灰铸铁的热处理
金属材料学第7-11章课后习题答案
金属材料学习题与思考题第七章铸铁1、铸铁与碳钢相比,在成分、组织和性能上有什么区别?(1)白口铸铁:含碳量约2.5%,硅在1%以下白口铸铁中的碳全部以渗透碳体(Fe3c)形式存在,因断口呈亮白色。
故称白口铸铁,由于有大量硬而脆的Fe3c,白口铸铁硬度高、脆性大、很难加工。
因此,在工业应用方面很少直接使用,只用于少数要求耐磨而不受冲击的制件,如拔丝模、球磨机铁球等。
大多用作炼钢和可锻铸铁的坯料(2)灰口铸铁;含碳量大于4.3%,铸铁中的碳大部或全部以自由状态片状石墨存在。
断口呈灰色。
它具有良好铸造性能、切削加工性好,减磨性,耐磨性好、加上它熔化配料简单,成本低、广泛用于制造结构复杂铸件和耐磨件。
(3)钢的成分要复杂的多,而且性能也是各不相同钢是含碳量在0.04%-2.3%之间的铁碳合金。
我们通常将其与铁合称为钢铁,为了保证其韧性和塑性,含碳量一般不超过1.7%。
钢的主要元素除铁、碳外,还有硅、锰、硫、磷等,而且钢还根据品质分类为①普通钢(P≤0.045%,S≤0.050%)②优质钢(P、S均≤0.035%)③高级优质钢(P≤0.035%,S≤0.030%)按照化学成分又分①碳素钢:.低碳钢(C≤0.25%).中碳钢(C≤0.25~0.60%).高碳钢(C≤0.60%)。
②合金钢:低合金钢(合金元素总含量≤5%).中合金钢(合金元素总含量>5~10%).高合金钢(合金元素总含量>10%)。
2、C、Si、Mn、P、S元素对铸铁石墨化有什么影响?为什么三低(C、Si、Mn低)一高(S高)的铸铁易出现白口?(1)合金元素可以分为促进石墨化元素和阻碍石墨化元素,顺序为:Al、C、Si、Ti、Ni、P、Co、Zr、Nb、W、Mn、S、Cr、V、Fe、Mg、Ce、B等。
其中,Nb为中性元素,向左促进程度加强,向右阻碍程度加强。
C和Si是铸铁中主要的强烈促进石墨化元素,为综合考虑它们的影响,引入碳当量CE = C% + 1/3Si%,一般CE≈4%,接近共晶点。
退火热处理规范
山西方盛液压机电设备有限公司退火热处理规范在遵守《热处理安全技术操作规范》、JB4406-87《热处理安全技术的一般规定》和现有设备电加热安全技术操作规程的前提下,制订以下三种退火工艺1、焊接件类的退火工艺流程A、焊接件以低于300℃进炉B、加热温度:600-650℃,对薄壁、细长、大而薄的易变形焊接件,退火温度应取下限。
C、加热速度:100-150℃/小时。
D、保温时间:以焊接结构件最厚(或直径最大)的断面计算,每25mm为1小时,计算不足1小时,一般保温时间为2-4小时。
E、冷却速度:随炉冷至300℃以下出炉空冷。
检验标准:用肉眼或低倍放大镜检查有无裂纹,检查变形有无误差,对退火变形超差的工件允许进行校正。
若变形量较大,校正工作量大的焊接件,应再进行一次应力退火处理。
对表面质量要求高的焊接件检查表面质量及氧化情况。
注:本规范适用于低碳结构钢焊接结构件消除残余应力退火。
2、铸件类的退火工艺流程铸件脱模后,必须经过退火才能进入后续加工工序。
目的:消除内应力和稳定尺寸,消除铸件的白口组织和提高铸件表面的硬度及耐磨性。
第一、灰铸铁类退火工艺流程:A、去应力退火:将铸件缓慢加热到500-560℃,保温2小时左右,然后以极缓慢的速度随炉冷至150-200℃后出炉。
注意:退火温度过高或保温时间过长,会引起石墨化,降低铸件强度和硬度,这是不适宜的。
B、消除白口、改善切削加工性的退火工艺:将铸件加热到800-900℃,保温2-5小时,使共晶渗碳体发生分解,然后又在随炉缓慢冷却过程中,使二次渗碳体及共析渗碳体发生分解,待随炉缓冷到500-400℃时,再出炉空冷,这样可以改善切削加工性。
若保温后采用较快的冷却速度,可以增加铸件强度和耐磨性。
第二、球墨铸铁类退火工艺流程:A、去应力退火:球墨铸铁的弹性模量以及凝固时收缩率比灰铸铁高,故铸造内应力比灰铸铁约大2倍。
对于不再进行其他热处理的球墨铸铁铸件,都应进行去应力退火。
灰铸铁缺陷产生的原因分析及预防措施详解
灰铸铁缺陷产生的原因分析及预防措施一、影响灰铸铁力学性能的主要因素:化学成份 (C 、Si 、Mn 、P 、S 合金元素)灰铸铁的力学性能金相组织石墨的形状、大小、分布 和数量以及基体组织工艺、冶金因素:主要有冷却速度,铁液的过热处理、孕育处理、炉料特性等 (1)关于冷却速度的影响 铸铁是一种对冷却速度敏感性很大的材料,同一 铸件的厚壁和薄壁部份,内部和外表都可能获得相差悬殊的组织,俗称为组织 的不均匀性。
因为石墨化过程在很大程度上取决于冷却速度。
影响铸件冷却速 度的因素较多:铸件壁厚和分量、铸型材料的种类、浇冒口和分量等等。
由于 铸件的壁厚、分量和结构取决于工作条件,不能随意改变,故在选择化学成份 时应考虑到它们对组织的影响。
(2)关于铁液孕育处理的影响 孕育处理就是在铁液进入铸件型腔前,把孕育 剂附加到铁液中以改变铁液的冶金状态,从而可改善铸铁的显微组织和性能。
对灰铸铁而言,进行孕育处理是为了获得 A 型石墨、 珠光体基体、 细小共 晶团的组织,以及减少铸件薄壁或者边角处的白口倾向和对铸件壁厚的敏感性; 对可锻铸铁而言,是为了缩短短退火周期,增大铸件的允许壁厚和改善组织的 结构;对球墨铸铁而言,是为了减少铸件白口倾向,提高球化率和改善石墨的 圆整性。
(3)关于铁液过热处理的影响。
提高铁液过热温度可以: ①增加化合碳含量和 相应减少石墨碳含量, ②细化石墨, 并使枝晶石墨的形成, ③消除铸铁的 “遗 传性”,④提高铸件断面上组织的均匀性, ⑤有利于铸件的补缩。
同样,铁液保 温也有铁液过热的类似作用。
