《解一元一次方程—— 移项》教案4
《解一元一次方程——移项》教学设计
《解一元一次方程——移项》教学设计一、教材内容分析1、本节课是数学人教版七年级上册第三章第二节第二小节的内容。
2、本节课主要内容是解一元一次方程的重要步骤移项。
是学生学习解一元一次方程的基础,这一部分内容在方程中占有很重要的地位,在解方程、解一元一次不等式、解一元二次不等式中都要用到。
二、教学目标1、用移项解一元一次方程。
2、掌握移项变号的基本原则。
3、通过学习“合并同类项”和“移项”,激发学生学习数学的热情。
三、学情分析针对七年级学生学习热情高,但观察、分析、概括能力较弱的特点,本节从实际问题入手,让学生通过自己思考、动手,激发学生的求知欲,提高学生学习的兴趣与积极性。
在课堂教学中,学生主要采取讨论、思考、观察的学习方式,使学生真正成为课堂的主人,逐步培养学生观察、概括、归纳的能力。
四、教学策略选择与设计(1)、自主探索策略:通过分组讨论,学生通过观察、分析发现结论,归纳概括。
(2)、师生交流:通过教师引导,让学生学会学习数学的方法和数学思想。
生生交流:学生分组讨论问题,在讨论的过程中相互交流,发表个人的见解,对问题进行探讨,互相学习。
五、教学环境及资源准备多媒体教室;幻灯片。
六、教学过程一、复习回顾,导入新课:(一)、回顾:等式的基本性质?1.等式的两边都加上(或减去)同一个数(或式子),结果仍相等.2.等式的两边都乘以同一个数,或除以同一个不为零的数,结果仍相等.二、合作交流,解读探究:1、思考:方程3x +20 = 4x -25的两边都有含x的项(3x与4x)和不含字母的常数项(20与- 25),怎样才能使它向x= a(常数)的形式转化呢2、观察:(1)、上述演变过程中,方程的哪些项改变了在原方程中的位置?怎样变的? (2)、改变的项有什么变化?3、归纳:把等式一边的某项改变符号后移到另一边,叫移项。
4、应用新知:1)、慧眼找错:(1)、6 + x = 8,移项,得x = 8+ 6 (2)、3x = 8- 2x,移项,得3x +2x = -8 (3)、5x – 2 = 3x + 7,移项,得5x + 3x = 7+ 2 2)、归纳:将含有未知数的项放在方程的一边,常数项放在方程的另一边,对方程进行移项变形。
《3.2.2解一元一次方程—移项》教学设计
3.2.2解一元一次方程——移项一、教学目标:1.理解移项的概念;2.会用移项法解一元一次方程;3.经历用方程解决实际问题的过程。
二、教学重点、难点:重点:用移项法解方程;难点:移项是难点。
三、学法与教学用具:学法:学生通过阅读教材,自主学习、思考、交流、讨论和概括,从而更好地完成本节课的教学目标。
教学用具:投影仪四、教学过程:(一)创设情景,揭示课题问题导入上节课学习的一元一次方程都有这样的特点:一边是含有未知数的项,一边是常数项。
这样的方程我们可以用合并同类项来解,那么像3x+7=32-2x这样的方程怎么解呢?(二)研探新知我们来看下面的问题。
问题:把一些图书分给某班学生阅读,如果每人3本,则剩余20本;如果每人4本,则还缺25本,这个班有多少学生?设这个班有x人,那么这批书有多少本?还可以怎么表示?这批书共有(3x+20)本,还可表示为(4x-25)本。
因为3x+20与4x-25都表示这批书,所以3x+20=4x-25由上节课的学习,你能猜想怎么解这个方程吗?把未知项移一到边,把常数项移到一边。
怎样才能做到这一点呢?由等式的性质,把等式两边同时减去4x,加上20。
4x从右边移到了左边,并且改变了符号,20从左边移到了右边,并且改变了符号。
像这样,把等式一边的某项变号后移到另一边,叫做移项。
-x=-45∴x=45所以这个班有45名学生。
注意:表示同一个量的两个不同的式子相等,这是一个基本的等量关系。
思考:上面解方程中“移项”有什么作用?通过移项,使含未知数的项在等号的一边,常数项在另一边,从而把方程转化为我们熟悉的类型,这就是化归思想的运用。
解方程经常要合并与移项。
前面提到的古老代数书中的“对消”和“还原”,指的就是“合并”与“移项”。
现在我们来解前面提到的方程。
例1 3x+7=32-2x解:移项,得3x+2x=32-7合并同类项,得5x=25∴x=5注意:移项要变号。
(三)巩固深化,反馈矫正1.下面的移项对不对?如果不对,错在哪里?应当怎样改正?(1)从3x+6=0得到3x=6;(2)从2x=x-1得到2x= 1-x(3)从2+x-3=2x+1得到2-3-1=2x-x。
解一元一次方程-移项(教案)
三、教学重难点
1.教学重点:利用移项和合并同类项解形如 ax b cx d 的方程.
2.教学难点:正确的进行移项并解出方程.
四、教学过程
教学过程
师生活动
设计意图
【问题 1】 把一些图书分给某班学生阅读,如果每 以学生身边熟
人分 3 本,则剩余 20 本;如果每人分 4 本,则还缺 悉的实际问题
想;
2.过程与方法
能够找出实际问题;
3.情感态度价值观
能够从实际问题中列出一元一次方程,进一步体会方程模型思想的作用及
应用价值,感受数学文化.
二、教材内容分析
本节课的核心内容是“移项”解方程.方程的解法是初中数学的核心内容,
移项是解方程的基本步骤之一,是一种同解变形.
移项:把等式一边的某项变号后移动到另 一边. 注:①从等式的一边移动到另一边;
②依据是等式的性质 1;
③通过移项,使方程更接近 x a 的 形式;
④步骤:移项、合并同类项、系 数化为 1.
系数化为 1,得 x 5
(2)移项,得 x 3 x 1 3 2
合并同类项,得 - 1 x 4 2
系数化为 1,得 x 8
-x=-45
系数化为 1
x=45
由上可知,这个班有 45 名学生. 【问题 4】根据移项的定义回答以下问题
(1)由 2x+3=4x-5 变为 3+2x=-2+4x 是否叫移
项?为什么?
