结构稳定性的验算与控制

合集下载

建筑结构验收标准中的稳定性评估

建筑结构验收标准中的稳定性评估

建筑结构验收标准中的稳定性评估建筑结构验收是指在建筑物建成后对其结构进行检查、评估和审查,以确定其是否符合设计要求和建筑规范的过程。

其中,稳定性评估是建筑结构验收的重要环节之一。

本文将从稳定性评估的概念、评估方法和标准三个方面进行探讨。

一、稳定性评估的概念稳定性是指建筑结构在受到外力作用时保持平衡的能力。

稳定性评估旨在通过分析建筑结构的受力性能和稳定性能,判断其在正常工作状态下是否可以承受各种力的作用而不发生失稳或倒塌。

稳定性评估的主要目的是确保建筑结构的安全可靠性,减少潜在的风险和安全隐患。

二、稳定性评估的方法稳定性评估一般包括以下几个方面的内容:1. 结构材料的力学性能评估建筑结构的稳定性首先与所采用的材料的力学性能有关。

因此,在稳定性评估中需要对结构材料进行力学性能评估,包括强度、刚度以及变形能力等。

2. 结构受力状态的分析稳定性评估还需要对建筑结构的受力状态进行分析,包括受力形式、受力方向、受力大小等。

通过对结构受力状态的分析,可以确定结构所能承受的最大外力和荷载情况,从而评估其稳定性。

3. 结构的整体稳定性评估整体稳定性评估是建筑结构稳定性评估的核心内容。

通过对结构的整体形态、布置以及结构体系的分析,可以判断结构的整体受力性能和稳定性能,并评估其抗倒塌和抗局部失稳的能力。

4. 结构稳定性的验算和验证在稳定性评估中,需要进行结构的稳定性验算和验证。

通过运用力学原理和相关公式,对结构的承载能力、刚度、变形等参数进行计算和分析,从而验证其稳定性是否符合设计要求和建筑规范。

三、稳定性评估的标准稳定性评估的标准主要参考国家和地区的建筑设计规范和建筑结构验收标准。

例如,中国《建筑结构验收规范》、美国《建筑抗震设计规范》等都对建筑结构的稳定性评估提出了详细的要求和指导。

稳定性评估的标准一般包括以下几个方面的内容:1. 结构的稳定性安全系数稳定性安全系数是指结构的实际承受能力与其安全承载能力之比。

一般情况下,结构的稳定性安全系数应大于等于1.0,以确保结构在受到常规荷载作用时保持稳定。

钢结构强度稳定性计算书

钢结构强度稳定性计算书

钢结构强度稳定性计算书计算依据:1、《钢结构设计规范》GB50017-2003一、构件受力类别:轴心受压构件。

二、强度验算:1、轴心受压构件的强度,可按下式计算:σ = N/A n≤ f式中N──轴心压力,取N= 10 kN;A n──净截面面积,取A n= 298 mm2;轴心受压构件的强度σ= N / A n = 10×103 / 298 = 33.557 N/mm2;f──钢材的抗压强度设计值,取f= 205 N/mm2;由于轴心受压构件强度σ= 33.557 N/mm2≤承载力设计值f=205 N/mm2,故满足要求!2、摩擦型高强螺栓连接处的强度,按下面两式计算,取最大值:σ = (1-0.5n1/n)N/A n≤ f式中N──轴心压力,取N= 10 kN;A n──净截面面积,取A n= 298 mm2;f──钢材的抗压强度设计值,取f= 205 N/mm2;n──在节点或拼接处,构件一端连接的高强螺栓数目,取n = 4;n1──所计算截面(最外列螺栓处)上高强螺栓数目;取n1 = 2;σ= (1-0.5×n1/n)×N/A n=(1-0.5×2/4)×10×103/298=25.168 N/mm2;σ = N/A ≤ f式中N──轴心压力,取N= 10 kN;A──构件的毛截面面积,取A= 354 mm2;σ=N/A=10×103/354=28.249 N/mm2;由于计算的最大强度σmax = 28.249 N/mm2≤承载力设计值=205 N/mm2,故满足要求!3、轴心受压构件的稳定性按下式计算:N/φA n≤ f式中N──轴心压力,取N= 10 kN;l──构件的计算长度,取l=5000 mm;i──构件的回转半径,取i=23.4 mm;λ──构件的长细比, λ= l/i= 5000/23.4 = 213.675;[λ]──构件的允许长细比,取[λ]=250 ;构件的长细比λ= 213.675 ≤[λ] = 250,满足要求;φ──轴心受压构件的稳定系数, λ=l/i计算得到的构件柔度系数作为参数查表得φ=0.165;A n──净截面面积,取A n= 298 mm2;f──钢材的抗压强度设计值,取f= 205 N/mm2;N/(φA n)=10×103/(0.165×298)=203.376 N/mm2;由于σ= 203.376 N/mm2≤承载力设计值f=205 N/mm2,故满足要求!。

51 PKPM计算关于结构稳定性的验算与控制

51 PKPM计算关于结构稳定性的验算与控制

1.PKPM计算关于结构稳定性的验算与控制2011-9-1920:10 阅读(458)转自土木工程网,A 控制意义:对结构稳定性的控制,避免建筑在地震时发生倾覆.当高层、超高层建筑高宽比较大,水平风、地震作用较大,地基刚度较弱时,结构整体倾覆验算很重要,它直接关系到结构安全度的控制。

B 规范条文规范:高规5.4.2条,高层建筑结构如果不满足第5.4.1条(即结构刚重比)的规定时,应考虑重力二阶效应对水平力(地震、风)作用下结构内力和位移的不利影响。

