二次根式的乘法积的算术平方根
人教版八年级数学下册_16.2二次根式的乘除
特别提醒 进行二次根式的除法运算时,若两个被开方数可以
整除,就直接运用二次根式的除法法则进行计算;若两 个被开方数不能整除,可以对二次根式化简或变形后再 相除.
感悟新知
例 3 如果
a a-8
a a-8
成立,那么( D )
A.a ≥ 8
B.0 ≤ a ≤ 8
C.a ≥ 0
知3-练
D.a>8
解题秘方:紧扣“二次根式除法法则”成立的条
(式)移到根号外时,要注意应写在分母的位置上;
(3)“三化”,即化去被开方数中的分母.
感悟新知
知5-讲
特别提醒 判断一个二次根式是否是最简二次根式,要紧扣两个条件: 1. 被开方数不含分母; 2. 被开方数中每个因数(式)的指数都小于根指数2,即每个因
数(式)的指数都是1. 注意:分母中含有根式的式子不是最简二次根式.
感悟新知
知5-练
例8 下列各式中,哪些是最简二次根式?哪些不是最简二
次根式?不是最简二次根式的,请说明理由.
(1)
1 ;(2)
x2+y2 ;(3)
0.2;
3
(4)
24 x;(5)
2 .
3
解题秘方:紧扣“最简二次根式的定义”进行判断.
感悟新知
知5-练
解:(1)不是最简二次根式,因为被开方数中含有分母; (3) 不是最简二次根式,因为被开方数是小数(即含有分母); (4)不是最简二次根式,因为被开方数24x 中含有能开得尽 方的因数4,4=22; (2)(5)是最简二次根式.
感悟新知
知3-讲
(2)当二次根式根号外有因数(式)时,可类比单项式除以单 项式的法则进行运算,将根号外的因数(式)之商作为商 的根号外因数(式) ,被开方数(式)之商作为商的被开方 数(式) ,即a b÷c d = (a÷c ) b d ( b ≥ 0,d > 0,c ≠ 0 ).
(完整版)八年级下册数学--二次根式知识点整理
二次根式1、算术平方根的定义:一般地,如果一个正数x的平方等于a,那么这个正数x叫做a的算术平方根。
2、解不等式(组):尤其注意当不等式两边乘(除以)同一个负数,不等号方向改变。
如:-2x>4,不等式两边同除以-2得x<-2。
不等式组的解集是两个不等式解集的公共部分。
如{3、分式有意义的条件:分母≠04、绝对值:|a|=a (a≥0);|a|= - a (a<0)一、二次根式的概念一般地,我们把形如 a (a≥0)的式子叫做二次根式,“”称为二次根号。
★正确理解二次根式的概念,要把握以下五点:(1)二次根式的概念是从形式上界定的,必须含有二次根号“”,“”的根指数为2,即“2”,我们一般省略根指数2,写作“”。
如25 可以写作 5 。
(2)二次根式中的被开方数既可以是一个数,也可以是一个含有字母的式子。
(3)式子 a 表示非负数a的算术平方根,因此a≥0, a ≥0。
其中a≥0是 a 有意义的前提条件。
(4)在具体问题中,如果已知二次根式 a ,就意味着给出了a≥0这一隐含条件。
(5)形如b a (a≥0)的式子也是二次根式,b与 a 是相乘的关系。
要注意当b是分数时不能写成带分数,例如832 可写成8 23,但不能写成 2232 。
练习:一、判断下列各式,哪些是二次根式?(1) 6 ;(2)-18 ;(3)x2+1 ;(4)3-8 ;(5)x2+2x+1 ;(6)3|x|;(7)1+2x (x<-12)X≥-2X<5的解集为-2≤x<5。
二、当x 取什么实数时,下列各式有意义?(1)2-5x ;(2)4x 2+4x+1二、二次根式的性质:二次根式的性质符号语言文字语言应用与拓展注意a (a ≥0)的性质a ≥0 (a ≥0)一个非负数的算术平方根是非负数。
(1)二次根式的非负性(a ≥0,a ≥0)应用较多,如:a+1 +b-3 =0,则a+1=0,b-3=0,即a= -1,b=3;又如x-a +a-x ,则x 的取值范围是x-a ≥0,a-x ≥0,解得x=a 。
二次根式 基础知识详解+基本典型例题解析
【基本典型例题】(2) 类型一、二次根式的乘除
1. 计算:(1)(2014 秋•闵行区校级期中) ×(﹣2 )÷
.
(2)(2014 春·高安市期中) a 8a 2 a 2 1 2a 2a a
【答案与解析】 解:(1) ×(﹣2 )÷
举一反三: 【变式】下列式子中二次根式的个数有( ).
(1)
1 ;(2) 3
3 ;(3)
x2 1 ;(4)3 8 ;(5)
( 1)2 ;(6) 1 x( x 1 ) 3
A.2 B.3 C.4 D.5 【答案】B.
2. (2016•贵港)式子
在实数范围内有意义,则 x 的取值范围是( )
= ×(﹣2 )×
=﹣
=﹣
=﹣ .
(2)原式= a 8a2 a2 1 2a 2a a
2 2a2 a2 2 2a 2a 2a a
2
2a2
2a a2
2a a
4 2.
【总结升华】根据二次根式的乘除法则灵活运算,注意最终结果要化简.
举一反三:
【变式】 2
a2 b2 6x2
即原式= a b c a c b b c a = a b c
【总结升华】重点考查二次根式的性质:
的同时,复习了
三角形三边的性质.
二、二次根式的乘除基础知识讲解+基本典型例题解析
【学习目标】 1、 掌握二次根式的乘除法法则和化简二次根式的常用方法,熟练进行二次根式的 乘除运算. 2、 了解最简二次根式的概念,能运用二次根式的有关性质进行化简.
.
