一元一次方程3

合集下载

人教版七年级上数学:3.4《实际问题与一元一次方程(3)》学案(附模拟试卷含答案)

人教版七年级上数学:3.4《实际问题与一元一次方程(3)》学案(附模拟试卷含答案)

数学:3.4《实际问题与一元一次方程(3)》学案(人教版七年级上)【学习目标】:1、通过对实际问题的分析,掌握用方程计算球赛积分一类问题的方法;2、培养学生分析问题、解决问题的能;【学习重点】:审清题意,分析实际问题中的数量关系,找出解决问题的等量关系。

【学习难点】:难点是把生活中的实际问题抽象成数学问题【导学指导】一、知识链接1.你知道篮球比赛时是如何计算积分的?2.如果不知道记分规则,你能从比赛后的积分表中得出来吗?请同学们尝试解决下面的问题。

二、自主探究探究3:球赛积分问题:某次篮球联赛积分榜(1)探究某球队总积分与胜、负场数之间的数量关系:若某球队总积分为M,胜场为n,则用含n的式子表示M:M=_____________(2)有人说:在这个联赛中,有一个队的胜场总积分等于它的负场总积分。

你认为这个说法正确吗?请说明理由。

分析;对于问题(1)要弄清积分与胜负场数的关系,必须清楚胜一场得几分,负一场得几分?表中哪个信息最特别?能马上解决上面哪个问题?另一个问题又如何解决呢?若一球队胜了m场,则负了几场?总积分的代数式如何表示?对于问题(2)能否应用方程知识来说明吗?【课堂练习】:1.初一级进行法律知识竞赛,共有30题,答对一题得4分,不答或答错一题倒扣2分。

(1)小明同学参加了竞赛,成绩是96分。

请问小明在竞赛中答对了多少题?(2)小王也参加了竞赛,考完后他说:“这次竞赛我一定能拿到100分。

”请问小王有没有可能拿到100分?试用方程的知识来说明理由。

【要点归纳】:1、列方程解应用题的关键是什么?2、解应用题步骤是什么?3、球赛积分问题的等量关系是什么?4、列方程解应用题除正确列出方程求出解外,还要注意什么?【拓展训练】:1.在一次有12支球队参加的足球循环赛中(每两队必须赛一场),规定胜一场3分,平一场1分,负一场0分,某队在这次循环赛中所胜场数比所负的场数多两场,结果得18分,那么该队胜了几场?2、在一次数学竞赛中,共有60题选择题,答对一题得2分。

解一元一次方程(3)

解一元一次方程(3)
(按环节设计自学、讨论、训练、探索、创新等内容)
教师施教提要
(启发、精讲、活动等)
再次
优化




的年龄的2倍少6”,已知姐姐今年20岁,问小明今年几岁?
4.如何给代数式2(x-1)-6进行去括号?
5.如何解方程2(x-1)-6=20,学生展开讨论,寻求解法
数学运用
例1解方程:
(1)-3(x+1)=9;(2)2(2x+1)=1-5(x-2).
尊重主体面向全体先学后教当堂训练科研兴教力求高效
教材第课(章)第节(单元)第课时,总课时年月日
课题
4.2解一元一次方程(3)
教学模式
讨论交流
教学
目标(认知技能
情感)
1.会应用去括号、移项、合并同类项、系数化为1的方法解一些简单的一元一次方程;
2.经历探索用去括号的方法解方程的过程,进一步熟悉方程的变形,弄清楚每步变形的依据;
学生自学共研的内容方法
(按环节设计自学、讨论、训练、探索、创新等内容)
教师施教提要
(启发、精讲、活动等)
再次
优化
随堂
练习
课堂
小结
达标
检测
思维拓展
解方程:[2(x-)+]=5x.
课堂巩固
1.解方程:
(1)-3(x-1)=9;(2)2(2x+1)=3-2(x-2).
2.解方程:
(1)6-3(x-)=;
(2)[(x+1)+2]-2=x.
3.体会解方程中的转化思想.
教学重难点
1、应用“去括号”等方法解一些简单的一元一次方程.
2、“去括号”时符号的准确变化.
教具
.2解一元一次方程(3)
教学

第13讲 一元一次方程(3)

第13讲  一元一次方程(3)

第13讲一元一次方程(3)—行程问题专题【知识点清单】1、解行程问题中所用到的基本数量关系:路程= ×时间;速度=路程÷;时间=÷速度。

2、行程问题的四种基本类型:★(1)相遇问题★(2)追及问题(3)航行问题(4)火车过桥问题(1)相遇问题中的等量关系:甲的行程 + = 甲、乙起始间的全程;×相遇时间=路程和。

S甲+S乙=C环形(2)追及问题的等量关系:追及时间× =追及路程,S快者―S慢者=(3)、航行问题:V顺水=V静水+V水流; V逆水=V静水―V水流;V顺风=V无风+V风速; V逆风=V无风―V风速;(4)、火车过桥问题:【典例精讲】考点1: 相遇问题【例1】(1)甲、乙两站之间的路程为450千米,一列慢车从甲站开出,每小时行驶65千米,一列快车从乙站开出,每小时行驶85千米,两车同时开出相向而行,_________小时后相遇。

(2)甲、乙两人骑着自行车同时从相距65千米的两地相向而行,2小时相遇,若甲比乙每小时多骑2.5千米,则乙的速度是_________。

【例2】甲乙两人同时从A地前往相距为1252千米的B地,甲骑自行车,乙步行,甲的速度比乙的速度的2倍快2千米/时,甲先到达B地后,立即由B地返回,在途中遇到乙,这时距他们出发时间为3小时,求两人的速度。

变式议练:1、上午8点,李华和张涛两同学分别从A、B两地同时出发,相向而行,已知李华的速度每小时比张涛快2千米,上午十点两人还距36千米,到中午十二点时,两人又相距36千米,试求:A、B两地的距离。

2、A、B两地相距450千米,甲乙两车分别从A、B两地同时出发,相向而行,已知甲车速度为120千米/时,乙车速度为80千米/时,经过t小时两车相距50千米,求t的值是?考点2: 追及问题【例3】开心填一填(1)A、B两地间的路程为450千米,一列慢车从A地出发,每小时行驶60千米,一列快车从B地出发,每小时行驶90千米,若两车同时开出,相向而行,_________小时相遇;若慢车先开1小时,快车在同地同向开出,快车经过了_______小时可追上慢车。

解一元一次方程(3)

解一元一次方程(3)
初中数学七年级上册
(苏科版
解一元一次方程 (3)
建湖县实验初中
想一想
小明用50元钱买了面值为 1元和2元的邮票共30张,他买 了多少张面值为1元的邮票? 设1元的邮票买了x 张,可列 x+2(30-x)=50 方程为:___________.
建湖县实验初中
如何解方程
想一想
如何去括号? 依据是什么? x+2×30-2x=50
还有其他解 法吗?
建湖县实验初中
做一做
解方程 -3(x-1)=15 解:两边都除以(-3),得 x-1=-5. 还有其他去 移项,得 括号的方法吗? x=-5+1. 合并同类项,得 x=-4 .
建湖县实验初中
例2.解方程 3(x-1)-5(3-2x)= 8(x-8)+6
解:去括号,得 3x-3-15 +10x= 8x-64+6. 移项,得 3x+10x-8x=-64+6+3+15 合并同类项,得 5x=-40. 系数化为1,得 x=-8.
x+2(30-x)=50
建湖县实验初中
例1.解方程
x+2(30-x)=50
解:去括号,得 x+60-2x=50 . 移项,得 x-2x=50-60 . 合并同类项,得 -x=-10 . 系数化为1,得 x=10 .
建湖县实验初中
试一试
做一做
解方程 -3(x-1)=15 解: 去括号,得 -3x+3=15 . 移项,得 -3x=15-3 . 合并同类项,得 -3x=12 . 系数化为1,得 x=-4 .
试一试
括号内都要乘 不能忘记变号
建湖县实验初中
1.解下列方程:

一元一次方程(3)

一元一次方程(3)


初一 一元一次方程 3 巩建兵
学科
数学
内容标题 编稿老师
一、学习目标:
1. 掌握解一元一次方程的一般步骤,能够熟练灵活地解一元一次方程. 2. 了解解一元一次方程应用题的一般步骤.
二、重点、难点:
重点:一元一次方程的解法. 难点:对一元一次方程求解过程的理解以及灵活运用解法步骤求解 .
ห้องสมุดไป่ตู้
三、考点分析:
一元一次方程是学习其他方程、方程组的基础,是中考的必考内容.一般都以填空、选 择题的形式出现,难度不大,容易得分.
1. 解一元一次方程的一般步骤以及注意事项 变形名称 去分母 去括号 移项 合并同类项 系数化成 1 2. 列方程解应用题的一般步骤 (1)审:弄清题意和数量关系,弄清已知量和未知量,找到一个能包含题目全部数量 关系的相等关系. (2)设:设未知数(可设直接或间接未知数) (3)列:列方程(使用题中原始数据或已经计算出的数据) (4)解:解方程 (5)验:检验结果是否是原方程的解,检验是否符合题意 (6)答:回答全面,注意单位 说明: (1)书写出来的是:设、列、解、答; ( 2) “审”是关键, “验”是保证. 注意事项 防止漏乘(尤其是整数项) ,注意分子要添括号 注意变号,防止漏乘 移项要变号 计算要仔细,不要出差错 计算要仔细,分子分母不要颠倒
第 2 页 版权所有
不得复制
思路分析: 题意分析:这个方程很复杂,有小数,有分数,还有括号. 0.5x+2 0.3(0.5x+2) 解题思路:首先根据分数的性质把 和 中的小数化为整数,再解方程. 0.03 0.2 解答过程:方程可变形为: 50x+200 15x+60 131 -x= - . 3 20 12
第 3 页 版权所有 不得复制