规范:高规5.4.4条,规定了高层建筑结构的稳定所应满足的条件.高规5.4.1条,当高层建筑结构的稳定应符合一定条件时,可以不考虑重力二阶效应的不利影响。

高规第12.1.6条,高宽比大于4的高层建筑,基础底面不宜出现零应力区;高宽比不大于4的高层建筑,基础底面与地基之间零应力区面积不应超过基础底面面积的15%。

计算时,质量偏心较大的裙楼与主楼可分开考虑。

C 计算方法及程序实现重力二阶效应即P-Δ效应包含两部分,(1)由构件挠曲引起的附加重力效应;(2)由水平荷载产生侧移,重力荷载由于侧移引起的附加效应。

一般只考虑第(2)种,第(1)种对结构影响很小。

当结构侧移越来越大时,重力产生的福角效应(P-Δ效应)将越来越大,从而降低构件性能直至最终失稳。

在考虑P-Δ效应的同时,还应考虑其它相应荷载,并考虑组合分项系数,然后进行承载力设计。

对于多层结构P-Δ效应影响很小。

对于大多数高层结构,P-Δ效应影响将在5%~10%之间。

对于超高层结构,P-Δ效应影响将在10%以上。

所以在分析超高层结构时,应该考虑P-Δ效应影响。

(P-Δ效应对高层建筑结构的影响规律:中间大两端小)框架为剪切型变形,按每层的刚重比验算结构的整体稳定剪力墙为弯曲型变形,按整体的刚重比验算结构的整体稳定整体抗倾覆的控制??基础底部零应力区控制D 注意事项>>结构的整体稳定的调整当结构整体稳定验算符合高规5.4.4条,或通过考虑P-Δ效应提高了结构的承载力后,对于不满足整体稳定的结构,必须调整结构布置,提高结构的整体刚度(只有高宽比很大的结构才有可能发生)。

51 PKPM计算关于结构稳定性的验算与控制

51 PKPM计算关于结构稳定性的验算与控制

1.PKPM计算关于结构稳定性的验算与控制2011-9-1920:10 阅读(458)转自土木工程网,A 控制意义:对结构稳定性的控制,避免建筑在地震时发生倾覆.当高层、超高层建筑高宽比较大,水平风、地震作用较大,地基刚度较弱时,结构整体倾覆验算很重要,它直接关系到结构安全度的控制。

B 规范条文规范:高规5.4.2条,高层建筑结构如果不满足第5.4.1条(即结构刚重比)的规定时,应考虑重力二阶效应对水平力(地震、风)作用下结构内力和位移的不利影响。

规范:高规5.4.4条,规定了高层建筑结构的稳定所应满足的条件.高规5.4.1条,当高层建筑结构的稳定应符合一定条件时,可以不考虑重力二阶效应的不利影响。

高规第12.1.6条,高宽比大于4的高层建筑,基础底面不宜出现零应力区;高宽比不大于4的高层建筑,基础底面与地基之间零应力区面积不应超过基础底面面积的15%。

计算时,质量偏心较大的裙楼与主楼可分开考虑。

C 计算方法及程序实现重力二阶效应即P-Δ效应包含两部分,(1)由构件挠曲引起的附加重力效应;(2)由水平荷载产生侧移,重力荷载由于侧移引起的附加效应。

一般只考虑第(2)种,第(1)种对结构影响很小。

当结构侧移越来越大时,重力产生的福角效应(P-Δ效应)将越来越大,从而降低构件性能直至最终失稳。

在考虑P-Δ效应的同时,还应考虑其它相应荷载,并考虑组合分项系数,然后进行承载力设计。

对于多层结构P-Δ效应影响很小。

对于大多数高层结构,P-Δ效应影响将在5%~10%之间。

对于超高层结构,P-Δ效应影响将在10%以上。

所以在分析超高层结构时,应该考虑P-Δ效应影响。

(P-Δ效应对高层建筑结构的影响规律:中间大两端小)框架为剪切型变形,按每层的刚重比验算结构的整体稳定剪力墙为弯曲型变形,按整体的刚重比验算结构的整体稳定整体抗倾覆的控制??基础底部零应力区控制D 注意事项>>结构的整体稳定的调整当结构整体稳定验算符合高规5.4.4条,或通过考虑P-Δ效应提高了结构的承载力后,对于不满足整体稳定的结构,必须调整结构布置,提高结构的整体刚度(只有高宽比很大的结构才有可能发生)。

