习,旨在帮助学生巩固已学知识,提高解决问题的能力。

教材通过对不等式与不等式组的复习,使学生能够熟练运用不等式解决实际问题,为后续学习更高级的数学知识打下基础。

二. 学情分析学生在之前的学习中已经掌握了不等式与不等式组的基本概念、性质和解法。

但部分学生在解不等式组时,对不等号的方向变化、解集的表示方法等方面容易出错。

因此,在复习过程中,教师需要针对这些薄弱环节进行重点讲解和练习,提高学生的解题技能。

三. 教学目标1.知识与技能:使学生熟练掌握不等式与不等式组的概念、性质和解法,能灵活运用不等式解决实际问题。

2.过程与方法:通过复习不等式与不等式组,培养学生分析问题、解决问题的能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的自信心和自主学习能力。

四. 教学重难点1.重点:不等式与不等式组的概念、性质和解法。

2.难点:不等式组的解集表示方法和在实际问题中的应用。

五. 教学方法采用讲解法、例题解析法、练习法、小组讨论法等,结合多媒体教学手段,引导学生主动参与复习过程,提高复习效果。

六. 教学准备1.教材、课件和教学资源。

2.练习题和测试题。

3.黑板、粉笔等教学工具。

七. 教学过程利用课件展示不等式与不等式组在实际生活中的应用场景,引导学生回顾已学知识,激发学生的学习兴趣。

2.呈现(10分钟)通过PPT展示不等式与不等式组的概念、性质和解法,让学生对所学知识有一个全面的了解。

在呈现过程中,教师要点拔重点,解答学生的疑问。

3.操练(10分钟)让学生独立完成练习题,检验学生对不等式与不等式组的掌握程度。

教师巡回指导,对学生在解题过程中遇到的问题进行解答。

4.巩固(10分钟)针对学生在操练过程中出现的问题,教师进行讲解和总结,帮助学生巩固知识点。

不等式的解法举例教案

不等式的解法举例教案

不等式的解法举例教案一、教学目标1. 让学生掌握不等式的基本性质,能够熟练地解一元一次不等式。

2. 培养学生运用不等式的解法解决实际问题的能力。

3. 提高学生分析问题、解决问题的能力,培养学生的逻辑思维能力。

二、教学内容1. 不等式的基本性质2. 一元一次不等式的解法3. 不等式应用题的解答三、教学重点与难点1. 教学重点:不等式的基本性质,一元一次不等式的解法。

2. 教学难点:不等式应用题的解答。

四、教学方法1. 采用讲授法讲解不等式的基本性质和一元一次不等式的解法。

2. 运用案例分析法讲解不等式应用题的解答。

3. 运用讨论法引导学生探讨不等式解法的规律。

五、教学过程1. 导入:通过复习相关知识点,引入不等式的概念和基本性质。

2. 讲解:讲解一元一次不等式的解法,并列举典型例题进行分析。

3. 练习:让学生独立解一些一元一次不等式,并及时给予指导和反馈。

4. 应用:运用不等式的解法解决实际问题,如分配问题、排序问题等。

5. 总结:总结不等式的解法步骤和注意事项,强调解题方法的重要性。

6. 作业布置:布置一些不等式的练习题,巩固所学知识。

六、教学评估1. 课堂练习:通过课堂练习,观察学生对不等式解法的掌握程度。

2. 作业批改:对学生的作业进行批改,了解学生对不等式解法的熟练程度。

3. 学生提问:鼓励学生提问,及时解答学生的疑问,帮助学生巩固知识。

七、教学拓展1. 对比等式和解不等式的异同,让学生理解不等式的解法实质。

2. 引导学生探讨不等式的解法规律,提高学生的逻辑思维能力。

3. 引入更复杂的不等式类型,如绝对值不等式、分式不等式等,让学生尝试解决。

八、教学反思1. 反思教学过程,检查教学方法是否适合学生的学习需求。

2. 反思教学内容,确保教学内容完整、系统,便于学生掌握。

3. 反思教学效果,针对学生的掌握情况,调整教学策略,提高教学质量。

九、教学评价1. 学生自评:让学生对自己的学习情况进行评价,总结收获和不足。

不等式的基本性质(教案)

不等式的基本性质(教案)

不等式的基本性质一、教学目标1. 让学生理解不等式的概念,掌握不等式的基本性质。

2. 培养学生运用不等式解决实际问题的能力。

3. 提高学生对数学逻辑思维的认知。

二、教学内容1. 不等式的定义及表示方法2. 不等式的基本性质1) 不等式的两边加减同一个数,不等号的方向不变。

2) 不等式的两边乘除同一个正数,不等号的方向不变。

3) 不等式的两边乘除同一个负数,不等号的方向改变。

3. 运用不等式的基本性质解决实际问题。

三、教学重点与难点1. 教学重点:不等式的基本性质及其运用。

2. 教学难点:不等式性质3的理解与应用。

四、教学方法1. 采用启发式教学,引导学生发现不等式的基本性质。

2. 通过例题讲解,让学生学会运用不等式解决实际问题。

3. 利用小组讨论,培养学生合作学习的能力。

五、教学过程1. 导入:复习相关知识点,如实数、比较大小等,为学生学习不等式打下基础。

2. 新课讲解:介绍不等式的定义及表示方法,讲解不等式的基本性质,并通过例题展示运用。

3. 课堂练习:布置练习题,让学生巩固不等式的基本性质。

4. 实际问题解决:引导学生运用不等式解决实际问题,如分配问题、排序问题等。

5. 课堂小结:总结不等式的基本性质及运用方法。

6. 课后作业:布置相关作业,巩固所学知识。

六、教学评估1. 课堂提问:通过提问了解学生对不等式基本性质的理解程度。

2. 练习题解答:检查学生运用不等式解决实际问题的能力。

3. 课后作业:评估学生对课堂所学知识的掌握情况。

七、教学拓展1. 对比等式的性质,引导学生发现等式与不等式的异同。

2. 介绍不等式的其他性质,如不等式的传递性、同向不等式的可加性等。

八、课堂互动1. 小组讨论:让学生分组讨论不等式性质的应用,分享解题心得。

2. 教学游戏:设计有关不等式的游戏,提高学生的学习兴趣。

九、教学策略调整1. 根据学生掌握情况,针对性地讲解不等式的难点知识点。

2. 对于学习困难的学生,提供个别辅导,帮助他们跟上课堂进度。

(完整版)不等式与不等式组单元复习教案

(完整版)不等式与不等式组单元复习教案

个性化教案 17授课时间:2011年7月22日(2) 备课时间:2011年7月20日年级:八课时:2小时课题:不等式与不等式组学生姓名:胡雪丹教师姓名:宋学文教学目标1、能够根据具体问题中的大小关系了解不等式的意义,并探索不等式的基本性质。