二次根式的运算法则
二次根式的运算法则
二次根式的加法和减法
整式的加减归结为合并同类项。
二次根式的加减同整式的加减类似,归结为合并同类二次根式。
要点解析:
1。
二次根式的加减实际上就是合并同类二次根式,因此在进行
二次根式加减时,化简二次根式和合并同类二次根式是关键。
不是同类二次根式不能合并,如就是最简结果,不能再合并。
2。
有理数的交换律、结合律都适用于二次根式运算。
二次根式的乘法法则
两个二次根式相乘,被开方数相乘,根指数不变。
要点解析:
1。
法则用数学式子表示,即:。
它是将积的算术平方根性质逆用得到的。
2。
根据这一法则可以对二次根式进行恒等变形,或将根号内的
因式变形后移到根号外,或将根号外面的非负因式平方后移到根号内。
3。
乘法交换律、结合律、分配律在二次根式中仍然适用,适当
地应用运算律有时会简化计算;
4。
法则可推广,如:
二次根式的除法法则
两个二次根式相除,被开方数相除,根指数不变。
要点解析:
1。
法则用数学式子表示,即:。
它是将商的算术平方根性质逆用得到的。
2。
二次根式的混合运算顺序与实数运算顺序一样,先乘方,后乘除,最后加减,有括号先算括号内的。
3。
二次根式运算的结果必须化为最简根式。
二次根式的运算
二次根式的运算编稿:庄永春审稿:邵剑英责编:张杨一、目标认知1.学习目标(1)理解二次根式的乘法法则和积的算术平方根的性质及二次根式的除法法则和商的算术平方根的性质,并能利用它们进行计算和化简;(2)了解最简二次根式的概念,能运用二次根式的有关性质进行化简;(3)理解同类二次根式的概念和二次根式的加减法法则,会合并同类二次根式,进行简单的二次根式加减运算;(4)会利用运算律和运算法则进行二次根式的混合运算.2.重点(1)理解,及利用它们进行计算和化简;(2)理解,及利用它们进行计算和化简;(3)最简二次根式的运用;(4)合并同类二次根式;(5)二次根式的混合运算.3.难点(1)发现规律,归纳出二次根式的乘除法则;(2)会判定一个二次根式是否是最简二次根式,及二次根式的化简.二、知识要点梳理知识点一:二次根式的乘法法则:,即两个二次根式相乘,根指数不变,只把被开方数相乘.要点诠释:(1)在运用二次根式的乘法法则进行运算时,一定要注意:公式中a、b都必须是非负数;(在本章中,如果没有特别说明,所有字母都表示非负数)(2)该法则可以推广到多个二次根式相乘的运算:(3)若二次根式相乘的结果能写成的形式,则应化简,如.知识点二、积的算术平方根的性质,即积的算术平方根等于积中各因式的算术平方根的积.要点诠释:(1)在这个性质中,a、b可以是数,也可以是代数式,无论是数,还是代数式,都必须满足才能用此式进行计算或化简,如果不满足这个条件,等式右边就没有意义,等式也就不能成立了;(2)二次根式的化简关键是将被开方数分解因数,把含有形式的a移到根号外面.知识点三、二次根式的除法法则:,即两个二次根式相除,根指数不变,把被开方数相除.要点诠释:(1)在进行二次根式的除法运算时,对于公式中被开方数a、b的取值范围应特别注意,其中,因为b在分母上,故b不能为0.(2)运用二次根式的除法法则,可将分母中的根号去掉,二次根式的运算结果要尽量化简,最后结果中分母不能带根号.知识点四、商的算术平方根的性质,即商的算术平方根等于被除式的算术平方根除以除式的算术平方根.要点诠释:运用次性质也可以进行二次根式的化简,运用时仍要注意符号问题.知识点五:最简二次根式1.定义:当二次根式满足以下两条:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式.我们把符合这两个条件的二次根式,叫做最简二次根式.在二次根式的运算中,最后的结果必须化为最简二次根式或有理式.要点诠释:(1)最简二次根式中被开方数不含分母;(2)最简二次根式被开方数中每一个因数或因式的次数都小于根指数2,即每个因数或因式从次数只能为1次.2.把二次根式化成最简二次根式的一般步骤:(1)把根号下的代分数或绝对值大于1的数化成假分数,把绝对值小于1的小数化成分数;(2)被开方数是多项式的要进行因式分解;(3)使被开方数不含分母;(4)将被开方数中能开得尽方的因数或因式,用它们的算术平方根代替后移到根号外;(5)化去分母中的根号;(6)约分.知识点六、同类二次根式1.定义:几个二次根式化成最简二次根式后,如果被开方数相同,那么这几个二次根式就叫做同类二次根式.要点诠释:(1)判断几个二次根式是否是同类二次根式,必须先将二次根式化成最简二次根式,再看被开方数是否相同;(2)几个二次根式是否是同类二次根式,只与被开方数及根指数有关,而与根号外的因式无关.2.合并同类二次根式合并同类二次根式,只把系数相加减,根指数和被开方数不变.(合并同类二次根式的方法与整式加减运算中的合并同类项类似)要点诠释:(1)根号外面的因式就是这个根式的系数;(2)二次根式的系数是带分数的要变成假分数的形式;(3)不是同类二次根式,不能合并.知识点七、二次根式的加减二次根式的加减实质就是合并同类二次根式,即先把各个二次根式化成最简二次根式,再把其中的同类二次根式进行合并.对于没有合并的二次根式,仍要写到结果中.在进行二次根式的加减运算时,整式加减运算中的交换律、结合律及去括号、添括号法则仍然适用.二次根式加减运算的步骤:(1)将每个二次根式都化简成为最简二次根式;(2)判断哪些二次根式是同类二次根式,把同类的二次根式结合为一组;(3)合并同类二次根式.知识点八、二次根式的混合运算二次根式的混合运算是对二次根式的乘除及加减运算法则的综合运用.要点诠释:(1)二次根式的混合运算顺序与实数中的运算顺序一样,先乘方,后乘除,最后算加减,有括号要先算括号里面的;(2)在实数运算和整式运算中的运算律和乘法公式在二次根式的运算中仍然适用;(3)二次根式混合运算的结果应写成最简形式,这个形式应是最简二次根式,或几个非同类最简二次根式之和或差,或是有理式.三、规律方法指导二次根式的运算,主要研究二次根式的乘除和加减.(1)二次根式的乘除,只需将被开方数进行乘除,其依据是:;;(2)二次根式的加减类似于整式的加减,关键是合并同类二次根式.通常应先将二次根式化简,再把同类二次根式合并.二次根式运算的结果应尽可能化简.经典例题透析类型一、二次根式的乘除运算1、计算(1)×;(2)×;(3)×;(4)×.思路点拨:直接利用计算即可.解:(1)×=;(2)×==;(3)×==9;(4)×==.2、计算:(1);(2);(3);(4).思路点拨:直接利用便可直接得出答案.解:(1)===2;(2)==×2=2;(3)===2;(4)===2.3、化简(1);(2);(3);(4);(5).思路点拨:利用直接化简即可.解:(1)=×=3×4=12;(2)=×=4×9=36;(3)=×=9×10=90;(4)=×=××=3xy;(5)==×=3.举一反三【变式1】判断下列各式是否正确,不正确的请予以改正:(1);(2)×=4××=4×=4=8.解:(1)不正确.改正:==×=2×3=6;(2)不正确.改正:×=×====4.4、化简:(1);(2);(3);(4).思路点拨:直接利用就可以达到化简之目的.解:(1)=;(2)=;(3)=;(4)=.举一反三【变式1】已知,且x为偶数,求(1+x)的值.思路点拨:式子=,只有a≥0,b>0时才能成立.因此得到9-x≥0且x-6>0,即6<x≤9,又因为x为偶数,所以x=8.解:由题意得,即∴6<x≤9,∵x为偶数,∴x=8∴原式=(1+x)=(1+x)=(1+x)=∴当x=8时,原式的值==6.5、计算(1)·(-)÷(m>0,n>0);(2)-3÷()×(a>0).解:(1)原式=-÷=-==-;(2)原式=-2=-2=- a.类型二、最简二次根式的判别6、下列各式中,哪些是最简二次根式?哪些不是?请说明理由.