七年级数学解一元一次方程3

七年级数学解一元一次方程3

电子游戏排行开户
[单选,A1型题]下列哪一项不符合复杂性高热惊厥的诊断标准()A.发作呈全身性,有时呈局限性发作B.惊厥持续时间常超过15minC.惊厥在24h内有反复发作D.发作后无神经系统异常E.发作后有暂时性麻痹 [填空题]83m2脱硫操作人员属特种操作人员,必须持证上岗。持证为()和()。 [单选]对烧伤创面的处理,下列说法中哪个不正确()A.宜先行烧伤创面简单清创B.肢体小面积Ⅱ度烧伤者,宜用包扎治疗C.创面清洁,局部外用抗生素,以防止细菌感染D.头部、颈部创面宜用暴露法E.全身多处烧伤可用包扎和暴露相结合的方法 [单选]肱骨闭合性骨折并伴有桡神经损伤的处理原则是()A.给予大剂量神经营养药物B.处理骨折后观察2~3个月C.立即手术探查松解神经D.先手术吻合神经再处理骨折E.物理疗法 [单选]血小板膜糖蛋白Ⅱb/Ⅲa(GPⅡb/Ⅲa)复合物与下列哪种血小板功能有关()A.黏附功能B.聚集功能C.分泌功能D.凝血功能E.血块收缩功能 [单选,A2型题,A1/A2型题]关于骨盆组成的描述,正确的是()A.由2块髂骨、1块坐骨和1块尾骨组成B.由2块髋骨、1块骶骨和1块尾骨组成C.由2块髂骨、1块骶骨和1块尾骨组成D.由2块髋骨、1块坐骨和1块尾骨组成E.由1块坐骨、耻骨联合和1块尾骨组成 [单选]诺成合同和实践合同是以()条件划分的。A.按照合同表现形式划分B.按照合同的成立是否以标的物的交付为必要条件划分C.按照当事人是否相互负有义务划分D.按照相互之间的从属关系划分 [单选]根据《中华人民共和国消防法》的规定,单位占用、堵塞、封闭疏散通道、安全出口或者有其他妨碍安全疏散行为,应责令改正,处()罚款。()A、一千元以上一万元以下B、五千元以上五万元以下C、八千元以上八万元以下D、一万元以上十万元以下 [单选]关于DMA传输方式的特点其中不正确的是()。A、数据从外设读到CPU,再从CPU把数据送到内存B、DMA方式指高速外设与内存之间直接进行数据传输C、数据传输需要使用总线D、在DMA期间总线使用权是交给DMA控制器的 [填空题]氨合成反应的单程合成率与()()()有关。 [多选]甲氧氯普胺的临床应用包括()A.药物引起的呕吐B.消化不良和恶心C.晕车D.用于十二指肠插管E.糖尿病性胃瘫 [单选]《女职工劳动保护特别规定》自公布之日起施行。()国务院发布的《女职工劳动保护规定》同时废止。A、1997年7月1日B、1988年7月1日C、1988年7月21日D、1991年7月1日 [单选,A1型题]患儿男,12个月。牛乳喂养,食欲欠佳,不肯进辅食,逐渐面色苍黄2个月,体重7.8kg,睑结膜苍白,心前区2级收缩期杂音,肝肋下3cm,脾肋下1.5cm。欲判断患儿有无贫血及其程度,应首先做哪种检查()A.血常规B.骨髓象C.血清总铁结合力测定D.血清铁E.转铁蛋白 [名词解释]GPS [单选,A2型题,A1/A2型题]关于复苏的定义,正确的是()A.指心脏按压B.指人工呼吸C.指容量治疗D.指对脑缺血缺氧损伤的治疗措施E.指一切为了挽救生命而采取的医疗措施 [填空题]涂装的作用包括()、()、()和()。 [多选]矿业工程项目的成本由建筑安装工程利息C.直接工程费D.措施费E.预备费 [问答题,简答题]比例泵的启动和停泵步骤? [单选]蟹爪装煤机在煤的块度为()mm以下时,装载效率最高。A.60B.100C.200D.300 [单选,A2型题,A1/A2型题]关于疼痛康复治疗叙述不正确的是()A.药物治疗是疼痛治疗中最基本、最常用方法B.物理治疗是疼痛治疗中最基本、最常用方法C.神经病理性疼痛是急性疼痛中治疗较差的疼痛D.神经病理性疼痛需要合并使用抗痉厥药和三环类抗抑郁药E.镇痛药是主要作用于中枢神经 [单选]关于惊恐发作的描述,正确的是()A.无特殊恐惧对象时发生B.起病急骤,一般持续1小时左右C.发作期间可有意识障碍D.发作时心电图检查可见ST-T段改变E.长期预后欠佳 [填空题]世界上第一套邮票()的发行日期是1840年5月1日。 [单选]何处病变可见肌纤维震颤()A.肌病B.神经肌肉结合部位C.前角细胞D.上运动神经元病变E.锥体外系统 [多选]硅酸盐水泥熟料中矿物水化反应后后期强度增长较少的矿物是下列中的哪几个?()A、C3SB、C2SC、C3AD、C4AF [单选,A2型题,A1/A2型题]关于软组织闭合性创伤的护理正确的是()A.局部制动,患肢应与心脏在同一水平B.局部热敷,以促进炎症消散C.为缓解疼痛,应注意先选用夹板、绷带等固定,而后采取手术复位D.对挤压伤病人应警惕有无急性肾衰竭表现E.血肿较大者立即切开引流 [问答题,案例分析题]背景材料: [单选,A3型题]婴儿胎龄40周,生后5小时,择期剖宫产娩出,生后不久出现呻吟,呼吸急促,口中少许泡沫伴口周发绀。查体:呼吸70次/分,双肺呼吸音粗,可闻及粗湿啰音,心率140次/分,胸骨左缘2.3肋间闻及Ⅰ~Ⅱ级收缩期杂音。血气分析结果:pH7.32,PaO26.4kPa,PaCO26.7kPa,BE-6 [填空题]车票票面特殊票种除外主要应当载明:();座别、卧别;径路;票价;车次;乘车日期;()。 [单选]用人单位应当将本单位属于女职工禁忌从事的劳动范围的岗位()告知女职工。A、口头B、书面C、正式 [单选,B1型题]月经前痤疮()。A.表现为严重结节、囊肿、窦道及瘢痕,好发于男性青年B.少数患者病情突然加重,并出现发热、关节痛、贫血等全身症状C.雄激素、糖皮质激素、卤素等所致的痤疮样损害D.婴儿期由于母体雄激素在胎儿阶段进入体内E.与月经周期密切相关 [单选]下面关于防火墙的说法,正确的是()。A.防火墙一般由软件以及支持该软件运行的硬件系统构成B.防火墙只能防止未经授权的信息发送到内网C.防火墙能准确地检测出攻击来自哪一台计算机D.防火墙的主要支撑技术是加密技术 [单选]心房颤动最可靠的诊断根据是()A.第一心音强弱不等B.心律绝对不齐C.脉搏短绌D.超声心动图E.心电图 [单选]以产品品种作为成本核算对象,归集和分配生产成本,计算产品成本的方法是A.分批法B.品种法C.逐步结转分步法D.平行结转分步法 [单选]储层定向分布及内部各种属性都在极不均匀地变化,这种变化称为储层的()性。A、均质B、物性C、特性D、非均质 [单选]腹腔镜检查的适应证,错误的是()A.腹水原因待查B.各种原发或继发的不孕症C.生殖器发育异常D.弥漫性腹膜炎E.来源不明的腹腔内出血 [填空题]地球已经是一个40多亿年的老寿星了,她起源于()星云。 [单选]按照《注册建造师管理规定》,下列中不予注册的情形是()。A.申请人年近花甲,已达59岁高龄B.因执业活动受到刑事处罚,自处罚执行完毕之日起至申请注册之日已满3年C.被吊销注册证书,自处罚决定之日起至申请注册之日止已经满2年D.申请人申请注册之日止4年前担任项目经 [单选]船政学堂中的()是负责教授航海教程、管轮操作的。A、左学堂B、右学堂C、前学堂D、后学堂 [单选]“统治阶级有统治阶级的道德,被统治阶级有被统治阶级的道德”。这名话说明了()A.道德的时代性B.道德的普遍性C.道德的阶级性D.道德的抽象性 [单选]母公司将子公司的控制权移交给它的股东属于()。A.标准式公司分立B.换股式公司分立C.解散式公司分立D.拆股式公司分立

4.2 解一元一次方程(3)(移项)

4.2 解一元一次方程(3)(移项)
板书设计
情境创设
1、
2、
例1:……
……
……
例2:……
……
……
习题……
……
……
作业布置
P102
课后随笔
1、学生从利用逆运算解方程到用移项法则解方程要有个过程,不宜操之过急.在移项时,学生常犯的错误是忘记变号,这主要是学生不熟悉移项法则,要对照等式的性质逐渐来理解.
2、解例题时要不拘泥于课本上的解法,追求解题策略的多样化.另外,注意解题格式的规范化和检验的必要性.
教学过程
教学内容
教师活动
学生活动
解方程(写出解答过程中的第一步):
(1)x+2=7→;(2)3+2x=1+x→;
(3)-x+3=-2→;(4)2x-3=1→;
(5)-2x+9=-5→;(6)3+4x=1-2x→.
结合上面问题与课本
例2解方程4x-15=9
例3解方程2x=5x-21
牢记:从等式左边移到等式右边的项要变号;从等式右边移到等式左边的项也要变号.“叛变”了嘛!
7x=5x-4
5x+2=7x-8
2x+5=25-8x
8xቤተ መጻሕፍቲ ባይዱ2=7x-2
2x+3=11-6x
3x-4+2x=4x-3
10y+7=12-5-3y
学生尝试解答,讨论辨析
先让学生自主探求,学生自主总结出移项法则——移项要变号.
认真听讲,注意格式
进一步认识到解方程的基本变形,感悟了解方程过程中的转化思想,求方程的解就是将方程变形为x=a的形式
能否直接把等式左边的-15改变符号移到等式右边?方程4x-15=9与4x=9+15的差别在哪儿?
解方程2x=5 x-21时,能否直接把等式右边的5 x改变符号移到等式左边?为什么?

一元一次方程的应用3

一元一次方程的应用3
运用方程解决实际问题的一般步骤:
1.审题:分析题意,找出题中的等量关系; 2.设元:选择一个适当的未知数用字母表示
( 例如
x ) ;(包括直接和间接设元)
3.列方程:根据相等关系列出方程;
4.解方程:求出未知数的值;
5.检验:检查求得的值是否正确和是否符合 实际 情形;
6.写出答案
我们已经学过哪些等量关系?
相等关系:
前3天甲 生产零件 的个数
零件总个数940个 后5天甲 生产零件 的个数 后5天乙 生产零件 的个数
+
+
= 940个
思考:工程问题的基本等量关系 是什么?
工作量=工作效率×工作时间 工作总量=1
例2.某装潢公司接到一项业务,如果由甲组
做需10天完成,由乙组做需15天完成.为了早 日完工,现由甲,乙两组一起做,4天后甲组因 另有任务,余下部分由乙组单独做.问还需几 天才能完成? 1 1 甲的工作效率是10 乙的工作效率是15
甲乙合做4天的工作量
甲4天的工作量 乙4天的工作量 余下部分乙的工作量
分析
甲4 天的工作量 + 乙4 天的工作量 + 余下部分乙量 = 1
4 4 x 1 设乙组还需x天才能完售,打折问题
例1甲每天生产某种零件80个,甲生产3天后,乙 也加入生产同一种零件,再经过5天,两人共生产 这种零件940个,问乙每天生产这种零件多少个?
可以用示意图来分析本题中的数量关系:
前3天甲生产 零件的个数 甲乙后5天生产零件的个数
甲后5天生产零件的个数 乙后5天生产零件的个数

006 解一元一次方程(3)

006 解一元一次方程(3)
6.2.2
解一元一次方程(3)
1
1、什么是一元一次方程
(1)方程的两边都是整式 (2)只含有一个未知数
(你们一定记得!)
(3)未知数的指数是一次.
2、判断下列各式中哪些是一元一次方程?
(1) 5x=0

(2)1+3x
×
(3)y² =4+y
×
2
1 4X (4)x+y=5 × (5) X
√ ×(6) 3m+2=1–m
15
有一个班的同学去划船,他们算了一下,如果 增加一条船,正好每条船坐6人,如果送还 了 一条船 ,正好每条船坐9人,问这个班有多少 同学? 设共有x条船,由题意得
6(x+1)=9(x-1)
解之得 X=5 6(x+1)=6(5+1)=36 答:这个班有36个同学。
16
一元一次方程的应用—行程问题
24
课本P12 习题6.2.2
4 、 5 、6
25
2、某水利工地派48人去挖土和运土,如
相等关系是什么? 挖出的土方数=运走的土方数
11
解:设安排x人挖土,
则运土有(48-x) 人 由题意得:5x = 3(48-x)
解之得:
x = 18
答:挖土按排18人,运土按排30人,
可以正好能使挖出的土及时运走。
12
3. 用白铁皮做罐头盒,每张铁片可制
盒身10个或制盒底30个。一个盒身与两 个盒底配成一套罐头盒。现有100张白铁 皮,用多少张制盒身,多少张制盒底,可 以既使做出的盒身和盒底配套,又能充分 利用白铁皮? 盒身的个数×2=盒底的个数
3、解一元一次方程的一般步骤是什么?
步骤