2、会解简单的一元一次不等式,并能在数轴上表示出解集。

会解由两个一元一次不等式组成的不等式组,并会用数轴确定解集。

3、能够根据具体问题中的数量关系,列出一元一次不等式和一元一次不等式组,解决简单的实际问题。

难点重点能够根据具体问题中的数量关系,列出一元一次不等式和一元一次不等式组,解决简单的实际问题。

教学内容一、基础知识梳理1、叫一元一次不等式,把两个或两个以上的合起来,组成一个一元一次不等式组。

2、一般的,几个不等式的解集的,叫做由它们所组成的不等式组的解集。

3、不等式性质1 :不等式性质2:不等式性质3 :4、解不等式组,取解集的法则:5、老师归纳总结1、不等式的基本性质性质1:不等式的两边都加上或减去同一个数或同一个整式,不等号的方向不变。

如果a>b,则a+c>b+c,a-c>b-c性质2:不等式的两边同时乘以或除以同一个正数,不等号的方向不变。

如果a>b,并且c>0,那么则ac>bc性质3:不等式两边都乘以或除以同一个负数,不等号的方向改变成相反方向。

如果a>b,并且c<0,那么则ac<bc2、不等式组的公共解集,可用口诀:大大取大,小小取小;大小小大取中间;大大小小取不了。

1、已知a>b 用”>”或”<”连接下列各式;(1)a-3 ---- b-3 (2)2a ----2b (3)- a 3 ------b3(4)4a-3 ---- 4b-3 (5)a-b --- 02、在数轴上表示不等式组x>-2x 1⎧⎨≤⎩ 的解,其中正确的是( )3、已知a>b ,⎩⎨⎧b x a x πφ 的解是 ,⎩⎨⎧--b x a x φφ的解是 。

甘肃省酒泉市第三中学八年级数学下册第二章一元一次不等式与一元一次不等式组复习教学案1(无答案)(新版

甘肃省酒泉市第三中学八年级数学下册第二章一元一次不等式与一元一次不等式组复习教学案1(无答案)(新版

甘肃省酒泉市第三中学八年级数学下册第二章一元一次不等式与一元一次不等式组复习教学案1(无答案)(新版)北师大版一、引入(问题引入):问题1:本章我们学习的1种关系是?1种式子是? 3条性质?问题2:一元一次不等式的解与解集的区别是?一元一次不等式解集在数轴表示的方法是?二、认定目标(学习目标):1.掌握不等式及其基本性质;2.理解不等式的解及解集的含义;3.会解简单的一元一次不等式,并能在数轴上表示其解集.学习重点:通过梳理本章内容,进一步体会类比的思想方法.教学难点:体会类比的思想方法.三、本章知识结构图四、引导梳理知识点:知识点(1):不等关系:(1)、用 表示不等关系的式子,叫做不等式. 1、x 与y 的差的5倍与2的和是一个非负数,可表示为 。

2、“x 的2倍与3的差不大于8”列出的不等式是( )A.2x -3≤8B.2x -3≥8C.2x -3D.2x -3>8知识点(2):不等式的基本性质(1)不等式两边都加上(或减去)同一个数(或式子),不等号的方向 ;(2)不等式两边都乘以(或除以)同一个正数,不等号的方向 ;(3)不等式两边都乘以(或除以)同一个负数,不等号的方向 .1、指出下面变形根据的是不等式的哪一条基本性质.(1)由5a >4,得a >54; (2)由a+3>0,得a >-3; (3)由-2a <1,得a >-21;(4)由3a >2a+1,得a >1. 2、用“<”“=”“>”号填空.(1)如果a >b ,那么a -b __________0;(2)如果a =b ,那么a -b __________0;(3)如果a <b ,那么a -b _______0.3、若x >y,则ax >ay ,那么a 一定为( )A .a >0B .a<0C .a≥0D .a ≤04、若m <n,则下列各式中正确的是( )A .m -3<n-3 B.3m <3n C.-3m >-3n D.5-2m <5-2n知识点(3):不等式的解集(1)、能使不等式成立的未知数的值,叫做不等式的解.所以大多数不等式的解不唯一,有无数个解.(2)、满足不等式的所有解集合在一起,组成不等式的解集.在数轴上表示不等式的解集时应注意:(有点无圈,大右小左)大于向右画,小于向左画;有等号的画实心圆点,无等号的画空心圆圈.1、-3x ≤6的解集是( ) 0-1-2 0-1-2 012 012A 、B 、C 、D 、2、用不等式表示图中的解集,其中正确的是( )A. x ≥-2B. x >-2C. x <-2D. x ≤-23、下列说法中,错误的是( )A.不等式x <5的整数解有无数多个B.不等式x >-5的负整数解有4个C.不等式-2x <8的解集是x >-4D. x =-40是不等式2x <-8的解集4、不等式x -3>1的解集是 。

不等式的基本性质(教案)

不等式的基本性质(教案)