工艺因素和冶金因素(4)关于炉料特性的影响实际生产中往往发现改变金属炉料(例如采用不同产地的生铁或者改变炉料的配比等)而化学成份似乎无变化的情况下铸铁具有不同的组织和性能,这说明原材料的性质直接影响着用它熔炼出来的铸铁的性质,称为铸铁的:“遗传性”为此,采用提高铁液温度和使用多种铁料配料可消除这种“遗传性”,并改善铸铁的组织和性能。
铸铁热处理
1.炉冷至室温或600℃出炉空冷
1.出炉空冷至室温
2.冷却至720-760℃二阶段石墨化+炉
2.出炉空冷至600℃,再进炉,以速度
冷至室温,或炉冷至600℃出炉空冷 精选可编辑ppt 50-100℃/H;冷至300℃以下,出4炉空 冷
正火
铸铁正火的目的是为了提高铸件的硬度、耐磨性、或作为表面淬火的预备热处理, 改善基体组织.但是,灰铸铁无法通过热处理来改善力学性能,这是因为灰铸铁中 的石墨呈片状分布,破坏了铸铁基体组织的连续性,同时,石墨端部易引起应力集 中,致使灰铸铁热处理后基体组织的强度和塑性、韧性不能充分发挥作用
2.热处理不能改变石墨的形态和分布特性,而铸铁热处理的效果又与铸铁 基体中的石墨形态有密切关系.对于灰铁而言,热处理具有一点的局限性. 而球墨铸铁中的石磨成球状,对基体的削弱作用较小.因而,凡能改变金 属基体组织的各种热处理方法,对于球墨铸铁都是有效的
精选可编辑ppt
1
灰铸铁的热处理
退火
1.去应力退火:为消除铸件的残余应力,稳定几何尺寸,减小或消除加工 过后的畸变.通常普通灰铁件的去应力退火温度以550℃为宜.加热速度以 50℃/h.保温时间以25mm/h计算. 其冷却速度一定要慢,防止产生二次残 余内应力,冷却速度一般控制在20-40℃/h
精选可编辑ppt
6
加热温度对铸铁正火后硬度的影响
在正火温度范围内,加热温度愈高, 硬度也愈高. 正火后的冷却速度影响铁素体的析 出量,冷却速度愈大,铁素体的析 出量愈少,硬度愈高。因此,可采 用控制冷却速度的方法来达到调整 硬度.
精选可编辑ppt
7
球墨铸铁的热处理
球状石墨由于呈球形,故对集体的破坏割裂作用很小,引起应力集中的程度 也不大,基体的作用能较充分的发挥,所以可以通过热处理改变基体组织获 得所需性能
灰铸铁热处理方法
灰铸铁热处理方法
嘿,你问灰铸铁热处理方法啊?这可有不少招呢。
一种方法是退火。
这就像给灰铸铁放个假,让它舒舒服服地休息一下。
退火能降低硬度,提高韧性。
就好比一个人一直很紧张,让他放松放松,就会变得更有弹性。
把灰铸铁加热到一定温度,然后慢慢冷却,这样它的内部结构就会变得更稳定,不容易开裂啥的。
还有一种是正火。
这就像给灰铸铁来个小锻炼,让它变得更结实。
正火能提高硬度和强度。
把灰铸铁加热到比较高的温度,然后快速冷却。
这样它就会变得更硬,更能扛得住压力。
另外呢,淬火也可以。
这可是个厉害的招,就像给灰铸铁来个大挑战。
淬火能让灰铸铁变得超级硬。
把它加热到很高的温度,然后突然放到冷水里冷却。
这就像一个人在火里烤了一下,然后马上跳进冰水里,肯定会变得很坚强。
不过淬火得小心,弄不好就会开裂。
我记得有个工厂,他们生产的灰铸铁零件一开始不太好用,容易坏。
后来他们用了退火的方法,把零件加热了一下,
然后慢慢冷却。
嘿,这下好了,零件变得更有韧性了,不容易坏了。
还有一次,他们想让零件更硬一点,就用了正火的方法。
把零件加热得红红的,然后快速冷却。
果然,零件变得更结实了,能承受更大的压力。
反正啊,灰铸铁热处理方法有退火、正火、淬火等。
要根据不同的需求选择合适的方法。
这样才能让灰铸铁变得更好用,更能满足我们的需要。
你要是碰到灰铸铁需要热处理,就可以试试这些方法哦。
一种灰铸铁HT250轴承套圈热处理工艺[发明专利]
(10)申请公布号(43)申请公布日 (21)申请号 201510474415.7(22)申请日 2015.08.05C21D 9/40(2006.01)C21D 1/18(2006.01)C21D 5/00(2006.01)C22C 37/10(2006.01)(71)申请人人本集团有限公司地址325000 浙江省温州市高新技术产业开发区甬江路16号(72)发明人张志祥 郭长建(74)专利代理机构温州瓯越专利代理有限公司33211代理人陈加利(54)发明名称一种灰铸铁HT250轴承套圈热处理工艺(57)摘要本发明公开了一种灰铸铁HT250轴承套圈热处理工艺,其特征在于包括以下工序:(1)淬火:调整淬火温度到890℃~920℃,保温50~60min,然后油冷,油温设定为100±10℃,然后冷却至室温;(2)阶梯式回火,将灰铸铁HT250轴承套圈升温180±10℃,保温2~4h,然后再将灰铸铁HT250轴承套圈继续升温到300±10℃,保温2~4h,然后空冷至室温。
本发明的优点是显著改善热处理后硬度值均匀性,提高轴承套圈性能。
(51)Int.Cl.(19)中华人民共和国国家知识产权局(12)发明专利申请权利要求书1页 说明书2页 附图3页CN 105018711 A 2015.11.04C N 105018711A1.一种灰铸铁HT250轴承套圈热处理工艺,其特征在于包括以下工序:淬火:调整淬火温度到890℃~ 920℃,保温50min~60min,然后油冷,油温设定为90~120℃,然后冷却至室温;阶梯式回火,将灰铸铁HT250轴承套圈升温180±10℃,保温2~4h,然后再将灰铸铁HT250轴承套圈继续升温到300±10℃,保温2-4h,然后空冷至室温。
2.根据权利要求1所述的一种灰铸铁HT250轴承套圈热处理工艺,其特征在于:灰铸铁HT250轴承套圈包括以下组分,以质量百分比计:C 3.0~3.6%;Si 2.0~2.6%;Mn 0.6~1.0%;Cr 0.5~1.0%;P 0.1%以下;S 0.1%以下;余量为Fe。