第3章 一元一次方程 3

第3章 一元一次方程 3

第3章一元一次方程3.4实际问题与一元一次方程(简答题专练)1.某超市对顾客实行优惠购物,规定如下:①若一次性购物商品总价不超过100元,则不予优惠;②若一次性购物商品总价超过100元,但不超过300元,给予九折优惠;③若一次性购物商品总价超过300元,其中300元以下部分(包括300元)给予九折优惠;超过300元部分给予八折优惠.小李前后分两次去该超市购物,分别付款234元和94.5元.(1)求小李第一次购物所购商品的总价是多少元?(2)小张决定一次性购买小李分两次购买的商品,他可以比小李节约多少元?【答案】(1)小李第一次购物所购商品的总价是260元;(2)小张可以比小李节约14.9元或6.5元.【解析】【分析】(1)先求出原价为300元时所需付钱数,与234比较后可得出第一次购物所购商品的总价小于300元,再用234除以折扣率即可求出小李第一次购物所购商品的总价;(2)设小李第二次购物所购商品的总价是x元,由90<94.5<100可知分两种情况考虑,当x<100时,可得出x=94.5,根据小李两次购物所付金额总数﹣小张所需付金额=节约的钱数,即可求出结论;当x>100时,根据原价×折扣率=所付金额,可求出x的值,再根据小李两次购物所付金额总数﹣小张所需付金额=节约的钱数,即可求出结论.【详解】(1)∵300×0.9=270(元),234<270,∴第一次购物所购商品的总价是234÷0.9=260(元).答:小李第一次购物所购商品的总价是260元.(2)设小李第二次购物所购商品的总价是x元,当x<100时,x=94.5,此时节约的钱数为(234+94.5)﹣[300×0.9+(260+94.5﹣300)×0.8]=14.9(元);当x>100时,有0.9x=94.5,解得:x=105,此时节约的钱数为(234+94.5)﹣[300×0.9+(260+105﹣300)×0.8]=6.5(元).答:小张可以比小李节约14.9元或6.5元.【点睛】本题考查了一元一次方程的应用,解题的关键是:(1)根据数量间的关系,列式计算;(2)分两种情况求出小李第二次购物所购商品的总价.2.如图:在数轴上A点表示数a,B点示数b,C点表示数c,b是最小的正整数,且a、c满足|a+2|+(c-7)2=0.(1)a=______,b=______,c=______;(2)若将数轴折叠,使得A点与C点重合,则点B与数______表示的点重合;(3)点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和4个单位长度的速度向右运动,假设t秒钟过后,若点A与点B之间的距离表示为AB,点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC.则AB=______,AC=______,BC=______.(用含t的代数式表示).(4)直接写出点B为AC中点时的t的值.【答案】(1)-2;1;7;(2)4;(3)3+3t;9+5t;6+2t;(4)3.【解析】【分析】(1)利用|a+2|+(c﹣7)2=0,得a+2=0,c﹣7=0,解得a,c的值,由b是最小的正整数,可得b=1;(2)先求出对称点,即可得出结果;(3)分别写出点A、B、C表示的数为,用含t的代数式表示出AB、AC、BC即可;(4)由点B为AC中点,得到AB=BC,列方程,求解即可.【详解】(1)∵|a+2|+(c﹣7)2=0,∴a+2=0,c﹣7=0,解得:a=﹣2,c=7.∵b是最小的正整数,∴b=1.故答案为﹣2,1,7.(2)(7+2)÷2=4.5,对称点为7﹣4.5=2.5,2.5+(2.5﹣1)=4.故答案为4.(3)点A表示的数为:-2-t,点B表示的数为:1+2t,点C表示的数为:7+4t,则AB=t+2t+3=3t+3,AC=t+4t+9=5t+9,BC=2t+6.故答案为3t+3,5t+9,2t+6.(4)∵点B为AC中点,∴AB=BC,∴3t+3=2t+6,解得:t=3.【点睛】本题考查了一元一次方程的应用、数轴及两点间的距离,解题的关键是利用数轴的特点能求出两点间的距离.3.菏泽市牡丹区中学生运动会即将举行,各个学校都在积极地做准备,某校为奖励在运动会上取得好成绩的学生,计划购买甲、乙两种奖品共100件,已知甲种奖品的单价是30元,乙种奖品的单价是20元.(1)若购买这批奖品共用2800元,求甲、乙两种奖品各购买了多少件?(2)若购买这批奖品的总费用不超过2900元,则最多购买甲种奖品多少件?【答案】(1)甲80件,乙20件;(2)x≤90【解析】【分析】(1)甲种奖品购买了x件,乙种奖品购买了(100﹣x)件,利用共用2800元,列出方程后求解即可;(2) 设甲种奖品购买了x件,乙种奖品购买了(100﹣x)件,根据购买这批奖品的总费用不超过2900元列不等式求解即可.【详解】解:(1)设甲种奖品购买了x件,乙种奖品购买了(100﹣x)件,根据题意得30x+20(100﹣x)=2800,解得x=80,则100﹣x=20,答:甲种奖品购买了80件,乙种奖品购买了20件;(2)设甲种奖品购买了x件,乙种奖品购买了(100﹣x)件,根据题意得:30x+20(100﹣x)≤2900,解得:x≤90,【点睛】本题主要考查一元一次方程与一元一次不等式的应用,根据已知条件正确列出方程与不等式是解题的关键.4.已知数轴上两点A,B对应的数分别为-4,8.(1)如图1,如果点P和点Q分别从点A,点B同时出发,沿数轴负方向运动,点P的运动速度为每秒2个单位,点Q的运动速度为每秒6个单位.①求A,B两点之间的距离.②当P,Q两点相遇时,点P在数轴上对应的数几.③求点P出发多少秒后,与点Q之间相距4个单位长度?(2)如图2,如果点P从点A出发沿数轴的正方向以每秒2个单位的速度运动,点Q从点B出发沿数轴的负方向以每秒6个单位的速度运动,点M从数轴原点O出发沿数轴的正方向以每秒1个单位的速度运动,若三个点同时出发,经过多少秒后有MP=MQ?【答案】(1)①12,②-10,③点P出发2秒或者4秒后,与点Q之间相距4个单位长度;(2)经过23或32秒后,有MP=MQ.【解析】【分析】(1)①根据两点间的距离公式即可求解;②根据相遇时间=路程差÷速度差先求出时间,再根据路程=速度×时间求解即可;③分两种情况:P,Q两点相遇前;P,Q两点相遇后;进行讨论即可求解;(2)分两种情况:M在P,Q两点之间;P,Q两点相遇;进行讨论即可求解.【详解】(1)①A,B两点之间的距离为8﹣(﹣4)=12.②12÷(6﹣2)=3(秒),﹣4﹣2×3=﹣10.故当P,Q两点相遇时,点P在数轴上对应的数是﹣10.③P,Q两点相遇前,(12﹣4)÷(6﹣2)=2(秒);P,Q两点相遇后,(12+4)÷(6﹣2)=4(秒).故求点P出发2或4秒后,与点Q之间相距4个单位长度;(2)设三个点同时出发,经过t秒后有MP=MQ,M在P,Q两点之间,8﹣6t﹣t=t﹣(﹣4+2t),解得:t2 3 =;P,Q两点相遇,2t+6t=12,解得:t3 2 =.故若三个点同时出发,经过23或32秒后有MP=MQ.故答案为12;﹣10.【点睛】本题考查了数轴上两点的距离、数轴上点的表示、一元一次方程的应用,比较复杂,要认真理清题意,并注意数轴上的点,原点左边表示负数,右边表示正数,在数轴上,两点的距离等于任意两点表示的数的差的绝对值.5.某市自来水公司为限制单位用水,每月只给某单位计划内用水300吨,计划内用水每吨收费3.4元,超过计划的部分每吨按4.6元收费.(1)当该单位每月用水250吨时,需付款元;当该单位每月用水350吨时,需付款元;(2)若某单位4月份缴纳水费1480元,则该单位用水多少吨?(3)若某单位5、6月份共用水700吨(6月份用水量超过5月份),共交水费2560元,则该单位5月份用水吨.【答案】(1)850,1250(2)该单位4月份用水400吨(3)该单位5月份用水250吨,6月份用水450吨【解析】【分析】(1)根据收费标准,找出当x≤300及x>300两种情况下需付款数额;(2)求出用水300吨时缴纳的水费,比较后可得出该单位4月份用水超过300吨,根据(1)的结论可得出关于x的一元一次方程,解之即可得出结论;(3)设该单位5月份用水y吨,则6月份用水(700﹣y)吨,分y≤300及y>300两种情况考虑:①当y≤300时,根据(1)的结论可得出关于y的一元一次方程,解之即可得出结论;②当y>300时,由6月份用水量超过5月份可求出两个月的水费,比较后可得知该情况不成立.综上即可得出结论.【详解】(1)当每月用水250吨时,需付款250×3.4=850(元);当每月用水350吨时,需付款300×3.4+4.6×(350﹣300)=1250(元).故答案为:850,1250;(2)∵3.4×300=1020(元),1020<1480,∴该单位4月份用水超过300吨.设用水量为x吨,根据题意得:300×3.4+4.6×(x﹣300)=1480解得:x=400.答:该单位4月份用水400吨.(3)设该单位5月份用水y吨,则6月份用水(700﹣y)吨.①当y≤300时,有3.4y+4.6(700﹣y-300)+300×3.4=2560,解得:y=250,700﹣y=700﹣250=450;②当y>300时.∵6月份用水量超过5月份,∴700﹣y>300.∵600×3.4+(700﹣600)×4.6=2500≠2560,∴此种情况不成立.即:该单位5月份用水250吨,6月份用水450吨.故答案为:250.【点睛】本题考查了一元一次方程的应用、列代数式以及代数式求值,解题的关键是:(1)根据收费标准找出结论;(2)找准等量关系,正确列出一元一次方程;(3)分y≤300及y>300两种情况考虑.6.某中学库存若干套桌凳,准备修理后支援贫困山区学校,现有甲、乙两木工组,甲每天修桌凳20套,乙每天修桌凳比甲多5套,甲单独修完这些桌凳比乙单独修完多用9天,学校每天付甲组80元修理费,付乙组110元修理费.(1)问该中学库存多少套桌凳?(2)在修理过程中,学校要派一名工人进行质量监督,学校负担他每天10元生活补助费,现有三种修理方案:①由甲单独修理;②由乙单独修理;③甲、乙合作同时修理.你认为哪种方案省时又省钱为什么?【答案】(1)该中学库存900套桌凳(2)甲、乙合作同时修理.这种方案省时又省钱【解析】【分析】(1)利用“甲单独修完这些桌凳用的天数=乙单独修完这些课桌用的天数+9天”这一相等关系列出方程求解即可.(2)根据题意求出三种方案的花费,比较即得.