三相变压器的联结组别

合集下载

三相变压器的连接组别(星形连接、三角形连接)

三相变压器的连接组别(星形连接、三角形连接)

三相变压器的连接组别(星形连接、三角形连接)三相变压器中,三个原边线圈与三相交流电源连接应当由两种解法,即星形连接和三角形0连接。

如下图(a)、(b)所示。

当星形连接(Y形)连接时,首端1U1、1V1、1W1为引出端时,将三相末端1U2、1V2、1W2连接在一起成为中性点,若要把中性点引出,则以“N”标志,接线方式用YN表示。

同样,三个副线圈的连接方式也应当有这两种接法。

三相变压器原、副边绕组都可用星形连接、三角形连接,用星形连接时,中性点可引出,也可不引出,这样原、副边绕组可有如下的组合:Y/Y或Y/Yn;Y/△或Yn/△;△/Y或△/Yn;△/△等连接方式。

但是,这些组合符号不足以完全说明原、副边绕组连接关系的全部情况,还应进一步用时针表示法来说明原、副边绕组间电动势的相位关系。

时钟盘上有两个指针,12个字码,分成12格,每格代表一个钟,一个圆周的角度是360°,故每格式30°。

以短针顺时针的方向计算,例如12点和11点之间应该是30°*11=330°;反过来时针向前转了300°,那必定指示300°/30°=10点。

变压器的连接组别就是用时计的表示方法说明原、副边线电压的相位关系。

三相变压器的一次绕组和二次绕组由于接线方式的不同,线电压间有一定相位差。

以一次线电压作长针,把它固定在12点上,二次侧相应线电压相量作为短针,如果他们相隔330度,则二次线电压相量必定落在330°/30=11点,如右图所示。

如果相差180°,那么二次电压相量必定落在6点上,也就是说这一组三相变压器接线组别属于6点。

Y/Y连接如下图所示,原副边绕组不仅都是Y连接,而且原边和副边都以同极性端作为首端,因此从相量图上可以看出原、副边的电动势是同相位,所以应标记为“12”,即把这种连接标记为Y/Y-12连接组。

新标准用(y,y0)表示在图(b)中原、副边的极性不同,因此同相量图上可以看出原副边的180°相位差,所以应标记为“6”,即这种连接法成为Y/Y-6连接组(新标准用y,y6表示)。

三相变压器的连接组别

三相变压器的连接组别
3 、变压器连接组别示例
பைடு நூலகம்
( 1 ) Y/Y-12 ( Y , y12 )
*
ÙAB =Ùab =-
*
ÙA
Ùa Ùab
ÙA +ÙB
Ùa +Ùb
- ÙA ÙB
ÙAB
*
*
ÙB Ùb ÙC 12 ÙAB 3 Ùc
* *
ÙAB Ùb Ùc
ÙAB
Ùab ÙA Ùa
9 ÙC
Ùab
6
(2) Y/Y-6 ( Y , y6 ) ÙAB = - ÙA + Ù B
ÈA A* ÈA Èa X a
原磁通 减少
*
新产生的 磁通
x
Èa
*
原磁通 增加
ÈA*
A
X a x
*
ÈA
新产生的 磁通
Èa
如下图所示,当原磁通增 加时,A和a( X 和 x )也为同 名端。
*
Èa
三、变压器的连接组别
1、连接组别
变压器高、低压两侧三相绕组的连接方式以及 对应线电压的相位关系(连接组标号),称为变 压器的连接组别。 2、连接组别标号的时钟表示法 以变压器高压侧线电压为时钟的长针,永远 固定在“ 12 ”的位置上,以低压侧对应的线电压 为时钟的短针,短针所指的时数就是变压器连接 组的标号。