(2)上面移项的依据是什么? (3)在解方程中“移项”起到了什么作用? (4)采用移项解方程的步骤是什么?
例 1 解方程(学生口述,教师板书)
通过学生的思 考、教师的讲
学习的 x+2x+4x=140 在结构上有什么不同?
一元一次方程移项(教案)
一元一次方程-移项(教案)教学目标:1. 理解移项的概念和意义。
2. 学会正确运用移项的方法解一元一次方程。
教学内容:1. 移项的概念和意义。
2. 移项的方法和步骤。
教学过程:一、导入(5分钟)1. 引入移项的概念,通过实际例子让学生感受移项的作用。
二、知识讲解(15分钟)1. 讲解移项的概念和意义,解释移项在解方程中的重要性。
2. 引导学生理解移项的本质是将方程中的项移到等号另一边。
3. 讲解移项的方法和步骤,例如:将含有未知数的项移到等号左边,将常数项移到等号右边。
三、实例演示(10分钟)1. 通过具体的一元一次方程,演示移项的过程和步骤。
2. 让学生跟随老师的演示,一起解题,加深对移项方法的理解。
四、练习与讨论(10分钟)1. 给学生发放练习题,让学生独立完成移项操作。
2. 鼓励学生相互讨论,共同解决问题,加深对移项方法的应用。
五、总结与反思(5分钟)1. 总结本节课所学的移项方法和步骤。
2. 引导学生反思在解题过程中遇到的问题,思考如何更好地运用移项方法。
教学评价:1. 通过课堂讲解和练习,评价学生对移项概念的理解程度。
2. 通过学生的练习题和讨论,评价学生对移项方法的掌握情况。
教学资源:1. 教案、PPT等教学资料。
2. 练习题。
教学建议:1. 在实例演示环节,可以邀请学生上台演示,增加互动性。
2. 在练习与讨论环节,可以设置不同难度级别的练习题,满足不同学生的学习需求。
3. 在总结与反思环节,可以引导学生思考移项方法在实际问题中的应用。
六、练习与巩固(10分钟)1. 分发练习题,让学生独立完成,巩固移项技巧。
2. 选取部分学生的作业进行讲解,指出其中的错误和不足。
七、拓展与应用(10分钟)1. 引导学生思考:移项技巧在其他数学领域中的应用。
2. 举例说明移项在其他领域的应用,如物理学中的力的平衡、经济学中的成本分析等。
八、课堂小结(5分钟)1. 回顾本节课所学内容,强调移项的重要性。
数学上册《解一元一次方程-移项》教案(高效课堂)2022年人教版数学精品
||k15.2.2 分式的加减教学目标明确分式混合运算的顺序,熟练地进行分式的混合运算.重点难点1.重点:熟练地进行分式的混合运算.2.难点:熟练地进行分式的混合运算.3.认知难点与突破方法教师强调进行分式混合运算时,要注意运算顺序,在没有括号的情况下,按从左到右的方向,先乘方,再乘除,然后加减. 有括号要按先小括号,再中括号,最后大括号的顺序.混合运算后的结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.分子或分母的系数是负数时,要把“-〞号提到分式本身的前面.教学过程例、习题的意图分析1.教科书例7、例8是分式的混合运算. 分式的混合运算需要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.2.教科书练习1:写出教科书问题3和问题4的计算结果.这道题与第一节课相照应,也解决了本节引言中所列分式的计算,完整地解决了应用问题. 二、课堂引入1.说出分数混合运算的顺序.2.教师指出分数的混合运算与分式的混合运算的顺序相同. 三、例题讲解〔教科书〕例7 计算[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.〔教科书〕例8 计算:[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,注意有括号先算括号内的,最后结果分子、分母要进行约分,注意运算的结果要是最简分式. 四、随堂练习 计算:(1) x x x x x 22)242(2+÷-+- 〔2〕)11()(ba ab b b a a -÷--- 〔3〕)2122()41223(2+--÷-+-a a a a 五、课后练习 1.计算: (1))1)(1(yx xy x y +--+ (2)22242)44122(aaa a a a a a a a -÷-⋅+----+ (3)zxyz xy xyz y x ++⋅++)111(2.计算24)2121(aa a ÷--+,并求出当=a -1的值.六、答案: 四、〔1〕2x 〔2〕ba ab- 〔3〕3五、1.(1)22y x xy - (2)21-a 〔3〕z 12.原式=422--a a ,当=a -1时,原式=-31.13.3.1 等腰三角形教学目标〔一〕教学知识点1.等腰三角形的概念. 2.等腰三角形的性质.3.等腰三角形的概念及性质的应用. 〔二〕能力训练要求1.经历作〔画〕出等腰三角形的过程,•从轴对称的角度去体会等腰三角形的特点. 2.探索并掌握等腰三角形的性质. 〔三〕情感与价值观要求 通过学生的操作和思考,使学生掌握等腰三角形的相关概念,并在探究等腰三角形性质的过程中培养学生认真思考的习惯.重点难点重点:1.等腰三角形的概念及性质. 2.等腰三角形性质的应用.难点:等腰三角形三线合一的性质的理解及其应用. 教学方法 探究归纳法. 教具准备师:多媒体课件、投影仪; 生:硬纸、剪刀. 教学过程Ⅰ.提出问题,创设情境[师]在前面的学习中,我们认识了轴对称图形,探究了轴对称的性质,•并且能够作出一个简单平面图形关于某一直线的轴对称图形,•还能够通过轴对称变换来设计一些美丽的图案.这节课我们就是从轴对称的角度来认识一些我们熟悉的几何图形.来研究:①三角形是轴对称图形吗?②什么样的三角形是轴对称图形? [生]有的三角形是轴对称图形,有的三角形不是. [师]那什么样的三角形是轴对称图形?[生]满足轴对称的条件的三角形就是轴对称图形,•也就是将三角形沿某一条直线对折后两局部能够完全重合的就是轴对称图形.[师]很好,我们这节课就来认识一种成轴对称图形的三角形──等腰三角形. Ⅱ.导入新课[师]同学们通过自己的思考来做一个等腰三角形.ABICABI作一条直线L,在L上取点A,在L外取点B,作出点B关于直线L的对称点C,连接AB、BC、CA,那么可得到一个等腰三角形.