不等式的基本性质一、教学目标1. 知识与技能:使学生掌握不等式的性质,能够运用不等式的性质解有关不等式。

2. 过程与方法:通过观察、分析、归纳等方法,引导学生发现不等式的基本性质。

3. 情感态度价值观:培养学生对数学的兴趣,培养学生合作交流、归纳总结的能力。

二、教学重点与难点1. 教学重点:不等式的性质。

2. 教学难点:不等式性质的应用。

三、教学准备1. 教师准备:教案、PPT、黑板、粉笔。

2. 学生准备:课本、练习本、文具。

四、教学过程1. 导入新课1.1 复习相关知识:回顾一元一次不等式的解法。

1.2 提问:同学们,你们知道不等式有什么性质吗?今天我们就来学习不等式的基本性质。

2. 探究不等式的性质2.1 展示不等式实例,引导学生观察、分析。

2.2 引导学生发现不等式的性质,并总结出不等式的基本性质。

3. 例题讲解3.1 出示例题,讲解例题的解法,引导学生运用不等式的性质解决问题。

3.2 学生自主练习,教师巡回指导。

4. 课堂练习4.1 出示练习题,学生独立完成,教师批改并讲解。

4.2 学生总结练习中的经验教训。

五、课后作业1. 请学生根据不等式的性质,解决课后练习题。

2. 鼓励学生进行不等式性质的探究,发现更多的性质。

六、教学拓展1. 引导学生思考:不等式的性质在实际生活中有哪些应用?2. 举例说明不等式性质在生活中的应用,如购物、分配等。

3. 引导学生进行不等式性质的综合应用,提高解决问题的能力。

七、巩固练习1. 出示巩固练习题,学生独立完成。

2. 教师批改并讲解,学生总结解题思路和方法。

八、课堂小结1. 教师引导学生回顾本节课所学内容,总结不等式的基本性质。

2. 学生分享学习收获和感受。

九、课后反思1. 教师反思本节课的教学效果,找出不足之处,为下一节课做好准备。

2. 学生反思自己的学习过程,找出优点和不足,制定改进措施。

十、布置作业1. 请学生根据不等式的性质,解决课后练习题。

2. 鼓励学生进行不等式性质的探究,发现更多的性质。

一元一次不等式和一元一次不等式组复习教案45

一元一次不等式和一元一次不等式组复习教案45

△板前进行演示, 锻炼学生做题书 写 步骤。
3 x 2x 6 2 3
学生板前做题
3 x 2 x 6 ②x 5 5 2x 2
6. 幼儿园把若干件玩具分给小朋友, 如果每人分 3 件,那么还剩 59 件; 如果每人分 5 件, 那么最后一个人不 足 5 件, 这间幼儿园有多少玩具?有 多少个小朋友? 小组讨论合作完成
学生先独立解答, 再合作,最后小组 抢答
△锻炼学生独立 解决问题的能力, 培养合作探究精 神, 激发学生学习 兴趣
a ___ b ;
4 . 不 等 式 3x 2 4 5x 的 解 集 是 _________; 不等式组
x 0 的解集 2 x 1 0
是_____________; 5 解下列不等式(组),并把解集表示在数轴 上。 ①
◇资源准备 □评价○反思
④会解一元一次不等式 (组)(注意: 解题的步骤) 课堂训练 20 分钟 1. 不等式 3 y
m 1
2 0 是一元一次不
等式,则 m=______; 2.①a 的 2 倍与 7 的差是非负数,根据 题意列不等式为_____________________ ②a 的 3 倍的相反数不小于 a 与 4 的 和 , 根 据 题 意 列 不 等 式 为 ___________________ 3.设 a b ,用“>”或“<”填空 ① a 3 ___ b 3 ; ② 5a ___ 5b ; ③

分 课 时
学 活 动


△设计意图
环 节 与时间


学 生 活 动
◇资源准备 □评价○反思
一元一次不等式和一元一次不等式组复 习 基 本 知 识 1. 一般的,____________叫做不等式。 注意:①不等式中常出现的符号是 指生回答,教师补 点回顾 “ < ” 、 “” 、 “>” 、 “” (还有“ ” ) 充 25 分钟 ②理解“非负数” 、 “非正数” 、 “不大于” 、 “不小于” 、 “至少” 、 “至多” 等 ③根据文字列不等式,如“ x 与 17 的 和 比 它 的 5 倍 小 ” 列 式 为 _______________; 2. 不等式的基本性质: 基本性质 1 ____________________; 基本性质 2 ____________________; 基本性质 3____________________。 例 如 : 如 果 x y , 那 么 x+5___y+5 ,3x___3y ,-2x___-2y 3. 一元一次不等式和一元一次不等式 组 ①区分不等式的解和解集: x 3 是 2x 8 的解,不等式 2x 8 的解集是 x 4。 ②____________________________叫 做一元一次不等式。 一般地,关于同一个未知数的几个 一元一次不等式合在一起就组成一元一 次不等式组。 ③数轴上表示不等式的解集:一,注 意方向;二,注意实心与空心的区别;