结构薄弱层的验算和控制

结构薄弱层的验算和控制

结构薄弱层的验算和控制结构薄弱层是指建筑结构中一些部位或材料的强度、刚度等特性相对较弱,容易发生断裂、塌陷等情况。

为了确保结构的稳定性和安全性,对结构薄弱层进行验算和控制是非常重要的。

本文将从验算和控制两个方面进行详细讨论。

一、验算1.强度验算:对结构薄弱层的强度进行验算是确保其能够承受设计荷载的重要手段。

验算时需根据设计荷载和相关规范计算并比较所选材料或构件的强度是否满足要求。

如果发现强度不符合要求,应采取相应的加固措施,如增加钢筋数量、更换更强的材料等。

2.刚度验算:刚度验算主要是针对结构薄弱层的变形和位移进行计算,确保其在受力过程中不发生过大的变形,使结构整体保持稳定。

验算时需考虑结构的整体刚度、受力情况以及不同部位的刚度差异等因素。

如果发现刚度差异过大,应采取相应的措施,如增加刚性连接件、增加支撑等来平衡刚度差异。

3.稳定性验算:对结构薄弱层的稳定性进行验算是确保其在受力过程中不会发生失稳的重要手段。

验算时需考虑结构的整体稳定性、局部稳定性和承载力等因素。

根据相关规范和经验判断,对结构进行稳定性验算,并采取相应的措施来增强结构的稳定性,如增加剪力墙、设置撑杆等。

二、控制1.设计控制:在结构设计阶段,应根据相关规范和经验对结构薄弱层进行合理的设计控制。

例如,在构造柱时应避免过长的柱子,以增加其稳定性和抗震能力;在选择材料时应考虑其强度和刚度等因素,以保证结构整体的稳定性。

2.施工控制:在结构施工过程中,应对结构薄弱层进行专门的施工控制。

例如,在混凝土浇筑时应严格控制浇筑质量,避免悬挑部位出现空鼓、裂缝等问题;在安装钢结构时应确保连接牢固、无松动现象等。

3.日常维护控制:结构薄弱层的维护对于其长期稳定运行非常重要。

应制定相应的维护计划,定期检查和维护结构薄弱层,及时发现和处理潜在问题。

例如,定期检查结构的裂缝、变形情况,并采取相应的修复措施。

综上所述,对结构薄弱层进行验算和控制是确保结构稳定性和安全性的重要手段。

结构稳定性设计的两种实用方法比较

结构稳定性设计的两种实用方法比较

T—引叫上
I.
坚竺
一.f.一—型翌———一
图5 具有两根摇摆柱的单层双跨刚架
为刚架的最大弯矩位于柱的端部,按照GB 50017—2003的规定验 算其在弯矩作用平面内的稳定性可能偏于不安全,需补充验算截
面的强度。即是+≤毪=184.4 N/ram2<215 N/mm2,显然能
解:1)梁和柱截面的几何性质:
系数,啦35钢为1.0,Q345钢为1.1,Q390钢为1.2。
对有侧移的纯框架结构,当采用二阶弹性分析时,各杆杆端
的弯矩MⅡ可按式(2)近似计算:
MⅡ=MI 6+£/2iMI,
(2)
其中,MI 6为假定框架无侧移时按一阶弹性分析求得的各
2—卜—氘为茸考虑二阶效应第i层的侧移弯矩增大 杆端弯矩;MI;为各节点侧移时按一阶弹性分析求得的各杆端弯
1)刚架的稳定性与柱子本身的截面特性有关,同时也与横梁 及柱脚的连接方式有关。随着横梁线刚度的增大,刚架的稳定性 提高。
考察在荷载作用下刚架的二阶效应,如果锵≤0.1,说 2)在进行钢框架稳定设计时,对于无支撑(有侧移)刚架,需
3)按照《规范》验算中柱∞,不难龇丽∑N·A-u 2猕>¨,用计算长度法计算有时裱于髓需较精确 摆柱彻,EF的轴心压力设计值之和∑Nz=243 kN。
1)框架只承受作用于节点的竖向荷载,忽略横梁荷载和水平 荷载产生端弯矩的影响。
2)失稳时横梁两端的转角大小相等。 3)所有框架柱同时丧失稳定,即所有框架柱同时达到临界荷载。 《规范》附录D给出了柱的计算长度系数表(该表的变量K1, K2分别表示交于柱上、下两端节点的横梁线刚度之和与柱线刚
度之和的比值),相关条文说明:当横梁与柱铰接时,取横梁线刚 度为零;当柱与基础刚接时,取K2=10。经过整理后可得计算长 度系数.££的近似计算公式,以说明梁柱线刚度比不同时的规律。

【结构设计】浅析结构稳定性的验算要的目的

【结构设计】浅析结构稳定性的验算要的目的

浅析结构稳定性的验算要的目的A控制意义:对结构稳定性的控制,避免建筑在地震时发生倾覆.当高层、超高层建筑高宽比较大,水平风、地震作用较大,地基刚度较弱时,结构整体倾覆验算很重要,它直接关系到结构安全度的控制。

B规范条文规范:高规5.4.2条,高层建筑结构如果不满足第5.4.1条(即结构刚重比)的规定时,应考虑重力二阶效应对水平力(地震、风)作用下结构内力和位移的不利影响。

规范:高规5.4.4条,规定了高层建筑结构的稳定所应满足的条件.高规5.4.1条,当高层建筑结构的稳定应符合一定条件时,可以不考虑重力二阶效应的不利影响。

高规第12.1.6条,高宽比大于4的高层建筑,基础底面不宜出现零应力区;高宽比不大于4的高层建筑,基础底面与地基之间零应力区面积不应超过基础底面面积的15%。

计算时,质量偏心较大的裙楼与主楼可分开考虑。

C计算方法及程序实现重力二阶效应即P-Δ效应包含两部分,(1)由构件挠曲引起的附加重力效应;(2)由水平荷载产生侧移,重力荷载由于侧移引起的附加效应。

一般只考虑第(2)种,第(1)种对结构影响很小。

当结构侧移越来越大时,重力产生的福角效应(P-Δ效应)将越来越大,从而降低构件性能直至最终失稳。

在考虑P-Δ效应的同时,还应考虑其它相应荷载,并考虑组合分项系数,然后进行承载力设计。

对于多层结构P-Δ效应影响很小。

对于大多数高层结构,P-Δ效应影响将在5%~10%之间。

对于超高层结构,P-Δ效应影响将在10%以上。

所以在分析超高层结构时,应该考虑P-Δ效应影响。

(P-Δ效应对高层建筑结构的影响规律:中间大两端小)框架为剪切型变形,按每层的刚重比验算结构的整体稳定剪力墙为弯曲型变形,按整体的刚重比验算结构的整体稳定整体抗倾覆的控制??基础底部零应力区控制D注意事项>>结构的整体稳定的调整当结构整体稳定验算符合高规5.4.4条,或通过考虑P-Δ效应提高了结构的承载力后,对于不满足整体稳定的结构,必须调整结构布置,提高结构的整体刚度(只有高宽比很大的结构才有可能发生)。