[生乙]在甲同学的做法中,A点可以取直线L上的任意一点.[师]对,按这种方法我们可以得到一系列的等腰三角形.现在同学们拿出自己准备的硬纸和剪刀,按自己设计的方法,也可以用课本探究中的方法,•剪出一个等腰三角形.……[师]按照我们的做法,可以得到等腰三角形的定义:有两条边相等的三角形叫做等腰三角形.相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角.同学们在自己作出的等腰三角形中,注明它的腰、底边、顶角和底角.[师]有了上述概念,同学们来想一想.〔演示课件〕1.等腰三角形是轴对称图形吗?请找出它的对称轴.2.等腰三角形的两底角有什么关系?3.顶角的平分线所在的直线是等腰三角形的对称轴吗?4.底边上的中线所在的直线是等腰三角形的对称轴吗?•底边上的高所在的直线呢?[生甲]等腰三角形是轴对称图形.它的对称轴是顶角的平分线所在的直线.因为等腰三角形的两腰相等,所以把这两条腰重合对折三角形便知:等腰三角形是轴对称图形,它的对称轴是顶角的平分线所在的直线.[师]同学们把自己做的等腰三角形进行折叠,找出它的对称轴,并看它的两个底角有什么关系.[生乙]我把自己做的等腰三角形折叠后,发现等腰三角形的两个底角相等.[生丙]我把等腰三角形折叠,使两腰重合,这样顶角平分线两旁的局部就可以重合,所以可以验证等腰三角形的对称轴是顶角的平分线所在的直线.[生丁]我把等腰三角形沿底边上的中线对折,可以看到它两旁的局部互相重合,说明底边上的中线所在的直线是等腰三角形的对称轴.[生戊]老师,我发现底边上的高所在的直线也是等腰三角形的对称轴.[师]你们说的是同一条直线吗?大家来动手折叠、观察.[生齐声]它们是同一条直线.[师]很好.现在同学们来归纳等腰三角形的性质.[生]我沿等腰三角形的顶角的平分线对折,发现它两旁的局部互相重合,由此可知这个等腰三角形的两个底角相等,•而且还可以知道顶角的平分线既是底边上的中线,也是底边上的高.[师]很好,大家看屏幕.〔演示课件〕等腰三角形的性质:1.等腰三角形的两个底角相等〔简写成“等边对等角〞〕.2.等腰三角形的顶角平分线,底边上的中线、•底边上的高互相重合〔通常称作“三线合一〞〕.[师]由上面折叠的过程获得启发,我们可以通过作出等腰三角形的对称轴,得到两个全等的三角形,从而利用三角形的全等来证明这些性质.同学们现在就动手来写出这些证明过程〕.〔投影仪演示学生证明过程〕[生甲]如右图,在△ABC 中,AB=AC ,作底边BC 的中线AD ,因为,,,AB AC BD CD AD AD =⎧⎪=⎨⎪=⎩所以△BAD ≌△CAD 〔SSS 〕. 所以∠B=∠C .[生乙]如右图,在△ABC 中,AB=AC ,作顶角∠BAC 的角平分线AD ,因为,,,AB AC BAD CAD AD AD =⎧⎪∠=∠⎨⎪=⎩所以△BAD ≌△CAD .所以BD=CD ,∠BDA=∠CDA=12∠BDC=90°.[师]很好,甲、乙两同学给出了等腰三角形两个性质的证明,过程也写得很条理、很标准.下面我们来看大屏幕.〔演示课件〕[例1]如图,在△ABC 中,AB=AC ,点D 在AC 上,且BD=BC=AD , 求:△ABC 各角的度数.[师]同学们先思考一下,我们再来分析这个题.[生]根据等边对等角的性质,我们可以得到∠A=∠ABD ,∠ABC=∠C=∠BDC ,•再由∠BDC=∠A+∠ABD ,就可得到∠ABC=∠C=∠BDC=2∠A . 再由三角形内角和为180°,•就可求出△ABC 的三个内角.[师]这位同学分析得很好,对我们以前学过的定理也很熟悉.如果我们在解的过程中把∠A 设为x 的话,那么∠ABC 、∠C 都可以用x 来表示,这样过程就更简捷. 〔课件演示〕[例]因为AB=AC ,BD=BC=AD , 所以∠ABC=∠C=∠BDC . ∠A=∠ABD 〔等边对等角〕.设∠A=x ,那么∠BDC=∠A+∠ABD=2x , 从而∠ABC=∠C=∠BDC=2x .于是在△ABC 中,有∠A+∠ABC+∠C=x+2x+2x=180°, 解得x=36°.在△ABC 中,∠A=35°,∠ABC=∠C=72°.[师]下面我们通过练习来稳固这节课所学的知识. Ⅲ.随堂练习D CA BD CABDC A B〔一〕课本练习 1、2、3. 练习1. 如图,在以下等腰三角形中,分别求出它们的底角的度数.(2)120︒36︒(1)答案:〔1〕72° 〔2〕30°2.如图,△ABC 是等腰直角三角形〔AB=AC ,∠BAC=90°〕,AD 是底边BC 上的高,标出∠B 、∠C 、∠BAD 、∠DAC 的度数,图中有哪些相等线段?D CAB答案:∠B=∠C=∠BAD=∠DAC=45°;AB=AC ,BD=DC=AD .3.如图,在△ABC 中,AB=AD=DC ,∠BAD=26°,求∠B 和 ∠C 的度数.答:∠B=77°,∠C=38.5°.〔二〕阅读课本,然后小结. Ⅳ.课时小结这节课我们主要探讨了等腰三角形的性质,并对性质作了简单的应用.等腰三角形是轴对称图形,它的两个底角相等〔等边对等角〕,等腰三角形的对称轴是它顶角的平分线,并且它的顶角平分线既是底边上的中线,又是底边上的高.我们通过这节课的学习,首先就是要理解并掌握这些性质,并且能够灵活应用它们. Ⅴ.课后作业〔一〕习题13.3 第1、3、4、8题. 〔二〕1.预习课本.2.预习提纲:等腰三角形的判定. Ⅵ.活动与探究如图,在△ABC 中,过C 作∠BAC 的平分线AD 的垂线,垂足为D ,DE ∥AB 交AC 于E .求证:AE=CE .D C A BEDCAB过程:通过分析、讨论,让学生进一步了解全等三角形的性质和判定,•等腰三角形的性质. 结果:证明:延长CD 交AB 的延长线于P ,如图,在△ADP 和△ADC 中,12,,,AD AD ADP ADC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ADP ≌△ADC .∴∠P=∠ACD . 又∵DE ∥AP , ∴∠4=∠P . ∴∠4=∠ACD . ∴DE=EC .同理可证:AE=DE .∴AE=C E .板书设计一、设计方案作出一个等腰三角形 二、等腰三角形性质 1.