一元一次不等式(组)的复习教案

一元一次不等式(组)的复习教案

一元一次不等式(组)的复习教案第一章:一元一次不等式的概念与性质1.1 不等式的定义理解不等式的基本概念,掌握不等式的表示方法。

了解不等式的性质,如传递性、反射性和对称性。

1.2 一元一次不等式的解法学习解一元一次不等式的方法,如移项、合并同类项、系数化等。

掌握不等式的解集表示方法,如数轴表示法和不等式表示法。

第二章:一元一次不等式的应用2.1 实际问题转化为不等式学会将实际问题转化为不等式,理解不等式与实际情况的关系。

掌握解实际问题中的不等式,并解释解的含义。

2.2 不等式的简单应用学习不等式在实际问题中的应用,如温度、身高、体重等问题。

培养解决实际问题的能力,提高对不等式的理解和应用。

第三章:一元一次不等式组的解法3.1 不等式组的定义理解不等式组的含义,掌握不等式组的表示方法。

了解不等式组的特点,如解的传递性和兼容性。

3.2 一元一次不等式组的解法学习解一元一次不等式组的方法,如分别解每个不等式、找出解的交集等。

掌握不等式组的解集表示方法,如数轴表示法和不等式表示法。

第四章:一元一次不等式组的应用4.1 不等式组在实际问题中的应用学习将实际问题转化为不等式组,理解不等式组与实际情况的关系。

掌握解实际问题中的不等式组,并解释解的含义。

4.2 不等式组的综合应用学习不等式组在实际问题中的应用,如资源分配、时间安排等问题。

培养解决实际问题的能力,提高对不等式组的理解和应用。

第五章:一元一次不等式与不等式组的综合练习5.1 不等式与不等式组的练习题提供一些不等式与不等式组的练习题,让学生进行解答。

引导学生运用所学的知识和方法,提高解题能力和思维能力。

5.2 综合练习题的解答与解析给出练习题的解答,让学生对照答案进行检查。

分析解答过程中的关键步骤和注意事项,帮助学生理解和巩固知识。

第六章:一元一次不等式与不等式组的图像表示6.1 不等式的数轴表示学习如何将一元一次不等式表示在数轴上。

掌握数轴上不等式解集的表示方法。

人教版七年级下册数学第九单元本章复习教案与教学反思

人教版七年级下册数学第九单元本章复习教案与教学反思

第九章不等式与不等式组李度一中陈海思本章复习【知识与技能】1.了解一元一次不等式及其相关概念,经历“把实际问题抽象为不等式”的过程,能够“列出不等式或不等式组表示问题中的不等关系”,体会不等式(组)是刻画现实世界中不等关系的一种有效的数学模型.2.通过观察、对比和归纳,探索不等式的性质,能利用它们探究一元一次不等式的解法.3.了解解一元一次不等式的基本目标(使不等式逐步转化为x>a或x<a的形式),熟悉解一元一次不等式的一般步骤,掌握一元一次不等式的解法,并能在数轴上表示出解集,体会解法中蕴含的化归思想.4.了解不等式组及其相关概念,会解由两个一元一次不等式组成的不等式组,并会用数轴确定解集.【过程与方法】用提问法引导学生复习本章所有知识点,再通过典型题、热点题的剖析与训练提高学生的解题能力.【情感态度】通过一些经典的、现实的、有意义的、富有挑战性的题型的训练,培养学生主动学习、探究学习、互相交流等学习品质,激发学生的学习兴趣.【教学重点】一元一次不等式(组)的解法及列不等式(组)解应用问题.【教学难点】与一元一次不等式(组)有关的综合型问题,应用型问题.一、知识框图,整体把握1.利用不等式(组)解决实际问题的基本过程2.本章知识安排的前后顺序二、回顾思考,梳理知识1.不等式的三个性质:不等式性质1:不等式两边加(或减)同一个数(或式子),不等号的方向不变.不等式性质2:不等式两边乘(或除以)同一个正数,不等号的方向不变.不等式性质3:不等式两边乘(或除以)同一个负数,不等号的方向改变.2.一元一次不等式的解法与一元一次方程的解法基本相同,只是在系数化为1时,若两边同乘(或除以)同一个负数,不等号的方向要改变,解未知数为x 的不等式,就是将不等式逐步变成x>a(或x<a)的形式.3.解一元一次不等式组的关键是求不等式的公共解集.4.设未知数、列不等式(组)是解有关应用题的关键步骤,解相关应用题时,必须根据问题中的相关信息,将问题数学化,进而对其中的数量关系进行梳理,有条理地、逐步深入地考虑如何寻求解决问题的方法.三、典例精析,复习新知例1(山东临沂中考)有3人携带会议材料乘坐电梯,这3人的体重共210kg,每捆材料重20kg电梯最大负荷为1050kg,则该电梯在此3人乘坐的情况下,最多还能搭载____捆材料.分析:本题不等关系是:210+会议材料重量≤1050.设还可搭载x捆材料,则:210+20x≤1050,解得x≤42.故最多还能搭载42捆材料.例2 当m为何值时,方程组解:先解关于x,y的方程组,再由列出关于m的不等式组,解不等式组便可求出m的范围.解方程组得例3某商店积压了100件某种商品,为使这批货物飞快脱手,该商店采取了如下销售方案,将价格提高到原来的2.5倍,再作三次降价处理:第次降低30%,标出“亏本价”;第二次降价30%,标出“破产价”;第三次降价30%,标出“跳楼价”.三次降价处理销售结果如下表:问:(1)跳楼价占原价的百分比是多少?(2)该商品按新销售方案销售,相比原价全部售完,哪一种方案更盈利.解:(1)设原价为x元,则2.5×0.73x÷x=85.75%;(2)原价销售额为100x元,新价销售额为2.5×10×0.7x+2.5×0.72x×0+0.8575x×50=109.375x元,因109.375x>100x,故新方案销售更盈利.例4(1)若不式组 2x-3a<7b,6b-3x<5a 的解集是5<x<22.求a,b的值.(2)已知不等式组的解集为x>2,求a的范围.解:(1)原不等式组可化为依题意,得1/3(6b-5a)<x<1/2(3a+7b).又由题意知,该不等式组的解集为5<<22.所以解得(2)原不等式组可化为.依题意,知x>2,所以a≤2.例5 若关于x的不等式-3x+m>0有5个正整数解,求m的取值范围.解:解不等式得x<m/3,因为它有5个正整数解,所以x的正整数解是x =1,2,3,4,5.而x<5的正整数解为1,2,3,4,不符合题意,所以m/3比5大,而x<6的正整数解为1,2,3,4,5,符合题意,所以m/3不超过6,上5<m/3≤6.所以15<m≤18.想一想,若关于x的不等式-3x+m≥0有5个正整数解,则m的取值范围又如何呢?(答案:15≤m<18)例6 某食堂在开晚餐前有a名学生在食堂排队等候就餐,开始卖晚餐后,仍有学生前来排队买晚餐,设学生前来排队买晚餐的人数按固定的速度增加,食堂每个窗口卖晚餐的速度也是固定的.若开放一个窗口,则需要40分钟才使排队等候的学生全部买到晚餐;若同时开放两个窗口,则需15分钟就可使排队的学生全部买到晚餐.(1)写出开放一个窗口时,开始卖晚餐后窗口卖晚餐的速度y(人/分钟)与每分钟新增加的学生人数x(人)之间的关系.(2)食堂为了提高服务质量,减少学生排队的时间,计划在8分钟内让排队等候的学生全部买到晚餐,以使后到的学生能随到随买,求至少要同时开放几个窗口?(2)设至少要同时开放n个窗口.依题意得由①得x=a/60.代入②得即a+8×a/60≤8n×a/24,即n≥17/5.n取不小于17/5的最小正整数,所以n=4.∴至少要同时开放4个窗口.例7 某校七年级春游,现有36座和42座两种客车可供选择.若只租36座客车若干辆,则正好坐满;若只租42座客车,则能少租一辆,且有一辆车没有坐满,但超过30人.已知36座客车每辆租金400元,42座客车每辆租金440元.(1)该校七年级共有多少人参加春游?(2)请你帮该校设计一种最省钱的租车方案.解:(1)设租36座的车x辆.据题意得:解得:由题意x应取8,参加春游人数为:36×8=288(人).(2)方案①:租36座车8辆的费用:8×400=3200(元);方案②:租42座车7辆的费用:7×440=3080(元);方案③:因为42×6+36×1=288,租42座车6辆和36座车1辆的总费用:6×440+1×400=3040(元).所以方案③:租42座车6辆和36座车1辆最省钱.例8 大别山中学七年级的(1)(2)(3)(4)(5)五个班分在同一小组进行单循环的篮球比赛,争夺出线权.比赛规则规定:胜一场得3分,平一场得1分,负一场得0分,小组中名次在前的两个队出线,小组赛结束后,(1)班的积分为9分,你知道(1)班的成绩是几胜,几平,几负吗?如果(4)班积10分,它能出线吗?解:(1)设(1)班积9分时胜x场,平y场,则解得5/2≤x<4.又x为正整数,所以x=3,y=0.故可知(1)班的成绩是3胜0平1负.(2)设(4)班积10分时胜x场,平y场,则解得3≤x<4.又x为整数,所以x=3,y=1.故(4)班3胜1平0负.经分析易知另外四个班中最多只有一个班,也能达到3胜1平0负,即积分为10分,又因小组中名次在前的两个队出线,故(4)班一定出线.【教学说明】例1~例5可让学生自主探究,交流,达成共识,得出结论;例7~例8是关于一元一次不等式组解决实际问题的综合应用,有一定的典型性与难度,教师要引导学生分析题意中隐含的相等关系与不等关系,并将其转化为数学式.四、师生互动,课堂小结一元一次不等式(组)的解法及应用是中考的必考知识点,不仅在所有的题型中都可出现,而且还渗透到其它知识点之中实行考查,所以同学们一定要重视本节的基础知识及综合演练,只有这样,才能确保后续学习顺利进行.1.布置作业:从教材“复习题9”中选取.2.完成练习册中本课时的练习.本课时的重点是让学生在充分交流的基础上建立本章的知识框架图,并反思如何运用一元一次不等式及一元一次不等式组来解决实际问题,引导学生在练习中体验本章知识的运用.【素材积累】1、只要心中有希望存摘,旧有幸福存摘。