结构抗倾覆验算及稳定系数计算

结构抗倾覆验算及稳定系数计算

结构抗倾覆验算及稳定系数计算【摘要】结构的整体倾覆验算直接关系到结构的整体安全,是结构设计中一个重要的整体指标,本文就结构抗倾覆验算、抗倾覆稳定系数以及工程中应注意的事项进行阐述。

【关键词】整体倾覆验算;抗倾覆稳定系数一、当高层、超高层建筑高宽比较大,水平风、地震作用较大,地基刚度较弱时,结构整体倾覆验算很重要,它直接关系到结构安全度的控制。

2009年6月27日发生在上海闵行区的13层在建楼房整体倒塌事件就是一个典型的事故案例。

《高层建筑混凝土结构技术规程》JGJ3-2010(以下简称《高规》),《建筑抗震设计规范》GB50011-2010(以下简称《抗规》),《建筑地基基础设计规范》GB50007-2011(以下简称《地基规范》),《高层建筑筏形与箱形基础技术规范》JGJ6-2011(以下简称《箱基规范》)均对抗倾覆验算有规定。

对单幢建筑物,在均匀地基的条件下,基础底面的压力和基础的整体倾斜主要取决于作用的准永久组合下产生的偏心距大小。

对基底平面为矩形的筏基,在偏心荷载作用下,结构抗倾覆稳定系数KF可用下式表示:其中:MR—抗倾覆力矩值,MR = GB/2;MOV—倾覆力矩值,MOV = V0(2H2/3+H1)=Ge;图2基地反力计算示意图中,B—基础底面宽度,e—偏心距,a—合力作用点至基础底面最大压力边缘的距离。

偏心距e、a、基础底面宽度B、结构抗倾覆稳定系数KF推导关系如下:a+e=B/2 (1)3a+c=B (2)有(1)式、(2)式可推出:从式中可以看出,偏心距e直接影响着抗倾覆稳定系数KF, KF随着e/B的增大而减小,因此容易引起较大的倾斜。

典型工程的实测证实了在地基条件相同时,e/B越大,则倾斜越大。

高层建筑由于楼身质心高,荷载重,当筏形基础开始产生倾斜后,建筑物总重对基础底面形心将产生新的倾覆力矩增量,而倾覆力矩的增量又产生新的倾斜增量,倾斜可能随时间而增长,直至地基变形稳定为止。

工程施工设计结构验算

工程施工设计结构验算

工程施工设计结构验算1.引言工程施工设计结构验算是指在工程施工过程中对设计结构进行验证和核算,以确保结构安全、稳定和符合设计要求。

结构验算是工程施工中的重要环节,对于保障工程质量、确保工程安全具有重要意义。

本文将结合某工程项目的实际情况,对工程施工设计结构验算进行详细的分析和讨论。

2.工程项目概况某工程项目为一座高层住宅建筑,总高度为30层,结构形式为框架结构。

设计要求建筑结构具有足够的抗震性能和承载能力,同时要求结构设计符合相关标准和规范。

3.结构验算内容结构验算的内容主要包括强度验算、稳定验算、疲劳验算等方面。

强度验算是指对结构的承载能力和抗震性能进行验证和核算,以确保结构在承受外部荷载作用下不会发生破坏。

稳定验算是指对结构的稳定性进行检验,以确保结构在不同工况下不会发生失稳现象。

疲劳验算是指对结构在长期使用过程中的疲劳性能进行评估,以确保结构具有足够的耐久性和可靠性。

4.强度验算在强度验算中,主要对结构的受力性能进行分析和计算,包括受力构件的截面设计、受力分析、极限状态下的强度验算等。

针对本工程项目的框架结构,需要对结构主体构件(柱、梁、墙)进行受力分析和验算,包括确定构件的设计荷载、计算构件的截面尺寸、验证构件的受力性能等。

通过合理的计算和分析,可以确保结构在承受设计荷载下能够满足强度要求,保证结构的安全可靠。

5.稳定验算在稳定验算中,主要对结构的稳定性进行评估和分析,包括对结构整体的稳定性和构件局部的稳定性进行考虑。

针对本工程项目的高层建筑结构,需要对结构的整体稳定性进行检验,包括对结构的垂直和水平稳定性进行考虑。

同时,还需要对结构的构件局部稳定性进行验证,确保构件在受力状态下不会发生失稳现象。

通过合理的验算和分析,可以确保结构在各种工况下具有足够的稳定性,确保结构的整体安全和可靠性。

6.疲劳验算在疲劳验算中,主要对结构在长期使用过程中的疲劳性能进行评估和分析,以确保结构在长期使用过程中不会出现疲劳破坏。

塔吊格构柱稳定性验算方法

塔吊格构柱稳定性验算方法

塔吊格构柱稳定性验算方法本工程塔吊基础下的格构柱高度最长为20.5m,依据《钢结构设计规范》(GB50017-2003) ,计算模型选取塔吊最大独立自由高度60m,塔身未采取任何附着装置状态。