等边对等角 2.三线合一 三、例题分析 四、随堂练习 五、课时小结 六、课后作业 备课资料 参考练习1.如果△ABC 是轴对称图形,那么它的对称轴一定是〔 〕 A .某一条边上的高 B .某一条边上的中线 C .平分一角和这个角对边的直线 D .某一个角的平分线 2.等腰三角形的一个外角是100°,它的顶角的度数是〔 〕 A .80° B .20° C .80°和20° D .80°或50° 答案:1.C 2.C3. 等腰三角形的腰长比底边多2 cm ,并且它的周长为16 cm .求这个等腰三角形的边长.解:设三角形的底边长为x cm ,那么其腰长为〔x+2〕cm ,根据题意,得 2〔x+2〕+x=16.解得x=4.E DC A B P所以,等腰三角形的三边长为4 cm 、6 cm 和6 cm .15.2.2 分式的加减教学目标明确分式混合运算的顺序,熟练地进行分式的混合运算. 重点难点1.重点:熟练地进行分式的混合运算. 2.难点:熟练地进行分式的混合运算. 3.认知难点与突破方法教师强调进行分式混合运算时,要注意运算顺序,在没有括号的情况下,按从左到右的方向,先乘方,再乘除,然后加减. 有括号要按先小括号,再中括号,最后大括号的顺序.混合运算后的结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.分子或分母的系数是负数时,要把“-〞号提到分式本身的前面. 教学过程例、习题的意图分析1.教科书例7、例8是分式的混合运算. 分式的混合运算需要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.2.教科书练习1:写出教科书问题3和问题4的计算结果.这道题与第一节课相照应,也解决了本节引言中所列分式的计算,完整地解决了应用问题. 二、课堂引入1.说出分数混合运算的顺序.2.教师指出分数的混合运算与分式的混合运算的顺序相同. 三、例题讲解〔教科书〕例7 计算[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.〔教科书〕例8 计算:[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,注意有括号先算括号内的,最后结果分子、分母要进行约分,注意运算的结果要是最简分式. 四、随堂练习 计算:(1) x x x x x 22)242(2+÷-+- 〔2〕)11()(ba ab b b a a -÷--- 〔3〕)2122()41223(2+--÷-+-a a a a 五、课后练习 1.计算:(1))1)(1(y x x y x y +--+ (2)22242)44122(aa a a a a a a a a -÷-⋅+----+ (3)zxyz xy xy z y x ++⋅++)111( 2.计算24)2121(aa a ÷--+,并求出当=a -1的值.六、答案: 四、〔1〕2x 〔2〕ba ab - 〔3〕3 五、1.(1)22y x xy - (2)21-a 〔3〕z 1 2.原式=422--a a ,当=a -1时,原式=-31.。
《移项解一元一次方程》教案
《移项解一元一次方程》教案(2) 3312x x -=+. 移项,得 3132x x -=+. 合并,得 142x -=. 系数化1,得8x =-.例2.下面是某同学解方程55226x x x --=-+的过程请你把他的解答过程中出现错误的地方圈画出来,并给出这道题目正确的解答过程。
解:小明在移项时忘了变号.55226x x x --=-+合并,得3525x x -=+.移项,得5523x x --=-.合并,得101x -=-.系数化1,得 110x =. 小结:1. 当方程两边各有可以合并的项时,可以根据情况先合并再移项,减少出错机会.2.移项时注意被移项的符号要改变.课后·知能演练一、基础巩固1.解下面的方程时,既要移含未知数的项,又要移常数项的是()A.3x=7-2xB.3x-5=2x+1C.3x-3-2x=1D.x+15=112.填空:(1)10+x=10,移项,得x=10+________.(2)3x=x-5,移项,得3x+________=-5.(3)3x=6-2x,移项,得3x+________=6.(4)1-2x=-3x,移项,得________-2x=-1.(5)2x+8=12-6x,移项,得2x+________=12+________.3.解下列方程:(1)5-3m=m+7;(2)3x-7=14-4x.二、能力提升4.五四青年节来临之际,某校开展主题为“探寻红色记忆,传承五四精神”的团日活动.学校准备组织全体同学乘坐大巴到红色教育基地接受革命传统教育.经调查发现,如果每辆大巴车乘坐38名学生,则有18名学生没座位;如果每辆大巴车乘坐40名学生,则有一辆车空出20个座位.请问该校共有多少名学生?三、思维拓展5.某图书馆向某山区学校的学生捐赠一批图书.如果每人分5本,还剩b本;如果每人分7本,还差(b+20)本.(1)设该学校有学生x人,①用两种不同的式子表示这批图书的本数;②若b=150,求x的值.(2)若再增加一些图书,恰好每人可分到6本,则增加的图书有几本?【课后·知能演练】1.B2.(1)-10(2)-x(3)2x(4)3x(5)6x-83.解:(1)移项,得-3m-m=7-5.合并同类项,得-4m=2.系数化为1,得m=-12.(2)移项,得3x+4x=14+7.合并同类项,得7x=21.系数化为1,得x=3.4.解:设该校共有x名学生.由每辆大巴车乘坐38名学生,有18名学生没座位,知大巴车有x-1838辆.由每辆大巴车乘坐40名学生,空余20个座位,知大巴车有x+2040辆.根据大巴车的数量是一个定值,列得方程x-1838=x+2040,解得x=740.答:该校共有740名学生.5.解:(1)①图书本数可表示为5x+b或7x-b-20.②当b=150时,可得方程5x+150=7x-150-20,解得x=160.(2)设该学校有学生x人,由(1)可知5x+b=7x-b-20,得x-b=10,增加图书的数量为6x-(5x+b)=x-b=10.答:增加的图书有10本.。