中职数学不等式备课教案

中职数学不等式备课教案

中职数学不等式备课教案一、教学目标1. 让学生掌握不等式的基本概念和性质。

2. 培养学生解决实际问题中的不等式能力。

3. 提高学生的逻辑思维和运算能力。

二、教学内容1. 不等式的定义及表示方法。

2. 不等式的基本性质。

3. 解一元一次不等式。

4. 解不等式组。

5. 不等式在实际问题中的应用。

三、教学重点与难点1. 教学重点:不等式的概念、表示方法、基本性质及解法。

2. 教学难点:不等式的解法和不等式组的解法。

四、教学方法1. 采用问题驱动法,引导学生探索不等式的性质。

2. 利用案例分析法,让学生解决实际问题中的不等式。

3. 运用小组合作学习法,提高学生的团队协作能力。

五、教学过程1. 导入:通过生活中的实例,引入不等式的概念。

2. 讲解:讲解不等式的表示方法、基本性质及解法。

3. 练习:让学生独立解决一些简单的不等式问题。

4. 应用:分析实际问题中的不等式,引导学生运用所学知识解决实际问题。

5. 总结:对本节课的内容进行归纳总结,布置课后作业。

教学反思:在教学过程中,关注学生的学习情况,针对学生的实际水平,适当调整教学内容和教学方法。

注重培养学生的逻辑思维和运算能力,提高学生的学习兴趣。

注重课后作业的布置与批改,及时巩固所学知识。

六、教学评价1. 评价内容:学生对不等式概念、表示方法、基本性质的理解和掌握程度。

2. 评价方法:课堂问答、课后作业、小型测试。

3. 评价标准:能正确表示不等式,运用不等式的性质解决问题,达到学以致用的目的。

七、教学资源1. 教学课件:用于展示不等式的概念、性质和例题。

2. 练习题库:用于课后练习和课堂巩固。

3. 实际问题案例:用于引导学生将不等式应用于实际问题。

八、教学进度安排1. 第一课时:介绍不等式的概念及表示方法。

2. 第二课时:讲解不等式的基本性质。

3. 第三课时:学习解一元一次不等式。

4. 第四课时:学习解不等式组。

5. 第五课时:应用不等式解决实际问题。

九、课后作业布置1. 完成练习题库中的相关题目。

不等式与不等式组复习教案

不等式与不等式组复习教案

不等式与不等式组复习教案教案标题:不等式与不等式组复习教案一、教学目标:1. 复习不等式的基本概念和性质;2. 复习解不等式的方法和技巧;3. 复习解不等式组的方法和技巧;4. 提高学生对不等式和不等式组的理解和应用能力。

二、教学内容:1. 不等式的基本概念回顾:a. 不等式符号的意义及其表示方法;b. 不等式的解集表示方法;c. 不等式的性质回顾。

2. 不等式的解法复习:a. 一元一次不等式的解法;b. 一元二次不等式的解法;c. 绝对值不等式的解法。

3. 不等式组的解法复习:a. 不等式组的图解法;b. 不等式组的代入法;c. 不等式组的消元法。

三、教学过程:1. 复习不等式的基本概念和性质(约15分钟):a. 提醒学生不等式的符号及其含义;b. 回顾不等式的解集表示方法;c. 强调不等式的性质,如加减、乘除、倒数、平方等操作对不等式的影响。

2. 复习不等式的解法(约25分钟):a. 分别复习一元一次不等式、一元二次不等式和绝对值不等式的解法;b. 给学生提供一些例题进行练习,引导他们独立解题;c. 强调解不等式时要注意方程的变号点和边界点。