(1);(2);(3);(4);(5);(6);(7).思路点拨:判断一个二次根式是不是最简二次根式,就看它是否满足最简二次根式的两个条件:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式;不满足其中任何一条的二次根式都不是最简二次根式.解:和都是最简二次根式,其余的都不是,理由如下:的被开方数是小数,能写成分数,含有分母;和的被开方数中都含有分母;和的被开方数中分别含有能开得尽方的因数和因式.总结升华:对于最简二次根式的判断,一定要把握其实质,既要注意其中的“似是而非”,还要注意其中的“似非而是”,特别象这样的式子,带有很大的隐蔽性,更应格外小心.7、把下列各式化成最简二次根式.(1);(2);(3);(4);(5)思路点拨:把被开方数分解因数或分解因式,再利用积的算术平方根的性质及进行化简.解:(1) ;(2) ;(3) ;(4) ;(5) .类型三、同类二次根式8、如果两个最简二次根式和是同类二次根式,那么a、b的值是( )A.a=2,b=1B.a=1,b=2C.a=1,b=-1D.a=1,b=1思路点拨:根据同类二次根式的识别方法,在最简二次根式的前提下,被开方数相同.解:根据题意,得解之,得,故选D.总结升华:同类二次根式必须满足两个条件:(1)根指数是2;(2)被开方数相同;由此可以得到关于a、b的二元一次方程组,此类问题都可如此.举一反三【变式1】下列根式中,能够与合并的是( )A. B. C. D.思路点拨:首先要把不是最简二次根式的化成最简二次根式,然后比较它们的被开方数是否相同,如果相同,就能进行合并,反之,则不能合并.解:合并,故选B.总结升华:同类二次根式的判断,关键是能够熟练准确地化二次根式为最简二次根式.【变式2】若最简根式与根式是同类二次根式,求a、b 的值.思路点拨:同类二次根式是指几个二次根式化成最简二次根式后,被开方数相同;•事实上,根式不是最简二次根式,因此把化简成|b|·,才由同类二次根式的定义得3a-b=•2,2a-b+6=4a+3b.解:首先把根式化为最简二次根式:==|b|·由题意得,∴,∴a=1,b=1.类型四、二次根式的加减运算9、计算(1)+(2)-思路点拨:第一步,将不是最简二次根式的项化为最简二次根式;第二步,将相同的最简二次根式进行合并.解:(1)+=2+3=(2+3)=5(2)-=4-8=(4-8)=-4总结升华:一定要注意二次根式的加减要做到先化简,再合并.举一反三【变式1】计算(1)3-9+3;(2)(+)+(-);(3);(4).解:(1)3-9+3=12-3+6=(12-3+6)=15;(2)(+)+(-)=++-=4+2+2-=6+;(3)(4)【变式2】已知≈2.236,求(-)-(+)的值.(结果精确到0.01) 解:原式=4---=≈×2.236≈0.45.类型五、二次根式的混合运算10、计算:(1)(+)×;(2)(4-3)÷2.思路点拨:二次根式仍然满足整式的运算规律,•所以直接可用整式的运算规律.解:(1)(+)×=×+×=+=3+2;(2)(4-3)÷2=4÷2-3÷2=2-.11、计算(1)(+6)(3-);(2)(+)(-).思路点拨:二次根式的多项式乘以多项式运算在乘法公式运算中仍然成立.解:(1)(+6)(3-)=3-()2+18-6=13-3;(2)(+)(-)=()2-()2=10-7=3.类型六、化简求值12、已知4x2+y2-4x-6y+10=0,求(+y2)-(x2-5x)的值.思路点拨:本题首先将已知等式进行变形,把它配成完全平方式,得(2x-1)2+(y-3)2=0,即x=,y=3.其次,根据二次根式的加减运算,先把各项化成最简二次根式,•再合并同类二次根式,最后代入求值.解:4x2+y2-4x-6y+10=04x2-4x+1+y2-6y+9=0∴(2x-1)2+(y-3)2=0∴x=,y=3原式=+y2-x2+5x=2x+-x+5=x+6当x=,y=3时,原式=×+6=+3.举一反三【变式1】先化简,再求值.(6x+)-(4y+),其中x=,y=27.解:原式=6+3-(4+6)=(6+3-4-6)=-,当x=,y=27时,原式=-=-.【变式2】已知=2-,其中a、b是实数,且a+b≠0,化简+,并求值.思路点拨:由于(+)(-)=1,因此对代数式的化简,可先将分母有理化,再通过解含有字母系数的一元一次方程得到x的值,代入化简得结果即可.解:原式=+=+=(x+1)+x-2+(x+1)+x+2=4x+2∵=2-∴b(x-b)=2ab-a(x-a)∴bx-b2=2ab-ax+a2∴(a+b)x=a2+2ab+b2∴(a+b)x=(a+b)2∵a+b≠0∴x=a+b∴原式=4x+2=4(a+b)+2.类型七、二次根式的应用与探究13、一个底面为30cm×30cm长方体玻璃容器中装满水,•现将一部分水倒入一个底面为正方形、高为10cm铁桶中,当铁桶装满水时,容器中的水面下降了20cm,铁桶的底面边长是多少厘米?解:设底面正方形铁桶的底面边长为x,则x2×10=30×30×20,x2=30×30×2,x=×=30.答:铁桶的底面边长是30厘米.14、如图所示的Rt△ABC中,∠B=90°,点P从点B开始沿BA边以1厘米/•秒的速度向点A移动;同时,点Q也从点B开始沿BC边以2厘米/秒的速度向点C移动.问:几秒后△PBQ的面积为35平方厘米?PQ的距离是多少厘米?(结果用最简二次根式表示)思路点拨:设x秒后△PBQ的面积为35平方厘米,那么PB=x,BQ=2x,•根据三角形面积公式就可以求出x的值.解:设x 后△PBQ的面积为35平方厘米.则有PB=x,BQ=2x依题意,得:x·2x=35,x2=35,x=所以秒后△PBQ的面积为35平方厘米.PQ==5答:秒后△PBQ的面积为35平方厘米,PQ的距离为5厘米.15、探究过程:观察下列各式及其验证过程.(1)2=验证:2=×====(2)3=验证:3=×====同理可得:45,……通过上述探究你能猜测出:a=_______(a>0),并验证你的结论.解:a=验证:a====.总结升华:解答此类问题的特点是根据题目给出的条件,寻找内在联系和一般规律,然后猜想所求问题的结果,有利于提高综合分析能力.学习成果测评基础达标一、选择题1.下列根式是最简二次根式的是()A. B. C.D.2. 下列各式不是最简二次根式的是()A. B. C. D.3.下列根式中,与是同类二次根式的为()A. B.C.D.4.(江苏省无锡市)下列各式中,与是同类根式的是()A. B. C.D.5.若最简二次根式与是同类二次根式,则a=()A.1 B.2 C.D.–26. 下面说法正确的是()A. 被开方数相同的二次根式一定是同类二次根式B. 与是同类二次根式C. 与不是同类二次根式D. 同类二次根式是根指数为2的根式7. 与不是同类二次根式的是()A. B. C. D.8. 若,则化简的结果是()A. B. C. 3 D. -39. 若,则的值等于()A. 4B.C. 2D.10.(辽宁省大连市) 计算的结果是()A.B.2 C.D.1.411.(四川省攀枝花市) 下列计算中,正确的是()A. B.C. D.12.(山东省东营市)下列计算正确的是( )A.B.==1 C. D.13. 下列式子中正确的是()A. B.C. D.二、填空题1.若最简根式与根式是同类二次根式,则a = ____________.2. 计算:.3. 计算:.4.(广东省) 化简= ____________.5.(安徽省) 计算的结果是___________.6.(南昌) 计算:___________.7.(重庆市) 化简: = ___________.8.计算:___________.9.计算:=___________.10.计算:=___________.11.一个三角形的三边长分别为,则它的周长是_________cm.12.