1、格构柱截面的力学特性:格构柱的截面尺寸为0.502×0.502m;主肢选用:16号角钢b×d×r=160×16mm;缀板选用(m×m):0.42×0.2主肢的截面力学参数为 A0=49.07 cm2,Z0=4.55cm,Ix0=1175.08cm2,Iy0=1175.08cm2;格构柱截面示意图格构柱的y-y轴截面总惯性矩:格构柱的x-x轴截面总惯性矩:经过计算得到:=4×[1175.08+49.07×(50.2/2-4.55)2]=87589.85cm4;IxI=4×[1175.08+49.07×(50.2/2-4.55)2]=87589.85cm4;y2、格构柱的长细比计算:格构柱主肢的长细比计算公式:其中 H ──格构柱的总高度,取21.7m;I ──格构柱的截面惯性矩,取,Ix =87589.85cm4,Iy=87589.85cm4;A──一个主肢的截面面积,取49.07cm2。

经过计算得到x =102.72,y=102.72。

格构柱分肢对最小刚度轴1-1的长细比计算公式:其中 b ──缀板厚度,取 b=0.5m。

h ──缀板长度,取 h=0.2m。

a1──格构架截面长,取 a1=0.502m。

经过计算得 i1=[(0.25+0.04)/48+5×0.2520/8]0.5=0.404m。

1=21.7/0.404=53.7。

换算长细比计算公式:经过计算得到kx =115.91,ky=115.91。

3、格构柱的整体稳定性计算:格构柱在弯矩作用平面内的整体稳定性计算公式:其中 N ──轴心压力的计算值(kN);取 N=1791.33kN;A──格构柱横截面的毛截面面积,取4×49.07cm2;──轴心受压构件弯矩作用平面内的稳定系数;根据换算长细比0x =115.91,0y=115.91查《钢结构设计规范》得到x =0.520,y=0.520。

基坑支护结构稳定性验算

基坑支护结构稳定性验算

基坑支护结构稳定性验算引言基坑支护结构的稳定性验算是确保施工过程中基坑的安全和稳定的重要环节。

稳定性验算的目的是根据基坑的尺寸、土壤力学参数及施工过程中的荷载情况,评估支护结构的稳定性。

稳定性验算方法稳定性验算通常采用弹性平衡法或有限元分析方法进行。

下面将简要介绍这两种方法:1. 弹性平衡法:该方法基于力学平衡原理,将基坑支护结构视为一个弹性体系,在施工过程中受到的荷载作用下,通过平衡力的计算来评估结构的稳定性。

该方法适用于基坑边界条件简单、土壤参数变化不大的情况。

2. 有限元分析方法:该方法基于有限元理论,将基坑支护结构划分为有限个小单元,通过求解土体的应力、位移等参数来评估结构的稳定性。

该方法适用于基坑边界条件复杂、土壤参数变化较大的情况。

稳定性验算内容稳定性验算的内容通常包括以下方面:1. 土体参数的测定:稳定性验算需要准确的土体参数数据,包括土的内摩擦角、黏聚力、承载力等。

这些参数可以通过现场取样、室内实验或文献资料等方式获取。

2. 基坑尺寸的确定:稳定性验算需要基于设计要求确定基坑的尺寸,包括深度、宽度等。

这些尺寸应基于土体参数和施工条件进行合理的确定。

3. 荷载的考虑:稳定性验算应考虑施工过程中的各种荷载,如土压力、水压力、防护结构重量等。

这些荷载应根据实际情况进行准确的估算。

4. 稳定性验算的方法选择:根据基坑边界条件、土体参数的变化和施工工艺特点等因素,选择合适的稳定性验算方法进行分析计算。

结论稳定性验算是确保基坑支护结构安全和稳定的关键环节。

我们可以根据实际情况选择合适的稳定性验算方法,确定土体参数和基坑尺寸,并综合考虑各种荷载进行分析计算,以保证基坑支护结构的稳定性。

钢结构的稳定性验算

钢结构的稳定性验算

第七章 稳定性验算整体稳定问题的实质:由稳定状态到不能保持整体的不稳定状态;有一个很小的干扰力,结构的变形即迅速增大,结构中出现很大的偏心力,产生很大的弯矩,截面应力增加很多,最终使结构丧失承载能力。

注意:截面中存在压应力,就有稳定问题存在!如:轴心受压构件(全截面压应力)、梁(部分压应力)、偏心受压构件(部分压应力)。

局部稳定问题的实质:组成截面的板件尺寸很大,厚度又相对很薄,可能在构件发生整体失稳前,各自先发生屈曲,即板件偏离原来的平衡位置发生波状鼓曲,部分板件因局部屈曲退出受力,使其他板件受力增加,截面可能变为不对称,导致构件较早地丧失承载力。

注意:热轧型钢不必验算局部稳定!第一节 轴心受压构件的整体稳定和局部稳定一、轴心受压构件的整体稳定注意:轴心受拉构件不用计算整体稳定和局部稳定!轴心受压构件往往发生整体失稳现象,而且是突然地发生,危害较大。

构件由直杆的稳定状态到不能保持整体的不稳定状态;有一个很小的干扰力,结构的弯曲变形即迅速增大,结构中出现很大的偏心力,产生很大的弯矩,截面应力增加很多,最终使结构丧失承载能力。

这种现象就叫做构件的弯曲失稳或弯曲屈曲。

不同的截面形式,会发生不同的屈曲形式:工字形、箱形可能发生弯曲屈曲,十字形可能发生扭转屈曲;单轴对称的截面如T 形、Π形、角钢可能发生弯曲扭转屈曲;工程上认为构件的截面尺寸较厚,主要发生弯曲屈曲。