3. 复习不等式组的解法(约30分钟):a. 复习不等式组的图解法,通过绘制不等式组的解集示意图来求解;b. 复习不等式组的代入法,将不等式组中的一个不等式解出来代入其他不等式中进行求解;c. 复习不等式组的消元法,通过消去变量的方式将不等式组化简为一个或多个不等式。

4. 练习与巩固(约20分钟):a. 提供一些综合性的不等式和不等式组练习题,让学生运用所学方法解题;b. 强调解题思路和方法的灵活运用,培养学生解决问题的能力;c. 鼓励学生互相交流和讨论,提高解题的思维活跃度。

四、教学资源:1. 教材:根据教材中关于不等式和不等式组的章节进行复习;2. 习题集:提供不等式和不等式组的练习题,包括基础和拓展题目;3. 板书:记录不等式和不等式组的基本概念、性质以及解题方法。

人教版初中数学七年级下册第九章《不等式与不等式组》小结教案

人教版初中数学七年级下册第九章《不等式与不等式组》小结教案

课题:第九章不等式与不等式组小结一、教材地位:不等式的知识是初中阶段在一元一次方程和二元一次方程组的学习之后,进一步探究现实世界数量关系的重要内容,应用不等式的基本性质解一元一次不等式(组)是学生应该掌握的基本运算技能,为学生的进一步学习函数、方程和不等式的后续学习奠定基础。

二、学情分析:学生在七年级已经学习一元一次方程和二元一次方程组的基础上学习不等式与不等式组,本节主要引导学生对一元一次不等式(组)的解及其解法的小结,对学生在数学及其生活里不等式内容的进一步的总结。

以数学建模为主要思想,进一步地培养学生分析问题和解题能力。

三、教学目标:(一)知识与技能目标:1、巩固运用不等式的性质;2、会运用不等式的基本性质,解一元一次不等式(组),并会借助数轴确定不等式(组)的解集;3、会巧用解集确定字母系数。

(二)过程与方法目标:1、通过学生解不等式,暴露易犯的错误,针对共性解决问题;2、注重渗透知识形成中蕴涵的数学思想、方法和思维策略;(三)情感与态度目标:1、让学生领会数形结合、分类讨论等解题思想;2、感受数学与生活密切相关,提高学习数学的积极性;四、教学重点:一元一次不等式(组)的概念、性质及解一元一次不等式(组);五、教学难点:巧用解集确定字母系数,体验运用数形结合、分类讨论的思想方法,六、教学策略:本节课将采用“兵教兵”及多媒体演示等方式来突出重点,突破难点.设计典型例题,学生通过“兵教兵”的方式发现问题并展开探索交流.在学生把握基本内容的基础上,教师引导学生进一步提炼,构建知识体系,科学地进行小结与归纳.在此基础上,通过师生之间、生生之间的交流,使学生对数学思想方法的认识更深刻,对解决问题的策略把握得更灵活。

七、教学准备:教师多媒体,学生学具准备。

教学过程一、小测比一比谁做得最快、最好1、解不等式 , 并把解集在数轴上表示出来;2、求不等式组 的整数解。

设计意图:1、根据学生新课的学习,对不等式与不等式组的计算掌握较好,所以通过小测的形式检测;让学生明白本章的重点之一(不等式与不等式组的计算)是否过关;2、通过“兵教兵”的形式,让之前没过关的学生全部通过;3、通过小老师的批改及“兵教兵”时发现的错误,再请他们小结计算过程的易错点。

不等式高中数学教案

不等式高中数学教案

不等式高中数学教案教学目标:1. 能够理解不等式的概念和性质。

2. 能够解决简单的一元不等式。

3. 能够应用不等式解决实际问题。

教学重点和难点:重点:不等式的概念和性质,一元不等式的解法。

难点:应用不等式解决实际问题。

教学准备:1. 教师准备PPT课件,包括不等式的定义、性质和解法。

2. 打印不等式练习题目,用于课堂练习。

教学步骤:一、导入(5分钟)1. 引导学生回顾线性方程的解法,了解不等式的概念。

2. 提出一个简单的不等式问题,让学生思考如何解决。

二、讲解不等式的定义和性质(15分钟)1. 介绍不等式的定义,即含有不等号的等式。

2. 讲解不等式的性质,包括可加性、可乘性和转化性等。

三、解决一元不等式(20分钟)1. 讲解一元不等式的解法,包括加减法解法、乘除法解法和开平方解法。

2. 给学生提供几个简单的一元不等式练习题目,让他们尝试解答。

四、应用不等式解决实际问题(15分钟)1. 引导学生思考如何应用不等式解决实际问题,例如长度、面积和体积等问题。

2. 给学生一个实际问题案例,让他们运用所学知识进行解答。

五、总结复习(5分钟)1. 通过回顾本节课的内容,强化学生对不等式的理解和运用能力。

2. 鼓励学生积极思考和练习不等式相关的题目,提高解决问题的能力。

教学反思:通过本节课的教学,学生应该能够掌握不等式的概念和性质,能够解决简单的一元不等式,并能够应用不等式解决实际问题。

在接下来的教学中,需要继续强化学生对不等式知识的理解和应用能力,提高他们的数学思维和解决问题的能力。

2022年 《一元一次不等式和一元一次不等式组》优秀教案

2022年 《一元一次不等式和一元一次不等式组》优秀教案

一元一次不等式和一元一次不等式组复习教案不等式是现实世界中不等关系的一种数学表达形式,它不仅是现阶段学习的重点内容之一,而且是以后继续学习的根底,在本章中,我们己经从具体的实例中建立了不等式的概念,探索了不等式的根本性质,研究了不等式的根本性质,研究了一元一次不等式〔组〕的解、解集和解集在数轴上的表示等。