二、变压器的极性

一、三相变压器的连接方法
三、变压器的连接组别 四、变压器连接组别综述(小结)
一、三相变压器的连接方法
1、 星形连接
将三相绕组的三个末端 X , Y , Z (低压x ,y,z) 分别连接在 一起,三个首端 A 、 B 、 C (低压 a、b、c) 分别引出,便构成星形连 接,用 Y表示 (新:高压Y,低压 y )。 2 、 三角形连接 将高、低压绕组的一相末端 与另一相的首端分别依次连接在 一起,构成一个回路,便构成三 角形连接,用△表示( 新:高压 D,低压d )。 顺序三角形接法:ax-by-cz-a 逆序三角形接法:ax-cz-by-a

三相变压器的连接组别

三相变压器的连接组别
纲要
一、三相变压器的连接方法 二、变压器的极性 三、变压器的连接组别 四、变压器连接组别综述(小结)
一、三相变压器的连接方法
1、 星形连接
A
将三相绕组的三个末端 X ,
B
Y , Z (低压x ,y,z) 分别连接在
C
一起,三个首端 A 、 B 、 C (低压
a、b、c) 分别引出,便构成星形连
接,用 Y表示 (新:高压Y,低压
ÙAB
ÙAB = - ÙA +ÙB Ùab = Ùb
ÙB
A
*
ÙA
Ùa
*
ÙB
Ùb
*
ÙC
Ùc
逆序三角形接法
bz Ùb
ÙAB
Ùc cx
Ùa
a y ÙA
ÙC
12
9
Ùab ÙAB
3
6
a

ab
*
*
四、变压器连接组别综述(小结)
1、变压器的连接组别很多,为了制造和并列运行 的方便,我国电力变压器只生产Y/Y0-12、 Y0/Y12 、 Y/Y-12 、Y/△-11 及Y0/△-11五种连接组别,
y )。
2 、 三角形连接
将高、低压绕组的一相末端
与另一相的首端分别依次连接在
一起,构成一个回路,便构成三
A
角形连接,用△表示( 新:高压
D,低压d )。
顺序三角形接法:ax-by-cz-a
逆序三角形接法:ax-cz-by-a
Xx
a
Yy
b
Zz
c
星形连接
顺序三角形接法 a
逆序三角形接法
二、变压器的极性
同极性端(同名端):
任意瞬间,高压绕组的某 一端点的电位为正(高电位)

我国三相变压器的标准连接组别Yyn0

我国三相变压器的标准连接组别Yyn0
(1)当总负载为2600kVA时,各台变压器分担的 负载各为多少?
(2)在不使任何一台变压器过载时,最大的输出功 率?设备的利用率为多少?
解:(1)
Z* kI
U kI
0.055
Z* kII
U kII
0.065
I SNI II SNII 2600

I
Z
* kI

Z kI
S II NII
*
Z kII
SI NII
0.846 I S NII 1353.6(kVA)
最大输出负载:
Smax SI SII 2353.6(kVA)
设备的利用率:
Smax 2353.6 100% 90.52% S NI S NII 1000 1600
I I Z kI
I NI
UN I NI
I II Z kII
I NII
UN I NII

I
Z
* kI

Z* II kII
变压器分担的负载大小与其短路
阻抗标么值成反比。
例5.1 两台三相变压器并联运行,其连接组别和变 比均相同,SNⅠ=1000kVA,UkⅠ=5.5%; SNⅡ =1600kVA, UkⅡ =6.5% 。试求:
第一节 三相变压器的磁路
三相组式变压器及连结(图2-tem6)
2019/11/8
第二节 三相变压器的连接组
三相变压器的磁路系统--铁心的 结构形式
三相变压器的磁路系统(图3-23)
2019/11/8
第一节 三相变压器的磁路
二、各相磁路彼此相关 铁心为三相所共有的三相变压器
三相芯式变压器(图2-tem7)