【详解】解:(1)设该中学库存x 套桌凳,由题意得920205x x =++ 解这个方程得:x=900答:该中学库存900套桌凳;(2)①由甲单独修理(900÷20) ×(80+10)=4050(元)②由乙单独修理(900÷25) ×(110+10)=4320(元)③设甲、乙合作同时修理需要y 天(20+25)y=900∴y=20()2080110104000++= (元)4000 < 4050 < 4320答: 甲、乙合作同时修理.这种方案省时又省钱【点睛】本题考查的是一元一次方程的应用,中考命题时常将几个知识点进行综合考查,所以各部分的知识一定要灵活掌握.7.现有若干本书分给班上的同学,若每人分5本,则还缺20本;若每人分4本,则剩余25本.问班上共有多少名同学?多少本书?(1)设班上共有x 名同学,根据题意列方程;(2)设共有y 本书,根据题意列方程.【答案】(1)5x–20=4x+25;(2)202554y y +-=.【解析】【分析】(1)设班上共有x名同学,若每人分5本,则还缺20本,则书共有(5x﹣20)本,利用每人分4本,则剩余25本可表示书有(4x+25)本,然后根据书得数量相等列方程;(2)设共有y本书,由于加20本可以每人分5本,则全班人数为205y+;由于减25本每人可分4本,则全班人数为254y-,然后根据班级人数列方程.【详解】(1)设班上共有x名同学,根据题意得:5x﹣20=4x+25;(2)设共有y本书,根据题意得:205y+=254y-.【点睛】本题考查了由实际问题抽象出一元一次方程:审题找出题中的未知量和所有的已知量,直接设要求的未知量或间接设一关键的未知量为x,然后用含x的式子表示相关的量,找出之间的相等关系列方程.8.数轴上A点,B点表示的数分别为a,b,则A,B两点之间的距离为AB=|a-b|.(1)已知数轴上有A,B两点表示的数分别为-20和10,求A,B两点的距离.(2)若AB=d,试写出a,b,d之间的数量关系;(3)在(1)的条件下,若点A以每秒2个单位的速度沿数轴向右匀速运动,同时点B以每秒1个单位向左匀速运动,求A,B两点相遇点所表示的数.【答案】(1)30;(2)见解析;(3)0.【解析】【分析】(1)根据题中数轴上两点距离公式计算即可.(2)先计算绝对值,再分类讨论即可.(3)设A,B两点相遇点为C,C所表示的数为x,则AC=2BC.因为C在AB之间,由(2)可知:x-(-20)=2(10-x),解方程即可.【详解】(1)A,B两点的距离为AB=|-20-10|=30;(2)根据题意得:d=|a-b|.当a≥b时,d=a-b,当a<b时,d=b-a.(3)设A,B两点相遇点为C,C所表示的数为x,则AC=2BC.因为C在AB之间,由(2)可知:x-(-20)=2(10-x),解得:x=0.答:A ,B 两点相遇点所表示的数为0.【点睛】本题考查了一元一次方程的应用、数轴以及绝对值,弄清题中的两点间距离公式是解答本题的关键. 9.甲、乙两车从A 、B 两地于上午9点钟同时出发,相向而行,已知甲的速度比乙快2千米/时,到上午11时两车还相距36千米,又过了2小时后,两车又相距36千米.(1)求甲乙两地间的距离与两车的速度;(2)若甲乙两车分别从A 、B 两地同时相向而行,到B 、A 两地后立即返回,求两车第一次相遇和第二次相遇所走的时间是多少?【答案】(1)甲乙两地间的距离为108(kmh ),甲车速度19km h ,乙车速度17km h ;(2)两车第一次相遇时间3h ,两车第二次相遇时间6h.【解析】【分析】(1) 设甲车的速度为x 千米/小时,则乙车速度(x -2)千米/小时,可列方程(x -2+x )×2=36×2,求出x 可得答案;(2)由(1)结论可知,甲乙两地间的距离为108(km ),由时间=路程 速度,可得两车第一次相遇和第二次相遇所走的时间是多少.【详解】(1)设甲车的速度为x 千米/小时,则乙车速度(x -2)千米/小时.(x -2+x )×2=36×2x=19x -2=17S 甲乙=(17+19)×2+36=108(km )答:甲乙两地间的距离为108(km ),甲车速度19/km h ,乙车速度17/km h(2)两车第一次相遇时间:108÷(17+19)=3(h)两车第二次相遇时间:108×2÷(17+19)=6(h)答:两车第一次相遇时间3h ,两车第二次相遇时间6h.【点睛】本题主要考查一元一次方程的实际应用,根据已知条件列出方程是解题的关键.10.某工厂去年生产某种产品一件,所获取的利润率为59%,今年由于物价上涨,工厂生产这种产品的成本增加了6%,而今年与去年该产品的出厂售价一样,所以今年该工厂生产该产品一件所获取的利润率为多少.【答案】今年该工厂生产该产品一件所获取的利润率为50%【解析】【分析】设去年的成本为x,售价就为159%x,设年该工厂生产该产品一件所获取的利润率为y,根据工厂生产这种产品的成本增加了6%,而今年与去年该产品的出厂售价一样,可列方程求解.【详解】解:设去年的成本为x ,该年工厂生产该产品一件所获取的利润率为y ,则()()159%16%100%50%16%x xy x -+=⨯=+所以今年该工厂生产该产品一件所获取的利润率为50%.故答案为50%.【点睛】本题考查理解题意的能力,关键是表示出售价,从而根据利润率求出结果.11.列方程解应用题:(1)某文艺团体组织了一场义演为“希望工程”募捐,共售出1000张门票,已知成人票每张8元,学生票每张5元,共得票款6950元,成人票和学生票各几张(2)某地生产一种绿色蔬菜,若在市场上直接销售,每吨利润为1000元;经粗加工后销售,每吨利润可达4500元;经精加工后销售,每吨利润涨至7500元.当地一家农工商公司收获这种蔬菜140吨,该公司加工的生产能力是:如果对蔬菜进行粗加工,每天可加工16吨;如果进行精加工,每天可加工6吨,但两种加工方式不能同时进行.受季节等条件限制,公司必须在15天内将这批蔬菜全部销售或加工完毕,为此公司研制了三种可行方案.方案一:将蔬菜全部进行精加工.没来得及进行精加工的直接出售方案二:尽可能多地对蔬菜进行粗加工,没有来得及进行加工的蔬菜,在市场上直接销售.方案三:将部分蔬菜进行精加工,其余蔬菜进行粗加工,并恰好15天完成.你认为选择哪种方案获利最多?为什么?【答案】(1) 成人票650张,儿童票350张;(2)方案三获利最多.【解析】【分析】方案一和方案二的获利情况可直接算出,方案三: 设精加工x 吨, 本题中的相等关系是: 精加工的天数+粗加工的天数=15天.即:精加工的吨数6+140-精加工的吨数16=15, 就可以列出方程. 求出精加工和粗加工个多少,从而求出获利. 然后比较可得出答案.【详解】解:(1)设成人票x 张,则儿童票为(1000﹣x )张.由题意得:8x+5(1000﹣x )=6950,解得:x=650.∴1000﹣x=1000﹣650=350张.故成人票650张,儿童票350张.(2)方案一获利:7500×90+1000×(140﹣90)=72. 5万;方案二获利:140×4500=63万;方案三获利:设精加工了x 吨,则粗加工了(140﹣x )吨,x 6+140−x 16=15,解得:x=60.经检验x=60是原方程的解.∴7500×60+4500×(140﹣60)=81万.所以方案三获利最多.【点睛】本题考查一元一次方程的实际应用,列方程解应用题的关键是正确找出题目中的相等关系, 用代数式表示出相等关系中的各个部分, 把列方程的问题转化为列代数式的问题.12.食品安全是老百姓关注的话题,在食品中添加过量的添加剂对人体有害,但适量的添加剂对人体无害且有利于食品的储存和运输.某饮料加工厂生产的A ,B 两种饮料均需加入同种添加剂,A 饮料每瓶需加该添加剂2克,B 饮料每瓶需加该添加剂3克,已知270克该添加剂恰好生产了A ,B 两种饮料共100瓶,问A ,B 两种饮料各生产了多少别瓶?【答案】A 饮料生产了30瓶,B 饮料生产了70瓶.【解析】【分析】根据题意设出未知数,再根据题目中“270添加剂恰好生产了A ,B 两种饮料共100”得出等量关系列出方程,求出结果即可.【详解】设A 饮料生产了x 瓶,则B 饮料生产了(100)x -瓶.根据题意得23(100)270x x +-=.解方程,得30x=.1001003070x-=-=(瓶).答:A饮料生产了30瓶,B饮料生产了70瓶.【点睛】本题主要考查了一元一次方程的应用,在解题时要能根据题意得出等量关系,列出方程是本题的关键.13.小李读一本名著,星期六读了36页,第二天读了剩余部分的14,这两天共读了整本书的38,这本名著共有多少页?【答案】这本名著共有216页.【解析】【分析】设这本名著共有x页,根据两天共读了整本书的38这一等量关系列方程进行求解即可得.【详解】设这本名著共有x页,根据题意得:36+14(x﹣36)=38x,解得:x=216,答:这本名著共有216页.【点睛】本题考查了一元一次方程的应用,弄清题意,找准等量关系列出方程是解题的关键.14.已知A、B两地相距450千米,甲、乙两车分别从A、B两地同时出发,已知甲车速度为115千米/时,乙车速度为85千米/时,(1)两车同向而行,快车在后,求经过几小时快车追上慢车?(2)两车相向而行,求经过几小时两车相距50千米?【答案】(1)经过15小时快车追上慢车;(2)经过2或2.5小时两车相距50千米.【解析】【分析】(1)根据快车路程-慢车路程=450解题,(2)根据快车路程+慢车路程+50=450或快车路程+慢车路程-50=450解题,【详解】解:(1)设求经过x小时快车追上慢车.115x-85x=450解得x=15答:经过15小时快车追上慢车(2)求经过a小时两车相距50千米.两种情况:①相遇前两车相距50千米,列方程为:115a+85a+50=450解得a=2②相遇后两车相距50千米,列方程为:115a+85a-50=450解得a=2.5答:经过2或2.5小时两车相距50千米.【点睛】本题考查了一元一次方程的实际应用,速度与路程的关系,中等难度,根据汽车行进方向建立等量关系是解题关键.15.某车间有技术工人85人,平均每天每人可加工甲种部件16个或乙种部件10个.两个甲种部件和三个乙种部件配成一套,问加工甲、乙部件各安排多少人才能使每天加工的甲、乙两种部件刚好配套?【答案】安排25人加工甲部件,则安排60人加工乙部件,共加工200套.【解析】试题分析:首先设安排甲部件x个人,则(85-x)人生产乙部件,根据甲零件数量的3倍等于乙零件数量的2倍列出方程进行求解.试题解析:设甲部件安排x人,乙部件安排(85-x)人才能使每天加工的甲、乙两种部件刚好配套由题意得:3×16x=2×10(85-x)解得:x=25 则85-x=85-25=60(人)答:甲部件安排20人,乙部件安排60人才能使每天加工的甲、乙两种部件刚好配套.考点:一元一次方程的应用.。