本单元练习试题[铸铁]参考答案解析[马]
本单元练习题(铸铁)参考答案(一)填空题1.碳在铸铁中的存在形式有渗碳体和石墨两种。
2.灰口铸铁中根据石墨的形态不同,灰口铸铁又可分为灰铸铁、球墨铸铁、可锻铸铁、和蠕墨铸铁。
3.石墨化过程是指铸铁中的碳以石墨形态析出的过程。
4.可锻铸铁是由白口铸铁经石墨化退火而获得的。
5.影响石墨化的主要因素是化学成分和冷却速度。
6.石墨虽然降低了灰铸铁的力学性能,但却给灰铸铁带来一系列其它的优良性能,主要有:良好的铸造性能、良好的减振性能、良好的减摩性能、良好的切削加工性能、和小的缺口敏感性。
(二)判断题1.由于灰铸铁中碳和杂质元素的含量较高,所以力学性能特点是硬而脆。
(×)2.虽然灰铸铁的抗拉强度不高,但抗压强度与钢相当。
(√)3.可锻铸铁具有较高的塑性和韧性,它是一种可以进行锻造的铸铁。
(×)4.因为铸铁中的石墨对力学性能产生不利影响,所以它是有害而无益的。
(×)5.孕育铸铁的力学性能优于普通铸铁,并且各部位的组织和性能均匀一致。
(√)6.常用铸铁中。
球墨铸铁的力学性能最好,它可代替钢制作形状复杂、性能要求较高的零件。
(√)7.球墨铸铁常常需要进行热处理,获得不同的组织,以满足不同的使用要求。
(√)8.可锻铸铁件主要用于制作形状复杂,要求较高塑性和韧性的薄壁小型零件。
(√)9.为消除铸铁表面或薄壁处的白口组织,应采用时效处理。
(×)10.在铸铁中加入一定量的合金元素,使之具有特殊的物理、化学和其它特殊性能,这种铸铁称之为合金铸铁。
(√)(三)选择题1.由于白口铸铁中的碳主要是以 B 形式存在,所以性能特点是 D 。
A.石墨B.渗碳体C.硬度低,韧性好D.硬度高,韧性差2.灰铸铁、可锻铸铁、球墨铸铁、蠕墨铸铁中的碳主要以 A 形式存在。
A.石墨B.渗碳体C.铁素体D.奥氏体3.灰铸铁的 C 性能与钢相当。
A.塑性B.抗拉强度C.抗压强度D.冲击韧性4.铸铁变质处理采用的变质剂是 A或B 。
金属材料与热处理 模块八 课题二 灰口铸铁
思与练习
1.灰铸铁与钢相比,其组织和性能有何特点?经过孕育处理后的灰铸铁性能有何 变化? 2.灰铸铁有哪些优越性? 3.生产中是采用什么方法来改善灰铸铁的力学性能的? 4.试分析制造齿轮箱所采用的材料和热处理方法 5.在机械加工车间加工一批灰铸铁件时,发现在铸件的薄壁处加工不动。试分析 其原因,并提出解决办法。 6.解释灰铸铁牌号HT250的含义。
HT200 或HT250这种灰铸铁材料强度较高,刚度很好,不易产生形变,这是 高精度机床最主要的性能要求;笨重的铸铁材料及其高含量的石墨可以起到减震 的作用。另外,超大尺寸和复杂外形的零件,选择灰铸铁制造,造价低,加工更 容易。由于床身尺寸大、形状复杂,在冷却过程中会产生较大的内应力。为防止 铸件变形或开裂,应采用去应力退火的热处理方法消除其内应力。
机车床床身
案例分析
•由于床身用于支撑机床上的全部零件,主要承受较大的压应力。 机床在工作时转速很高,产生震动,所以要求床身应具有足够的强 度、刚度(不易变形,提高加工精度)和良好的减震性。另外,床 身的尺寸较大,形状复杂,还要求加工容易,造价低等。选择什么 材料能满足其要求呢?
必备知识
灰铸铁通常是指断口呈灰色,其中的碳主要以片状石墨形式存在的铸铁。在 铸铁的总生产量中,灰铸铁件占80%以上。 一、灰口铸铁的成分和组织
因为化学成分将影响铸铁的石墨化程度,所以灰铸铁的成分应在一定的范围内, 一般为:WC为2.7%~3.6% 、WSi为1.0%~2.2%、 WS<0.15%、 Wp <0.3 %。其中碳、硅、锰是调节组织的元素,磷是控制使用的元素,硫是限制使用的 元素。
其组织是由钢的基体和在基体上分布的片状石墨组成。由于石墨化程度不同, 基体组织中的含碳量也不同;石墨化越充分,则基体中的含碳量也越低,这样便 形成了三种不同的基体组织的灰铸铁,即铁素体灰铸铁(F+片状G)、珠光 体—铁素体灰铸铁(P+F+片状G)和珠光体灰铸铁(P+片状G)。它们的 显微组织如图8—8所示。
铸铁的热处理
铸铁的热处理?按工艺目的不同,铸铁热处理主要可以分为以下几种:(1)去应力退火热处理;(2) 石墨化热处理;(3) 改变基体组织热处理。
本章简要介绍上述热处理工艺的理论基础和工艺特点。
第一节去应力退火热处理?去应力退火就是将铸件在一定的温度下保温,然后缓慢冷却,以消除铸件中的铸造残留应力。
对于灰口铸铁,去应力退火可以稳定铸件几何尺寸,减小切削加工后的变形。
对于白口铸铁,去应力退火可以避免铸件在存放、运输和使用过程中受到振动或环境发生变化时产生变形甚至自行开裂。
? 一、铸造残留应力的产生? 铸件在凝固和以后的冷却过程中要发生体积收缩或膨胀,这种体积变化往往受到外界和铸件各部分之间的约束而不能自由地进行,于是便产生了铸造应力。
如果产生应力的原因消除后,铸造应力随之消除,这种应力叫做临时铸造应力。
如果产生应力的原因消除后铸造应力仍然存在,这种应力叫做铸造残留应力。
铸件在凝固和随后的冷却过程中,由于壁厚不同,冷却条件不同,其各部分的温度和相变程度都会有所不同,因而造成铸件各部分体积变化量不同。
如果此时铸造合金已经处于弹性状态,铸件各部分之间便会产生相互制约。
铸造残留应力往往是这种由于温度不同和相变程度不同而产生的应力。
?二、去应力退火的理论基础?研究表明,铸造残留应力与铸件冷却过程中各部分的温差及铸造合金的弹性模量成正比。
过去很长的时期里,人们认为铸造合金在冷却过程中存在着弹塑性转变温度,并认为铸铁的弹塑性转变温度为400℃左右。
基于这种认识,去应力退火的加热温度应是400℃。
但是,实践证明这个加热温度并不理想。
