15 小船渡河问题

合集下载

高中物理小船过河问题

高中物理小船过河问题

小船过河问题轮船渡河问题:(1)处理方法:轮船渡河是典型的运动的合成与分解问题,小船在有一定流速的水中过河时,实际上参与了两个方向的分运动,即随水流的运动(水冲船的运动)和船相对水的运动(即在静水中的船的运动),船的实际运动是合运动。

1.渡河时间最少:在河宽、船速一定时,在一般情况下,渡河时间θυυsin 1船ddt ==,显然,当︒=90θ时,即船头的指向与河岸垂直,渡河时间最小为vd,合运动沿v 的方向进行。

2.位移最小 若水船υυ>结论船头偏向上游,使得合速度垂直于河岸,位移为河宽,偏离上游的角度为船水υυθ=cos若水船v v <,则不论船的航向如何,总是被水冲向下游,怎样才能使漂下的距离最短呢?如图所示,设船头v 船与河岸成θ角。

合速度v 与河岸成α角。

可以看出:α角越大,船漂下的距离x 越短,那么,在什么条件下α角最大呢?以v 水的矢尖为圆心,v 船为半径画圆,当v 与圆v 水θ v αAE v 船 v 水v 船θvV 水v 船 θ v v 1相切时,α角最大,根据水船v v =θcos 船头与河岸的夹角应为水船v v arccos=θ,船沿河漂下的最短距离为:θθsin )cos (min 船船水v dv v x ⋅-=此时渡河的最短位移:船水v dv ds ==θcos 【例题】河宽d =60m ,水流速度v 1=6m /s ,小船在静水中的速度v 2=3m /s ,问: (1)要使它渡河的时间最短,则小船应如何渡河?最短时间是多少? (2)要使它渡河的航程最短,则小船应如何渡河?最短的航程是多少?★解析: (1)要使小船渡河时间最短,则小船船头应垂直河岸渡河,渡河的最短时间s s dt 2030602===υ (2)渡河航程最短有两种情况:①船速v 2大于水流速度v 1时,即v 2>v 1时,合速度v 与河岸垂直时,最短航程就是河宽; ②船速v 2小于水流速度v l 时,即v 2<v 1时,合速度v 不可能与河岸垂直,只有当合速度v 方向越接近垂直河岸方向,航程越短。

2015高考最新试题-小船渡河问题专题(含答案)

2015高考最新试题-小船渡河问题专题(含答案)

2015高考最新集训试题-小船渡河问题专题1.某小船在静水中的速度大小保持不变,该小船要渡过一条河,渡河时小船船头垂直指向河岸.若船行至河中间时,水流速度突然增大,则()A.小船渡河时间不变 B.小船渡河时间减少C.小船渡河时间增加 D.小船到达对岸地点不变2.如图所示为某人游珠江,他以一定的速度且面部始终垂直于河岸向对岸游去。

设江中各处水流速度相等,他游过的路程、过河所用的时间与水速的关系是( )A、水速大时,路程长,时间长B、水速大时,路程长,时间不变C、水速大时,路程长,时间短D、路程、时间与水速无关3.小船横渡一条两岸平行的河流,船本身提供的速度(即静水速度)大小不变、船身方向垂直于河岸,水流速度与河岸平行,已知小船的运动轨迹如图所示,则()A.越接近河岸水流速度越小B.越接近河岸水流速度越大C.无论水流速度是否变化,这种渡河方式耗时最短D.该船渡河的时间会受水流速度变化的影响4.一艘小船在静水中的速度为4 m/s,渡过一条宽200 m,水流速度为5 m/s的河流,则该小船A.能到达正对岸B.以最短位移渡河时,位移大小为200mC.渡河的时间可能少于50 sD.以最短时间渡河时,沿水流方向的位移大小为250 m5.在抗洪抢险中,战士驾驶摩托艇救人.假设江岸是平直的,洪水沿江向下游流去,水流速度为v1,摩托艇在静水中的航速为v2,战士救人的地点A离岸边最近处O的距离为d,如战士想在最短时间内将人送上岸,则摩托艇登陆的地点离O点的距离为()B.0C.2dvlvD.21dvv6.船在静水中的速度与时间的关系如图甲所示,河水的流速随离河岸的距离的变化关系如图乙所示,经过一段时间该船以最短时间成功渡河,下面对该船渡河的说法正确的是()A.船在河水中的最大速度是5 m/sB.船渡河的时间是150sC.船在行驶过程中,船头必须始终与河岸垂直D210m7.如图所示,MN是流速稳定的河流,河宽一定,小船在静水中的速度为v.现小船自A点渡河,第一次船头沿AB方向,到达对岸的D处;第二次船头沿AC方向,到达对岸E处,若AB与AC跟河岸垂线AD的夹角相等,两次航行的时间分别为t B、t C,则()A.t B>t C B.t B<t CC.t B=t C D.无法比较t B与t C的大小8.一只小船渡河,水流速度各处相同且恒定不变,方向平行于岸边,小船相对于水分别做匀加速、匀减速、匀速直线运动,运动轨迹如图所示,船相对于水的初速度大小均相同,方向垂直于岸边,且船在渡河过程中船头方向始终不变,由此可以确定船()A.沿AD轨迹运动时,船相对于水做匀减速直线运动B.沿三条不同路径渡河的时间相同C.沿AB轨迹渡河所用的时间最短D.沿AC轨迹船到达对岸的速度最小9.下列四个选项的图中实线为河岸,河水的流速u方向如图中箭头所示,虚线为小船从河岸M驶向对岸N 的实际航线,已知船在静水中速度大于水速,则其中正确是()10.一只小船在静水中的速度为0.3m∕s,它要渡过一条宽度为60m的河,河水的流速为0.4m∕s, 下列说法正确的是()A.船不能到达对岸的上游 B.船过河的最短位移是60mC.船过河的最短时间是120s D.船过河所需的时间总是200s11.如图所示,船从A处开出后沿直线AB到达对岸,若AB 与河岸成37°角,水流速度4m/s,则船在静水中的最小速度为( ) (sin37°=0.6,cos37°=0.8)A.5 m/s B.2.4 m/s C.3 m/s D.3.2 m/s12.某河流中河水的速度大小v1=2m/s,小船相对于静水的速度大小v2=1m/s.现小船船头正对河岸渡河,恰好行驶到河对岸的B 点,若小船船头指向上游某方向渡河,则小船( )A .到达河对岸的位置一定在B 点的右侧B .到达河对岸的位置一定在B 点的左侧C .仍可能到达B 点,但渡河的时间比先前长D .仍可能到达B 点,但渡河的时间比先前短13.如图所示,一条小船位于200 m 宽的河中央A 点处,从这里向下游处有一危险的急流区,当时水流速度为4 m/s ,为使小船避开危险区沿直线到达对岸,小船在静水中的速度至少为 ( ).A.3 m/sB.3 m/s C .2 m/s D .4 m/s14.如图所示,两次渡河时船对水的速度大小和方向都不变.已知第一次实际航程为A 至B ,位移为S 1,实际航速为v 1,所用时间为t 1.由于水速增大,第二次实际航程为A 至C ,位移为S 2,实际航速为v 2,所用时间为t 2.则( )A .t 2>t 1 2121S v v S = B .t 2>t 1 1122S v v S = C .t 2=t 1 1122S v v S = D .t 2=t 1 2121S v v S = 15.小船从A 码头出发,沿垂直于河岸的方向渡河,若河宽为d ,渡河速度v 船恒定,河水的流速与到河岸的距离成正比,即v 水=kx (x≤d/2,k 为常量),要使小船能够到达距A 正对岸为s 的B 码头,则:A.v 船应为kd 2/4sB.v 船应为kd 2/2sC.渡河时间为s/kdD.渡河时间为2s/kd16.已知某江水由西向东流,江宽为d,江水中各点水流速度大小与该点到较近岸边的距离成正比,,v 2v 1,x 是各点到近岸的距离。