一元一次方程 (3)

一元一次方程 (3)

一元一次方程(4)一、知识归纳(一)、概念1.方程:含有未知数的等式叫做方程.2.一元一次方程:在一个方程中,只含有一个未知数,并且未知数的指数是1(次),这样的方程叫做一元一次方程.(二)规律1.等式的基本性质(1)等式的两边同时加上(或减去)同一个数或同一个代数式,所得的结果仍是等式.(2)等式的两边同时乘以同一个数(或除以同一个不为0的数),所得的结果仍是等式.2.移项法则:方程中的任何一项,都可以在改变符号后,从方程的一边移到另一边.34.列方程解应用题的一般步骤(1)审:弄清题意和题目中的数量关系;(2)设:用字母表示题目中的一个未知数;(3)找出能够表示应用题全部含义的一个相等关系;(4)根据这个相等关系列出重要的代数式,从而列出方程;(5)检验根是否符合实际情况;(6)写出答案.可以简记为:“审、设、找、列、解、验、答”七个字,请同学们要牢记.二、思想方法新教材中大量增加了一些工农业生产、科技生活方面的实际问题,这就引入了方程的思想,如本章编写的方程,强化了应用思想,培养学生的应用意识和创造意识,提高了学生的发现问题、分析问题和解决问题的能力.1.方程的思想方程思想就是把未知数看成已知数,让代替未知数的字母和已知数一样参加运算,这就是一种狠重要的数学思想方法,有很多问题都可以转化为方程去解决.2.数形结合的思想数形结合的思想是指在研究问题的过程中,由数想形、由形想数,把数与形结合起来,分析问题的思想方法,本章在列方程解应用题时常用这种方法分析问题.三、易混、易错点提示1.概念性错误(1)等式的基本性质应用错误(2)误用等号连接(3)移项不变号(4)混淆分数的性质与等式的性质 2.方法错误(1)去括号不按法则 (2)去分母时漏乘 3.结果错误(1)系数化1时错除(2)忽视分数线的“括号”作用四、典型例题分析例1.判断下列各式是不是方程:(1)3t-1≠1-t ; (2)2-(-3)=-1+6; (3)2y +2y =4y-4; (4)3x-y =0; (5)3x+7 (6)x =2。

2022年数学精品初中教学设计《一元一次方程 (3)》特色教案

2022年数学精品初中教学设计《一元一次方程 (3)》特色教案

第三章一元一次方程从算式到方程一元一次方程一、新课导入1.课题导入:同学们, 我们在小学数学学习中见过像2x=50,3x+1=4,5x-7=8这样的简易方程, 那么它叫什么方程?方程有什么作用?怎样列方程和解方程呢?这是本章要研究的主要问题, 这节课我们通过具体问题感受方程这一重要数学工具的作用.(板书课题)2.三维目标:〔1〕知识与技能①理解一元一次方程、方程的解等概念.②掌握检验某个值是不是方程的解的方法.〔2〕过程与方法培养学生寻找相等关系、根据相等关系列出方程的能力.〔3〕情感态度体验用估算方法寻求方程的解的过程, 培养学生求实的态度.3.学习重、难点:重点:方程、一元一次方程的概念以及方程思想.难点:从列算式到列方程的思维习惯的转变.二、分层学习1.自学指导:〔1〕自学内容:教材第78页到第79页例1之前的内容.〔2〕自学时间:8分钟.〔3〕自学要求:认真阅读课本, 了解如何通过列含未知数的等式来表示问题中的等量关系.同时, 同学之间可以展开讨论, 从算式到方程对解决问题有什么作用或好处?〔4〕自学参考提纲:①课本“问题〞中涉及到路程、时间和速度三个关系量, 它们之间存在以下关系:路程=时间×速度, 或时间=路程÷速度或速度=路程÷时间.②请你用算术方法解决这个“问题〞.70×607060=420 km ③a.如果设A, B 两地相距x km, 客车的行驶速度是70 km/h, 卡车的行驶速度是60 km/h, 那么从A 地到B 地客车和卡车所用时间可用式子70x 和60x 来表示. b.因为客车比卡车早1 h 经过B 地, 所以卡车行驶的时间-客车行驶的时间=1, 于是可列等式:60x -70x =1, 只要通过这个等式解出未知数x 的值 , 就得到问题的答案.④③中的解法与②中的解法有什么不同?你更喜欢哪种解法? ②中为算术法, ③中为方程法, 一种直接计算, 另一种通过设未知数列等式关系进行计算.更喜欢方程法.⑤什么叫方程?等式一定是方程吗?方程和等式有什么关系? 含有未知数的等式叫做方程, 等式不一定是方程, 但方程一定是等式, 方程包含于等式.⑥如果设从A 地到B 地客车所用的时间为x h, 那么从A 地到B 地卡车所用的时间为7060x h,依据相等关系:7060x -x=1, 你还能列出别的方程吗?⑦你能归纳出列方程的步骤吗?先设出未知数, 分析题意得出其中的等量关系, 再列方程.2.自学:学生可结合自学指导进行自学.3.助学:〔1〕师助生:①明了学情:教师巡视课堂了解学生在自学过程中存在的问题.②差异指导:对学习有困难的学生进行点拨和指导.〔2〕生助生:小组内同学们互相交流、研讨, 共同解决疑难问题.4.强化:〔1〕方程的定义及等式和方程的关系.〔2〕列方程的步骤:①用字母表示未知数.②找出问题中的相等关系.③写出含有未知数的等式, 即列出方程.〔3〕设未知数的方法:有“直接设未知数〞和“间接设未知数〞两种.〔4〕从课本问题中, 同学们看到了列方程比拟方便, 而列算式很困难, 所以从算式到方程是数学的进步.1.自学指导:(1)自学内容:教材第79页从例1开始的所有内容.(2)自学时间:6分钟.(3)自学方法:认真阅读课文, 分析例1中所列方程的等号两边式子表示的实际意义, 学会找列方程所需要的等量关系, 并分析归纳这些方程的特点.(4)自学参考提纲:①解释例1所列的每个方程的等号两边的式子的意义, 寻找列出这些方程时所依据的相等关系分别是什么?4x=24, 等号左边表示正方形四条边长的和, 等号右边表示正方形的周长.1700+150x=2450, 等号左边表示这台计算机已使用的时间与在x 月里使用的时间和, 等号右边表示x月后计算机的使用总时间.0.52x-(1-0.52)x=80, 等号左边表示女生人数与男生人数的差, 等号右边表示女生比男生多的人数.列方程时等号左右两边表示的量相等.②例1中三个方程都只含有一个未知数(元), 未知数的次数都是1, 并且等号两边都是整式, 这样的方程叫做一元一次方程.③以下式子哪些是方程?哪些是一元一次方程?A.2x+1B.2m+15=3C.3x-5=5x+4 2+2x-6=0 E.-3x+1.8=3y F.3a+9>15B、C、D、E是方程, B、C是一元一次方程.2.自学:学生可结合自学指导进行自学.3.助学:〔1〕师助生:①明了学情:教师巡视课堂, 充分了解学生自学的情况.②差异指导:对学习困难的学生进行点拨和指导.〔2〕生助生:小组内同学进行相互展示交流、研讨纠错.4.强化:〔1〕一元一次方程的概念, 明确其三要素.〔2〕归纳列方程的方法.〔即教材第80页“归纳〞的内容〕〔3〕练习.①方程〔1-a〕x2+2x-3=2是关于x的一元一次方程, 那么a=1.②教材第80页“练习〞的第1、2、3、4题.1.设沿跑道跑x周, 由题意, 得400x=3000.2.设购置甲种铅笔x支, 那么购置乙种铅笔〔20-x〕支, 根据题意得0.3x+0.6〔20-x〕=9.〔x+2+x〕3.设上底为x cm,那么下底为〔x+2〕cm,由题意, 得12×5=40.4.方法一:设小水杯的单价是x元, 那么大水杯的单价是〔x+5〕元, 由题意10〔x+5〕=15x.方法二:设大水杯的单价是y元, 那么小水杯的单价是〔y-5〕元, 由题意, 得10y=15(y-5).1.自学指导:(1)自学内容:教材第80页“归纳〞下方至“练习〞之前的内容.(2)自学时间:3分钟.(3)自学方法:阅读课文, 明确什么是解方程, 什么叫方程的解, 以及如何检验一个数是不是方程的解.(4)自学参考提纲:①阅读下面方程的解的检验方法〔注意格式〕:当x=5时, 方程1700+150x=2450的左边=1700+150×5=1700+750=2450.右边=2450.∴左边=右边.∴x=5是方程1700+150x=2450的解.仿照此方法检验:x=1000和x=2000中哪一个是方程0.52x-(1-0.52)x=80的解?×1000-(1-0.52)×1000=40.×2000-(1-0.52)×2000=80.∴x=2000是方程的解.②由上面过程可知:使方程中等号左右两边相等的未知数的值, 叫做方程的解.求出方程的解的过程叫做解方程.2.自学:学生可结合自学指导进行自学.3.助学:〔1〕师助生:①明了学情:明了学生会不会检验一个数是不是方程的解.②差异指导:对自学中存在的问题进行点拨和指导.〔2〕生助生:小组内学生相互展示交流, 共同研讨提高.4.强化:〔1〕解方程和方程的解的意义.〔2〕方程的解的检验方法.三、评价1.学生的自我评价:由学生谈自己如何进行自学和合作交流的, 对自己的学习成果和表现进行自我评价.2.教师对学生的评价:〔1〕表现性评价:教师对本节课学习中同学们的表现、成效和缺乏之处进行总结点评.〔2〕纸笔评价:课堂评价检测.3.教师的自我评价〔教学反思〕:本课时教学要整体贯穿以下数学思想:〔1〕突出数学的应用意识, 可由学生感兴趣的问题引入课题;〔2〕强调学生自主探索新知识, 利用交流完善对新知识的理解;〔3〕表达思维的层次性, 教师先引导学生用算术方法解题, 再引导他们列方程表示, 在比拟中体会方程的作用;〔4〕渗透建模思想, 指导学生通过设未知数, 列代数式, 寻找等量关系列方程, 形成抽象能力.一、根底稳固1.〔10分〕以下等式中, 是方程的是〔D〕x+1=5④3x+4y=12⑤5x2+x=3①3+6=9②2x-1③13A.①②③④⑤B.①③④⑤C.②③④⑤D.③④⑤2.〔10分〕以下各式中, 是一元一次方程的是〔C〕A.3x-2=y 2-1=0 3=2 D.3x=23.〔30分〕根据条件列出等式:〔1〕比a大5的数等于8 a+5=8b=9〔2〕b的三分之一等于9 13〔3〕x的2倍与10的和等于18 2x+10=18x-y=6〔4〕x的三分之一减y的差等于63〔5〕比a的3倍大5的数等于a的4倍3a+5=4ab-7=a+b 〔6〕比b的一半小7的数等于a与b的和124.〔10分〕x=3,x=0,x=-2,各是以下哪个方程的解?〔1〕5x+7=7-2x;〔2〕6x-8=8x-4;〔3〕3x-2=4+x.解:x=3是方程〔3〕的解, x=0是方程〔1〕的解, x=-2是方程〔2〕的解.二、综合应用〔每题15分, 共30分〕5.〔30分〕列方程:〔1〕某校七年级〔1〕班共有学生48人, 其中女生人数比男生多3人, 这个班有男生多少人?人数的45〔2〕把1400元奖学金按照两种奖项奖给22名学生, 其中一等奖每人200元, 二等奖每人50元, 获得一等奖的学生有多少人?解:〔1〕设这个班有男生x 人, 那么女生人数为〔45“男生人数+女生人数=总人数〞列方程得: x+〔45x+3〕=48.〔2〕设获得一等奖的学生有x 人, 那么200x+50〔22-x 〕=1400.三、拓展延伸〔20分〕6.〔10分〕小明从家到学校时, 每小时行5千米, 按原路返回家时, 每小时行4千米, 结果返回的时间比去学校的时间多花10分钟, 小明家到学校有多远?〔用两种方法列方程〕解:方案一:设小明家离学校x 千米, 由题意, 得4x -5x=1060 方法二:设小明去学校时花了y 小时, 那么小明家到学校的距离为5y 千米.由题意, 得5y 4-y=1060第1课时 弧长和扇形面积1.经历弧长和扇形面积公式的探求过程.2.会利用弧长和扇形面积的计算公式进行计算.一、情境导入在我们日常生活中, 弧形随处可见, 大到星体运行轨道, 小到水管弯管, 操场跑道, 高速立交的环形入口等等, 你有没有想过, 这些弧形的长度怎么计算呢?二、合作探究探究点一:弧长【类型一】求弧长在半径为1cm 的圆中, 圆心角为120°的扇形的弧长是________cm.解析:根据弧长公式l =n πr 180, 这里r =1, n =120, 将相关数据代入弧长公式求解.即l =120·π·1180=23π. 方法总结:半径为r 的圆中, n °的圆心角所对的弧长为l =n πR 180, 要求出弧长关键弄清公式中各项字母的含义.如图, ⊙O 的半径为6cm, 直线AB 是⊙O 的切线, 切点为点B , 弦BC ∥AO .假设∠A=30°, 那么劣弧BC ︵的长为________cm.解析:连接OB 、OC , ∵AB 是⊙O 的切线, ∴AB ⊥BO .∵∠A =30°, ∴∠AOB =60°.∵BC ∥AO , ∴∠OBC =∠AOB =60°.在等腰△OBC 中, ∠BOC =180°-2∠OBC =180°-2×60°=60°.∴BC ︵的长为60×π×6180=2π. 方法总结:根据弧长公式l =n πR 180, 求弧长应先确定圆弧所在圆的半径R 和它所对的圆心角n 的大小.【类型二】利用弧长求半径或圆心角(1)扇形的圆心角为45°, 弧长等于π2, 那么该扇形的半径是________; (2)如果一个扇形的半径是1, 弧长是π3, 那么此扇形的圆心角的大小为________. 解析:(1)假设设扇形的半径为R , 那么根据题意, 得45×π×R 180=π2, 解得R =2. (2)根据弧长公式得n ×π×1180=π3, 解得n =60, 故扇形圆心角的大小为60°. 方法总结:逆用弧长的计算公式可求出相应扇形的圆心角和半径.【类型三】求动点运行的弧形轨迹如图, Rt △ABC 的边BC 位于直线l 上, AC =3, ∠ACB =90°, ∠A =30°.假设Rt △ABC 由现在的位置向右无滑动地翻转, 当点A 第3次落在直线l 上时, 点A 所经过的路线的长为________(结果用含π的式子表示).解析:点A 所经过的路线的长为三个半径为2, 圆心角为120°的扇形弧长与两个半径为3, 圆心角为90°的扇形弧长之和, 即l =3×120π×2180+2×90π×3180=4π+3π.故填(4+3)π.方法总结:此类翻转求路线长的问题, 通过归纳探究出这个点经过的路线情况, 并以此推断整个运动途径, 从而利用弧长公式求出运动的路线长.探究点二:扇形面积【类型一】求扇形面积一个扇形的圆心角为120°, 半径为3, 那么这个扇形的面积为________.(结果保存π)解析:把圆心角和半径代入扇形面积公式S =n πr 2360=120×32π360=3π. 方法总结:公式中涉及三个字母, 只要知道其中两个, 就可以求出第三个.扇形面积还有另外一种求法S =12lr , 其中l 是弧长, r 是半径. 【类型二】求运动形成的扇形面积如图, 把一个斜边长为2且含有30°角的直角三角板ABC 绕直角顶点C 顺时针旋转90°到△A 1B 1C , 那么在旋转过程中这个三角板扫过图形的面积是( )A .π B. 3C.3π4+32D.11π12+34解析:在Rt △ABC 中, ∵∠A =30°, ∴BC =12AB =1, 由于这个三角板扫过的图形为扇形BCB 1和扇形ACA 1, ∴S 扇形BCB 1=90·π·12360=π4, S 扇形ACA 1=90·π·〔3〕2360=3π4,∴S 总=π4+3π4=π.应选A. 【类型三】求阴影局部的面积如图, 半径为1cm 、圆心角为90°的扇形OAB 中, 分别以OA 、OB 为直径作半圆, 那么图中阴影局部的面积为( )A .πcm 2 B.23πcm 2 C.12cm 2 D.23cm 2 解析:设两个半圆的交点为C , 连接OC , AB , 根据题意可知点C 是半圆OA ︵, OB ︵的中点,所以BC ︵=OC ︵=AC ︵, 所以BC =OC =AC , 即四个弓形的面积都相等, 所以图中阴影局部的面积等于Rt △AOB 的面积, 又OA =OB =1cm , 即图中阴影局部的面积为12cm 2, 应选C. 方法总结:求图形面积的方法一般有两种:规那么图形直接使用面积公式计算;不规那么图形那么进行割补, 拼成规那么图形再进行计算.三、板书设计教学过程中, 强调学生应熟记相关公式并灵活运用, 特别是求阴影局部的面积时, 要灵活割补法、转换法等.。