近期的研究表明,合金材料不存在弹塑性转变温度,即使处于固液共存状态的合金仍具有弹性。
为了正确选择去应力退火的加热温度,首先让我们看看铸铁在冷却过程中应力的变化情况。
图8─1是用应力框测定的灰铸铁冷却过程中粗杆内应力的变化曲线。
?? 图8─1 灰铸铁应力变化曲线??? 在a点前灰铸铁细杆已凝固完毕,粗杆处于共晶转变期,粗杆石墨化所产生的膨胀受到细杆的阻碍,产生压应力,到达a点时,粗杆的共晶转变结束,应力达到极大值。
常用铸造齿轮材料及其热处理工艺方法
常用铸造齿轮材料及其热处理工艺方法铸造齿轮因其加工性能好、耐磨性高、噪声低及成本低等优点,在机械制造行业得到广泛应用。
常用铸造齿轮材料主要包括铸铁及铸钢。
常用齿轮铸铁材料是灰铸铁和球墨铸铁,因铸铁中存在游离石墨和多孔性结构,故齿轮的耐磨性良好、噪声小。
与铸铁齿轮材料相比,铸钢材料具有较高强度、硬度和耐磨性能,可用于负荷较大的大型齿轮。
一、铸铁齿轮材料及其热处理铸铁齿轮常用材料为灰铸铁及球墨铸铁。
1.齿轮用灰铸铁灰铸铁抗拉强度低,脆性较高,抗弯及耐冲击能力很差,但它易于铸造,易切削,具有良好的耐磨性、缺口敏感性小、减振性及成本低特点,可用于低速、载荷不大的开式齿轮传动。
(1)齿轮用灰铸铁的牌号及力学性能齿轮用灰铸铁的牌号及抗拉强度见表1。
(2)灰铸铁齿轮表面硬度和耐磨性灰铸铁表面热处理前最好先正火处理。
表面热处理,如高中频感应淬火及化学热处理等,其中高中频感应淬火应用最多。
高中频感应淬火温度通常采用850~950℃加热淬火,由于铸铁导热性差,因此加热速度不易太快,单位功率要比同样的钢件小一些。
否则,会产生裂纹和熔化现象。
铸铁经高频感应加热后,淬火冷却介质一般采用水、PAG进行冷却。
回火温度一般在200~400℃,铸铁齿轮经淬火、回火后硬度为40~50HRC。
灰铸铁齿轮金相检验执行GB/T7216《灰铸铁金相检验》标准。
2.齿轮用球墨铸铁球墨铸铁的性能介于钢和灰铸铁之间,强度比灰铸铁高很多,具有良好的韧性和塑性,在冲击不大的情况下,可代替钢制齿轮。
齿轮制造主要使用珠光体和贝氏体球墨铸铁,牌号在QT500以上,热处理一般采用正火+回火。
(1)球墨铸铁牌号、基体组织、力学性能及其各热处理状态下的力学性能球墨铸铁牌号、基体组织、力学性能见表2。
(2)球墨铸铁热处理铸造齿轮毛坯的预处理一般采用退火、正火,也可进行正火+回火,或调质处理。
球墨铸铁齿轮的常用热处理工艺见表3。
(3)球墨铸铁金相检验执行GB/T9441《球墨铸铁金相检验》标准。
金属材料及热处理第三版电子课件模块六铸铁
(2)可锻铸铁的牌号及用途 可锻铸铁的牌号由“KT”(“可铁”两字的汉语拼音首字母)及其后的“H”(表示 黑心可锻铸铁)或“Z”(表示珠光体可锻铸铁),再加上两组数字组成,两组数字分别 表示最低抗拉强度和最低断后伸长率。 可锻铸铁具有铁液处理简单、质量稳定、容易组织流水生产、低温韧性好等优点,广 泛应用于汽车、拖拉机制造等行业,常用来制造形状复杂、承受冲击载荷的薄壁、中(小) 型零件,甚至可以用来铸造质量仅数十克或壁厚在2 mm 以下的铸件。黑心可锻铸铁可用 于制造水管弯头、三通管件、低压阀门、扳手、农具(犁刀、犁柱等)、汽车后桥壳、轮 壳等;珠光体可锻铸铁可用于制造载荷较高的耐磨零件,如曲轴、连杆、齿轮等。
三、灰铸铁的牌号及用途
灰铸铁的牌号由“HT”(“灰铁”两字 汉语拼音首字母)加一组数字(最低抗拉强 度)组成。如HT200 表示最低抗拉强度为 200 MPa 的灰铸铁。灰铸铁的牌号及用途 见表的碳以石墨形态析出的过程称为石墨化。铸铁中的石墨可以从液体或奥氏体中 直 接 析 出 , 也 可 以 先 结 晶 出 渗 碳 体 , 再 由 渗 碳 体 在 一 定 条 件 下 分 解 得 到 ( Fe3C → 3Fe+C)。
二、球墨铸铁的牌号及用途
球墨铸铁的牌号是由“QT”(“球铁”两字的汉语拼音首字母)加两组数字组成,两 组数字分别表示最低抗拉强度和最低断后伸长率。如QT400-18 表示最低抗拉强度为400 MPa、最低断后伸长率为18% 的球墨铸铁,QT700-2 表示最低抗拉强度为700 MPa、最 低断后伸长率为2% 的球墨铸铁。
由于球墨铸铁具有良好的力学性能和工艺性能,并能通过热处理进一步提高其力学性 能,因此可用于制造负荷较大、受力较复杂的零件,甚至能代替钢制造某些重要零件,如 柴油机曲轴、连杆、齿轮、机床主轴等。
热处理对铸铁组织的影响分析
热处理对铸铁组织的影响分析作者:胡小琼来源:《课程教育研究·上》2015年第11期【摘要】本文对铸铁的热处理的一般工艺进行了阐述,分析了铸铁热处理的独特特点,此外,本文还重点介绍了不同铸铁的不同热处理工艺及其原因,并对分级淬火热处理方式做了讲述,以期提高相关人员对铸铁热处理的认知。
【关键词】铸铁组织 ;热处理 ;分级保温【中图分类号】G642 【文献标识码】A 【文章编号】2095-3089(2015)11-0230-01铸铁是一种碳含量大于2.11%的铁碳合金,作为一种在工业上使用最为广泛的基础材料,其在现代制造中已经被广泛的使用在汽车、齿轮以及相关重型机械于装备当中。
铸铁材料中的碳含量较高,一般占有2%-4%,除此之外,铸铁中还含有硅、锰、磷等多种化学杂质,与钢相比,由于其含有分散布局的石墨存在,因此机械性能略差,但同时具有较强的铸造性能、减磨性能和加工性能。
铸铁按照金相组织可以分成许多种类,例如白口铸铁、灰铸铁、可锻铸铁和球墨铸铁等。
一、铸铁的常见热处理工艺通过对钢进行不同的热处理,钢结构的机械性能可以得到不同程度的改善,铸铁的热处理过程与钢类似,可以仿照钢的热处理工艺进行处理,但是由于铸铁组织中存在较多含有石墨成分的基体,因此,对铸铁进行的热处理有着与钢不同的特点,在铸铁热处理的具体的工艺参数方面需要有针对性的工艺设计,从而最终达到消除材料内部应力、提高材料性能的目的。