人教版数学七年级上册《——移项解一元一次方程》教学设计
人教版数学七年级上册《——移项解一元一次方程》教学设计一. 教材分析人教版数学七年级上册“移项解一元一次方程”这一节,主要让学生掌握一元一次方程的解法。
学生在之前的学习中已经了解了方程的概念,以及等式的性质,为本节课的学习打下了基础。
本节课通过引入移项的概念,让学生学会将方程中的未知数移到等式的一边,从而求解未知数的值。
教材内容由浅入深,循序渐进,使学生能够更好地理解和掌握移项解一元一次方程的方法。
二. 学情分析学生在进入七年级之前,已经初步掌握了方程的知识,对于解方程有一定的了解。
但是,对于移项解一元一次方程这种方法,他们还是初次接触,需要通过实例来理解和掌握。
同时,学生在学习过程中可能存在对移项的规则理解不深,导致在解方程时出现错误。
因此,在教学过程中,需要教师耐心引导,让学生充分理解和掌握移项解一元一次方程的方法。
三. 教学目标1.知识与技能:让学生掌握移项解一元一次方程的方法,能够熟练地运用移项解一元一次方程。
2.过程与方法:通过实例讲解,让学生理解移项解一元一次方程的原理,培养学生的逻辑思维能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养他们勇于探索、积极思考的精神。
四. 教学重难点1.重点:让学生掌握移项解一元一次方程的方法。
2.难点:理解移项的规则,能够灵活运用移项解一元一次方程。
五. 教学方法1.情境教学法:通过生活实例引入移项解一元一次方程,让学生在实际情境中理解和掌握知识。
2.引导发现法:教师引导学生发现移项解一元一次方程的规律,培养学生的自主学习能力。
3.小组合作学习:让学生在小组内讨论和交流解题方法,提高他们的合作能力。
六. 教学准备1.教师准备:对本节课的内容进行深入研究,了解学生的学情,准备好相关的教学案例和练习题。
2.学生准备:预习本节课的内容,了解一元一次方程的基本概念。
七. 教学过程1.导入(5分钟)教师通过一个生活实例引入一元一次方程的概念,让学生回顾已学的知识。
人教版七年级数学上册:3.2《解一元一次方程(一) ——移项》教案
人教版七年级数学上册:3.2《解一元一次方程(一)——移项》教案一. 教材分析《人教版七年级数学上册》第三单元《解一元一次方程(一)——移项》是学生在学习了方程与方程的解、一元一次方程的定义及解法的基础上进行学习的。
本节课的主要内容是让学生掌握移项的方法,并能运用移项法解一元一次方程。
教材通过例题和练习题的安排,使学生能够逐步掌握移项的方法,并能够灵活运用。
二. 学情分析学生在学习本节课之前,已经掌握了方程与方程的解、一元一次方程的定义及解法等知识,具备了一定的数学基础。
但是,对于移项的方法,学生可能还不太熟悉,需要通过例题和练习题的讲解和练习,才能够掌握。
三. 教学目标1.让学生掌握移项的方法,能够将方程中的项移动到等号的同一边。
2.能够运用移项法解一元一次方程。
3.培养学生的逻辑思维能力和解决问题的能力。
四. 教学重难点1.教学重点:移项的方法和解一元一次方程的方法。
2.教学难点:如何引导学生理解和掌握移项的方法,并能够灵活运用。
五. 教学方法采用讲解法、示例法、练习法、讨论法等教学方法,通过教师的讲解和示范,学生的练习和讨论,使学生能够理解和掌握移项的方法,并能够灵活运用。
六. 教学准备1.PPT课件七. 教学过程1.导入(5分钟)教师通过复习方程与方程的解、一元一次方程的定义及解法等知识,引出本节课的主题——移项。
2.呈现(10分钟)教师通过PPT课件,展示移项的方法,并通过示例进行讲解和示范。
示例中,教师引导学生观察方程的两边,找出需要移动的项,并说明移动的方向和规则。
3.操练(10分钟)教师给出一些练习题,让学生独立完成。
教师在学生完成练习的过程中,进行巡视指导,帮助学生理解和掌握移项的方法。
4.巩固(5分钟)教师通过PPT课件,给出一些巩固题,让学生进行练习。
教师在学生完成练习的过程中,进行巡视指导,帮助学生巩固理解和掌握移项的方法。
5.拓展(5分钟)教师通过PPT课件,给出一些拓展题,让学生进行练习。
一元一次方程移项(教案)
一元一次方程-移项(教案)第一章:引言1.1 目的引导学生回顾一元一次方程的基本概念,为新学期的学习打下基础。
1.2 内容(1) 复习一元一次方程的定义及解法。
(2) 介绍移项的概念及其在解方程中的应用。
1.3 教学方法采用讲解、示例、练习相结合的方式进行教学。
1.4 教学步骤(1) 复习一元一次方程的定义及解法。
(2) 引入移项的概念,解释其在解方程中的作用。
(3) 示例演示移项操作,让学生理解并掌握移项技巧。
(4) 练习题巩固所学知识。
第二章:移项的基本原则2.1 目的让学生掌握移项的基本原则,能够正确进行移项操作。
2.2 内容(1) 介绍移项的基本原则。
(2) 解释为什么移项时需要改变变量的符号。
2.3 教学方法采用讲解、示例、练习相结合的方式进行教学。
(1) 讲解移项的基本原则。
(2) 通过示例演示移项操作,让学生理解并掌握移项技巧。
(3) 练习题巩固所学知识。
第三章:移项在解方程中的应用3.1 目的让学生学会运用移项技巧解一元一次方程。
3.2 内容(1) 介绍移项在解方程中的应用。
(2) 演示解方程的过程,让学生理解并掌握解题思路。
3.3 教学方法采用讲解、示例、练习相结合的方式进行教学。
3.4 教学步骤(1) 讲解移项在解方程中的应用。
(2) 通过示例演示解方程的过程,让学生理解并掌握解题思路。
(3) 练习题巩固所学知识。
第四章:移项的拓展应用4.1 目的让学生能够将移项技巧应用到更广泛的问题中。
4.2 内容(1) 介绍移项的拓展应用。
(2) 演示如何将移项技巧应用到实际问题中。
采用讲解、示例、练习相结合的方式进行教学。
4.4 教学步骤(1) 讲解移项的拓展应用。
(2) 通过示例演示如何将移项技巧应用到实际问题中。
(3) 练习题巩固所学知识。
第五章:总结与评价5.1 目的总结本章节所学内容,检查学生的学习效果。
5.2 内容(1) 总结移项的基本概念、原则及其在解方程中的应用。
(2) 评价学生的学习情况。
初中移项的教案