已知,则.三、解答题1. 计算:2. 计算:⑴⑵⑶⑷3.计算:(1);(2).能力提升一、选择题1. 已知,化简二次根式的正确结果为()A. B. C. D.2. 对于所有实数,下列等式总能成立的是()A. B.C. D.3. 和的大小关系是()A. B. C. D. 不能确定4.(山东省济南市)已知,则代数式的值为()A.B. C.D.5.(山东省临沂市) 计算的值为( )A.2 B.-2 C.-2-2D.-2+26.化简甲,乙两同学的解法如下:甲:=乙:=对他们的解法,正确的判断是()A.甲、乙的解法都正确B.甲的解法正确,乙的解法不正确C.乙的解法正确,甲的解法不正确D.甲、乙的解法都不正确7. 若的整数部分为,小数部分为,则的值是()A. B. C. 1 D. 3二、填空题1. 当,时,.2.若,则___________.3.若最简二次根式与是同类二次根式,则.4. 已知,则.5. 长方形的宽为,面积为,则长方形的长约为_______(精确到0.01).6.(天津市)已知x=,则的值等于____________.7.计算:___________.三、解答题1. 把根号外的因式移到根号内:;.2.计算:3.(辽宁省锦州市)计算:.4.(广西省贺州市) 计算:.5.(江苏省南通市) 计算:.6. 计算及化简:⑴;⑵;⑶;⑷.7. 已知:,求的值.综合探究先观察下列等式,再回答问题:①=②=③=(1) 根据上面三个等式提供的信息,请猜想的结果,并进行验证;(2) 请按照上面几个等式反映的规律,试写出用(为正整数)表示的等式.答案与解析基础达标一、选择题1.B2.D3.C4.C5.A6.A7.A8.C9.C 10.C 11.B 12.A 13.C二、填空题1.2;2.,18;3.-5;4.;5.-1;6.;7.;8.;9.-1;10.;11.;12..三、解答题1. ;2. ;3.解:(1)原式(2)原式能力提升一、选择题1.D2.C3.A4.A5.B6.A7.C二、填空题1.;2.3.1,1;4.10;5.2.83;6.4;7..解:原式三、解答题1.2.解:3.解:4.解:5.解:6. ;7.解:综合探究解:(1)结果为.,验证:;(2).。
《二次根式的乘法 22积的算术平方根》PPT课件
能力提升练 8.计算 9a2· ba(a>0,b≥0)的结果是__3___a_b__.
能力提升练
9.计算:
(1)
15×
解:原式= 45;
15×45= 9=3.
(2)6 8×(-3 2); 解:原式=-18 16=-18×4=-72.
(3) 5×(-2 10)× 212.
解:原式=-2 5×10×52=-2 125=-2×5 5=-10 5.
能力提升练
10.已知矩形花坛与圆形花坛面积相等,矩形花坛的长为 140π m,宽为 35π m.求圆形花坛的半径.
解:设圆形花坛的半径为 r m. 由题意得 πr2= 140π× 35π,解得 r= 70(r=- 70不合题意, 舍去). 所以圆形花坛的半径是 70 m.
素养核心练
11.已知 2=a, 20=b,用含 a、b 的式子表示 0.016. 解:∵ab=2 10, 0.016=0.04 10, ∴ 0a.0b16=0.2041010=50, ∴ 0.016=a5b0=0.02ab.
1. 说得太好了,老师佩服你,为你感到骄傲! 2. 你的设计(方案、观点)富有想象力,极具创造性。 3. 我非常欣赏你的想法,请说具体点,好吗? 4. 某某同学的解题方法非常新颖,连老师都没想到,真厉害! 5. 让我们一起为某某喝彩!同学们在学习过程中,也要敢于猜想,善于猜想,这样才能有所发现,有所创造! 三、表扬类
温馨提示: 此PPT
可修改编辑
1. 你真让人感动,老师喜欢你的敢想、敢说、敢问和敢辩,希望你继续保持下去。 2. 这么难的题你能回答得很完整,真是了不起!你是我们班的小爱因斯坦。 3. 你预习的可真全面,自主学习的能力很强,课下把你的学习方法介绍给同学们,好不好? 4. 哎呀. 通过你的发言,老师觉得你不仅认真听,而且积极动脑思考了,加油哇! 四、提醒类
初中数学知识点二次根式:二次根式的运算
初中数学知识点——二次根式:二次根式的运算二次根式的运算1.积的算术平方根的性质:(a≥0,b≥0)积的算术平方根等于每个因式的算术平方根的积2.乘法法则:(a≥0,b≥0)二次根式的乘法运算法则:两个二次根式相乘,等于把被开方数相乘,根指数不变。
3、商的算数平方根的性质=(a≥0,b0)4、除法法则(a≥0,b0)二次根式的除法运算法则:两个二次根式相除,等于把被开方数相除,根指数不变。
5、有理化因式:如果两个含有根式的代数式的积不再含有根式,那么这两个代数式叫做互为有理化因式。
如:的有理化因式为;的有理化因式也是的有理化因式为;6、同类二次根式:一般地,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式。
7、合并同类二次根式:把几个同类二次根式合并为一个二次根式就叫做合并同类二次根式。
语文课本中的文章都是精选的比较优秀的文章,还有不少名家名篇。
如果有选择循序渐进地让学生背诵一些优秀篇目、精彩段落,对提高学生的水平会大有裨益。
现在,不少语文教师在分析课文时,把文章解体的支离破碎,总在文章的技巧方面下功夫。
结果教师费劲,学生头疼。
分析完之后,学生收效甚微,没过几天便忘的一干二净。
造成这种事倍功半的尴尬局面的关键就是对文章读的不熟。
常言道“书读百遍,其义自见”,如果有目的、有计划地引导学生反复阅读课文,或细读、默读、跳读,或听读、范读、轮读、分角色朗读,学生便可以在读中自然领悟文章的思想内容和写作技巧,可以在读中自然加强语感,增强语言的感受力。
久而久之,这种思想内容、写作技巧和语感就会自然渗透到学生的语言意识之中,就会在写作中自觉不自觉地加以运用、创造和发展。
8、合并同类二次根式方法:二次根式的系数相加减,二次根式的被开放数及指数不变。
观察内容的选择,我本着先静后动,由近及远的原则,有目的、有计划的先安排与幼儿生活接近的,能理解的观察内容。
随机观察也是不可少的,是相当有趣的,如蜻蜓、蚯蚓、毛毛虫等,孩子一边观察,一边提问,兴趣很浓。
§21.2.2-二次根式的除法
1. 二次根式的除法有两种常用方法:
(1)利用公式:
a a (a 0,b 0) bb
(2)把除法先写成分式的形式,再进行分母有理化运算。
a= a
b
b
a 0,b 0
2.最简二次根式、分母有理化及有理化因式的概念;
注意: 在进行分母有理化之前,可以先观察把能化 简的二次根式先化简,再考虑分母有理化。
那么2 a - 3 b和2 a + 3 b互为有理化因式。
一般地,a x与 x互为有理化因式; a x + b y与a x - b y互为有理化因式。
练一练:
1、化简下列各式(分母有理化):
(1)-8 3 8
(2)3 2 27
(3) 5a 10a
(4)2y 2 4xy
说明;1、在进行分母有理化之前,可以先观察把 能化简的 二次根式先化简,再考虑如何化去分母 中的根号。
作业本: 第12页习题21.2 第2、 3、6题
练习本: 第11页练习 第1、2、3题 选作:第12页习题21.2 第7、8、9题
3、如图,在Rt△ABC中,∠C=900,∠A=300,
AC=2cm,求斜边AB的长
B
解:设BC x,因为在RtΔABC中,
C 900,A 300,所以,AB 2x A
解:原式 64 64 8 11 49 49 7 7
辨析训练
判断下列各等式是否成立。
× √ (1) 16 9 4 3( )(2) 3 3 ( ) 22
× × (3) 41 2 1 ( 22
)(4) 2
52 99
5(
)
(5) 4 4 4 4( √ )(6)5 5 5 5 ( √)
二次根式经典总结