小船渡河问题分析(实用)

小船渡河问题分析(实用)

V船
V1
d
V2
V水
分析:船在冻水中渡河的唯一大小和方向取决于船速和水速
和速度的大小和方向。
过0点以 V船 为半径作圆。
当船速大于水速,即 V船 V水 时 此时若 V2 V船 cos V水 则有
V合 V1 V船 sin 合速
度方向垂直于河岸,小船垂直河岸渡河,此时渡河位移最短,
小船渡河问题详解
小船渡
小船渡河 问题
小船过河问题
分析: 船渡河时,小船的实际运动可看做,
随水以水的速度 v水 漂流的运动,和以船速V船
相对于静水的划行运动的合运动。
小船过河问题一般分两类:求渡河的最短时间,以及渡河 的最短位移。
具体分析:
河宽d,静水中船速 V 船 水流速度V水 ,
船速与河岸的夹角为θ。
(一)当 900 及船速与河岸方向夹角为锐 角时。
如右图将船速分解成垂直 于河岸方向的 V2 和水平 方向的速度 V1
V V2 船sin
根据上面的公 式可以知道小船 渡河的时间:
t d d
v1 v船sin
d V船 V2
θ
V水
V1
分析可得,当 900
即为河岸距离d。
d
V合
V船
θ
V水
当 V船 V水 时,小船不能垂直于河岸渡河,此时和速度沿圆
的切线方向时,位移最短
smin

d
cos

dV水 V船

即船速垂直于河岸,此时小船渡河时
间最短,此时
tmin d / v船
小船渡河的最短时间与水 流速度无关,即无论水流 速度多大,小船渡河最短 时间为河岸垂直距离d与船

小船渡河问题归纳总结

小船渡河问题归纳总结

小船渡河问题归纳总结小船渡河问题是物理学中的一个经典问题,它涉及到相对运动、速度、时间和距离等多个物理概念。

以下是关于小船渡河问题的归纳总结,详细介绍:一、基本概念1. 小船渡河:指的是一个船只在河流中从一岸行驶到另一岸的过程。

2. 静水速度:船只在静止的水中行驶的速度,通常记为vc。

3. 河流速度:河流的流速,通常记为vs。

4. 合速度:船只在河流中的实际速度,是静水速度和河流速度的矢量和。

5. 渡河时间:船只从一岸出发到达另一岸所需要的时间。

6. 渡河距离:船只在水面上实际行驶的距离。

二、问题分类1. 最短时间渡河:在给定河宽和船只静水速度的条件下,求船只渡河的最短时间。

2. 最短距离渡河:在给定河宽和船只静水速度的条件下,求船只渡河的最短距离。

3. 指定地点渡河:船只需要在河对岸的指定地点登陆,求船只的行驶方向和速度。

三、解题方法1. 最短时间渡河:-当静水速度大于河流速度时,船只应该以静水速度垂直于河岸行驶,这样渡河时间最短。

-当静水速度小于河流速度时,船只无法垂直于河岸行驶,此时渡河时间取决于静水速度与河流速度的比值。

-当静水速度等于河流速度时,船只可以垂直于河岸行驶,渡河时间也是最短的。

2. 最短距离渡河:-当静水速度大于河流速度时,船只应该以静水速度与河流速度的比值确定合速度的方向,使得合速度垂直于河岸,这样渡河距离最短。

-当静水速度小于河流速度时,船只无法垂直于河岸行驶,此时渡河距离取决于静水速度与河流速度的比值。

-当静水速度等于河流速度时,船只可以垂直于河岸行驶,渡河距离也是最短的。

3. 指定地点渡河:-确定船只的合速度方向,使得合速度的方向与指定地点的连线垂直。

-计算合速度的大小,使得船只能够准确到达指定地点。

四、实际应用1. 航海导航:在航海过程中,船只需要在不同的水流速度和方向下,选择合适的行驶方向和速度,以达到目的地。

2. 水上救援:在进行水上救援时,救援船只需要根据河流的流速和救援地点的位置,选择合适的行驶方向和速度,以尽快到达救援地点。

高中物理小船过河问题含答案讲解

高中物理小船过河问题含答案讲解

小船过河问题轮船渡河问题:(1)处理方法:轮船渡河是典型的运动的合成与分解问题,小船在有一定流速的水中过河时,实际上参与了两个方向的分运动,即随水流的运动(水冲船的运动)和船相对水的运动(即在静水中的船的运动),船的实际运动是合运动。

1.渡河时间最少:在河宽、船速一定时,在一般情况下,渡河时间sin1船d dt,显然,当90时,即船头的指向与河岸垂直,渡河时间最小为vd ,合运动沿v 的方向进行。

2.位移最小若水船结论船头偏向上游,使得合速度垂直于河岸,位移为河宽,偏离上游的角度为船水cos若水船v v ,则不论船的航向如何,总是被水冲向下游,怎样才能使漂下的距离最短呢?如图所示,设船头v 船与河岸成θ角。