初中移项的教案教学目标:1. 理解移项的概念和意义。
2. 学会正确进行移项操作。
3. 掌握移项在解一元一次方程中的应用。
教学重点:1. 移项的概念和操作方法。
2. 移项在解一元一次方程中的应用。
教学难点:1. 正确理解和运用移项规则。
2. 解决实际问题时正确应用移项。
教学准备:1. 课件或黑板。
2. 例题和练习题。
教学过程:一、导入(5分钟)1. 引导学生回顾一元一次方程的解法。
2. 提问:我们在解方程时,是如何将未知数移到方程的一边的?二、新课讲解(15分钟)1. 介绍移项的概念:移项是将方程中的项移动到方程的另一边,同时改变其符号。
2. 讲解移项的规则:移项时,移动的项要变号,移动到方程的另一边时要加上原来的符号。
3. 举例说明移项的操作:如将方程3x + 5 = 14中的5移到方程的左边,变为3x - 5 = 14。
三、课堂练习(15分钟)1. 让学生独立完成练习题,巩固移项的方法。
2. 引导学生思考如何将实际问题转化为移项的形式。
四、拓展应用(15分钟)1. 讲解如何将实际问题转化为移项的形式。
2. 让学生尝试解决一些实际问题,运用移项的方法。
五、总结(5分钟)1. 回顾本节课所学的内容,让学生总结移项的概念和操作方法。
2. 强调移项在解一元一次方程中的应用。
教学反思:本节课通过讲解和练习,让学生掌握了移项的概念和操作方法,并能应用于解决实际问题。
在教学过程中,要注意引导学生思考移项的规则,并注重练习题的设置,让学生在实践中巩固所学知识。
同时,也要关注学生的学习情况,及时解答学生的疑问,提高教学效果。
解一元一次方程——移项(教案)
2、找相等关系
这批书的总数是一个定值,表示它的两个等式相等
3、列方程
思考1:它与练习1遇到的方程有何不同?
方程的两边都有未知项(3x与4x)和常数项(20与-25).
思考2:如何才能使这个方程转化为练习1的方程?
(利用等式性质1,等式两边同时减去4x)
(利用等式性质1,等式两边同时减去20)
2、解形如“ax+b=cx+d”的方程的一般步骤及依据
移项(等式的性质1)注意变号哦!
合并同类项(分配律)
系数化为1(等式的性质2)
3、列一元一次方程解应用题的一般步骤:
审题→设未知数→找等量关系列方程→解方程→作答
[家庭作业]:自编作业!
备注
定义:把等式一边的某项变号后移到另一边,叫做移项。
移项=变号+移到等式另一边
思考3:“移项”的依据是什么?
移项的依据是等式的性质1
思考4: “移项”起了什么作用?
通过移项,使等号一边仅含未知项,等号另一边仅含常数
项,使方程更接近x=a的形式.
列一元一次方程解应用题的一般步骤:
审题→设未知数→找等量关系列方程→解方程→作答
【练习1】解下面方程:
(1)
(2)
(3)
【例1】把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本。这个班有多少学生?
分析:1、设未知数:设这个班有x名学生.
每人分3本,共分出__ 本,还剩余20本,
这批书共__Байду номын сангаас____ 本.
每人分4本,需要____本,还缺25本,
⑷ 方程2x-7=-5x,移项得: .
一元一次方程移项(教案)
一元一次方程-移项(教案)章节一:认识一元一次方程教学目标:1. 了解一元一次方程的概念和特点。
2. 学会写出一元一次方程的一般形式。
教学内容:1. 引入方程的概念,解释一元一次方程的定义。
2. 分析一元一次方程的特点,包括未知数的次数和系数。
3. 学习一元一次方程的一般形式:ax + b = 0。
教学活动:1. 通过实例引入方程的概念,引导学生理解一元一次方程的定义。
2. 分析一元一次方程的特点,让学生通过观察和归纳来理解未知数的次数和系数。
3. 讲解一元一次方程的一般形式,并让学生练习写出一元一次方程的一般形式。
作业与练习:1. 练习写出一元一次方程的一般形式。
2. 给出一些具体的一元一次方程,让学生识别并写出一元一次方程的一般形式。
章节二:移项的基本概念教学目标:1. 理解移项的概念和作用。
2. 学会正确进行移项操作。
教学内容:1. 引入移项的概念,解释移项的目的和作用。
2. 学习移项的基本规则和步骤。
教学活动:1. 通过实例引入移项的概念,引导学生理解移项的目的和作用。
2. 讲解移项的基本规则和步骤,并通过示例进行演示。
3. 让学生练习进行移项操作,并及时给予指导和反馈。
作业与练习:1. 练习进行移项操作,给出一些简单的方程,让学生将其化简。
2. 给出一些具体的方程,让学生识别需要移项的部分,并进行移项操作。
章节三:移项在解方程中的应用教学目标:1. 学会使用移项解一元一次方程。
2. 理解移项在解方程中的重要性。
教学内容:1. 学习使用移项解一元一次方程的方法。
2. 理解移项在解方程中的作用和意义。
教学活动:1. 讲解使用移项解一元一次方程的方法,并通过示例进行演示。
2. 通过实际操作,让学生理解移项在解方程中的作用和意义。
3. 让学生练习使用移项解一元一次方程,并及时给予指导和反馈。
作业与练习:1. 练习使用移项解一元一次方程,给出一些具体的方程,让学生解出未知数的值。
2. 给出一些实际的数学问题,让学生使用移项解一元一次方程的方法进行解决。
3.2解一元一次方程-移项(教案)
2.教学难点
-理解移项的数学原理,特别是为何移项时要改变符号,这是学生容易混淆的地方。
-在含有多个项的方程中,正确区分哪些项需要移项,哪些项保持不变。
-对于一些特殊类型的方程,如含有绝对值、分数等,如何应用移项法则。
3.2解一元一次方程-移项(教案)
一、教学内容
本节课选自教材第三章第二节“解一元一次方程-移项”。教学内容主要包括以下两个方面:
1.理解移项的概念及其实质,掌握移项的法则,即同号相加、异号相减。
2.学会运用移项法解一元一次方程,包括简单方程和含有多项式的方程,如ax+b=c、ax+b=cx+d等类型。
三、教学难点与重点
1.教学重点
-理解并掌握移项的概念及实质:即改变等式两边同类项的符号,从等式一边移到另一边。
-学会运用移项法则,包括同号相加、异号相减,解决一元一次方程。
-能够正确识别方程中的未知数、已知数和常数项,并应用移项法求解。