1.二次根式:一般地,式子)0a (,a ≥叫做二次根式.注意:(1)若0a ≥这个条件不成立,则 不是二次根式;(2)是一个重要的非负数,即;≥0.2.重要公式:(1))0a (a )a (2≥=,(2)⎩⎨⎧<-≥==)0a (a )0a (a a a 2 ;注意使用)0a ()a (a 2≥=。
3.积的算术平方根:)0b ,0a (b a ab ≥≥⋅=,积的算术平方根等于积中各因式的算术平方根的积;注意:本章中的公式,对字母的取值范围一般都有要求。
4.二次根式的乘法法则:)0b ,0a (ab b a ≥≥=⋅.5.二次根式比较大小的方法:(1)利用近似值比大小;(2)把二次根式的系数移入二次根号内,然后比大小;(3)分别平方,然后比大小.6.商的算术平方根:)0b ,0a (ba b a >≥=,商的算术平方根等于被除式的算术平方根除以除式的算术平方根.7.二次根式的除法法则:(1))0b ,0a (b a b a>≥=; (2))0b ,0a (b a b a >≥÷=÷;(3)分母有理化:化去分母中的根号叫做分母有理化;具体方法是:分式的分子与分母同乘分母的有理化因式,使分母变为整式。
8.常用分母有理化因式:a a 与,b a b a +-与, b n a m b n a m -+与,它们也叫互为有理化因式。
9.最简二次根式:(1)满足下列两个条件的二次根式,叫做最简二次根式,① 被开方数的因数是整数,因式是整式,② 被开方数中不含能开的尽的因数或因式;(2)最简二次根式中,被开方数不能含有小数、分数,字母因式次数低于2,且不含分母;(3)化简二次根式时,往往需要把被开方数先分解因数或分解因式;(4)二次根式计算的最后结果必须化为最简二次根式。
10.二次根式化简题的几种类型:(1)明显条件题;(2)隐含条件题;(3)讨论条件题.11.同类二次根式:几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式叫做同类二次根式.12.二次根式的混合运算:(1)二次根式的混合运算包括加、减、乘、除、乘方、开方六种代数运算,以前学过的,在有理数范围内的一切公式和运算律在二次根式的混合运算中都适用;(2)二次根式的运算一般要先把二次根式进行适当化简,例如:化为同类二次根式才能合并;除法运算有时转化为分母有理化或约分更为简便;使用乘法公式等.形如)0a (,a ≥的式子,叫做二次根式(1)二次根式中,被开方数必须是非负数。
华东师范版数学九年级上册目录
华东师范版九年级数学上册目录第22章二次根式
22.1二次根式
22.2二次根式的乘除法
1. 二次根式的乘法
2. 积的算术平方根
3. 二次根式的除法
22.3二次根式的加减法
第23章一元二次方程
23.1一元二次方程
23.2一元二次方程组的解法
23.3 实践与探索
第24章图形的相似
24.1相似的图形
24.2相似图形的性质
1. 成比例线段
2. 相似图形的性质
24.3相似三角形
1. 相似三角形
2. 相似三角形的判定
3. 相似三角形的性质
4. 相似三角形的应用
24.4中位线
24.5画相似图形
24.6图形与坐标
1. 用坐标确定位置
2. 图形的变换与坐标
第25章解直角三角形
25.1测量
25.2 锐角三角函数
1. 锐角三角函数
2. 用计算器求锐角三角函数值
25.3解直角三角形
第26章随机事件的概率
26.1概率的预测
1. 什么是概率
2. 在复杂情况下列举所有机会均等的结果
26.2 模拟实验
1.用替代物做模拟实验
2. 用计算器做模拟实验。
人教版八年级数学下册第十六章 导学案 第1课时 二次根式的乘法
第十六章 二次根式16.2 二次根式的乘除第1课时 二次根式的乘法学习目标:1.理解二次根式的乘法法则;2.会运用二次根式的乘法法则和积的算术平方根的性质进行简单运算.重点:理解二次根式的乘法法则:()0,0≥≥=⋅b a ab b a .难点:会运用二次根式的乘法法则和积的算术平方根的性质解题.一、知识回顾1.二次根式的概念是什么?我们上节课学了它的哪些性质?2.使式子2有意义的条件是_________.一、要点探究探究点1:二次根式的乘法算一算 计算下列各式,并观察三组式子的结果:_____;94____;_______94)1(=⨯=⨯=⨯ _____;2516____;_______2516)2(=⨯=⨯=⨯ ._____3625____;_______3625)3(=⨯=⨯=⨯思考 你发现了什么规律?你能用字母表示你所发现的规律吗?猜测)0,0______(≥≥=⋅b a b a ,你能证明这个猜测吗?要点归纳:二次根式的乘法法则:一般地,对于二次根式的乘法是)0,0(≥≥⋅=⋅b a b a b a一般地,二次根式相乘,_________不变,________相乘.语言表述:算术平方根的积等于各个被开方数积的算术平方根.例1计算:(1)(2)(3)0,k a b k a b ⋅⋅=⋅⋅⋅⋅≥≥(例2 计算: 37; 1(2)427-3.2⎛⎫⨯ ⎪⎝⎭n b =归纳总结:二次根式的乘法法则的推广:①多个二次根式相乘时此法则也适用,即000)k a b k a b k ⋅⋅=⋅⋅⋅⋅≥≥≥,,(②当二次根号外有因数(式)时,可以类比单项式乘单项式的法则计算,即根号外的因数(式)的积作为根号外的因数(式),被开方数(式)的积作为被开方数(式),即()00a n b mn a b =≥≥,例3 比较大小(一题多解):(2)--方法总结: 比较两个二次根式大小的方法:可转化为比较两个被开方数的大小,即将根号外的正数平方后移到根号内,计算出被开方数后,再比较被开方数的大小被开方数大的,其算术平方根也大.也可以采用平方法.1. ()A B .4C D .22.下面计算结果正确的是 ()A.=B. =C. =D.=3.=_________.探究点2:积的算术平方根的性质一般的()0,0≥≥=⋅b a ab b a ______0,0_a b 要点归纳:算术平方根的积等于各个被开方数积的算术平方根.例4 化简:(1(2()00a b ,≥≥ .1()()200x y ,()≥≥方法总结: 当二次根式内的因数或因式可以化成含平方差或完全平方的积的形式,此时运用乘法公式可以简化运算.例5 计算:1(⨯2()⨯ 3(⨯化简二次根式的步骤:1. 把被开方数分解因式(或因数) ;2. 把各因式(或因数)积的算术平方根化为每个因式(或因数)的算术平方根的积;3. 如果因式中有平方式(或平方数),应用关系式a2= | a | 把这个因式(或因数)开出来,将二次根式化简.1. 计算:2.,求出它的面积.a b a b0,0多个二次根式相乘时此法则也适用,即(0,⋅⋅⋅=⋅⋅⋅≥a b c n abc n a()=m a n b mn2.下列运算正确的是()A.=B532-=C(2)(4)8=-⨯-=D5315==⨯= 3.计算:(1)⨯______ ;(2)⨯_______ ;(3)_____.=4. 比较下列两组数的大小(在横线上填“>”“<”或“=”):12()--8,12b,求250a,332b,求参考答案自主学习一、知识链接1.一般地,我们把形如)0a ≥的式子叫作二次根式.2. a ≥0 课堂探究一、要点探究证明:根据积的乘方法则,有222.ab =⋅= ∴b a ⋅就是 ab 的算术平方根.又∵ab 表示 ab 的算术平方根, )0,0(≥≥=⋅∴b a ab b a要点归纳:二次根式的乘法法则:一般地,二次根式相乘,根指数不变,被开方数相乘.例1: 解:(1)(2) 3.===探究点2:积的算术平方根的性质当堂检测。
二次根式的乘法与积的算术平方根课件华师大版数学九年级上册
第21章 二次根式
21.2.1&21.2.2 二次根式的乘法 与积的算术平方根
新课导入
1.当 x 是怎样的实数时,下列各式在实数范围内有意义?