合速度v 与河岸成α角。

可以看出:α角越大,船漂下的距离x 越短,那么,在什么条件下α角最大呢?以v 水的矢尖为圆心,v 船为半径画圆,当v与圆相切时,α角最大,根据水船v v cos船头与河岸的夹角应为v水θv αABEv船v 水v船θvV水v 船θv 2v 1水船v v arccos,船沿河漂下的最短距离为:sin)cos (min 船船水v dv v x 此时渡河的最短位移:船水v dv d scos【例题】河宽d =60m ,水流速度v 1=6m /s ,小船在静水中的速度v 2=3m /s ,问:(1)要使它渡河的时间最短,则小船应如何渡河?最短时间是多少? (2)要使它渡河的航程最短,则小船应如何渡河?最短的航程是多少?★解析: (1)要使小船渡河时间最短,则小船船头应垂直河岸渡河,渡河的最短时间ss dt2030602(2)渡河航程最短有两种情况:①船速v 2大于水流速度v 1时,即v 2>v 1时,合速度v 与河岸垂直时,最短航程就是河宽;②船速v 2小于水流速度v l 时,即v 2<v 1时,合速度v 不可能与河岸垂直,只有当合速度v方向越接近垂直河岸方向,航程越短。

(完整版)小船渡河问题练习题大全

(完整版)小船渡河问题练习题大全

小船过河问题I1河宽d = 60m,水流速度v i = 6m/ s,小船在静水中的速度V2=3m / s,问:(1)要使它渡河的时间最短,则小船应如何渡河?最短时间是多少?(2)要使它渡河的航程最短,则小船应如何渡河?最短的航程是多少?2在抗洪抢险中,战士驾驶摩托艇救人,假设江岸是平直的,洪水沿江向下游流去,水流速度为v i,摩托艇在静水中的航速为V2,战士救人的地点A离岸边最近处0的距离为d,如战士想在最短时间内将人送上岸,则摩托艇登陆的地点离0点的距离为(C )C.速,则船速与水速之比为()3某人横渡一河流,船划行速度和水流动速度一定,此人过河最短时间为了T i;若此船用最短的位移过河,则需时间为T2,若船速大于水(B) T2(C)T iJ2T22(D)T iT4小河宽为d,河水中各点水流速度大小与各点到较近河岸边的距离成正比,4v nV水kx, k —0, X是各点到近岸的距离,小船船头d垂直河岸渡河,小船划水速度为v0,则下列说法中正确的是()A、小船渡河的轨迹为曲线C、小船渡河时的轨迹为直线B、小船到达离河岸-处,船渡河的速度为• 2v02D、小船到达离河岸3d/4处,船的渡河速度为.1^05.如图1所示,人用绳子通过定滑轮以不变的速度v0拉水平面上的物体A ,当绳与水平方向成B角时,物体A的速度6如图3所示,某人通过一根跨过定滑轮的轻绳提升一个质量为m的重物,开始时人在滑轮的正下方,绳下端A点离滑轮的距离为H。

人由静止拉着绳向右移动,当绳下端到B点位置时,人的速度为v , 与水平面夹角为B。

问在这个过程中,人对重物做了多少功?7. 一条宽度为L的河,水流速度为v水,已知船在静水中速度为v船,那么:(1)怎样渡河时间最短?(2)若v船v水,怎样渡河位移最小? 3)若v船v水,怎样渡河船漂下的距离最短?绳8河宽60m,小船在静水中的速度为4m/s,水流速度为3m/s。