-通过实际例题,强化移项步骤的顺序和规范操作,如先确定移项的方向,再改变符号等。
-设计不同难度的习题,从简单到复杂,逐步引导学生掌握移项的规律。
-通过小组讨论和同伴互助,让学生在交流中澄清疑惑,加深理解。
-结合生活实例,让学生感受数学的实用价值,激发学习兴趣,降低应用题的难度感知。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是“3.2解一元一次方程-移项”这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要平衡收支、调整物品数量等情况?”这个问题与我们将要学习的移项法密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索移项法的奥秘。
人教版初一数学上册移项--解一元一次方程(教案)
课时教学设计课题解一元一次方程——移项课型新授第几课时3课时教学目标知识与技能:理解移项法则,会解形如ax+b=cx+d的方程,体会等式变形中的化归思想。
过程与方法:能够从实际问题中列出一元一次方程,进一步体会方程模型思想。
情感态度与价值观:感受一元一次方程的应用价值,通过“盈不足问题”介绍,了解中国古代灿烂的数学文化,增强自豪感。
教学重点与难点重点:掌握合并同类项和移项解形如ax+b=cx+d的方程。
难点:体会其中蕴含化归思想,理解移项的依据是等式的性质。
教学内容解析本章的核心内容是解方程和列方程。
方程的解法是初中数学的重要内容,移项是解方程的基本步骤之一,是一种同解变形。
移项法则的依据是等式性质1,运用移项法则可以把含有未知数的项变号后移到等号的一边,把不含未知数的项变号后移到等号的另一边。
移项法则在今后学习的其他方程,不等式,函数知识中经常运用。
列方程在所有方程问题中都占有重要地位,贯穿全章始终,从实际背景建立一元一次方程模型,结合这些模型讨论方程的解法,这样可以自然地反映所讨论的内容是从实际需要中产生。
解方程式将复杂的方程向x=a(a为常数)的形式转化,其中化归思想起了指导作用。
化归思想在后续学习的二元一次方程,一元一次不等式,分式方程和一元二次方程中都有体现。
学情分析对于已经习惯了用算术方法解决实际问题的学生,将实际问题转化为方程问题还需要时间经历思维的转化过程,从不熟悉到熟悉。
在用移项法则简化方程时,对于移项变号的意识比较淡,会出现移项过程中没有变号的错误,其原因是对移项原理的忽视与不重视,同时还要注意移项与在方程等号同一边变换位置的本质区别,这两种情况学生容易混淆。
需要教师引导说明:如果等号同侧位置发生变化,这些项不变号,因为改变某一项在多项式中的位置顺序,是以加法交换律为根据的一种变形;如果把某些项从等号的一边移到另一边时,这些项都要变号,这是以等式性质为根据的一种变形。
学生对解方程的核心思想,化归思想的认识都不到位,也是造成学习困难的原因之一。
(完整版)七年级数学解一元一次方程—移项教学设计
《解一元一次方程一移项》教学设计洛峪镇喜集九年制赵如意二、合作交流,解读探究:(一)、移项1、思考:方程3x +20 = 4x -25 的两边都有含x的项(3x与4x) 和不含字母的常数项(20与-25),怎样才能使它向x= a(常数)的形式转化呢2、观察:(1) 、上述演变过程中,方程的哪些项改变了在原方程中的位置?怎样变的?(2) 、改变的项有什么变化?3、归纳:把等式一边的某项改变符号后移到另一边,叫移项。
4、应用新知:1 )、慧眼找错:(1 )、6 + x = 8 ,移项,得x = 8+ 6(2 )、3x = 8- 2x ,移项,得3x +2x = -8(3 )、5x - 2 = 3x + 7 ,移项,得5x + 3x = 7 + 22 )、抢答:将含有未知数的项放在方程的一边,常数项放在方程的另一边,对方程进行移项变形。
(1 )、2x -3 = 6(2 )、5x = 3x -1(3)、2.4y +2 = -2y(4 )、8 - 5x = x + 23)判断改错:下面的移项对不对?如果不对,错在哪里?应当怎样改正?(1 )、从7+ x = 13.得到x=13 +7(2 )、从5x=4x +8,得到5x-4x=8(3 )、从3x +5= -2x -8 ,得到3x 教师引导学生观察,学生讨论、交流后,教师说明:像这样把等式一边的某项改变符号后移到另一边,叫移项。
学生分小组讨论。
分析:解方程的目的是什么?如何向目的前进?利用等式的基本性质可以实现向目的的转化:为了使方程的右边没有含x 的项,等号的两边同减4x ;为了使左边没有常数项,等号两边同减20。
利用等式的基本性质1 ,得3x +20 -20 -4x=4x-25 -20 -4x 3x -4x = -25 -20学生分组讨论这里渗透转化、化归的思想方法。
通过学生的思考、观察和教师的讲解得出什么是移项,便于学生理解。
教学中应注意提醒学生注意:方程中的项是连同它前面的符号的。
《解一元一次方程--移项》教学设计方案讲课讲稿
每人分3本,共分出了3x_本,加上剩余的20本,这批书共(_3x+20_)_本。
每人分4本,需要4x本,减去缺少的25本,这批书共(4x-25 )_本。
这批书的总数有几种表示方法?
它们之间有什么关系?
教师提问。
教师展示问题,
教师和学生一起分析问题,找出相等关系,合理地设未知数、列式子。
(2)、3x + 1 = -2
(3)、10x–3 =7x +3
(4)、8–5x = x + 2
4、思考:
移项的根据是什么?
上面解方程中“移项”起了什么作用?
5、数学小史
解方程时经常要“合并同类项”和“移项”,前面提到的古老的代数书中的“对消”和“还原”,指的就是“合并同类项”和“移项”,早在一千多年前,数学家阿尔—花拉子米就已经对“合并同类项”和“移项”非常重视了。
说明基本事实:表示同一个量的两个式子具有相等关系,这是列方程的依据。
二、合作交流,解读探究:
(一)、移项
1、思考:方程3x +20 = 4x -25的两边都有含x的项(3x与4x)和不含字母的常数项(20与- 25),怎样才能使它向x= a(常数)的形式转化呢
2、观察:
(1)、上述演变过程中,方程的哪些项改变了在原方程中的位置?怎样变的?