通常,铸铁是一种Fe-C-Si为主的铁基合金,其最大特点是含有石墨(白口铸铁除外)。
通过在一个范围较大的温度区间(共析温度)进行共析转变,铸铁能够达到铁素体、奥氏体和石墨的三者平衡与稳定。
此外,在共析温度区间内的不同温度下,铁素体和奥氏体的具体含量都不尽相同,因此,通过改变热处理的加热温度和保温时间,能够产生不同比例的铁素体和珠光体,从而使铸铁材料获得不同的机械性能。
由此可见,石墨的特性将会对铸铁的热处理影响较大,事实也表明,铸铁热处理工艺与基体中的石墨形态密切相关,例如球墨铸铁由于含有最大机体强度的球状石墨,因而能够使用更多的热处理工艺,而灰铸铁则通常进行退火、正火和表面热处理。
灰铸铁的热处理
灰铸铁的热处理灰铸铁是一种常见的铸造材料,具有良好的铸造性能和机械性能,广泛应用于机械制造、汽车制造、建筑工程等领域。
然而,灰铸铁的性能并不稳定,需要通过热处理来改善其性能。
灰铸铁的热处理主要包括退火、正火、淬火和表面处理等几种方法。
其中,退火是最常用的一种方法,可以改善灰铸铁的塑性和韧性,降低硬度和强度。
正火可以提高灰铸铁的硬度和强度,但会降低其塑性和韧性。
淬火可以进一步提高灰铸铁的硬度和强度,但也会使其变脆。
表面处理可以提高灰铸铁的耐腐蚀性和耐磨性。
退火是灰铸铁热处理中最常用的方法之一。
退火可以消除灰铸铁中的残余应力和组织缺陷,改善其塑性和韧性。
退火温度一般在700℃左右,保温时间根据灰铸铁的厚度和形状而定。
退火后的灰铸铁表面会出现一层黑色氧化皮,需要进行清洗和打磨。
正火是一种提高灰铸铁硬度和强度的方法。
正火温度一般在850℃左右,保温时间根据灰铸铁的厚度和形状而定。
正火后的灰铸铁表面会出现一层红色氧化皮,需要进行清洗和打磨。
淬火是一种进一步提高灰铸铁硬度和强度的方法。
淬火温度一般在850℃左右,保温时间根据灰铸铁的厚度和形状而定。
淬火后的灰铸铁表面会出现一层白色氧化皮,需要进行清洗和打磨。
淬火后的灰铸铁具有很高的硬度和强度,但也很脆,容易发生断裂。
表面处理是一种提高灰铸铁耐腐蚀性和耐磨性的方法。
表面处理可以采用镀锌、喷涂、电镀等方法。
其中,镀锌是最常用的一种方法,可以在灰铸铁表面形成一层锌层,提高其耐腐蚀性和耐磨性。
灰铸铁的热处理可以改善其性能,提高其机械性能、耐腐蚀性和耐磨性。
不同的热处理方法适用于不同的工作条件和要求,需要根据具体情况选择合适的方法。
同时,热处理过程中需要注意控制温度、保温时间和冷却速度等参数,以保证热处理效果。
灰铸铁件热处理
灰铸铁件热处理灰铸铁是一种常见的工业材料,在许多领域发挥着重要作用。
一些灰铸铁件需要进行热处理来改善其物理和机械性能。
本文将介绍灰铸铁件的热处理过程及其影响。
灰铸铁件的热处理包括两个主要步骤:加热和冷却。
在加热过程中,灰铸铁件被加热到一定温度,这个温度通常比室温高出很多,以使原始组织发生改变。
这个过程通常需要进行一定的保温时间,以确保灰铸铁件内部温度达到均衡。
接下来,灰铸铁件被迅速冷却,以保持新组织的形成。
热处理可以带来许多好处,包括:提高灰铸铁件的强度、硬度、耐磨性和抗腐蚀性能等。
热处理的效果与操作参数、炉子类型、冷却方式等因素有关。
选择不同的参数和方式可以使灰铸铁件获得不同的性能。
下面将分别介绍不同的热处理方式。
球化退火球化退火是一种常用的热处理方式,适用于铸件、锻件和冷作件等。
在这个过程中,灰铸铁件被加热到接近临界温度(通常为每种铸铁合金的不同温度)并保温一定时间,以使碳化物尽可能地溶解。
接下来迅速冷却灰铸铁件。
在这个过程中,碳元素从铁基体中扩散到碳化物中,使其形成球状颗粒,从而改善灰铸铁件的延展性和强度。
淬火淬火是一种灰铸铁件的热处理过程,通常在坚硬但脆性易碎的铸造物件上使用。
在淬火过程中,灰铸铁件被加热到很高的温度,超过各种铸件材料的固溶度,然后迅速冷却。
这使得灰铸铁件的碳化物成分处于超冷却状态并具有强度和硬度。
淬火灰铸铁件常常需要再进行回火工艺,以减少其脆性并提高其韧性。
回火热处理可以显著改善灰铸铁件的性能和质量。
不同的热处理方式可以使铸件和锻造物件获得不同的性能和应用范围。
在进行灰铸铁件热处理前,务必了解材料的物理和化学性质以选择合适的操作参数和方式。
铸铁的热处理
铸铁的热处理铸铁的热处理和钢的热处埋有相同之处,也有不同之处。
铸铁的热处理一般不能改善原始组织中石墨的形态和分布状况。
对灰口铸铁来说,由于片状石墨所引起的应力集中效应是对铸铁性能起主导作用的困素,因此对灰口铸铁施以热处理的强化效果远不如钢和球铁那样显著。
故灰口铸铁热处理工艺主要为退火、正火等。
对于球铁来说,由于石墨呈球状,对基体的割裂作用大大减轻,通过热处理可使基体组织充分发挥作用,从而可以显著改善球性的机械性能。
故球铁像钢一样,其热处理工艺有退火、正火、调质、多温淬火、感应加热淬火和表面化学热处理等。
铸铁的热处理工艺:1.消除应力退火由于铸件壁厚不均匀,在加热,冷却及相变过程中,会产生效应力和组织应力。
另外大型零件在机加工之后其内部也易残存应力,所有这些内应力都必须消除。
去应力退火通常的加热温度为500~550℃保温时间为2~8h,然后炉冷(灰口铁)或空冷(球铁)。
采用这种工艺可消除铸件内应力的90~95%,但铸铁组织不发生变化。
若温度超过550℃或保温时间过长,反而会引起石墨化,使铸件强度和硬度降低。
2.消除铸件白口的高温石墨化退火铸件冷却时,表层及薄截面处,往往产生白口。
白口组织硬而脆、加工性能差、易剥落。
因此必须采用退火(或正火)的方法消除白口组织。