求小船渡河的最小时间是多少,小船实际渡河的位移为多大?若小船在静水中的速度为5m/s,水流速度为3m/s。

《小船渡河问题》 知识清单

《小船渡河问题》 知识清单

《小船渡河问题》知识清单在物理学中,小船渡河问题是一个经典且有趣的运动学问题,它涉及到速度的合成与分解,对于理解物体的运动规律有着重要的意义。

下面就让我们一起来详细探讨一下小船渡河问题。

一、问题描述通常情况下,小船渡河问题的场景是这样的:小船在宽度一定的河流中渡河,船头的指向可以改变,水流速度恒定。

我们需要研究小船如何以最短的时间渡河、如何以最短的位移渡河,以及在给定条件下小船的实际渡河路径等。

二、基本概念1、合速度小船在水中的实际速度是由小船自身的速度(船头指向的速度)和水流速度合成的,这个合成的速度称为合速度。

2、分速度小船自身的速度和水流速度分别称为分速度。

三、常见类型1、最短时间渡河当船头垂直于河岸时,小船渡河时间最短。

此时,渡河时间 t = d/ v 船(d 为河宽,v 船为小船在静水中的速度)。

因为在垂直河岸的方向上,小船的速度分量最大,所以能在最短时间内到达对岸。

2、最短位移渡河(1)当 v 船> v 水时,合速度可以垂直于河岸,此时渡河位移最短,等于河宽 d 。

(2)当 v 船< v 水时,无论船头指向如何,合速度都无法垂直于河岸,此时要使渡河位移最短,船头应斜向上游,并且与合速度的方向垂直。

四、速度的合成与分解这是解决小船渡河问题的关键方法。

我们要根据平行四边形定则,将小船的速度和水流的速度进行合成与分解。

例如,假设小船在静水中的速度为 v 1 ,水流速度为 v 2 。

以小船的速度 v 1 的方向为邻边,水流速度 v 2 的方向为对边,作平行四边形,那么平行四边形的对角线就是小船的实际速度。

在分解速度时,通常将速度分解为沿着河岸方向和垂直河岸方向的两个分速度。

沿着河岸方向的速度影响小船在河岸方向上的移动距离,垂直河岸方向的速度影响小船渡河的时间。

五、实例分析假设河宽为 100 米,小船在静水中的速度为 5m/s,水流速度为3m/s。

1、求最短时间渡河船头垂直河岸,t = 100 / 5 = 20s 。

小船渡河练习题及答案

小船渡河练习题及答案

小船渡河练习题及答案在生活中,我们常常遇到许多需要解决问题的情况,而解决问题的能力和智慧正是我们成长的基石。

小船渡河练习题作为一种常见的逻辑思维训练题,可以帮助我们锻炼思维的灵活性和解决问题的能力。

下面将为大家介绍一些关于小船渡河的练习题以及相应的答案。

题目一:小船渡河问题有一对夫妇和两个小孩需要渡河,河边只有一条只能承载两人的小船。

夫妇需要船带回来,而且小孩之间不能独自在河边,夫妇之间也不能独自在河边。

请考虑一种渡河方案,使得所有人都成功渡河。

解答:首先,夫妻一起渡河,然后丈夫返回,而妻子和其中一个小孩留在对岸。

随后,丈夫从河对岸返回,然后带着另一个小孩一起渡河。

接下来,丈夫留在对岸,而妻子返回河边。

最后,妻子和其中一个小孩一起渡河,完成所有人的渡河任务。

题目二:加入限制条件在之前的小船渡河问题的基础上,加入以下限制条件:1. 大家都需要戴口罩。

2. 大家每次渡河都需要保持安全距离(至少1米)。

解答:在考虑口罩和安全距离的情况下,解决方案如下:夫妻和一个小孩一起上船,丈夫带着这个小孩一起返回。

然后,妻子和另一个小孩一起上船,妻子将第一个小孩送回对岸后返回。

最后,夫妻一起上船,丈夫将妻子送回对岸后返回。

在整个过程中,每个人都要佩戴口罩,并在上下船和接触时保持安全距离,以确保安全。

题目三:时间限制在之前的小船渡河问题中,加入以下时间限制条件:1. 整个渡河过程需要在10分钟内完成。

2. 每次通行船程不能超过5分钟。

解答:这个问题需要考虑每次船行的时间。

解决方案如下:夫妻和一个小孩一起上船,丈夫带着这个小孩一起返回(用时5分钟)。

然后,妻子和另一个小孩一起上船,妻子将第一个小孩送回对岸后返回(用时5分钟)。

最后,夫妻一起上船,丈夫将妻子送回对岸后返回(用时5分钟)。

通过按照这个方案行动,整个渡河任务可以在10分钟内完成。

通过以上的小船渡河练习题,我们可以锻炼自己的逻辑思维和问题解决能力。

无论是在日常生活中还是工作中,这种能力都是非常重要的。

专题:小船渡河及绳子末端速度的分解问题

专题:小船渡河及绳子末端速度的分解问题

专题:小船渡河及绳子末端速度的分解问题小船渡河问题:(1)处理方法:轮船渡河是典型的运动的合成与分解问题,小船在有一定流速的水中过河时,实际上参与了两个方向的分运动,即随水流的运动(水冲船的运动)和船相对水的运动(即在静水中的船的运动),船的实际运动是合运动。

1.渡河时间最少:如右图所示,在河宽、船速一定时,在一般情况下,渡河时间θυυsin 1船d dt == ,显然,当︒=90θ时,即船头的指向与河岸垂直,渡河时间最小为v d,合运动沿v 的方向进行。

2.位移最小若水船υυ>,结论:船头偏向上游,使得合速度垂直于河岸,位移为河宽,偏离上游的角度为船水υυθ=cos若水船v v <,以v 水的矢尖为圆心,v 船为半径画圆,当v 与圆相切时,α角最大,根据水船v v =θcos 船头与河岸的夹角应为水船v v arccos =θ,船沿河漂下的最短距离为: θθsin )cos (min 船船水v d v v x ⋅-= 此时渡河的最短位移:船水v dv ds ==θcos1.(湖南长沙一中11-12学年高一下学期期中)一人游泳渡河 以垂直河岸不变的划速向对岸游去 河水流动速度恒定,下列说法中正确的是( ) A 河水流动速度对人渡河无任何影响B 人垂直对岸划水 其渡河位移是最短的C 由于河水流动的影响 人到达对岸的时间与静水中不同D 由于河水流动的影响 人到达对岸的位置向下游方向偏2. (河北正定中学08 09学年高一下学期月考)某河水的流速与离河岸距离的变化关系如图所示 河宽300 船在静水中的速度与时间的关系如图乙所示 若要使船以最短时间渡河 则( )A 船渡河的最短时间是75sB 船在行驶过程中 船头始终与河岸垂直C 船在河水中航行的轨迹是一条直线D 船在河水中的最大速度是5m/s【例1】小船在d =200m 宽的河水中行驶,船在静水中v 划=4m/s ,水流速度v 水=2m/s 。

高中物理:题型一:小船渡河问题

高中物理:题型一:小船渡河问题
题型一:小船渡河问题
小船渡河问题的分析:
(1)船的实际运动是水流的运动和船相对静水的运动的合运动。
(2)三种速度:船在静水中的速度v1,水流速度v2,船的实际速度v.
(3)三种情形

①过河时间最短:船头正对河岸时,过河时间最短,短 =1
(d为河宽)。
②过河路径最短
a. v2<v1时,合速度垂直于河岸,航程最短,短 =d,船头指向上游,与河岸夹
的角度。
D.小船不可能垂直河岸到达对岸。
答案:BD
2.河宽为d,水流速度为v1,小汽艇在静水中航行速度为v2,且v1<v2,如果小
汽艇航向与河岸成夹角,斜向上游,求:
B
A
C
(1)它过河需要多少时间?
(2)到达对岸的位置?
(3)如果它以最短时间渡河,航向应如何?
(4)如果它要直达正对岸,航向又应怎样?
角为a,cosa=2

1
b. v2>v1,合速度不可能垂直于河岸,无法垂直渡河。确定方法如下
如图所示,以v2矢量末端为圆心,以v1矢量的大小为半径画弧,从v2矢量的
始端向圆弧作切线,则合速度沿此切线方向航程最短。


v1 d v1
a
2
1

由图可知:cosa=1
,最短航程:
航行方向是实际运动方向,也就是合速度方向。
(2)小船过河最短时间与水流速度无关。
典例
1.小船渡河,河宽90米,船在静水中的速度是3m/s,水流速度是4m/s,那么