(1) 1 ; x 1
(2) x 3 . x 1
(3) 1 x 1 . x3
∴ x>1.
∴ x>-3 且 x ≠1.
∴ x ≤ 1.
(4) x 2 3 x. ∴ 2 ≤ x ≤ 3.
(2) 1 27 1 27 9 3.
3
3
(3) 2 3 7 ( 2 3) 7 6 7 42.
二次根式乘法法则 a b = ab (a≥0,b≥0)
ab= a b (a≥0,b≥0)
归纳知识 1.二次根式乘法法则
a b = ab (a≥0,b≥0)
2.积的算术平方根的性质 ab= a b (a≥0,b≥0)
解:(1) 14 7= 14 7= 72 2=7 2.
(3) 3x
1 xy.
3
(2)3 5 2 10=6 5 10=30 2.
(3) 3x 1 xy = 3x 1 xy =x y.
3
3
课堂小结
二 法则
算
次
术
根
平 方
式
根
乘
法 性质
a b ab (a≥0,b≥0) (计算) (化简)
猜想 a b=ab (a≥0,b≥0)
归纳知识 二次根式乘法法则
a b a b a≥0,b≥0.
两个算术平方根的积,等于它们被开方数的积的算术平方根.
1.计算:
(1)
3
5 ; (2) (11)3 27 ;5 ; (2) 3
1 3
27 ;
《16.2 二次根式的乘除(第1课时)》教学设计
《16.2 二次根式的乘除(第1课时)》教学设计《16.2 二次根式的乘除(第1课时)》教学设计一、内容和内容解析1.内容二次根式的乘法法则和积的算术平方根的性质,化简二次根式.2.内容解析二次根式是初中阶段“数与式”内容的最后一章,因此承担着整理“数与式”的内容、方法和基本思想的任务.本节研究二次根式的乘法运算.运算法则是运算的依据,因此教材通过“探究”栏目,引导学生利用二次根式的性质,从具体数字运算中发现规律,进而归纳得出二次根式的乘法法则.基于以上分析,确定本节课的教学重点:探究二次根式的乘法法则和积的算术平方根的性质.二、目标和目标解析1.教学目标(1)经历二次根式的乘法法则和积的算术平方根的性质的形成过程;会进行简单的二次根式的乘法运算;(2)会用公式化简二次根式.2.目标解析(1)学生能通过计算发现规律并对其进行一般化的推广,得出乘法法则的内容;我们要学习二次根式的乘除.本节课先学习二次根式的乘法.问题1 什么叫二次根式?二次根式有哪些性质?师生活动学生回答。
【设计意图】乘法运算和二次根式的化简需要用到二次根式的性质.问题2 教材第6页“探究”栏目,计算结果如何?有何规律?师生活动学生计算、思考并尝试归纳,引导学生用自己的语言描述乘法法则的内容.【设计意图】学生在自主探究的过程中发现规律,运用类比思想,由特殊到一般地,采用不完全归纳的方法得出二次根式的乘法法则.要求学生用数学语言和文字分别描述法则,以培养学生的符号意识.2.观察比较,理解法则问题3 简单的根式运算.师生活动学生动手操作,教师检验.问题4成立的条件是什么?等式反过来有什么价值?师生活动学生回答,给出正确答案后,教师给出积的算术平方根的性质.【设计意图】让学生运用法则进行简单的二次根式的乘法运算,以检验法则的掌握情况.乘法法则反过来就是积的算术平方根的性质,性质是为运算服务的,积的算术平方根的性质将积的算术平方根分解成几个因数或因式的算术平方根的积,利用整式的运算法则、乘法公式等可以简化二次根式,培养学生的运算能力.3.例题示范,学会应用例1 化简:(1); (2).师生活动提问:你是怎么理解例(1)的?如果学生回答不完善,再追问:这个问题中,就直接将结果算成可以吗?你认为本题怎样才达到了化简的效果?师生合作回答上述问题.对于根式运算的最后结果,一般被开方数中有开得尽方的因数或因式,应依据二次根式的性质将其移出根号外.再提问:你能仿照第(1)题的解答,能自己解决(2)吗?【设计意图】通过运算,培养学生的运算能力,明确二次根式化简的方向.积的算术平方根的性质可以进行二次根式的化简.例2 计算:(1); (2); (3)师生活动学生计算,教师检验.(1)在被开方数相乘的时候,就可以考虑因数或因式分解,由直接可得而不必先写成再分解;(2)二次根式的乘法运算类似于整式的乘法运算,交换律、结合律都是适用的.对于根号外有系数的根式在相乘时,可以将系数先相乘作为积的系数,再对根式进行运算;(3)例(3)的运算是选学内容.让学有余力的学生学到“根号下为字母的二次根式”的运算.本题先利用积的算术平方根的性质,得到,然后利用二次根式的乘法法则,变成,由于可以判断,因此直接将x移出根号外.【设计意图】引导学生及时总结,强调利用运算律进行运算,利用乘法公式简化运算.让学生认识到,二次根式是一类特殊的实数,因此满足实数的运算律,关于整式运算的公式和方法也适用.教材中虽然指明,如未特别说明,本章中所有的字母都表示正数,但仍应强调,看到根号就要注意被开方数的符号.可以根据二次根式的概念对字母的符号进行判断,在移出根号时正确处理符号问题.4.巩固概念,学以致用练习:教科书第7页练习第1题. 第10页习题16.2第1题.【设计意图】巩固性练习,同时检验乘法法则的掌握情况.5.归纳小结,反思提高师生共同回顾本节课所学内容,并请学生回答以下问题:(1)你能说明二次根式的乘法法则是如何得出的吗?(2)你能说明乘法法则逆用的意义吗?(3)化简二次根式的基本步骤是怎样?一般对最后结果有何要求?6.布置作业:教科书第7页第2、3题.习题16.2第1,6题.五、目标检测设计1.下列各式中,一定能成立的是( )A.B.C.D.【设计意图】考查二次根式的概念和性质,这是进行二次根式的乘法运算的基础.2.化简______________________________。
初二数学下册:二次根式知识点
初二数学下册:二次根式知识点1、二次根式定义形如式子叫做二次根式;二次根式必须满足:含有二次根号;被开方数a必须是非负数(含有,且有意义)。
①被开方数可以是数,也可以是单项式、多项式、分式等代数式;②判断时一定要注意不要化简,一定要有意义。
2、最简二次根式若二次根式满足:被开方数的因数是整数,因式是整式;被开方数中不含能开得尽方的因数或因式,这样的二次根式叫做最简二次根式。
①根号下无分母,分母中无根号;②被开方数中没有能开方的因数或因式。