退火工艺为:加热到550-950℃保温2~5h,随后炉冷到500—550℃再出炉空冷。
在高温保温期间,游高渗碳体和共晶渗碳体分解为石墨和A,在随后护冷过程中二次渗碳体和共析渗碳体也分解,发生石墨化过程。
由于渗碳体的分解,导致硬度下降,从而提高了切削加工性。
3.球铁的正火球铁正火的目的是为了获得珠光体基体组织,并细化晶粒,均匀组织,以提高铸件的机械性能。
有时正火也是球铁表面淬火在组织上的准备、正火分高温正火和低温正火。
高温正火温度一般不超过950~980℃,低温正火一般加热到共折温度区间820~860℃。
正火之后一般还需进行处理,以消除正火时产生的内应力。
灰铸铁的热处理
(3)冷却速度一定成分的铸铁,石墨化程度取决于冷却速度。冷速越慢,越利于碳原子的扩散,促使石墨化进行。冷速越快,析出渗碳体的可能性就越大。这是由于渗碳体的WC(6.69%)比石墨(100%)更接近于合金的WC(2.5%~4.0%)
双重相图:实践证明,铸铁在冷却时,冷速越缓,析出石墨的可能性越大,用Fe-G相图说明;冷速赶快,则析出渗碳体的可能性越大,用Fe-Fe3C相图说明。为便于比较和应用,习惯上把这两个相图合画在一起,称之为铁-碳合金双相图。如图4-11所示。其中虚线表示稳定态(Fe-G)相图,实线表示亚稳定态(Fe-Fe3C)相图,虚线与实线重合的线用实线画出。石墨化以哪一种方式进行,主要取决于铸铁的成分与保温冷却条件。
正火后冷却速度影响铁素体的析出量,从而对硬度产生影响。冷速愈大,析出的铁素体数量愈少,硬度愈高。因此可采用控制冷却速度的方法)(空冷、风冷、雾冷),达到调整铸铁硬度的目的。
淬火与回火
1.淬火 铸铁淬火工艺是将铸件加热到Ac1上限+30~50℃的温度,一般取850~900℃,使组织转变成奥氏体,并在此温度下保温,以增加碳在奥氏体中的溶解度,然后进行淬火,通常采用油淬。
第三阶段石墨化在738℃(P'S'K'线),通过共析转变析出共析石墨。即
3.影响石墨化的主要因素
(1)化学成分按对石墨化的作用,可分为促进石墨化的元素(C、Si、Al、Cu、Ni、Co、P等)和阻碍石墨化的元素(Cr、W、Mo、V、Mn、S等)两大类。
灰铁、球铁热处理工艺指导书
铸件热处理工艺指导书1.灰铸铁的退火、正火热处理工艺1.1消除内应力退火(人工时效)工艺灰铸铁消除内应力退火(人工时效)热处理工艺适用范围1.较薄、故冷却速度较快的灰铁件;2.形状复杂、截面变化较大的铸件;3。
需进行机加工的大型铸件;4。
经过少量焊修,因而局部积累些许焊应力的铸件.*加热温度越高,应力消除越快。
但温度过高,则易发生石墨化与珠光体球化而使性能降低,尤其是含Si 量较高时;*保温时间一般按炉内铸件平均壁厚的5min/mm计算。
形状复杂的铸件,要以75~100℃/h的速率缓慢加热;*保温时间终了,以30~50℃/h的速率在炉内缓冷,冷却至150~200℃出炉冷却(空冷).1.2软化退火和正火工艺灰铸铁软化退火和正火热处理工艺适用范围*保温时间一般按炉内铸件平均壁厚的5min/mm计算。
形状复杂的铸件,要以75~100℃/h的速率缓慢加热.2.球墨铸铁的退火、正火(+回火)和调质热处理工艺2.1 高温退火当铸态组织为铁素体+珠光体+渗碳体+石墨时,必须采用高温退火工艺:适用范围1。
获得铁素体球墨铸铁;2.分解渗碳体和珠光体,提高机械性能;3.改善加工性能,使工件容易加工且不易变形。
*退火温度越高,渗碳体组织分解速度越快,白口现象越易消除.但温度过高将使铸件机械性能反而变坏,发生变形和表面氧化失碳,故须严格控制温度上限。
* 保温时间也可按炉内铸件每15mm的有效厚度、需要保温1~2h计算,铸件白口深度大、渗碳体组织成分多时,应适当增加保温时间。
*形状复杂的铸件,要以75~100℃/h的速率缓慢加热。
保温终了,以60~80℃/h的速率在炉内缓冷,至600℃后出炉空冷。
2.2 低温退火当铸态组织为铁素体+珠光体+石墨(没有渗碳体)时,只需采用低温退火工艺:球墨铸铁低温退火热处理工艺适用范围1。
获得铁素体球墨铸铁;2。
分解渗碳体和珠光体,提高机性能;3。
改善加工性能。
* 保温时间也可按炉内铸件每15mm的有效厚度、需要保温1~2h计算;*形状复杂的铸件,要以75~100℃/h的速率缓慢加热。
铸铁之弛力退火处理和铸铁之软化退火处理
铸铁之弛力退火处理和铸铁之软化退火处理几乎所有的铸件在冷却过程中都会產生热应力,在热处理过程中,特别正常化处理和退火处理之后均会成内应力,内应力发生的主要原因在於铸件的内部肉厚不同,在急速冷却过程中由於热降的差异发生,肉厚不同会使每一个不分的收缩各异,因而引起了所谓内应力,冷的部分具有较高的潜变长度,而热的部分其长度较低,故热的部分就会在冷的部分收缩后形成热点造成部份的变形,变形部分之强度,随著变形度的增加而提高,最后再不能进一步变形时,铸件内部形成某种程的弹性应力,甚至塑性应变,即為内应力,此应力几乎可高达与抗拉强度等值,一且由於任何外在的原因使局部应力超过抗拉强度的时候,此类铸件很容易因而造成破裂,热处理是消除内应力最重要的一种方法,主要程序是升高温度,令所有铸建在非常均匀而缓慢的情况下,加热及冷却。
退火温度的高低,主要视铸件的组成部分,以及必须消的强度量而定,甚至必须考虑组织的可能变化,最适合的退火温度可大致归纳如下:对非合金性的铸铁而言,约在500~575℃之间,对於低筋性的铸铁而言,大约在550~600℃之间,对高合金铸铁而言则在600~650℃之间,炉内的温度分布,必须儘可能的均匀以避免存在温度梯度,不论任何情况下,用於退火的火焰或热气体,不能直接喷向铸件,以避免在加热的时候,薄壁的部分在次引起热应力,而增加残留应力的存在量,进而引起破裂,在到达退火温度后的第一小时内大部分的内应力均会消除,则视铸件的厚薄而定,一般而言铸件厚度每增加25mm必须增加一小时的退火时间。