人教版七年级数学RJ上册精品教案 第3章 一元一次方程 第3课时 分段计费问题与方案选择问题

人教版七年级数学RJ上册精品教案 第3章 一元一次方程 第3课时 分段计费问题与方案选择问题

第3课时分段计费问题与方案选择问题教师备课素材示例●情景导入老师这几天又高兴又发愁,高兴的是手机话费大降价,发愁的是不知如何选择手机卡,请同学们根据自己搜集到的手机套餐收费标准帮忙出主意.免费申请免流量畅玩APP首月免费体验首充50送50【教学与建议】教学:通过身边的手机收费套餐的实例,逐渐培养学生学好数学的积极性.建议:让学生先提前搜集手机收费套餐的广告图片,然后小组交流各自的手机套餐收费标准.●复习导入(1)用一元一次方程解应用题的一般步骤是什么?(2)你了解现在电费、水费的收缴方法吗?已知用电量我们很容易就可求得应缴的电费,反过来,已知电费,如何求用电量呢?【教学与建议】教学:通过复习列一元一次方程解应用题的一般步骤,引出电费、水费的分段收费问题,为导入新课做好准备.建议:提前让学生到各个电费收缴中心,了解阶梯电费的收费规则.解决分段收费问题的一般步骤为:(1)理解题意,找出已知和未知;(2)验算收费是在哪一个段内;(3)根据这一段的收费规则列出方程;(4)解方程并检验解的合理性;(5)作答.【例1】小明所在城市的“阶梯水价”收费办法是:每户用水不超过5 t,每吨水费x元;超过5 t,超过部分每吨加收2元,小明家今年5月份用水9 t,共交水费为44元,根据题意列出关于x的方程正确的是(A)A.5x+4(x+2)=44 B.5x+4(x-2)=44C.9(x+2)=44 D.9(x+2)-4×2=44【例2】参加保险公司的医疗保险,住院治疗的病人享受分段报销.保元,则此人住院的医疗费是__2__000元__.解决方案选择问题的一般方法:(1)运用一元一次方程求两种方案值相等的情况;(2)用特殊值试探法、选择法、取小于(或大于)一元一次方程的解的值,比较两种方案的优劣性后,再下结论.【例3】某水果批发商从外地收购一批新鲜水果,准备运回当地销售,甲物流公司的收费方式是:起步价2 000元,每千米另收5元油费;乙物流公司的收费方式是:起步价1 000元,每千米另收10元油费.当运输路程为__200__km时,两家物流公司的收费一样.【例4】某医药公司要把药品运往外地,现有两种运输方式可供选择:方式一:使用快递公司的货车运输,装卸收费400元,另外每公里运输路程再加收4元;方式二:使用铁路运输公司的火车运输,装卸收费820元,另外每公里运输路程再加收2元.你认为选用哪种运输方式较好,为什么?解:设运输路程为x公里,则方式一的运输费用为(4x+400)元,方式二的运输费用为(2x+820)元.由4x+400=2x+820,解得x=210.若运输路程为100公里,则方式一的运输费用为4×100+400=800(元),方式二的运输费用为2×100+820=1 020(元),因为800<1 020,所以选择方式一较好;若运输路程为300公里,则方式一的运输费用为4×300+400=1 600(元),方式二的运输费用为2×300+820=1 420(元),因为1 600>1 420,所以选择方式二较好.综上,当运输路程小于210公里时,选择方式一较好;当运输路程等于210公里时,选择两种运输方式费用一样多;当运输路程大于210公里时,选择方式二较好.高效课堂教学设计1.利用一元一次方程解决生活中的分段计费问题和方案决策问题.2.将实际问题转化为数学问题,通过列方程解决问题.3.了解分类讨论思想.▲重点用方程解决生活中分段计费问题.▲难点将实际问题转化为数学问题,利用一元一次方程做决策.◆活动1 新课导入我市某县城为鼓励居民节约用水,对自来水用户按分段计费方式收取水费,若每月用水量不超过7 m3,则按每立方米1元收费;若每月用水量超过7 m3,则超过部分按每立方米2元收费.如果某户居民今年5月份缴纳了17元水费,那么这户居民今年5月份的用水量为多少立方米?解:设5月份用水量为3的部分为(x-7)m3.根据题意,得7×1+(x-7)×2=17,解得3.◆活动2 探究新知教材P104探究3.提出问题:(1)从表中你能获得哪些信息?(2)根据表格中的数据,你能把主叫时间分为几部分?(3)你能分别把主叫时间不同的话费情况表示出来吗?(4)主叫时间为多少时?选择方式一省钱?(5)主叫时间为多少时?选择方式二省钱?学生完成并交流展示.◆活动3 知识归纳解决方案决策问题的一般方法:(1)将题目中变化的一个量设为未知数x,并用含x的__代数式__表示其他相关的量;(2)列方程求出特殊情况下未知数的值;(3)研究在特殊情况之外的未知数的值产生的结果,并比较这些结果;(4)根据比较出的结果决定最优方案.◆活动4 例题与练习例1 出租汽车4 km起价10元,行驶4 km以后,每千米收费1.2元(不足1 km按1 km计).李红乘坐出租车下车时付给司机16元(不计等候时间),则李红乘坐出租车最远可行驶多少千米?解:设李红乘坐出租车最远可行驶xkm.由题意,得10+1.2×(x-4)=16,解得.例2 请根据图中提供的信息,回答下列问题:(1)一个暖瓶与一个水杯分别是多少元?(2)甲、乙两家商场同时出售同样的暖瓶和水杯,为了迎接新年,两家商场都在搞促销活动,甲商场规定:这两种商品都打九折;乙商场规定:买一个暖瓶赠送一个水杯.若某单位想要买4个暖瓶和15个水杯,请问选择哪家商场购买更合算,并说明理由.解:(1)设一个暖瓶x元,则一个水杯(38-x)元.由题意,得2x+3(38-x)=84,解得x=30,则38-x=8.答:一个暖瓶30元,一个水杯8元;(2)到乙商场购买更合算,理由如下:若到甲商场购买,则共需(4×30+15×8)×90%=216(元);若到乙商场购买,则共需4×30+(15-4)×8=208(元).∵208<216.∴到乙商场购买更合算.练习1.教材P106练习第2题.2.某市出租车起步价是5元(3 km及3 km以内为起步价),以后每千米是1.6元,不足1 km按1 km收费,小明乘出租车到达目的地时计价器显示为11.4元,则此出租车行驶的路程可能是(B)A.5.5 km B.6.9 km C.7.5 km D.8.1 km 3.某服装商店出售一种优惠购物卡,花200元买这种卡后,凭卡可在这家商店按八折购物,下列情况买卡购物合算的是(C)A.购900元B.购500元C.购1 200元D.购1 000元4.为鼓励居民节约用电,某省试行阶梯电价收费制,具体执行方案如下表:357(元).某户居民五、六月份共用电500度,缴电费290.5元.已知该用户六月份用电量大于五月份,且五、六月份的用电量均小于400度,则该户居民五、六月份各用电多少度?解:∵该户居民两个月用电量共为500度,∴两个月用电量不可能都在第一档.假设该户居民五月、六月每月用电均超过200度,500×0.6=300(元),而300>290.5,不符合题意.又∵六月份用电量大于五月份,∴五月份用电量在第一档,假设六月份用电量在第三档,不符合题意,∴六月份用电量在第二档.由此,设该户居民五月份用电x度,则六月份用电(500-x)度.根据题意,得0.55x+0.6(500-x)=290.5,解得x=190,则500-190=310(度).答:该户居民五月份用电190度,六月份用电310度.◆活动5 课堂小结1.利用一元一次方程解决分段计费问题.2.利用一元一次方程解决方案决策问题.1.作业布置(1)教材P107~108习题第10,12,13题;(2)对应课时练习.2.教学反思。