为帮助同学们构建本章知识体系,现归纳总结如下:一、复习目标:1、了解不等式、不等式的解集的概念,会在数轴上表示出不等式的解集。

2、掌握不等式的三条根本性质,并会用它们解一元一次不等式。

3、了解一元一次不等式解集的概念,会利用数轴解一元一次不等式组。

4、理解一次函数与一元一次不等式的关系,会利用不等式解决有关函数问题。

二、知识结构网络三、重点难点考点1、重点:不等式的根本性质及一元一次不等式〔组〕的解法、应用。

2、难点:一元一次不等式〔组〕的应用。

3、考点:不等式的性质、不等式〔组〕的解集及在数轴上表示法,不等式组的解法,不等式〔组〕的应用。

四、知识点梳理1、不等式〔组〕有关概念(1)不等式:用不等号“>〞,“0,或a一b2、(1)b,c>d,那么a十c>b十d〔同向不等式相加〕(2)假设a>b,cb一d〔异向不等式相减〕(3)假设a>b>0,c>d>0,ac>bd(4)假设a>b>0,0b>0,n为正整数,那么(5)假设a>b>0,n为不小于2的整数那么(6)假设a>b>0,那么3、解不等式的步骤:〔1〕去分母〔2〕去括号〔3〕移项〔4〕合并同类项〔5〕未知数的系数化为1。

要注意把系数化为1时,如果不等式的两边都乘以〔或除以〕同一个正数,不等号的方向不变;如果不等式的两边都乘以〔或除以〕同一个负数,不等号的方向要改变;解不等式要根据题目的要求和特点合理灵活地选择解题步骤。

4、一元一次不等式〔组〕的应用(1)注意设未知数的方法,找出问题中量与量之间的不等关系,抽象出不等式〔组〕,求出不等式〔组〕的解集后,要注意验证解的合理性。

第7章一元一次不等式及不等式期末复习教学案

第7章一元一次不等式及不等式期末复习教学案

第七章 一元一次不等式及不等式组期末复习教学案【知识要点】、1.不等式: 式子叫做不等式。

2.表示不等式关系的符号及其意义.(1)“≠”读作“不等于”,它说明两个量之间的关系是不等的,但不能说明两个量谁大谁小; (2)“>”读作“大于”,它表示其左边的数比右边的数大; (3)“<”读作“小于”,它表示其左边的数比右边的数小;(4)“≥”读作“大于或等于”,其意义是指左边的数不小于右边的数; (5)“≤”读作“小于或等于”,其意义是指左边的数不大于右边的数;3.(1)不等式的解:能使不等式成立的未知数的值叫做 ;(2)不等式的解集:一个含有未知数的不等式的解的全集叫做 ; (3)解不等式:求不等式解集的过程叫做 . 4. 不等式解集的表示方法(1)用不等式表示:不等式的解集是一个范围,这个范围可以用一个最简单的不等式来表示.(2)用数轴表示:不等式的解集可以在数轴上直观地表示出来,要注意一是定方向,二是定边界点,大于向右画,小于向左画;无等于号时边界点处画空心圆圈,有等于号时边界点处用实心圆点表示一定要注意不等号“ >” ,“ < ”与“ ≥" “≤”在数轴上画法的区别.5.等式的解与不等式的解集的联系与区别.(1)联系: ; (2)区别: .6.不等式的性质.(重点)不等式的性质 1 :不等式的两边 ,不等号的方向不变.不等式的性质 2 :不等式的两边都乘以(或除以)同一个正数,不等号的方向 ;不等式的两边都乘以(或除以)同一个负数,不等号的方向 .7.一元一次不等式 (重点):(1)只含一个未知数,并且未知数的最高次数是1系数不等于0不等式,叫做 . (2)一元一次不等式的一般形式为:b ax+>0或b ax +<0(0≠a )8. 叫做一元一次不等式组。

叫做这个不等式组的解集。

9.一元一次方程与一次函数、二元一次方程(组)与一次函数的联系.(重点)(1)任何一元一次方程都可以转化为)0,(0≠=+a b a bax 为常数,的形式,所以解一元一次方程可以转化为当某个一次函数的值为0时,求相应的自变量的值.从图象上看,相当于已知直线b ax y +=,确定它与x 轴的交点的横坐标的值.(2)二元一次方程与一次函数的联系.若k ,b表示常数且k ≠0,则b kx y =-为二元一次方程,有无数个解,将其变形可得b kx y +=,将 x ,y 看作自变量、因变量,则b kx y +=是一次函数.事实上,以方程b kx y =-的解为坐标的点组成的图象与一次函数b kx y +=的图象相同.(3)二元一次方程组与一次函数的联系.二元一次方程组⎩⎨⎧=+=+222111c y b x a c y b x a 解一可以看作是两个一次函数1111b cx b a y +-=和2222b cx b a y +-=图像的交点.11.一元一次不等式与一次函数的联系. (重点)(1)任何一个一元一次不等式都可以转化为b ax+>0或b ax+<0(a ,b为常数,a ≠0)的形式,所以解一元一次不等式可以看作:当一次函数的值大(小)于0时,求自变量的取值范围. (2)一次函数b kx y +=与一元一次方程0=+b kx 和一元一次不等式的关系:函数b kx y +=的图象在x 轴上方的点所对应的自变量x 的值,即为不等式b kx+>0的解集;在x 轴上的点所对应的自变量x 的值,即为方程0=+b kx 的解;在x 轴下方的点所对应的自变量x 的值,即为不等式b kx +<0的解集.【典型例题】【例1】下列式子中哪些是不等式?(1)x+y=y+x (2)-4>-6 (3)x ≠5 (4)x +2>5 (5)3x<y (6)2a -b 解:是不等式的是: (填序号) 【例2】用不等式表示下列关系。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

不等式与不等式组
基本知识点:
不等式和不等式组: 用不等号表示不等关系的式子,叫做不等式.如:21<-x ,3-4≠4-3,0>a ,02≥a 等都是不等式.
用数轴表示不等式的解集:大于向右画,小于向左画,有等号(≥,≤)画实心点,无等号(>,<)画空心圈.
不等式性质:1:不等式两边都加上(或减去)同一个数或同一个整式,不等号的
方向不变.
2:不等式两边都乘以(或除以)同一个正数,不等号的方向不变.
3:不等式两边都乘以(或除以)同一个负数,不等号的方向改变.
不等式的解集: 不等式组 在数轴上表示的解集 解 集
口 诀 x a x b >⎧⎨>⎩
x >a
大大(>>)取较大; x a x b <⎧⎨<⎩
小小(<<)取较小; x a x b <⎧⎨>⎩
大(>)小小(<)大取中间; x a x b
>⎧⎨<⎩ 空集(即无解) 大(>)大小(<)小取不了。