)(多选)
A.小船渡河最短时间为18s.
B.小船渡河最短时间为30s.
C.要使小船能垂直河岸以最短路程到达对岸,船头要偏向上游与河岸夹一定

《小船渡河问题》课件

《小船渡河问题》课件
感谢观看
当船速和水速垂直时,实际航线偏离最小,此时渡河时间最短。
03
渡河问题的解决方案
船头垂直于河岸渡河
船头垂直于河岸时,船的合速度方向即为船头指向,与河岸垂直。此时,船渡河时 间最短,但船的位移不是最小。
船渡河时间等于河宽除以船在静水中的速度。
船的位移等于船在静水中的速度与水流速度的合速度在垂直于河岸方向上的投影。
科学实验中的应用
物理实验
在流体力学实验中,渡河问题常常被用来模拟和研究流体动力学现象,如水流的阻力、流速等问题。
生物学实验
在生态学研究中,渡河问题也被用来模拟和研究物种迁移、基因传播等现象,帮助科学家理解生物多 样性的形成和演化。
05
小船渡河问题的思考与启示
小船渡河问题中的哲学思考
自然规律的客观性
水速对渡河的影响
水速越大,实际航线偏离越少
当水速大于船速时,船头斜向下游,实际航线偏离越少。
水速越小,实际航线偏离越多
当水速小于船速时,船头垂直河岸,实际航线偏离越多。
船速与水速的相互作用
船速与水速相等时,船头方向任意
当船速和水速相等时,船头方向可以任意选择,渡河时间不变。
船速与水速垂直时,实际航线偏离最小
战术部署
在军事行动中,渡河点常常成为重要 的战术支点。通过控制渡河点,可以 有效地分割敌军,实现各个击破。
日常生活中的应用
竹筏等水上工具的使 用,使得人们可以方便地渡过河 流。
救援行动
在洪涝灾害等紧急情况下,渡河 成为救援人员和受困群众的重要 通道,及时的救援可以大大降低 灾害损失。
船的渡河位移和时间都介于船 头垂直于河岸和船头斜向下游 之间。
在这种情况下,船的位移和时 间都大于船头垂直于河岸渡河 的情况。

小船渡河问题(含知识点例题和练习)

小船渡河问题(含知识点例题和练习)

小船渡河问题小船渡河的问题,可以分解为它同时参与的两个分运动,一是小船相对水的运动(设水不流时船的运动,即在静水中的运动),一是随水流的运动(即水冲船的运动,等于水流的运动),船的实际运动为合运动.两种情况:①船速大于水速;②船速小于水速。

两种极值:①渡河最小位移;②渡河最短时间。

【例1】一条宽度为L 的河,水流速度为水v ,已知船在静水中速度为船v ,那么:(1)怎样渡河时间最短? (2)若水船v v >,怎样渡河位移最小?(3)若水船v v <,怎样渡河位移最小,船漂下的距离最短?解析:(1)小船过河问题,可以把小船的渡河运动分解为它同时参与的两个运动,一是小船运动,一是水流的运动,船的实际运动为合运动。

如右图所示,船头与河岸垂直渡河,渡河时间最短:船v L t =min 。

此时,实际速度(合速度)22水船合v v v +=实际位移(合位移)船水船v v v L L 22sin s +=∂= (2)如右图所示,渡河的最小位移即河的宽度。

为使渡河位移等于L ,必须使船的合速度v 合的方向与河岸垂直,即使沿河岸方向的速度分量等于0。

这时船头应指向河的上游,并与河岸成一定的角度θ,所以有水船v v =θcos ,即船水v v arccos=θ。

因为θ为锐角,1cos 0<<θ,所以只有在水船v v >时,船头与河岸上游的夹角船水v v arccos =θ,船才有可能垂直河岸渡河,此时最短位移为河宽,即L s =min 。

实际速度(合速度)θsin 船合v v =,运动时间θsin 船合v Lv L t ==(3)若水船v v <,则不论船的航向如何,总是被水冲向下游,怎样才能使漂下的距离最短呢?V 船V 水V 合如右图所示,设船头v 船与河岸成θ角。

合速度v 合与河岸成α角。

可以看出:α角越大,船漂下的距离x 越短,那么,在什么条件下α角最大呢?以v 水的矢尖为圆心,v 船为半径画圆,当v 合与圆相切时,α角最大,根据水船v v =θcos ,船头与河岸的夹角应为水船v v arccos=θ,此时渡河的最短位移:船水v Lv Ls ==θcos 渡河时间:θsin 船v Lt =,船沿河漂下的最短距离为:θθsin )cos (min 船船水v Lv v x ⋅-=误区:不分条件,认为船位移最小一定是垂直到达对岸;将渡河时间最短与渡河位移最小对应。

小船过河问题分析与题解

小船过河问题分析与题解

小船过河问题分析与题解【问题概说】(1)船的实际运动是水流的运动和船相对静水的运动的合运动。

(2)三种速度:船相对水的速度为v 船(即船在静水中的速度),水的流速为v 水(即水对地的速度),船的合速度为v (即船对地的速度,船的实际速度,其方向就是船的航向)。

(3)三种情景:①过河时间最短:当船头垂直河岸,渡河时间最短,且渡河时间与水的流速无关。

②过河路径最短:在v 船>v 水的条件下,当船的合速度垂直于河岸时,渡河位移(航程或路径)最小并等于河宽。

在v 船<v 水的条件下,当船头与船的合速度垂直时,渡河位移(航程或路径)最小。

此种情况下,合速度不可能垂直于河岸,无法垂直渡河。

最短航程确定如下:如图所示,以v 水矢量末端为圆心,以v 船矢量的大小为半径画弧,从v 水矢量的始端向圆弧作切线,则合速度沿此切线方向航程最短。

(下图中v 1表船速,v 2表水速)③最小渡河速度:水速和航向一定,船速垂直航向有最小船速。

【典型题例】两河岸平行,河宽d=100m ,水流速度v 1=3m/s ,求:(1)船在静水中的速度是4m/s 时,欲使船渡河时间最短,船应怎样渡河最短时间是多少船的位移是多大(2)船在静水中的速度是6m/s 时,欲使船航行距离最短,船应怎样渡河渡河时间多长(3)船在静水中的速度为1.5m/s 时,欲使船渡河距离最短,船应怎样渡河船的最小航程是多少[思路分析](1)当船头垂直于河岸时,渡河时间最短:t min =d/v 2=100/4=25s合速度v=s m v v /543222221=+=+ 船的位移大小s=v t min =125m(2)欲使船航行距离最短,需船头向上游转过一定角度使合速度方向垂直于河岸,设船的开行速度v 2与岸成θ角,则cosθ=216321==v v , 所以θ=600,合速度v=v 2sin600=3s m /3 t=s v d 93100= (3)船在静水中速度小于水流的速度,船头垂直于合速度v 时,渡河位移最小,设船头与河岸夹角为β,如图所示: cosβ=2135.112==v v 所以β=600最小位移s min =m d 20060cos 100cos 0==β [答案](1) 船头垂直于河岸时,渡河时间最短:t min =25s ,s =125m ;(2) 船头向上游转过一定角度, 与岸成600角航程最短,t=s 93100; (3) 船头垂直于合速度,船头与河岸夹角600时航程最短,s min =m 200。