知识点3二次根式的性质(1)非负性√a(a≥0)是一个非负数注意:此性质可作公式记住,后面根式运算中经常用到.(2)(√a)^2=a(a≥0)注意:此性质既可正用,也可反用,反用的意义在于,可以把任意一个非负数或(3)非负代数式写成注意:(1)字母不一定是正数.(2)能开得尽方的因式移到根号外时,必须用它的算术平方根代替.知识点4最简二次根式和同类二次根式(1)最简二次根式:☆最简二次根式的定义:①被开方数是整数,因式是整式②被开方数中不含能开得尽方的数或因式,分母中不含根号☆同类二次根式(可合并根式):几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式就叫做同类二次根式,即可以合并的两个根式知识点5二次根式计算——分母有理化(1)分母有理化定义:把分母中的根号化去,叫做分母有理化。
(2)有理化因式:两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,就说这两个代数式互为有理化因式。
有理化因式确定方法如下:①单项二次根式:利用来确定,如下,分别互为有理化因式。
②两项二次根式:利用平方差公式来确定。
如下列式子,互为有理化因式(3)分母有理化的方法与步骤:①先将分子、分母化成最简二次根式;②将分子、分母都乘以分母的有理化因式,使分母中不含根式;知识点6二次根式计算——二次根式的乘除(1)积的算术平方根的性质积的算术平方根,等于积中各因式的算术平方根的积。
2020年中考数学一轮复习基础考点专题10二次根式(含解析)
专题10 二次根式考点总结【思维导图】【知识要点】知识点一二次根式的有关概念和性质二次根式概念:一般地,我们把形如(?≥0)的式子叫做二次根式,“ ”称为二次根号。
【注意】1.二次根式,被开方数a可以是一个具体的数,也可以是代数式。
2.二次根式是一个非负数。
3.二次根式与算术平方根有着内在联系,(?≥0)就表示a的算术平方根。
二次根式有意义的条件:由二次根式的意义可知,当a≧0时,有意义,是二次根式,所以要使二次根式有意义,只要使被开方数大于或等于零即可。
二次根式的性质:1.含有两种相同的运算,两者都需要进行平方和开方。
2.结果的取值范围相同,两者的结果都是非负数。
3.当a≧0时,考查题型一利用二次根式非负性解题1.(2013·四川中考真题)已知实数x,y,m满足,且y为负数,则m的取值范围是()A.m>6 B.m<6 C.m>﹣6 D.m<﹣6【答案】A【解析】根据算术平方根和绝对值的非负数性质,得:,解得:。
∵y为负数,∴6﹣m<0,解得:m>6。
故选A。
2.(2016·四川中考真题)若 +b2﹣4b+4=0,则ab的值等于()A.﹣2 B.0 C.1 D.2【答案】D【解析】试题分析:由,得:a﹣1=0,b﹣2=0.解得a=1,b=2.ab=2.故选D.3.(2012·湖北中考真题)若与|x﹣y﹣3|互为相反数,则x+y的值为()A.3 B.9 C.12 D.27【答案】D【解析】依题意得 .∴x+y=27.故选D.考查题型二判断二次根式有意义的取值范围1.(2013·四川中考真题)若代数式有意义,则实数x的取值范围是()A. B. C. D.且【答案】D【解析】根据二次根式被开方数必须是非负数和分式分母不为0的条件,要使在实数范围内有意义,必须且x≠1。
故选D。
2.(2018·内蒙古中考真题)代数式中x的取值范围在数轴上表示为()A. B.C. D.【答案】A【详解】由题意,得:3﹣x≥0且x﹣1≠0,解得:x≤3且x≠1,在数轴上表示如图:.故选A.3.(2018·山东中考真题)若式子有意义,则实数m的取值范围是A. B.且C. D.且【答案】D【详解】由题意可知:∴m≥﹣2且m≠1故选D.考查题型三根据二次根式性质进行化简1.(2012·湖南中考真题)实数a、b在数轴上的位置如图所示,且|a|>|b|,则化简的结果为()A.2a+b B.-2a+b C.b D.2a-b【答案】C【解析】试题分析:利用数轴得出a+b的符号,进而利用绝对值和二次根式的性质得出即可:∵由数轴可知,b>0>a,且 |a|>|b|,∴ .故选C.2.(2016·山东中考真题)实数a,b在数轴上对应点的位置如图所示,化简|a|+ 的结果是( )A.﹣2a-b B.2a﹣b C.﹣b D.b【答案】A【详解】由图可知:,∴ ,∴ .故选A.3.(2011·北京中考真题)如果,则a的取值范围是()A. B. C. D.【答案】B【解析】试题分析:根据二次根式的性质1可知:,即故答案为B. . 4.(2015·湖北中考真题)当1<a<2时,代数式+|1-a|的值是( ) A.-1 B.1 C.2a-3 D.3-2a【答案】B【解析】试题解析:∵1<a<2,∴ =|a-2|=-(a-2),|a-1|=a-1,∴ +|a-1|=-(a-2)+(a-1)=2-1=1.故选A.5.(2011·四川中考真题)已知,则的值为()A. B. C. D.【答案】A【解析】试题解析:由,得,解得.2xy=2×2.5×(-3)=-15,故选A.知识点二二次根式的运算二次根式的乘法法则:【注意】1、要注意这个条件,只有a,b都是非负数时法则成立。
二次根式的乘除和最简二次根式知识点
1。乘法法则: ( ≥0, ≥0),即两个二次根式相乘,根指数不变,只把被开方数相乘.
2.积的算术平方根
( ≥0, ≥0),即积的算术平方根等于积中各因式的算术平方根的积.
要点诠释:
(1)在这个性质中,a、b可以是数,也可以是代数式,无论是数,还是代数式,都必须满足 ≥0, ≥0,才能用此式进行计算或化简,如果不满足这个条件,等式右边就没有意义,等式也就不能成立了;
(1)被开方数不含有分母;
(2)被开方数中不含能开得尽方的因数或因式.
满足这两个条件的二次根式叫最简二次根式.
要点诠释:二次根式化成最简二次根式主要有以下两种情况:
(1) 被开方数是分数或分式;
(2)含有能开方的因数或因式.
(2)二次根式的化简关键是将被开方数分解因数,把含有 形式的a移到根号外面.
知识点二、二次根式的除法及商的算术平方根
1.除法法则: ( ≥0, >0),即两个二次根式相除,根指数不变,把被开方数相除..,对于公式中被开方数a、b的取值范围应特别注意, ≥0, >0,因为b在分母上,故b不能为0.