5.3 一元一次方程的应用(3)

5.3 一元一次方程的应用(3)

1、甲每天生产某种零件80个,3天能生产 3×80 个零件。 2、乙每天生产某种零件x个,5天能生产 5x 个零件。 3、甲每天生产某种零件80个,乙每天生产某种零件x个。 (5×80+5x) 个零件。 他们5天一共生产 4、甲每天生产某种零件80个,乙每天生产这种零件x个 甲生产3天后,乙也加入生产同一种零件,再经过5天, (3×80+5×80+5x) 两人共生产 个零件。 工程问题的基本数量关系:
增加人数 增加后人数 等量关系
x
23+ x
20 - x
17+20- x
甲处增加后人数=2×乙处增加后人数
解:设应调往甲处x人,根据题意,得 23+x=2(17+20-x) 解这个方程,得x=17 ∴20-x=3 答:应调往甲处17人,乙处3人。
想一想:若设调往乙处的人数为x,方程又应怎样列? 23+20 - x=2(17+x) 在解决实际问题时,我们一般可以通过分析实 际问题, 抽象出数学问题, 然后运用数学思想方法 解决问题.用列表分析数量关系是常用的方法.
一元一次方程的应用 (3)
调配问题
例2、学校组织植树活动,已知在甲处植树的有23人, 在乙处植树的有17人,现调20人去支援,使在甲处 植树的人数是乙处植树人数的2倍,应调往甲、乙两 处各多少人? 分析 : 设应调往甲处x人,题目中涉及的有关数量 及其关系能用表格去表示吗? 原有人数 甲 处 23 乙 17 处
后5天甲 后5天乙 + 生产零件 + 生产零件 的个数 的个数
=940
解:设乙每天生产零件的个数为x, 由题意得 3 80 5 80 5 x 940 解得 x 60 答:乙每天生产零件60个.

8.4.3一元一次方程的解法(3)

8.4.3一元一次方程的解法(3)

营丘镇中学师生共用讲学稿年级: 七年级 学科:数学 执笔:张玉进 审核: 内容:一元一次方程的解法3 课型:新授 时间:2010年12月28日 学习目标:1.掌握去分母的方法以及解一元一次方程的一般步骤;2.体会数学中的转化思想的运用3.通过解一元一次方程,使学生养成良好的学习习惯和自主探究精神。

学习重点:灵活掌握和运用解一元一次方程的基本步骤。

学习难点:解方程时如何去分母。

(①不漏乘不含分母的项②注意给分子添加括号。

)一、学前准备1、等式的基本性质是什么?2、什么是移项?移项时要注意什么?3.去括号的法则是什么?二、上节知识二次检测:解方程:1.4x+3=5x-1 2. x 31-1=413.3(y+1)=2y-14. 2(x-2)-3(x+2)=x+6二、探究活动1、独立思考·解决问题活动一:解方程:8)20(2131=-+x x师生探究·合作交流【议一议】你认为上面的方程怎样解更为简便?讨论一下,并用最简便的方法再做一下。

活动二: 用去分母的方法解方程:16110312=+-+x x师生探究·合作交流【议一议】通过上面的例题,你能总结出解一元一次方程的步骤吗?与同学交流。

解一元一次方程的一般步骤为:【有效训练】判断下列方程的解法是否正确?如果不正确,请加以改正:1.132312-+=-x x 解:去分母,得 1212-+=-x x移项,得 22=-x x合并同类项,得2=x2.226231-=---x x x 解:去分母,得 1232)1(2-=---x x x去括号,得 123222-=---x x x移项,合并同类项,得 82-=-x系数化为1,得 4=x三、学习体会1、本节课你有那些收获?在解方程的时候应注意些什么?2、预习时的疑难解决了吗?你还有哪些疑惑?3、你认为老师上课过程中还有哪些需要注意或改进的地方?四、自我测试1.47815=-x 2.32355x x -=+3.211671=+x 4.37524123--=+y y五、应用与拓展解方程:1.1.02.12.08.055.05.14x x x =---2.14126110312-+=+--x x x。

七年级数学 第五章 一元一次方程 3 应用一元一次方程水箱变高了

七年级数学 第五章 一元一次方程 3 应用一元一次方程水箱变高了


50 2Biblioteka 2π x=π720×4 25+
解得x=99.
π×33200.2
答:需要截取直径为50 mm的圆钢99 mm.
12/13/2021
1.在长方形ABCD中放入六个长、宽都相同的小长方形,所标尺寸如图5 -3-1所示.若设AE=x,则下列方程正确的是 ( )
图5-3-1 A.6+2x=14-3x B.6+2x=x+(14-3x) C.14-3x=6 D.6+2x=14-x 答案 B 由题图可知,AB=2x+6=小长方形的长+x,又小长方形的长=14 -3x,1故2/123/x2+0261 =(14-3x)+x.
12/13/2021
解析 设长方形鸡舍的宽为x米,则长为(x+6)米. (1)根据题意,分两种情况讨论: ①当长方形鸡舍的长边靠墙时,由题意得x+x+x+6=60, 解得x=18,x+6=18+6=24. 18×24=432. 所以,此时该长方形鸡舍的面积为432平方米. ②当长方形鸡舍的宽边靠墙时,由题意得x+x+6+x+6=60, 解得x=16,x+6=16+6=22. 16×22=352. 所以,此时该长方形鸡舍的面积为352平方米. 综上所述,长方形鸡舍的面积为432平方米或352平方米.
综上,小刚的爸爸的设计合理,此时养鸡场的面积为143 m2.
点拨 运用一元一次方程解决实际问题时,要注意解的合理性,即所得 结果必须符合实际情况.
12/13/2021
知识点 几何图形的变换问题
1.一块长、宽、高分别为4 cm,3 cm,2 cm的长方体橡皮泥,要用它来捏

一元一次方程3

一元一次方程3

一元一次方程3 班级: 姓名:一、1、关于x 的方程3x +5=0与3x +3k =1解相同,则k ().A .-2 B .43 C .2 D .-432、农民购买家电下乡产品将得到销售价格13%的补贴资金.已知从甲商场售出的这20部手机国家共发放了2340元的补贴,若设该手机的销售价格为x 元,以下方程正确的是( )A .2013%2340x ⋅= B 20234013%x =⨯ C .20(113%)2340x -= D .13%2340x ⋅=3、x 是一个两位数,y 是一个三位数,把x 放在y 的左边构成一个五位数,则这个五位数的表达式是( ).A .xy B .10x y + C .1000x y + D .1001000x y +4、某试卷由26道题组成,答对一题得8分,答错一题倒扣5分。

今有一考生虽然做了全部的26道题,但总分为零,做对的题有().A .10道 B .15道 C .20道 D .8道5、同时卖出两件上衣,售价都是135元,若按成本计,其中一件盈利25%,另一件亏本25%,在这次买卖中他( ).A .不赚不赔 B .赚9元 C .赔18元 D .赚18元二、填空题(5小题,每小题4分,共20分)6、请写出一个解为-2的一元一次方程__________________________.7、已知|x -y|=y -x, |x|=3, |y|=4, 则(x+y)3=______________.8、已知关于x 的方程3a -x= x 2+3的解是4, 则-a 2-2a=____________. 9、甲仓库的货物是乙仓库货物的2倍,从甲仓库调5吨到乙仓库,这时甲仓库剩余的货物恰好碧乙仓库的一半多1吨,设乙仓库原有x 吨,则可列方程为10、减去2-x 等于632+-x x 的整式是三、解答题(5小题,每小题6分,共30分)11、0.40.90.030.0250.50.032x x x ++--=. 12、y -12y +=2-25y +. 13、4)42(21)62(32=---t t 14、如果方程42832x x -+-=-的解与方程4(31)621x a x a -+=+-的解相同,求式子1a a-的值 . 15、展开你想象的翅膀,尽可能多地从方程211015x x ++=中猜想出它可能会是哪种类型的实际问题,将其编写出来,并解答之.四、解答题(4小题,每小题7分,共28分)16、已知x:y:z=3:4:7,且2x-y+z=-18,求x+y+z.17、关于x的方程12x=-2+a的解比关于x的方程5x-2a=10的解大2,求a.18、某水果商贩买进水果若干筐,每筐进价3元,如果按照每筐4元的价钱卖出,•那么卖出全部水果的一半又10筐时,已收回全部成本,一共买进水果多少筐?19、某商店到苹果产地去收购苹果,收购价为每千克1.2元,•从产地到商店的距离是400km,运费为每吨货物每运1km收1.50元,如果在运输及销售过程中的损耗为10%,商店要想获得其成本的25%的利润,零售价应是每千克多少元?五、20、甲、乙两人骑自行车,同时从相距65千米的两地相向而行,甲的速度是17.5千米/时,乙的速度为15千米/时,经过几小时,两人相距32.5千米?21、足球比赛的记分规则为:胜一场得3分,平一场得1分,•输一场得0分.一支足球队在某个赛季中共需比赛14场,现已比赛了8场,输了一场,得17分.(1)前8场比赛中,这支球队共胜了多少场?(2)这支球队打满14场比赛,最高能得多少分?(3)通过对比赛情况的分析,这支球队打满14场比赛,得分不低于29分,就可以达到预期目标,请你分析一下,在后面的6场比赛中,这支球队至少要胜几场,•才能达到预期目标.22、商场计划拨款9万元,从厂家购进50台电视机,已知该厂家生产三种不同型号的电视机,出场价分别为甲种每台1500元,乙种每台2100元,丙种每台2500元.(1)若商场同时购进其中两种不同型号的电视机共50台,用去9万元,请你研究一下商场的进货方案;(2)若商场销售一台甲种电视机可获利150元,销售一台乙种电视机可获利200元,销售一台丙种电视机可获利250元.在同时购进两种不同型号的电视机的方案中,为使销售时获利最多,该选择哪种进货方案。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、解答题(共16小题,满分150分)1、解方程﹣[x﹣(x﹣)]﹣=x+.2、已知下面两个方程3(x+2)=5x,①4x﹣3(a﹣x)=6x﹣7(a﹣x)②有相同的解,试求a的值.3、已知方程2(x+1)=3(x﹣1)的解为a+2,求方程2[2(x+3)﹣3(x﹣a)]=3a的解.4、解关于x的方程(mx﹣n)(m+n)=0.5、解方程,(a+x﹣b)(a﹣b﹣x)=(a2﹣x)(b2+x)﹣a2b2.6、已知(m2﹣1)x2﹣(m+1)x+8=0是关于x的一元一次方程,求代数式199(m+x)(x﹣2m)+m的值.7、已知关于x的方程a(2x﹣1)=3x﹣2无解,试求a的值.8、k为何正数时,方程k2x﹣k2=2kx﹣5k的解是正数?9、若abc=1,解方程++=110、若a,b,c是正数,解方程11、设n为自然数,[x]表示不超过x的最大整数,解方程:x+2[x]+3[x]+4[x]+…+[x]=.12、已知关于x的方程且a为某些自然数时,方程的解为自然数,试求自然数a的最小值.13、解下列方程:(1)(2)(3){}=114、解下列关于x的方程:(1)a2(x﹣2)﹣3a=x+1;(2)ax+b﹣(3)15、a为何值时,方程有无数个解?无解?16、当k取何值时,关于x的方程3(x+1)=5﹣kx分别有(1)正数解;(2)负数解;(3)不大于1的解.答案与评分标准一、解答题(共16小题,满分150分)1、解方程﹣[x﹣(x﹣)]﹣=x+.考点:解一元一次方程。