弹性理想轴心受压构件两端铰接的临界力叫做欧拉临界力:2222//λππEA l EI N cr == (7-1)推导如下:临界状态下:微弯时截面C 处的内外力矩平衡方程为:/22=+Ny dz y EId(7-2) 令EI N k/2=,则: 0/222=+y k dz y d (7-3)解得:kz B kz A y cos sin += (7-4)边界条件为:z=0和l 处y=0;则B=0,Asinkl=0,微弯时πn kl kl A ==∴≠,0sin 0 最小临界力时取n=1,l k /π=,故 2222//λππEA l EI N cr == (7-5)其它支承情况时欧拉临界力为:2222/)/(λπμπEA l EI N cr ==(7-6)欧拉临界应力为:22/λπσE cr =(7-7)实际上轴心受压杆件存在着各种缺陷:残余应力、初始弯曲、初始偏心等。

钢结构的稳定性验算

钢结构的稳定性验算

第七章 稳定性验算整体稳定问题的实质:由稳定状态到不能保持整体的不稳定状态;有一个很小的干扰力,结构的变形即迅速增大,结构中出现很大的偏心力,产生很大的弯矩,截面应力增加很多,最终使结构丧失承载能力。

注意:截面中存在压应力,就有稳定问题存在!如:轴心受压构件(全截面压应力)、梁(部分压应力)、偏心受压构件(部分压应力)。

局部稳定问题的实质:组成截面的板件尺寸很大,厚度又相对很薄,可能在构件发生整体失稳前,各自先发生屈曲,即板件偏离原来的平衡位置发生波状鼓曲,部分板件因局部屈曲退出受力,使其他板件受力增加,截面可能变为不对称,导致构件较早地丧失承载力。

注意:热轧型钢不必验算局部稳定!第一节 轴心受压构件的整体稳定和局部稳定一、轴心受压构件的整体稳定注意:轴心受拉构件不用计算整体稳定和局部稳定!轴心受压构件往往发生整体失稳现象,而且是突然地发生,危害较大。

构件由直杆的稳定状态到不能保持整体的不稳定状态;有一个很小的干扰力,结构的弯曲变形即迅速增大,结构中出现很大的偏心力,产生很大的弯矩,截面应力增加很多,最终使结构丧失承载能力。

这种现象就叫做构件的弯曲失稳或弯曲屈曲。

不同的截面形式,会发生不同的屈曲形式:工字形、箱形可能发生弯曲屈曲,十字形可能发生扭转屈曲;单轴对称的截面如T 形、Π形、角钢可能发生弯曲扭转屈曲;工程上认为构件的截面尺寸较厚,主要发生弯曲屈曲。

弹性理想轴心受压构件两端铰接的临界力叫做欧拉临界力:2222//λππEA l EI N cr == (7-1)推导如下:临界状态下:微弯时截面C 处的内外力矩平衡方程为:/22=+Ny dz y EId(7-2) 令EI N k/2=,则: 0/222=+y k dz y d (7-3)解得:kz B kz A y cos sin += (7-4)边界条件为:z=0和l 处y=0;则B=0,Asinkl=0,微弯时πn kl kl A ==∴≠,0sin 0 最小临界力时取n=1,l k /π=,故 2222//λππEA l EI N cr == (7-5)其它支承情况时欧拉临界力为:2222/)/(λπμπEA l EI N cr ==(7-6)欧拉临界应力为: 22/λπσE cr =(7-7)实际上轴心受压杆件存在着各种缺陷:残余应力、初始弯曲、初始偏心等。