小船渡河问题练习题大全

小船渡河问题练习题大全

小船过河问题|1河宽d =60m ,水流速度v 1=6m /s ,小船在静水中的速度v 2=3m /s ,问:(1)要使它渡河的时间最短,则小船应如何渡河?最短时间是多少? (2)要使它渡河的航程最短,则小船应如何渡河?最短的航程是多少? 2在抗洪抢险中,战士驾驶摩托艇救人,假设江岸是平直的,洪水沿江向下游流去,水流速度为v 1,摩托艇在静水中的航速为v 2,战士救人的地点A 离岸边最近处O 的距离为d ,如战士想在最短时间内将人送上岸,则摩托艇登陆的地点离O 点的距离为( C )A .21222υυυ-d B .0 C .21υυd D .12υυd3某人横渡一河流,船划行速度和水流动速度一定,此人过河最短时间为了T 1;若此船用最短的位移过河,则需时间为T 2,若船速大于水速,则船速与水速之比为( ) (A) 21222T T T - (B) 12T T (C) 22211T T T - (D) 21T T4小河宽为d ,河水中各点水流速度大小与各点到较近河岸边的距离成正比,d v k kx v 04==,水,x 是各点到近岸的距离,小船船头垂直河岸渡河,小船划水速度为0v ,则下列说法中正确的是( )A 、小船渡河的轨迹为曲线B 、小船到达离河岸2d 处,船渡河的速度为02vC 、小船渡河时的轨迹为直线D 、小船到达离河岸4/3d 处,船的渡河速度为010v 5. 如图1所示,人用绳子通过定滑轮以不变的速度0v 拉水平面上的物体A ,当绳与水平方向成θ角时,求物体A 的速度。

6 如图3所示,某人通过一根跨过定滑轮的轻绳提升一个质量为m 的重物,开始时人在滑轮的正下方,绳下端A 点离滑轮的距离为H 。

人由静止拉着绳向右移动,当绳下端到B 点位置时,人的速度为v ,绳与水平面夹角为θ。

问在这个过程中,人对重物做了多少功?7. 一条宽度为L 的河,水流速度为水v ,已知船在静水中速度为船v ,那么:(1)怎样渡河时间最短?(2)若水船v v >,怎样渡河位移最小?(3)若水船v v <,怎样渡河船漂下的距离最短?8河宽60m,小船在静水中的速度为4m/s,水流速度为3m/s。

(完整版)小船渡河与关联速度问题

(完整版)小船渡河与关联速度问题

小船渡河与关联速度问题晨阳教育小船渡河问题:小船在有一定流速的水中过河时,实际上参与了两个方向的分运动,即随水流的运动v 水(水冲船的运动),和船相对水的运动v 船(即在静水中的船的运动),船的实际运动v 是合运动。

两类问题:①渡河最短时间问题;②渡河最小位移问题。

① 渡河最短时间问题:在河宽、船速一定时,在一般情况下,渡河时间θυυsin 1船d dt ==,显然,当︒=90θ时,即船头的指向与河岸垂直,渡河时间最小为船v d ,合运动沿船和水合速度的方向进行。

② 渡河最小位移问题 1、v 水<v 船船头偏向上游,使得合速度垂直于河岸,位移为河宽,偏离上游的角度为船水υυθ=cos2、v水>v 船不论船的航向如何,总是被水冲向下游,即无论向哪个方向划船都不能使船头垂直于河,那么怎样才能使距离最短呢?如图所示,设船头v 船与河岸成θ角。

合速度v 与河岸成α角。

可以看出:α角越大,船漂下的距离x 越短,那么,在什么条件下α角最大呢?以v 水的矢尖为圆心,v 船为半径画圆,当v 与圆相切时,α角最大,根据水船v v =θcos 船头与河岸的夹角应为 水船v v arccos=θ,船沿河漂下的最短距离为:θθsin )cos (min 船船水v dv v x ⋅-=此时渡河的最短位移:船水v dv ds ==θcos1.某人以一定速度始终垂直河岸向对岸游去,当河水匀速流动时,他所游过的路程,过河所用的时间与水速的关系是( ) A .水速大时,路程长,时间长 B .水速大时,路程长,时间短 C .水速大时,路程长,时间不变 D .路程、时间与水速无关2.如图所示,A 、B 为两游泳运动员隔着水流湍急的河流站在两岸边,A 在较下游的位置,且A 的游泳成绩比B 好,现让两人同时下水游泳,要求两人尽快在河中相遇,试问应采用下列哪种方法才能实现?( ) A. A 、B 均向对方游(即沿虚线方向)而不考虑水流作用 B. B 沿虚线向A 游且A 沿虚线偏向上游方向游 C. A 沿虚线向B 游且B 沿虚线偏向上游方向游D. 都应沿虚线偏向下游方向,且B 比A 更偏向下游v 水v 船θvv 水θ vαABE v 船3.一条自西向东的河流,南北两岸分别有两个码头A 、B ,如图所示.已知河宽为80 m ,河水流速为5 m/s ,两个码头A 、B 沿水流的方向相距100 m .现有一只船,它在静水中的行驶速度为4 m/s ,若使用这只船渡河,且沿直线运动,则( )A .它可以正常来往于A 、B 两个码头 B .它只能从A 驶向B ,无法返回C .它只能从B 驶向A ,无法返回D .无法判断4.在抗洪抢险中,战士驾驶摩托艇救人,假设江岸是平直的,洪水沿江向下游流去,水流速度为v 1,摩托艇在静水中的航速为v 2,战士救人的地点A 离岸边最近处O 的距离为d ,如战士想在最短时间内将人送上岸,则摩托艇登陆的地点离O 点的距离为( )A .21222υυυ-d B .0 C .21υυd D .12υυd5.某人横渡一河流,船划行速度和水流动速度一定,此人过河最短时间为了T 1;若此船用最短的位移过河,则需时间为T 2,若船速大于水速,则船速1v 与水速2v 之比为( )(A)21222T T T - (B) 12T T (C)22211TT T - (D) 21T T6.一条河宽100米,船在静水中的速度为4m/s ,水流速度是5m/s ,则( ) A .该船可能垂直河岸横渡到对岸B .当船头垂直河岸横渡时,过河所用的时间最短C .当船头垂直河岸横渡时,船的位移最小,是100米D .当船横渡时到对岸时,船对岸的最小位移是100米7.如图所示,小船从A 码头出发,沿垂直河岸的方向划船,若已知河宽为d ,划船的速度v 船恒定. 河水的流速与到河岸的最短距离x 成正比,即)其中k 为常量。