专题:计算题。

分析:先去小括号,再去中括号,然后移项合并、化系数为1可得出答案.解答:解:去小括号得:﹣[x﹣x+]﹣=x+,去中括号得:﹣x+x+﹣=x+,移项合并得:,系数化为1得:x=﹣.点评:本题考查解一元一次方程,解一元一次方程的一般步骤是:去分母、去括号、移项、合并同类项、化系数为1.注意移项要变号.2、已知下面两个方程3(x+2)=5x,①4x﹣3(a﹣x)=6x﹣7(a﹣x)②有相同的解,试求a的值.考点:同解方程。

分析:本题解题思路是从方程①中求出x的值,代入方程②,求出a的值.解答:解:由方程①可求得3x﹣5x=﹣6,所以x=3.由已知,x=3也是方程②的解,根据方程解的定义,把x=3代入方程②时,应有:4×3﹣3(a﹣3)=6×3﹣7(a﹣3),解得:a=4.点评:本题考查同解方程的知识,难度不大,关键是根据①求出方程②的解.3、已知方程2(x+1)=3(x﹣1)的解为a+2,求方程2[2(x+3)﹣3(x﹣a)]=3a的解.考点:一元一次方程的解。

专题:方程思想。

分析:解一元一次方程2(x+1)=3(x﹣1)求得方程的解,即可求得a的值,代入方程2[2(x+3)﹣3(x﹣a)]=3a,然后解方程即可求得方程的解.解答:解:由方程2(x+1)=3(x﹣1)解得x=5.由题设知a+2=5,所以a=3.于是有2[2(x+3)﹣3(x﹣3)]=3×3,即﹣2x=﹣21,∴x=10.点评:本题主要考查了方程的解的定义,根据方程的解的定义可以把求未知系数的问题转化为解方程的问题.4、解关于x的方程(mx﹣n)(m+n)=0.考点:解一元一次方程。

专题:计算题;分类讨论。

分析:先将方程整理为m(m+n)x=n(m+n),然后分情况讨论,①m+n=0且m≠0,②m+n=0且m=0,③m+n≠0,然后可分别解得x的值.解答:解:分析这个方程中未知数是x,m,n是可以取不同实数值的常数,因此需要讨论m,n取不同值时,方程解的情况.把原方程化为:m2x+mnx﹣mn﹣n2=0,整理得:m(m+n)x=n(m+n).①m+n≠0且m≠0时,方程的唯一解为x=;②当m+n≠0,且m=0时,方程无解;③当m+n=0时,方程的解为一切实数.点评:本题考查解一元一次方程的知识,有一定难度,解这类方程时,需要从方程有唯一解、无解、无数多个解三种情况进行讨论.5、解方程,(a+x﹣b)(a﹣b﹣x)=(a2﹣x)(b2+x)﹣a2b2.考点:解一元一次方程。

分析:本题将方程中的括号去掉后产生x2项,但整理化简后,可以消去x2,也就是说,原方程实际上仍是一个一元一次方程.解答:解:将原方程整理化简得(a﹣b)2﹣x2=a2b2+a2x﹣b2x﹣x2﹣a2b2,即(a2﹣b2)x=(a﹣b)2.(1)当a2﹣b2≠0时,即a≠±b时,方程有唯一解;x=,x=;(2)当a2﹣b2=0时,即a=b或a=﹣b时.若a﹣b≠0,即a≠b,即a=﹣b时,方程无解;若a﹣b=0,即a=b,方程有无数多个解.点评:本题虽表面上有x2项,但实际考查解一元一次方程的解法,有一定的难度,注意分类讨论思想的应用.6、已知(m2﹣1)x2﹣(m+1)x+8=0是关于x的一元一次方程,求代数式199(m+x)(x﹣2m)+m的值.考点:一元一次方程的定义;代数式求值。

专题:计算题。

分析:根据一元一次方程的定义:只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程.它的一般形式是ax+b=0(a,b 是常数且a≠0).列出等式,求出m的值,代入即可.解答:解:∵(m2﹣1)x2﹣(m+1)x+8=0是关于x的一元一次方程,∴m2﹣1=0,即m=±1.(1)当m=1时,方程变为﹣2x+8=0,因此x=4,∴原式=199(1+4)(4﹣2×1)+1=1991;(2)当m=﹣1时,原方程无解.所以所求代数式的值为1991.点评:本题主要考查了一元一次方程的一般形式,未知数的指数是1,一次项系数不是0,特别容易忽视的一点就是一次项系数不是0的条件.这是这类题目考查的重点.7、已知关于x的方程a(2x﹣1)=3x﹣2无解,试求a的值.考点:一元一次方程的解。

专题:计算题。

分析:先将方程变形为ax=b的形式,再根据一元一次方程无解的情况:a=0,b≠0,求得方程a(2x﹣1)=3x﹣2中a的值.解答:解:将原方程变形为2ax﹣a=3x﹣2,即(2a﹣3)x=a﹣2.由已知该方程无解,所以,解得a=.故a的值为.点评:本题考查了一元一次方程解的情况.一元一次方程的标准形式为ax=b,它的解有三种情况:①当a≠0,b≠0时,方程有唯一一个解;②当a=0,b≠0时,方程无解;③当a=0,b=0时,方程有无数个解.8、k为何正数时,方程k2x﹣k2=2kx﹣5k的解是正数?考点:一元二次方程的解;一元二次方程的定义。

专题:方程思想。

分析:对方程ax=b,当a≠0时,方程有唯一解x=,此解的正负由a,b的取值范围确定:(1)当ab>0时,方程的解是正数,(2)当ab<时,方程的解是负数.解答:解:按未知数x整理方程得(k2﹣2k)x=k2﹣5k.要使方程的解为正数,需要(k2﹣2k)(k2﹣5k)>0.看不等式的左端(k2﹣2k)(k2﹣5k)=k2(k﹣2)(k﹣5).因为k2≥0,所以只要k>5或k<2时上式大于零,所以当k<2或k>5时,原方程的解是正数,所以k>5或0<k<2即为所求.点评:本题考查的是方程的解,根据方程的解的概念,运用不等式的性质,确定k的取值范围.9、若abc=1,解方程++=1考点:解一元一次方程。

分析:将方程中的1用abc代替,然后化简整理可约去abc+bc+b,进而能得出答案.解答:解:因为abc=1,所以原方程可变形为:++=1化简整理为:+=1,+=1,化简整理为:=1,=1,∴x=为原方程的解.点评:本题考查解一元一次方程的知识,注意像这种带有附加条件的方程,求解时恰当地利用附加条件可使方程的求解过程大大简化.10、若a,b,c是正数,解方程考点:解一元一次方程。

专题:计算题。

分析:根据题意,首先将方程式进行化简,去分母、移项、合并同类项,再根据题干所给a、b、c的条件进行推理讨论解决.解答:解:解法1、原方程两边乘以abc,得到方程:ab(x﹣a﹣b)+bc(x﹣b﹣c)+ac(x﹣c﹣a)=3abc,移项、合并同类项得:ab[x﹣(a+b+c)]+bc[x﹣(a+b+c)]+ac[x﹣(a+b+c)]=0,因此有:[x﹣(a+b+c)](ab+bc+ac)=0,因为a>0,b>0,c>0,所以ab+bc+ac≠0,所以x﹣(a+b+c)=0,即x=a+b+c为原方程的解;解法2、将原方程右边的3移到左边变为﹣3,再拆为三个“﹣1”,并注意到:,其余两项做类似处理,设m=a+b+c,则原方程变形为:,所以:(x﹣m)()=0,∵a>0,b>0,c>0,∴≠0,∴x﹣m=0,即:x﹣(a+b+c)=0,所以x=a+b+c为原方程的解.点评:本题主要考查了解一元一次方程,需要熟悉解一元一次方程的步骤,同时需要注意观察,认真推敲所给条件,巧妙变形,从而产生简单优美解法.11、设n为自然数,[x]表示不超过x的最大整数,解方程:x+2[x]+3[x]+4[x]+…+[x]=.考点:取整函数。

专题:计算题。

分析:要解此方程,必须先去掉[],根据[x]是整数,2[x],3[x],n[x]都是整数,所以x必是整数,即可求解.解答:解:由于n是自然数,所以n与(n+1)中必有一个偶数,因此是整数.因为[x]是整数,2[x],3[x],n[x]都是整数,所以x必是整数.根据分析,x必为整数,即x=[x],所以原方程化为x+2x+3x+4x+…+nx=合并同类项得(1+2+3+…+n)x=故有x=所以x=n(n+1)为原方程的解.点评:本题主要考查了取整函数的计算,去掉[],转化为一般的式子是解决本题的关键.12、已知关于x的方程且a为某些自然数时,方程的解为自然数,试求自然数a的最小值.考点:一元二次方程的整数根与有理根。

专题:计算题。

分析:用x表示出a,找到x的最小的自然数解,也就求得了a的值,进而求得最小值.解答:解:由原方程可解得a=x﹣142,∵a为自然数,∴x>142,∴x>157,∵a最小,∴x应取x=160.∴a=2.所以满足题设的自然数a的最小值为2.点评:考查二元方程的最小系数的自然数值;用一个字母表示出另一个字母是解决本题的突破点.13、解下列方程:(1)(2)(3){}=1考点:解一元一次方程。

专题:计算题。

分析:(1)先把分母化为整数,再去分母、去括号、移项即可;(2)按照去分母、去括号、移项的步骤计算;(3)先去小括号、再去中括号、最后去大括号、移项即可.解答:解:(1)分母化为整数得:﹣=,去分母得:6(4x+9)﹣15(x﹣5)=10(2x+3),去括号得:24x+54﹣15x+75=20x+30,移项得:11x=99,同除以11得:x=9.(2)去分母得:1﹣=4,再去分母得:3﹣1﹣(1﹣x)=12,去括号得:2﹣+x=12,移项得:x=10=,同除以得:x=21.(3)去小括号得:{[﹣﹣6]+4}=1,再去中括号得:{+4}=1,再去大括号得:,移项得:=,同除以得:x=5.点评:本题考查了解一元一次方程,解一元一次方程的一般步骤是:去分母、去括号、移项、合并同类项、化系数为1.注意移项要变号.14、解下列关于x的方程:(1)a2(x﹣2)﹣3a=x+1;(2)ax+b﹣(3)考点:解一元一次方程。

相关文档
最新文档