薄壁结构的强度与稳定性分析

薄壁结构的强度与稳定性分析

薄壁结构的强度与稳定性分析薄壁结构是指结构成员的厚度相对于其宽度和长度较小的结构形式。

这种结构在工程中应用广泛,例如建筑物的墙体、航空航天器的外壳等。

然而,由于其特殊的几何形状和较薄的截面,薄壁结构在强度和稳定性方面面临着一些挑战。

为了确保薄壁结构的安全可靠运行,需要进行强度和稳定性分析。

一、强度分析强度是薄壁结构能够承受的外部力或载荷而不发生破坏的能力。

对于薄壁结构的强度分析,主要考虑以下几个方面:1.材料强度:薄壁结构所使用的材料应具有足够的强度来抵御外部荷载。

常用的薄壁结构材料有金属、塑料和复合材料等。

在进行材料强度分析时,需要考虑静态和动态荷载下的材料特性。

2.截面强度:薄壁结构的截面形状对其强度起着重要作用。

常见的薄壁结构截面形状有矩形、圆形、梁、柱等。

在进行截面强度分析时,需要考虑截面的几何形状、承载能力和应力分布等因素。

3.连接强度:薄壁结构的连接部分容易成为弱点,连接处的强度决定了整个结构的安全性。

在进行连接强度分析时,需要考虑连接处的刚度、应力集中以及并联和分流等现象。

二、稳定性分析稳定性是薄壁结构在承受外部载荷时不会发生失稳或屈曲的能力。

由于薄壁结构的长细特征,其稳定性常受到压应力的影响。

稳定性分析主要涉及以下几个方面:1.屈曲分析:薄壁结构的稳定性常通过屈曲分析来评估。

屈曲分析主要考虑结构在压力作用下的临界载荷,即屈曲载荷。

通过计算屈曲载荷和相应的临界模态形式,可以评估结构的稳定性。

2.稳定性设计:在薄壁结构的设计阶段,需要考虑稳定性因素并做出相应的设计决策。

稳定性设计包括选择适当的截面形状和尺寸,设置加强筋或支撑,以增加结构的稳定性。

3.稳定性验算:在薄壁结构的使用过程中,需要进行定期的稳定性验算来检查结构的稳定性。

稳定性验算的目的是确保结构在使用期内能够承受外部载荷,并避免失稳或屈曲的发生。

综上所述,薄壁结构的强度和稳定性分析是确保结构安全可靠的重要步骤。

通过对材料、截面和连接的强度分析,以及对稳定性的屈曲分析和设计验算,可以评估薄壁结构的性能,并采取相应的措施来提升其强度和稳定性。

桥梁结构稳定性验算

桥梁结构稳定性验算

桥梁结构稳定性验算1. 引言桥梁是连接两边地理环境的重要基础设施,它承载着车辆和行人的交通需求。

为了确保桥梁能够安全稳定地承载荷载,必须对桥梁结构进行稳定性验算。

本文将介绍一种常用的桥梁结构稳定性验算方法,并对其进行详细说明。

2. 桥梁结构稳定性验算方法桥梁结构稳定性验算是通过对桥梁结构的静力学和动力学特性进行分析,来评估桥梁结构在各种外力作用下的稳定性能。

常用的桥梁结构稳定性验算方法包括:2.1 静力学分析静力学分析是一种基于平衡条件的稳定性分析方法。

在这种分析方法中,通过建立桥梁结构的力学模型,分析各个构件受力状态,以确定结构的稳定性。

具体包括以下步骤:1. 建立桥梁结构的有限元模型。

2. 应用各种外力荷载,如重力、车辆荷载等。

3. 通过求解结构方程,计算各个构件的受力状态。

4. 判断桥梁结构是否满足平衡条件和强度要求。

2.2 动力学分析动力学分析是一种基于结构振动特性的稳定性分析方法。

在这种分析方法中,通过考虑结构的固有振动频率和外力激励,评估结构在动力荷载下的稳定性。

具体包括以下步骤:1. 建立桥梁结构的振动方程。

2. 求解振动方程,得到结构的固有振动频率和模态形态。

3. 应用外力激励,考虑结构的动力响应。

4. 通过比较振动响应和结构强度要求,判断结构的稳定性。

3. 结论桥梁结构稳定性验算是确保桥梁安全可靠运行的关键步骤。

通过静力学分析和动力学分析的方法,可以评估结构在静力和动力荷载下的稳定性。

在进行桥梁验算时,还应考虑结构的强度和刚度等因素,以确保结构具备足够的稳定性能。

这些方法可以为桥梁设计和施工提供重要的技术支持。

以上是桥梁结构稳定性验算的基本介绍,希望对相关工程师和设计师有所帮助。

在实际应用中,需要根据具体桥梁的情况和工程要求,结合相关标准和规范进行具体分析。

钢柱结构的稳定性分析

钢柱结构的稳定性分析

钢柱结构的稳定性分析在钢构件的设计中,轴心受力构件和拉弯、压弯构件是重要的两种类型。

其中,轴心受拉构件和拉弯构件只需验算其强度和刚度;而轴心受压构件和压弯构件除验算其强度和刚度外,还需验算其稳定性。

局部稳定一般利用掌握板件的宽厚比保证,而整体稳定的计算状况比较多,是重点也是难点。

笔者对整体稳定的验算状况整理如下:关于长细比关于钢柱的整体稳定验算,首要问题是计算其长细比。

对于长细比的把握,主要从以下三方面入手:容许长细比:受压可参考钢标7.4.6条、受拉可参考钢标7.4.7条。

长细比计算:实腹式双轴对称截面长细比和单轴对称截面换算长细比可参考钢标7.2.2条、格构式绕实轴的长细比和绕虚轴的换算长细比可参考钢标7.2.3条。

计算长度:桁架和塔架杆件可参考钢标7.4.1~7.4.5条、框架柱可参考钢标8.3.1~8.3.5条。

轴心受压构件轴心受压构件的设计一般使两个方向具有等稳定性,当两个方向的长细比相差较大时,可在较大长细比方向设置侧向支撑。

一般需验算两个主轴方向的稳定性。

实腹式:绕强轴和绕弱轴,计算两个方向的稳定系数,采纳较小的稳定系数。

格构式:绕实轴和绕虚轴,计算两个方向的稳定系数,采纳较小的稳定系数。

对于格构式构件,为了保证分肢的稳定性,尚应掌握分肢长细比,可参考钢标7.2.4~7.2.6条。

压弯构件压弯构件的验算状况是最多的,可从四个方面把握:分别是实腹式、格构式,单向受弯、双向受弯,绕实轴、绕虚轴(或绕强轴、绕弱轴),平面内、平面外。

无论哪种状况,均需验算平面内稳定和平面外稳定,所以依据前三个方面的排列共8种状况。

实腹式构件单向受弯,无论绕强轴或是绕弱轴,计算状况是一样的,只需替换相应方向的参数即可,可削减一种情。

实腹式构件和格构式构件双向受弯时,两个方向都有弯矩,不再区分绕哪个方向,可削减两种状况。

所以,8种状况削减为5种,分别如下:实腹式单向压弯(一般绕强轴)构件平面内、平面外稳定性。

工程施工结构验算

工程施工结构验算

工程施工结构验算是在工程建设的各个阶段,对结构的安全性、稳定性和可靠性进行分析和评估的过程。

结构验算主要包括设计验算和施工验算两个方面。

设计验算是在结构设计阶段,根据相关规范和标准,对结构的设计方案进行理论分析和计算,确保结构在设计使用条件下能够满足安全、经济、合理的要求。

施工验算是在施工过程中,对施工方案和施工质量进行实际检测和核算,确保结构在施工过程中和竣工后能够满足设计要求和规范规定。

工程施工结构验算的重要性体现在以下几个方面:1. 确保结构安全:结构安全是工程建设的基本要求,验算能够确保结构在设计使用条件下能够承受各种荷载和外部环境的作用,防止结构因设计不合理或施工质量问题而导致的安全事故。