小船渡河问题分析(实用)汇编

小船渡河问题分析(实用)汇编
小船渡河问题详解
小船渡河问题分支
渡河的最 短时间 渡河的最 短位移
小船渡河 问题
小船过河问题 分析: 船渡河时,小船的实际运动可看做, 随水以水的速度 v 漂流的运动,和以船速 V 相对于静水的划行运动的合运动。


小船过河问题一般分两类:求渡河的最短时间,以及渡河 的最短位移。
具体分析: 河宽d,静水中船速 V 水流速度 V水 , 船速与河岸的夹角为θ。 0 (一)当 90 及船速与河岸方向夹角为锐 角时。
小船渡河的最短时间与水 流速度无关,即无论水流 速度多大,小船渡河最短 时间为河岸垂直距离d与船 速的比值
t
min
d / v船
900
同理当 时渡 河的最短时间
d
t
min
d / v船
V1
θ
V船
V2 V水
渡河的最短位移
V船
V1
d
V2
V水
分析:船在冻水中渡河的唯一大小和方向取决于船速和水速 和速度的大小和方向。 过0点以 V船 为半径作圆。 当船速大于水速,即 V船 V水 时 此时若 V2 V船 cos V水 则有 V合 V1 V船 sin 合速 度方向垂直于河岸,小船垂直河岸渡河,此时渡河位移最短, 即为河岸距离d。
d
V合
V船
θ
V水
当 V船 V水 时,小船不能垂直于河岸渡河,此时和速度沿圆 的切线方向时,位移最短 smin d dV水
cos V船

如右图将船速分解成垂直 于河岸方向的 V 和水平 方向的速度 V
2 1
d V

V
θ
2
V2 V 船 sin
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小船渡河问题【专题概述】1. 合运动与分运动的关系等效性 各分运动的共同效果与合运动的效果相同 等时性 各分运动与合运动同时发生和结束,时间相同独立性各分运动之间互不相干,彼此独立,互不影响 同体性 :各分运动与合运动的研究对象是同一物体的运动2. 合运动与分运动的求法(1) 运动合成与分解:已知分运动求合运动,叫运动的合成;已知合运动求分运动,叫运动的分解。

(2) 运动合成与分解的法则:合成和分解是位移、速度、加速度的合成与分解,这些量都是矢量,遵循的是平行四边形定则。

(3) 运动合成与分解的方法:在遵循平行四边形定则的前提下,处理合运动和分运动关系时要灵活采用合适的方法,或用作图法,或用【解析】法,依情况而定。

可以借鉴力的合成和分解的知识,具体问题具体分析。

3. 小船过河:三种过河情况 (1)过河时间最短:小船沿着上述不同的方向运动,走到对岸的时间是不相等的,由于运动的等时性知,在垂直于河岸上的速度越大则过河时间越短,所以此时应该调整小船沿着d 的方向运动,则求得最短时间为船v d t =m in (2)过河路径最短:'第一种情况:当船速大于水速时从上图可以看出,当我们适当调整船头的方向,使得船在水流方向上的分速度等于水速,即21cos v v =θ此时水流方向上小船是不动的,小船的合速度即为V 向对岸运动,此时小船的最短位移为S d =第二种情况:船速小于水速,那么在水流方向上,船的分速度12cos v v θ<此时无论我们怎么调整船头的方向都没有办法保证水流方向的合速度为零,所以小船一定要向下游漂移,如图(当合速度的方向与船相对水的速度的方向垂直时,合速度的方向与河岸的夹角最短,渡河航程最小; 根据几何关系,则有:d s =12v v ,因此最短的航程是:21v s d v =【典例精讲】1. 求最短位移典例1如图,小船在静水中航行速度为10 m/s ,水流速度为5 m/s ,为了在最短距离内渡河,则小船船头应该保持的方向为(图中任意两个相邻方向间的夹角均为30°)( )A . a 方向B . b 方向C . c 方向D . d 方向典例2船在静水中的航速为v 1,水流的速度为v 2,为使船行驶到河正对岸的码头,则v 1相对v 2的方向应为( )A .B .C .D .2. 求最短时间*典例3小河宽为d ,河水中各点水流速度大小与各点到较近河岸边的距离成正比,即kx v =水,dv k o4=,x 是各点到近岸的距离.小船划水速度大小恒为v 0,船头始终垂直河岸渡河.则下列说法正确的是( )A .小船的运动轨迹为直线B .水流速度越大,小船渡河所用的时间越长C .小船渡河时的实际速度是先变小后变大D .小船到达离河对岸43d处,船的渡河速度为02v3. 船速大于水速典例4(多选) 如图所示,某人由A 点划船渡河,船头指向始终与河岸垂直,则( )?A .船头垂直河岸渡河所用时间最短B .小船到达对岸的位置为正对岸的B 点C .保持其他条件不变,小船行至河中心后,若水流速度突然增大,则渡河时间变长D .保持其他条件不变,小船行至河中心后,若水流速度突然增大,则渡河位移变大典例5(多选) 在宽度为d 的河中,水流速度为v 2,船在静水中速度为v 1(且v 1>v 2),方向可以选择,现让该船开始渡河,则该船( )A .可能的最短渡河时间为2v dB .可能的最短渡河位移为dC .只有当船头垂直河岸渡河时,渡河时间才和水速无关D .不管船头与河岸夹角是多少,渡河时间和水速均无关 4. 水速大于船速:典例6 (多选)一船在静水中的速度是6m/s ,要渡过宽为180m 、水流速度为8 m/s 的河流,则下列说法中正确的是( )A .船相对于地的速度可能是15m/sB .此船过河的最短时间是30sC .此船可以在对岸的任意位置靠岸D .此船不可能垂直到达对岸 5. 综合题典例7 已知某船在静水中的速度为v 1=4 m/s,现让船渡过某条河。