三相变压器的连接组别

三相变压器的连接组别

Δ/Y-11连接
一次绕组为Δ型连接,二次 绕组为Y型连接,且一次绕 组的线电压超前于二次绕 组的线电压30度,适用于 需要输出电压幅值小于输 入电压幅值的场合。
03 三相变压器连接组别的判 断方法
通过绕组接线端子进行判断
总结词
通过观察三相变压器绕组的接线端子,可以初步判断其连接组别。
详细描述
根据接线端子的排列和连接方式,可以大致判断出变压器的连接组别。例如, 如果接线端子顺序为"Y-Y-Y",则可能是"Y"型连接组别;如果接线端子顺序为 "D-D-D",则可能是"D"型连接组别。
在无功补偿装置中的应用
无功补偿原理
三相变压器在无功补偿装置中起到关键 作用。通过调整变压器的变比,可以改 变无功补偿装置的输出电压,从而实现 对系统无功的补偿或吸收。
VS
无功补偿装置的应用
在电力系统中,无功补偿装置通常与三相 变压器配合使用,以实现系统的无功平衡 和电压稳定。通过合理配置三相变压器的 连接组别,可以优化无功补偿装置的性能 ,提高电力系统的稳定性。
在电机控制中的应用
电机启动控制
通过三相变压器,可以实现电机的启动控制。通过改变变压 器的输入电压或电流,可以控制电机的启动转矩和启动速度 ,从而实现对电机的精确控制。
电机调速控制
利用三相变压器的变比特性,可以实现电机的调速控制。通 过改变变压器的匝数比或相位角,可以改变电机输入的电压 或电流,从而实现电机的调速。
电压变换
通过三相变压的变换,实现电力系统中的电压 等级转换,满足不同设备的用电需求。
隔离与保护
三相变压器能够隔离故障设备,减小故障影响范 围,提高电力系统的稳定性和安全性。