(2)运用二次根式的除法法则,可将分母中的根号去掉,二次根式的运算结果要尽量化简,最后结果中分母不能带根号.
2.商的算术平方根的性质
( ≥0, >0),即商的算术平方根等于被除式的算术平方根除以除式的算术平方根.
要点诠释:
运用此性质也可以进行二次根式的化简,运用时仍要注意符号问题.
知识点三、最简二次根式
【2020全国版】八年级数学下册专题讲练:二次根式的化简及运算试题(含答案)
二次根式的化简及运算一、二次根式基本运算二次根式的乘除法1. 积的算术平方根的性质:积的算术平方根,等于积中各因式的算术平方根的积。
2.3. 商的算术平方根的性质:商的算术平方根等于被除式的算术平方根除以除式的算术平方根。
4.二次根式的加减法需要先把二次根式化简,然后把被开方数相同的二次根式(即同类二次根式)的系数相加减,被开方数不变。
类似于合并同类项。
化简步骤:(1)“一分”,即利用分解因数或分解因式的方法把被开方数(或式)的分子、分母都化成质因数(或因式)的幂的积的形式;(2)“二移”,即把能开得尽的因数(或因式),用它的算术平方根代替,移到根号外,其中把根号内的分母中的因式移到根号外时,要注意写在分母的位置上;(3)“三化”,即化去被开方数中的分母。
二、二次根式的乘方1. 将单独根式中的整式(数)部分,根式部分分别乘方,如计算(23)2时,先将2乘方,再将3乘方,结果再相乘;2. 多项式的乘方注意使用乘方公式,同时也可以将其因式分解。
总结:1. 乘、除法的运算法则要灵活运用,在实际运算中经常从等式的右边变形至等式的左边,同时还要考虑被开方数的取值范围,最后把运算结果化成最简二次根式;2. 对于二次根式的加减,关键是合并同类二次根式,通常是先化成最简二次根式,再把同类二次根式合并。
但在化简二次根式时,二次根式的被开方数应不含分母。
例题1(1)除实数a 外,与k 的差的绝对值最大的实数是 ; (2)求x 的值。
解析:(1)直接求b 、c 、d 、e 与k 的差的绝对值,比较大小即可;(2)根据题意,a -k =x ,b -k =-33,c -k =-33,d -k =23,e -k =33,又有a +b +c +d +e =5k ,可求k 的值。
答案:解:(1)∵|b -k|=|-31|=33,|c -k|=|-27|=33,|d -k|=12=23,|e -k|=31=33, ∴与k 的差的绝对值最大的实数是c ;(2)依题意,得a -k =x ,b -k =-33,c -k =-33,d -k =23,e -k =33, 五式相加,得a +b +c +d +e -5k =x -3,又有a +b +c +d +e =5k ,所以x -3=0,即x =3。
二次根式乘法运算法则
二次根式的乘法法则是指两个二次根式相乘,可以将被开方数相乘,再化为最简二次根式。
具体来说,如果两个二次根式要相乘,那么需要将它们的被开方数相乘,得到的结果仍然是一个非负数的二次根式,这个过程需要遵守二次根式的性质和运算法则,以确保结果的正确性和合理性。
以下是二次根式乘法运算法则的具体说明:
1. 两个二次根式相乘,需要将被开方数相乘。
即,如果两个二次根式分别为a和b,它们的被开方数分别为x和y,那么两个被开方数的积的算术平方根就是结果c。
这个过程需要遵守二次根式的性质和运算法则,确保结果的正确性和合理性。
2. 需要注意的是,如果两个二次根式相乘的结果是一个负数,那么需要讨论一下其符号问题。
即,两个被开方数中至少有一个是负数,而另一个被开方数是正数时,才能进行乘法运算。
因此,在二次根式的乘法运算中,必须保证结果的符号是正数或零。
3. 在进行二次根式的乘法运算时,需要注意运算顺序和符号问题。
一般来说,先将被开方数相乘,再根据结果的正负情况确定最终结果的正负性。
同时,需要注意运算过程中的符号问题,以确保结果的正确性和合理性。
总之,二次根式的乘法运算法则需要遵守二次根式的性质和运算法则,以确保结果的正确性和合理性。
在进行二次根式的乘法运算时,需要注意运算顺序、符号问题以及结果的合理性。
只有正确理解和运用这些运算法则,才能有效地进行二次根式的运算,并得到正确的结果。
希望以上回答对您有所帮助。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.积的算术平方根
形如 a (a≥0)的式子叫做二次根式。 它必须具备如下特点: 1、根指数为2; 2、被开方数必须是非负数(正数或零)
注意 在实数范围内,
当a≥0时, a有意义。
一.复习 当a< 0时, a 没有意义,
ቤተ መጻሕፍቲ ባይዱ
二、提出问题,引出新知 1. 试一试:
用途:二次根式的化简
如何化简二次根式 例题2 化简 使被开方数不含完全平 方的因式(或因数)
(1) 12, (2) 4a3 , (3) a4b
注意隐含条件
五、师生互动,运用新知
练习化简: (1) 27 (2) 32
(3) 48
(4) 45 (5) 27
(6) 72
化简
(1) 9 25 (3) 202 162
(2).3 2 5 8
(3).5 x • 3 x3
计算
3x 15x
a 3ab
b3 a3
a
b
2 xy 1 x
2.积的算术平方根
思考:
等式 a • b a • ( b a 0,b 0) 反过来写是怎样的呢?
ab a • ( b a 0,b 0)
积的算术平方根,等于各因式算术平方根的积
(1) 4 25 ___ ___ 4 25 ____ _____
(2) 16 9 ___ ___ 16 9 ____ _____
提问:观察以上计算结果,你能发现什么?
概括:
a b ab
注意: a、b 必须都是非负数,上式才能成立。
两个二次根式相乘,将它们的被开方数相乘
用途:二次根式的运算
× 52 32 52 32
注意: × a b a b
六、想一想:
(1) abc与 a b c是否相等? a、b、c有什么限制?
(2)化简:4a 4bc4
学习小结
1.二次根式的乘法法则是什么?(计算)
a b a b a 0,b 0
2.积的算术平方根的性质: (化简)
a b a ba 0, b 0
利用(1)(2)进行计算和化简二次根式.
一、复习提问,引出新知 :
1. 下列式子哪些是二次根式,哪些不是 二次根式?
(1) 160 (4) a
(2) -130 (5) 3a2 5
(3)3 27 (6) 4a 2
2. 计算下列各题:
(1)( 0.5)2
(3)( 7 )2
(2) 144 (4) (-5)2
(2) 2 24 3
(4) (-4)(-25)
练习化简: (1) 16a2b (2) 8a3b2c
(3) 12x5y3
例3. 化简
(2) x4 x2 y2
a • b a • b (a≥0,b≥0) 积的算术平方根,等于积中各因式的算术平方根的积。
问题1: (4)(9)× 4 9 ? 问题2: 9 16× 9 16 ?
三、师生互动,运用新知
例题1:计算
解:3 2 3 2
(1). 7 6(1)7163 627 422
(2).
1 2
3 2 2
32 3 2
((23).)1.2 232 312 322 16 6 4
(4). 2 3 6
4 原式 2 3 6
36 6
计算: (3) 0.25 8 (4) 1 1 4 45