2. 提高工程质量:通过验算,可以发现和解决设计方案和施工过程中的问题,提高工程质量,避免因结构问题导致的工程质量事故。

3. 降低工程风险:工程施工结构验算能够及时发现和处理潜在的风险,降低工程风险,保证工程的顺利进行。

4. 提高经济效益:通过验算,可以优化设计方案和施工方案,提高工程的经济效益,降低工程投资。

工程施工结构验算的主要内容包括:1. 设计文件和图纸的审核:对设计文件和图纸进行全面审核,确保设计符合相关规范和标准,满足使用功能和安全性要求。

2. 结构计算分析:根据设计文件和图纸,运用结构力学、材料力学等理论,对结构进行计算分析,确保结构在各种荷载作用下的安全性、稳定性和可靠性。

3. 施工方案的审核:对施工方案进行全面审核,确保施工方案符合设计要求和相关规范,满足施工安全、进度和质量的要求。

4. 施工过程的监督和检测:对施工过程进行监督和检测,确保施工质量符合设计要求和规范规定。

5. 竣工验收:对竣工的结构进行验收,确保结构满足设计使用条件和安全要求。

总之,工程施工结构验算是确保工程结构安全、提高工程质量和经济效益的重要环节。

通过验算,可以及时发现和处理潜在的问题,降低工程风险,保证工程的顺利进行。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

结构稳定性的验算与控制
结构稳定性的验算与控制
1 控制意义:
对结构稳定性的控制,避免建筑在地震时发生倾覆.
当高层、超高层建筑高宽比较大,水平风、地震作用较大,地基刚度较弱时,结构整体倾覆验算很重要,它直接关系到结构安全度的控制。

2 规范条文
规范:高规5.4.2条,高层建筑结构如果不满足第5.4.1条(即结构刚重比)的规定时,应考虑重力二阶效应对水平力(地震、风)作用下结构内力和位移的不利影响。

规范:高规5.4.4条,规定了高层建筑结构的稳定所应满足的条件.
高规5.4.1条,当高层建筑结构的稳定应符合一定条件时,可以不考虑重力二阶效应的不利影响。

高规第12.1.6条,高宽比大于4的高层建筑,基础底面不宜出现零应力区;高宽比不大于4的高层建筑,基础底面与地基之间零应力区面积不应超过基础底面面积的15%。

计算时,质量偏心较大的裙楼与主楼可分开考虑。

3 计算方法及程序实现
重力二阶效应即P-Δ效应包含两部分,(1)由构件挠曲引起的附加重力效应;(2)由水平荷载产生侧移,重力荷载由于侧移引起的附加效应。

一般只考虑第(2)种,第(1)种对结构影响很小。

当结构侧移越来越大时,重力产生的福角效应( P-Δ效应)将越来越大,从而降低构件性能直至最终失稳。

在考虑P-Δ效应的同时,还应考虑其它相应荷载,并考虑组合分项系数,然后进行承载力设计。

对于多层结构 P-Δ效应影响很小。

对于大多数高层结构, P-Δ效应影响将在5%~10%之间。

对于超高层结构, P-Δ效应影响将在10%以上。

所以在分析超高层结构时,应该考虑 P-Δ效应影响。

(P-Δ效应对高层建筑结构的影响规律:中间大两端小)
框架为剪切型变形,按每层的刚重比验算结构的整体稳定
剪力墙为弯曲型变形,按整体的刚重比验算结构的整体稳定
整体抗倾覆的控制??基础底部零应力区控制
4 注意事项
1)结构的整体稳定的调整
当结构整体稳定验算符合高规5.4.4条,或通过考虑P-Δ效应提高了结构的承载力后,对于不满足整体稳定的结构,必须调整结构布置,提高结构的整体刚度(只有高宽比很大的结构才有可能发生)。

当整体稳定不满足要求时,必须调整结构方案,减少结构的高宽比。

对一些特殊的工业建筑物,在没有特殊要求的情况下,也应满足整体稳定的要求。

2)结构大震下的稳定
第二阶段设计是结构的弹塑性变形验算,对地震下容易倒塌的结构和有特殊要求的结构,要求其薄弱部位的验算应满足大震不倒的位移限制,并采用相应的专门的抗震构造措施。

对于复杂和超限高层结构宜进行第二阶段的设计。

第二阶段的弹塑性变形分析,宜同时考虑结构的P-Δ效应。

为了保证结构大震下的稳定,弹塑性层间位移角应满足下表的要求:
结构类型弹塑性位移角限值[θp]
混凝土框架 1/50
混凝土框剪、框筒 1/100
混凝土剪力墙、筒中筒 1/120
多高层钢结构 1/50
3)结构整体抗倾覆验算
高层建筑混凝土结构技术规程》(JGJ3-2002)与《建筑抗震设计规范》(GB50011-2001),对高层建筑尤其是高宽比大于4的高层建筑的整体抗倾覆提出了更严格的要求。

计算时假定基础及地基均具有足够的刚度,基底反力呈线性分布;重力荷载合力中心与基底形心基本重合(一般要求偏心距不大于B/60)。

如为基岩,地基足够刚,MR/MOV要求可是当放松;如为中软土地基,MR/MOV要求还应适当从严。

地震时,地基稳定状态受到影响,故抗震设计时,尤其抗震设防烈度为8度以上地区, MR/MOV要求还要求适当从严;抗风时,可计及地下室周边被动土压力作用,但MR/MOV要求仍应满足规程要求、不宜放松。

当扩大的裙房地下室底板较薄、地下室墙体较少、地下室墙体、顶板开洞削弱较多时,抗倾覆力矩计算的基础底面宽度宜适当减少,或可取塔楼基础的外包宽度计算,以策安全。

相关文档
最新文档