与前面解方程的程序化操作相比,现在又多了一道程序(移项),并写出完整的解题过程
教师巡视、辅导。
引导学生回答:解方程时,应使含未知数的项集中于方程一边,常数项集中于另一边。解方程就是要使方程不断向x = a的形式转化。
教师讲解
学生练习
学生思考回答
使学生熟练掌握用移项解一元一次方程,培养学生规范的书写格式
七年级《解一元一次方程——移项》教学设计
七年级《解一元一次方程——移项》教学设计一、教材内容分析本节课是数学人教版七年级上册第三章第二节第二小节的内容。
这是一节“概念加例题型”课,此种课型中的学习内容一部分是概念,一部分是运用前面的概念解决实际问题的例题。
本节课主要内容是利用移项解一元一次方程。
是学生学习解一元一次方程的基础,这一部分内容在方程中占有很重要的地位,是解方程、解一元一次不等式、解一元二次不等式的重要基础。
这类课一般采用“导学导教,当堂训练”的方式进行,教师指导学生学习的重点一般不放在概念上,要特别留意学生运用概念解题或做与例题类似的习题时,对概念的理解是否到位。
二、教学目标:1.知识与技能:(1)找相等关系列一元一次方程;(2)用移项解一元一次方程。
(3)掌握移项变号的基本原则2.过程与方法:经历运用方程解决实际问题的过程,发展抽象、概括、分析问题和解决问题的能力,认识用方程解决实际问题的关键是建立相等关系。
3.情感、态度:通过具体情境引入新问题,在移项法则探究的过程中,培养学生合作意识,渗透化归的思想。
三、学情分析针对七年级学生学习热情高,但观察、分析、概括能力较弱的特点,本节从实际问题入手,让学生通过自己思考、动手,激发学生的求知欲,提高学生学习的兴趣与积极性。
在课堂教学中,学生主要采取自学、讨论、思考、合作交流的学习方式,使学生真正成为课堂的主人,逐步培养学生观察、概括、归纳的能力。
四、教学重点:利用移项解一元一次方程。
五、教学难点:移项法则的探究过程。
六、教学过程:(一)情景引入引例:请同学们思考这样一个有趣的问题,我国民间流传着许多趣味算题,多以顺口溜的形式表达,请看这样一个数学问题:一群老头去赶集,半路买了一堆梨,一人一个多一个,一人两个少两个,老头和梨分别是( )A.3个老头,4个梨B.4个老头,3个梨C.5个老头,6个梨D.7个老头,8个梨设计意图:大部分同学会用算术法(答案代入法)来解答的,而这类问题我们如何用方程来解答呢?激起学生求知的欲望,巧妙过渡,揭示课题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.2解一元一次方程
——移项
教学内容
人教版七年级上册第三章第二节第二课时一元一次方程的移项解法。
教材分析
本节课主要内容是解一元一次方程的重要步骤之一,移项是学生学习解一元一次方程的基础,这一部分内容在方程中占很重要的地位。
在后续学习其他方程、不等式、函数时经常使用。
学情分析
我们的学校属于农村初级中学,学生学习热情低,观察、分析、概括能力都很差。
本节课由简单问题入手经过学生自主探究、合作交流等活动,激发学生的学习热情。
教学目标
1.理解移项法则,会解形如 ax+b=cx+d 的方程,体会等式变形中的化归思想。
2.能从实际问题中列出一元一次方程,进一步体会方程模型思想的作用及应用价值。
重点难点
1. 重点:确定实际问题中的等量关系,会用“移项”解一元一次方程.
2. 难点:通过观察得出“移项”概念,正确地进行移项并解出方程
教学过程
(一)复习提问
(1)解方程 3x-4x=-25-20
(2)运用方程解实际问题的步骤是什么?
(二)提出问题
出示教科书89页问题2:
把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本.这个班有多少学生?
学生审题后,教师提问
(1)题中有几个未知量:_______________________________________
设未知数:__________________________________________________ (2)找等量关系:_______________________________________________ (3)根据题意,列方程:________________________
(三)探究新知
1:方程3x+20=4X-25 与前面学过的方程在结构上有何不同?
教师展示问题,学生独立思考,小组讨论,学生代表回答。
2:怎样才能使它向x=a(常数)的形式转化呢?
(1)使方程右边不含 x 的项。
(2)使方程左边不含常数项。
学生思考、探索解决问题的方法:为使方程的右边没有含x的项,等号两边同时减去4x,为使方程的左边没有常数项,等号两边同时减去20.
3:以上变形依据是什么?
教师说明:像上面那样把等式一边的某项变号后移到另一边,叫做移项。
4.移项的依据是什么?
学生思考后得出:移项的依据为等式的性质1
5.以上解方程中“移项”起了什么作用?
学生思考回答,师生共同整理:通过移项,使含未知数的项与常数项分别位于方程左右两边,使方程更接近于x=a的形式。
小试牛刀
(1)方程3x-5=2x+1移项,得 _ ________ =1+5
(2)把方程5x+3=7-3x进行移项,正确的是()
A. 5x-3x =7+3
B. 5x+3x =7+3
C.5x+3x=7-3
D.5x-3x=7-3
6.师生共同完成方程3x+20=4X-25 解答过程。
学生口述解题,教师板书规范思路、格式。
(四)运用新知
课本第91页例2
解方程(1)3x +7=32-2x (2)x -3=32
x +1(学生自己动手做一做,生板演)
【课堂练习】:解方程:(1)6x-7=4x -5 (2)
12x -6 =34
x (学生代表板演)
【当堂检测】解方程(3)5x -2=7x +8(4)-32x +1=52
+3x (小组内评比)
解题后反思归纳:
(1) 什么时候需要“移项”? “移项”起了什么作用?
(2) “移项”的依据是什么?“移项”应注意什么?
(五)课堂小结
今天你又学会了解方程的哪些方法?有哪些步骤?每一步的依据是什么?
(六)布置作业:课本91页习题3.2第2, 3 ,11题。