⑴审题,找出不等关系;
⑵设未知数;
⑶列出不等式;
⑷求出不等式的解集;
⑸找出符合题意的值;
⑹作答。

方法一:⑴找关键词——不等量 ⑵找对比(两种情况),设未知数
⑶找总量
⑷总量已知:两种情况各自与总量比较(两个不等式)
方法二:⑴找关键词——不等量
⑵找对比(两种情况),设未知数
⑶找总量
⑷总量未知:两种情况相互比较(其中一种情况可计算总量,另一种情况有上下限)
方法三(两种方案比较):⑴找出两种方案的,设未知数
⑵分别列出两种方案的费用
⑶分情况讨论(结合人数)
不等式常见考点:1.解不等式(组),并推断出与题意相吻合的解
2.不等式中含有未知正负的系数时对解的讨论
3.逆向运算:由不等式的解反推未知系数的范围
4.实际问题与不等式组
例题演练:
1.已知关于x 的不等式组⎩⎨
⎧>--≥-0125a x x 无解,则a 的取值范围是 . 2.求不等式36
1633->---x x 的非负整数解.
3.求不等式
6)125(53)34(2+<-x x 的所有负整数解.
4.若不等式组⎩⎨
⎧<-<-a
x b b a x 536732的解集是225<<x ,求a ,b 的值。

5.已知方程组⎩⎨
⎧-=++=+②①m y x m y x 12,312的解满足x +y <0.求m 的取值范围.
6.已知:关于x 、y 的方程组⎩⎨
⎧-=++=+134,123p y x p y x 的解满足x >y ,求p 的取值范围.
7.当310)3(2k k -<-时,求关于x 的不等式k x x k ->-4
)5(的解集.
8..已知A =2x 2+3x +2,B =2x 2-4x -5,试比较A 与B 的大小.
9.适当选择a 的取值范围,使1.7<x <a 的整数解:
(1)x 只有一个整数解;
(2)x 一个整数解也没有.
10.k 取哪些整数时,关于x 的方程5x +4=16k -x 的解大于2且小于10?
11.解关于x 的不等式2x +1≥m (x -1).(m ≠2)
12..知关于x 、y 的方程组⎩⎨⎧-=-+=+3
472m y x m y x ,的解为正数.
(1)求m 的取值范围;
(2)化简|3m +2|-|m -5|.
13.如果关于x 的方程3(x +4)-4=2a +1的解大于方程
3
)43(414-=+x a x a 的解,求a 的取值范围.
14,已知a 是自然数,关于x 的不等式组⎩⎨⎧>-≥-.02,43x a x 的解集是x >2,求a 的值.
15.若关于x 的不等式组⎪⎪⎩⎪⎪⎨⎧+<+->+a x x x x 3
22,3215只有4个整数解,求a 的取值范围.
16.(1)比较下列各组数的大小.
,3
423______43,1312______32,3231______21++++++ ⋅++++++10
17108______178,5952______92,6
564______54 (2)猜想:设a >b >0,m >0.则,______m
a m
b a b ++请证明你的结论
应用题:
【例1】一本英语书98页,张力读了7天(一周)还没读完,而李永不到一周就读完了.李永平均每天比张力多读3页,张力每天读多少页?
方法:⑴找关键词——不等量
⑵找对比(两种情况),设未知数
⑶找总量
⑷总量已知:两种情况各自与总量比较(两个不等式)
习题演练:
某旅游团有48人到某宾馆住宿,若全安排住宾馆的底层,每间住4人,房间不够;每间住5人,有一个房间没有住满5人。

问该宾馆底层有客房多少间?
有10名菜农,每人可种甲种蔬菜3亩或乙种蔬菜2亩,已知甲种蔬菜每亩可收入0.5万元,乙种蔬菜每亩可收入0.8万元,若要使总收入不低于15.6万元,则应该如何安排人员?
【例2】把一些书分给几个学生,如果每人分3本,那么余8本;如果前面的每个学生分5本,那么最后一人就分不到3本。

问这些书有多少本?学生有多少人?
方法:⑴找关键词——不等量
⑵找对比(两种情况),设未知数
⑶找总量
⑷总量未知:两种情况相互比较(其中一种情况可计算总量,另一种
情况有上下限)
变式练习:
某中学为八年级寄宿学生安排宿舍,如果每间4人,那么有20人无法安排,如果每间8人,那么有一间不空也不满,求宿舍间数和寄宿学生人数。

某宾馆一楼房间比二楼房间少5间,一旅游团有48人,若全部安排在一楼,每间住4人,房间不够,每间住5人,有房间没住满。

若全部安排在二楼,每间住3人,房间不够,每间住4人,则有房间没住满。

问宾馆一楼有多少房间?
【例3】某校校长暑假将带领该校“市级三好学生”去三峡旅游,甲旅行社说:如果校长买全票一张,则其余学生可享受半价优惠;乙旅行社说:包括校长在内全部按全票的6折优惠。

已知两家旅行社的全票价都是240元,哪家旅行社比较好?
“方案比较”:⑴找出两种方案的,设未知数
⑵分别列出两种方案的费用
⑶分情况讨论(结合人数)
变式练习
5.12四川地震后,怀化市立即组织医护工作人员赶赴四川灾区参加伤员抢救工作.拟派30名医护人员,携带20件行李(药品、器械),租用甲、乙两种型号的汽车共8辆,日夜兼程赶赴灾区.经了解,甲种汽车每辆最多能载4人和3件行李,乙种汽车每辆最多能载2人和8件行李.(1)设租用甲种汽车辆,请你设计所有可能的租车方案;(2)如果甲、乙两种汽车的租车费用每辆分别为8000元、6000元,请你选择最省钱的租车方案.
某班到毕业时共结余经费1800元,班委会决定拿出不少于270元但不超过300元的资金为老师购买纪念品,其余资金用于在毕业晚会上给50位同学每人购买一件文化衫或一本相册作为纪念品.已知每件文化衫比每本相册贵9元,用200元恰好可以买到2件文化衫和5本相册.(1)求每件文化衫和每本相册的价格分别为多少元?(2)有几种购买文化衫和相册的方案?哪种方案用于购买老师纪念品的资金更充足?。

相关文档
最新文档