铸铁之软化退火处理灰铸铁与球状石墨铸铁软化退火,事实上是一种针对碳化物分解的热处理,对非合金性及低合金铸铁而言,铁碳所形成的碳化物并非是一种稳定相,在高温中经过一段足够长的时间,碳化物分解成為石墨、肥力铁或沃斯田铁,此类分解过程就是一般所谓的软化热处理,同时也是製造展性铸铁的主要程序,灰铸铁裡的碳化物主要分两类,第一类是在凝固过程中形成的共晶碳化物(Eutectic Carbide),一般称之為自由碳化物(Free Carbide)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
灰铸铁的热处理退火1.去应力退火为了消除铸件的残余应力,稳定其几何尺寸,减少或消除切削加工后产生的畸变,需要对铸件进行去应力退火。
去应力退火温度的确定,必须考虑铸铁的化学成分。
普通灰铸铁当温度起过550℃时,即可能发生部分渗碳体的石墨化和粒化,使强度和硬度降低。
当含有合金元素时,渗碳体开始分解的温度可提高到650℃左右。
通常,普通灰铸铁去应力退火温度以550℃为宜,低合金灰铸铁为600℃,高合金灰铸铁是可提高到650℃,加热速度一般选用60~120℃/h.保温时间决定于加热温度、铸件的大小和结构复杂程度以及对消除应力程度的要求。
铸件去应力退火的冷却速度必须缓慢,以免产生二次残余内应力,冷却速度一般控制在20~40℃/h,冷却到200~150℃以下,可出炉空冷。
一些灰铸铁件的去应力退火规范示于表1.2.石墨化退火灰铸铁件进行石墨化退火是为了降低硬度,改善加工性能,提高铸铁的塑性和韧性。
若铸件中不存在共晶渗碳体或其数量不多时,可进行低温石墨化退火;当铸件中共晶渗碳体数量较多时,须进行高温石墨化退火。
(1)低温石墨化退火,铸铁低温退火时会出现共析渗碳体石墨化与粒化,从而使铸件硬度降低,塑性增加。
灰铸铁低温石墨化退火工艺是将铸件加热到稍低于Ac1下限温度,保温一段时间使共析渗碳体分解,然后随炉冷却。
(2)高温石墨化退火,高温石墨化退火工艺是将铸件加热至高于Ac1上限以上的温度,使铸铁中的自由渗碳体分解为奥氏体和石墨,保温一段时间后根据所要求的基体组织按不同的方式进行冷却。
正火灰铸铁正火的目的是提高铸件的强度、硬度和耐磨性,或作为表面淬火的预备热处理,改善基体组织。
一般的正火是将铸件加热到Ac上限+30~50℃,使原始组织转变为奥氏体,保温一段时间后出炉空冷。
形状复杂的或较重要的铸件正火处理后需再进行消除内应力的退火。
如铸铁原始组织中存在过量的自由渗碳体,则必须先加热到Ac1上限+50~100℃的温度,先进行高温石墨化以消除自由渗碳体在正火温度范围内,温度愈高,硬度也愈高。
因此,要求正火后的铸铁具有较高硬度和耐磨性时,可选择加热温度的上限。
正火后冷却速度影响铁素体的析出量,从而对硬度产生影响。
冷速愈大,析出的铁素体数量愈少,硬度愈高。
因此可采用控制冷却速度的方法)(空冷、风冷、雾冷),达到调整铸铁硬度的目的。
淬火与回火1.淬火铸铁淬火工艺是将铸件加热到Ac1上限+30~50℃的温度,一般取850~900℃,使组织转变成奥氏体,并在此温度下保温,以增加碳在奥氏体中的溶解度,然后进行淬火,通常采用油淬。
对于形状复杂或大型铸件应缓慢加热,必要时可在500~650℃预热,以避免不均匀加热而造成开裂。
随奥氏体化温度升高,淬火后的硬度越高,但过高的奥氏体化温度,不但增加铸铁变形和开裂的危险,并产生较多的残留奥氏体,使硬度下降。
灰铸铁的淬透性与石墨大小、形状、分布、化学成分以及奥氏体晶粒度有关。
石墨使铸铁的导热性降低,从而使它的淬透性下降,石墨越粗大,越多,这种影响越大。
2.回火为了避免石墨化,回火温度一般应低于550℃,回火保温时间按t=[铸件厚度(mm)/25]+1(h)计算。
3.等温淬火为了减小淬火变形,提高铸件综合力学性能,凸轮、齿轮、缸套等零件常采用等温淬火。
等温淬火的加热温度和保温时间与常规淬火工艺相同。
复习前课铸铁的分类(P89~90)§4-6工程铸铁一、铸铁的石墨化1.概述铸铁是碳的质量分数W C>2.11%的铁碳合金。
它是以Fe、C、Si为主要组成元素,并比钢含有较高的S和P等杂质。
碳在铸铁中,主要以石墨的形式存在。
石墨化:铸铁中的碳以石墨的形式析出的过程。
石墨化有两种方式:一种是在冷却过程中,可以从液体和奥氏体中直接析出石墨;另一种是在一定条件下由亚稳定性的Fe3C分解出铁素体和稳定的石墨。
双重相图:实践证明,铸铁在冷却时,冷速越缓,析出石墨的可能性越大,用Fe-G相图说明;冷速赶快,则析出渗碳体的可能性越大,用Fe-Fe3C相图说图4-11 Fe-G与Fe-Fe3C双重相图明。
为便于比较和应用,习惯上把这两个相图合画在一起,称之为铁-碳合金双相图。
如图4-11所示。
其中虚线表示稳定态(Fe-G )相图,实线表示亚稳定态(Fe -Fe 3C )相图,虚线与实线重合的线用实线画出。
石墨化以哪一种方式进行,主要取决于铸铁的成分与保温冷却条件。
2.石墨化过程按照Fe-G 相图,铸铁的石墨化过程分为三个阶段:第一阶段石墨化 ①对于过共晶成分合金而言,铸铁液相冷至C'D'线时,结晶出的一次石墨;②各成分铸铁,在1154℃(E'C'F'线)通过共晶反应形成的共晶石墨。
即共晶℃G A E 1154+−−→−'C L第二阶段石墨化 在1154~738℃温度范围内,奥氏体沿E'S'线析出二次石墨。
即ⅡG第三阶段石墨化 在738℃(P'S'K'线),通过共析转变析出共析石墨。