假设这条河的两岸是理想的平行线,河宽为d=100 m,水流速度为v 2=3 m/s,方向与河岸平行,(1) 欲使船以最短时间渡河,航向怎样最短时间是多少船发生的位移有多大(2) 欲使船以最小位移渡河,航向又怎样渡河所用时间是多少 【总结提升】^解决小船渡河问题应注意的两个问题(1)渡河时间只与船垂直于河岸方向的分速度有关,与水速无关(2)渡河位移最短值与船速与水速的大小有关,当船速大于水速时,最短位移为河宽 当船速小于水速时,应利用图解法求极值的方法处理 船头垂直于河岸时,航行时间最短,船v d t m in在处理此问题时要注意三个速度值:小船在静水中的速度、水流的速度、船的实际速度。

【专练提升】1、(多选)在一条宽200 m 的河中,水的流速v 1=1 m/s ,一只小船要渡过河至少需要100 s 的时间.则下列判断正确的是( )A .小船相对于静水的速度为2 m/sB .无论小船怎样渡河都无法到达正对岸#C .若小船以最短时间渡河,到达对岸时,距正对岸100 mD .若小船航向(船头指向)与上游河岸成60°角,则小船渡河位移最短 2、(多选)甲、乙两船在同一条河流中同时开始渡河,河宽为H ,河水流速为v 0,划船速度均为v ,出发时两船相距332H ,甲、乙两船船头均与河岸成60°角,如图所示.已知乙船恰好能垂直到达对岸A 点,则下列判断正确的是( )A .甲、乙两船到达对岸的时间不同B .v =2v 0C .两船可能在未到达对岸前相遇D .甲船也在A 点靠岸3、一艘小船要从O 点渡过一条两岸平行、宽度为d=100 m 的河流,已知河水流速为v 1=4 m/s ,小船在静水中的速度为v 2=2 m/s ,B 点距正对岸的A 点x 0=173 m .下面关于该船渡河的判断,其中正确的是( )A . 小船过河的最短航程为100 m:B . 小船过河的最短时间为25 sC . 小船可以在对岸A 、B 两点间任意一点靠岸D . 小船过河的最短航程为200 m4、如图所示,河水流动的速度为v 且处处相同,河宽度为a .在船下水点A 的下游距离为b 处是瀑布.为了使小船渡河安全(不掉到瀑布里去)( )A . 小船船头垂直河岸渡河时间最短,最短时间为t=.速度最大,最大速度为v max =bavB . 小船轨迹沿y 轴方向渡河位移最小.速度最大,最大速度为v max =bb a v 22+速度v min =bav C . 小船沿轨迹AB 运动位移最大、时间最短.速度最小,最小D . 小船沿轨迹AB 运动位移最大.速度最小,最小速度v min =22b a vb +5、如图所示,甲、乙两船在同一河岸边A 、B 两处,两船船头方向与河岸均成θ角,且恰好对准对岸边C 点.若两船同时开始渡河,经过一段时间t ,同时到达对岸,乙船恰好到达正对岸的D 点.若河宽d 、河水流速均恒定,两船在静水中的划行速率恒定,不影响各自的航行,下列判断正确的是( )]A . 两船在静水中的划行速率不同B . 甲船渡河的路程有可能比乙船渡河的路程小C . 两船同时到达D 点 D . 河水流速为td θtan6、如图所示,两次渡河时船相对水的速度大小和方向都不变.已知第一次实际航程为A 至B ,位移为x 1,实际航速为v 1,所用时间为t 1.由于水速增大,第二次实际航程为A 至C ,位移为x 2,实际航速为v 2,所用时间为t 2.则( )A . t 2>t 1,v 2=112x v x B . t 2>t 1,v 2=211x v xC . t 2=t 1,v 2=112x v x D . t 2=t 1,v 2=211x v x小船渡河问题答案【典例精讲】?典例1【答案】C【解析】因为水流速度小于船在静水中速度,则合速度与河岸垂直时,渡河航程最短,最短航程等于河的宽度;因船在静水中速度为10 m/s ,水流速度为5 m/s ,设船头与河岸的夹角为θ,则有水流速度与船在静水中速度的夹角为cos θ=21,即θ=60°;则船头与河岸的夹角为60°,且偏向上游,由图可知,C 正确,A ,B ,D 错误.典例2【答案】C【解析】根据小船渡河问题的知识,可知要使船垂直到达正对岸即要船的合速度指向对岸.根据平行四边形定则,合运动方向与水速垂直,仅C 能满足典例3【答案】D典例4【答案】AD典例5【答案】BD【解析】当船头与河岸垂直时,渡河时间最短,为,因而A错误;当合速度与河岸垂直时,渡河位移最小,为d,故B正确;将船的实际运动沿船头方向和水流方向分解,由于各个分运动互不影响,因而渡河时间等于沿船头方向的分运动时间,为t=(x1为沿船头指向的分位移)显然与水流速度无关,因而C 错误,D正确。

]典例6【答案】BD典例7【答案】(1)当船在垂直于河岸方向上的分速度最大时,渡河所用时间最短125m (2)当船1007的实际移动速度方向垂直于河岸时,船的位移最小s7【解析】(1)当船在垂直于河岸方向上的分速度最大时,渡河所用时间最短,河水流速平行于河岸,不影响渡河时间,所以当船头垂直于河岸向对岸渡河时,所用时间最短,则最短时间为t==,当船到达对岸时,船沿河流方向也发生了位移,由直角三角形的知识可得,船的位移为l=,由题意可得x=v2t=3 m/s×25 s=75 m,代入得l=125 m。

{【专练提升】1、【答案】ACD【解析】当小船的船头始终正对对岸时,渡河时间最短:t=;因此v船==m/s=2 m/s;小船以最短时间渡河,到达对岸时,距正对岸的距离,x=v水t=1×100 m=100 m.即在正对岸下游100 m 处靠岸.故A,C正确;当合速度与河岸垂直,小船到达正对岸.设静水速的方向与河岸的夹角为θ.cos θ==解得:θ=60°,故B错误,D正确.2、【答案】BD3、【答案】D4、【答案】D【解析】当小船船头垂直河岸渡河时间最短,最短时间为:t=,故A错误;小船轨迹沿y轴方向渡河位移最小,为a,但沿着船头指向的分速度必须指向上游,合速度不是最大,故B错误;由图,小船沿轨迹AB运动位移最短,由于渡河时间,与船的船头指向沿垂直河岸的分速度有关,故时间不一定最短,故C 错误;要充分利用水流的速度,故要合速度要沿着AB方向,此时位移显然是最大的.的速度最小,故:,故v合=;故D正确.5、【答案】C6、【答案】C。

相关文档
最新文档