即共析℃G F A P 738S +−−→−'3.影响石墨化的主要因素(1)化学成分 按对石墨化的作用,可分为促进石墨化的元素(C 、Si 、Al 、Cu 、Ni 、Co 、P 等)和阻碍石墨化的元素(Cr 、W 、Mo 、V 、Mn 、S 等)两大类。
·C 和Si 是强烈促进石墨化的元素;S 是强烈阻碍石墨化的元素,而且还降低铁液的流动性和促进高温铸件开裂;·适量的Mn 既有利于珠光体基体形成,又能消除S 的有害作用;·P 是一个促进石墨化不太强的元素,能提高铁液的流动性,但当其质量分数超过奥氏体或铁素铁的溶解度时,会形成硬而脆的磷共晶,使铸铁强度降低,脆性增大。
总之,生产中,C 、Si 、Mn 为调节组织元素,P 是控制使用元素,S 属于限制元素。
(2)石墨化温度 石墨化过程需要碳、铁原子的扩散,石墨化温度越低,原子扩散越困难,因而石墨化进程越慢,或停止。
尤其是第三阶段石墨化的温度较低,常常石墨化不充分。
(3)冷却速度 一定成分的铸铁,石墨化程度取决于冷却速度。
冷速越慢,越利于碳原子的扩散,促使石墨化进行。
冷速越快,析出渗碳体的可能性就越大。
这是由于渗碳体的W C(6.69%)比石墨(100%)更接近于合金的W C(2.5%~4.0%)影响冷却的因素主要有浇注温度、铸件壁厚、铸型材料等。
当其它条件相同时,提高浇注温度,可使铸型温度升高,冷速减慢;铸件壁厚越大,冷速越慢;铸型材料导热性越差,冷速越慢。
二、铸铁的组织与性能1.铸铁的组织通常铸铁的组织可以认为是由钢的基体与不同形状、数量、大小及分布的石墨组成的。
石墨化程度不同,所得到的铸铁类型和组织也不同。
表4-23铸铁经不同程度石墨化后所得到的组织2.铸铁的性能铸铁基体组织的类型和石墨的数量、形状、大小和分布状态决定了铸铁的性能。
(1)石墨的影响石墨是碳的一种结晶形态,其碳的质量分数W C≈100%,具有简单六方晶格。
由于石墨的硬度为3~5HBS,σb约为20MPa,塑性和韧性极低,伸长率δ接近于零,从而导致铸铁的力学性能如抗拉强度、塑性、韧性等均不如钢。
并且石墨数量越多,尺寸越大,分布越不均匀,对力学性能的削弱就越严重。
其中·片状石墨对基体的削弱作用和引起应力集中的程度最大;·球状石墨对基体的割裂作用最小;·团絮状石墨的作用居于二者之中。
但石墨的存在,使铸铁具有优异的切削加工性能、良好的铸造性能和润滑作用、很好的耐磨性能和抗振性能,大量石墨的割裂作用,使铸铁对缺口不敏感。
(2)基体组织的影响对同一类铸铁来说,在其它条件相同的情况下,铁素体相的数量越多,塑性越好;珠光体的数量越多,则抗拉强度和硬度越高。
由于片状石墨对基体的强烈作用,所以只有当石墨为团絮状、蠕虫状或球状时,改变铸铁基体组织才能显示出对性能的影响。
三、常用铸铁材料1.普通灰铸铁普通灰铸铁俗称灰铸铁,简称灰铁。
其生产工艺简单,铸造性能优良,在生产中应用最为广泛,约占铸铁总量的80%。
(1)灰铸铁的成分、组织和性能一般铸铁含W C=2.7%~3.6%,W Si=1.0~2.2%,W Mn=0.5%~1.3%,W S<0.15%,W P<0.3%。
其组织有:铁素体灰铸铁(在铁素体基体上分布着片状石墨);珠光体+铁素体灰铸铁(在珠光体+铁素体基体上分布着片状的石墨);珠光体灰铸铁(在珠光体基体上分布着片状的石墨)如图4-13(a)、(b)、(c)所示。
图4-13三种基体的灰铸铁灰铸铁组织相当于在钢的基体上分布着片状石墨,因此,其基体的强度和硬度不低于相应的钢。
石墨的强度、塑性、韧性极低,在铸铁中相当于裂缝和孔洞,破坏了基体金属的连续性,同时很容易造成应力集中。
因此,灰铸铁的抗拉强度、塑性及韧性都明显低于碳钢。
石墨片的数量越多、尺寸越大、分布越不均匀,对基体的割裂作用越严重。
但是石墨片很细,尤其相互连接时,也会使承载面积显著下降。
因此,石墨片长度应以0.03~0.25mm为宜。
石墨的存在,使灰铸铁的铸造性能、减摩性、减振性和切削加工性都高于碳钢,缺口敏感性也较低。
灰铸铁的硬度和抗压强度主要取决于基体组织,而与石墨的存在基本无关。
因此,灰铸铁的抗压强度约为抗拉强度3~4倍。
(2)灰铸铁的牌号及用途灰铸铁的牌号由“HT+数字”组成。
其中“HT”是“灰铁”二字汉语拼音字首,数字表示φ30mm试棒的最低抗拉强度值(MPa)。
常用灰铸铁的牌号、力学性能及用途见表4-24。
从表中可以看出,灰铸铁的强度与铸件的壁厚有关,铸件壁厚增加则强度降低,这主要是由于壁厚增加使冷却速度降低,造成基体组织中铁素体增多而珠光体减少的缘故。
(3)灰铸铁的孕育处理浇注时向铁液中加入少量孕育剂(如硅铁、硅钙合金等),改变铁液的结晶条件,以得到细小、均匀分布的片状石墨和细小的珠光体组织的方法,称为孕育处理。
孕育处理时,孕育剂及它们的氧化物使石墨片均匀细化,并使铸铁的结晶过程几乎在全部铁液中同时进行,避免铸件边缘及薄壁处出现白口组织,使铸铁各个部位截面上的组织与性能均匀一致,提高了铸铁的强度、塑性和韧性,同时也降低了灰铸铁的断面敏感性。
经孕育处理后的铸铁称为孕育铸铁,表4-24中,HT250、HT300、HT350即属于孕育铸铁,常用于制造力学性能要求较高,截面尺寸变化较大的大型铸件,如汽缸、曲轴、凸轮、机床床身等。
(4)灰铸铁的热处理由于热处理仅能改变灰铸铁的基本组织,改变不了石墨形态,因此,用热处理来提高灰铸铁的力学性能的效果不大。
灰铸铁的热处理常用于消除铸件的内应力和稳定尺寸,消除铸件的白口组织、改善切削加工性,提高铸件表面的硬度及耐磨性。
①时效处理形状复杂、厚薄不均的铸件在冷却过程中,由于各部位冷却速度不同,形成内应力,即削弱了铸件的强度,又使得在随后的切削加工中,因应力的重新分布而引起变形,甚至开裂。