三相变压器的连接组别

三相变压器的连接组别

三相变压器的连接组别三相变压器是一种常见的电力设备,用于将电能从一种电压水平转换为另一种电压水平。

其连接组别是指变压器的三个相线如何连接以实现所需的电压转换。

在三相变压器中,有两种常见的连接组别方式:星形连接组别(Y 型连接)和三角形连接组别(Δ型连接)。

1. 星形连接组别(Y型连接):在星形连接组别中,变压器的三个相线的连接形成一个星形。

这意味着变压器的winding的一个端点集中连接在一起,并且该点是系统的中性点。

另外两个端点通过电缆连接到三相电源或负载。

星形连接组别常用于系统中电压较低的一侧,而不适用于高电压一侧。

星形连接组别的优点包括:- 提供对称的电压和电流分配,减少不平衡问题。

- 较低的绝缘要求,因为相线与中性点的绝缘相对较小。

- 使系统能够接地,并提供对地故障电流的路径。

星形连接组别的缺点包括:- 较低的电压变换比,因为相线与中性点之间有额外的电阻。

- 需要中性点的绝缘,以保证安全。

2. 三角形连接组别(Δ型连接):在三角形连接组别中,变压器的三个相线的连接形成一个闭合的三角形回路。

这意味着电流在三个相线之间按顺序循环,并且没有中性点。

三角形连接组别常用于系统中电压较高的一侧,因为它可以实现较高的电压变换比。

三角形连接组别的优点包括:- 较高的电压变换比,因为没有额外的电阻。

- 高电流负载能力,适用于大功率负载。

三角形连接组别的缺点包括:- 不提供对称的电压和电流分配,可能会导致不平衡问题。

- 更高的绝缘要求,因为相线之间的电压相对较高。

除了以上的两种常见的连接组别方式,还有其他一些特殊的连接组别方式,例如Zig-Zag连接组别、V连接组别等。

这些连接组别方式根据具体的应用和需求而定,用于特殊的电压转换和电力系统配置。

需要注意的是,无论使用哪种连接组别方式,安全性都是非常重要的。

变压器应该根据规范进行正确的接线和绝缘,以确保电能转换的安全和稳定。

总结:三相变压器的连接组别是指变压器的三个相线如何连接以实现所需的电压转换。

三相变压器的连接组别

三相变压器的连接组别
i03A i03msin3t i03B i03msin3(t120)i03msin3t i03C i03msin3(t120)i03msin3t
i 3 i 0 3 0 3
i
03
i03 i03
一、绕组连接形式对三次谐波电流的影响
由于磁路的饱和性,主磁通与空载电流 为非线性关系,当空载电流包含基波电流和 三次谐波电流时,主磁通为正弦波。
交链同一磁通的高、低压绕组首端是异名端时
五、三相变压器连接组别的确定
五、三相变压器连接组别的确定
五、三相变压器连接组别的确定
五、我国三相变压器的标准连接组别
Y,yn0;Y,d11;YN,d11;YN,y0;Y,y0。 Y,yn0:低压侧可引出中性线,成为三相四线制,用作配电 变压器时可兼供动力和照明负载。 Y,d11:用于低压侧超过400V的线路中。 YN,d11:用于高压输电线路中,使电力系统的高压侧中性 点有可能接地。
3.1 三相变压器的连接组别
引入
引入
一、连接组别的概念
连接组别:反映变压器高、低压侧绕组的连接方式,以及在 正相序电源时,高、低压侧绕组对应线电势的相位关系。
一、连接组别的概念
时钟表示法
例:Y,d3
低压侧电势Eab滞后 对应的高压侧EAB 3×30°
二、课堂演示
观看示波器显示出的EAB与Eab的相位关系
主磁通为 正弦波
电势为正 弦波
课堂练习
ABC ***
X
YZ
abc ***
xy z
小结
连接组别的概念 时钟表示法 同名端 首末端和同极性端对电势相位关系的影响 三相变压器连接组别的确定 标准连接组别
3.2 磁路和电路连接形式对空 载电势波形的影响

三相变压器地连接组别(星形连接、三角形连接)

三相变压器地连接组别(星形连接、三角形连接)

三相变压器的连接组别(星形连接、三角形连接)三相变压器中,三个原边线圈与三相交流电源连接应当由两种解法,即星形连接和三角形0连接。

如下图(a)、(b)所示。

当星形连接(Y形)连接时,首端1U1、1V1、1W1为引出端时,将三相末端1U2、1V2、1W2连接在一起成为中性点,若要把中性点引出,则以“N”标志,接线方式用YN表示。

同样,三个副线圈的连接方式也应当有这两种接法。

三相变压器原、副边绕组都可用星形连接、三角形连接,用星形连接时,中性点可引出,也可不引出,这样原、副边绕组可有如下的组合:Y/Y或Y/Yn;Y/△或Yn/△;△/Y或△/Yn;△/△等连接方式。

但是,这些组合符号不足以完全说明原、副边绕组连接关系的全部情况,还应进一步用时针表示法来说明原、副边绕组间电动势的相位关系。

时钟盘上有两个指针,12个字码,分成12格,每格代表一个钟,一个圆周的角度是360°,故每格式30°。

以短针顺时针的方向计算,例如12点和11点之间应该是30°*11=330°;反过来时针向前转了300°,那必定指示300°/30°=10点。

变压器的连接组别就是用时计的表示方法说明原、副边线电压的相位关系。

三相变压器的一次绕组和二次绕组由于接线方式的不同,线电压间有一定相位差。

以一次线电压作长针,把它固定在12点上,二次侧相应线电压相量作为短针,如果他们相隔330度,则二次线电压相量必定落在330°/30=11点,如右图所示。

如果相差180°,那么二次电压相量必定落在6点上,也就是说这一组三相变压器接线组别属于6点。

Y/Y连接如下图所示,原副边绕组不仅都是Y连接,而且原边和副边都以同极性端作为首端,因此从相量图上可以看出原、副边的电动势是同相位,所以应标记为“12”,即把这种连接标记为Y/Y-12连接组。

新标准用(y,y0)表示在图(b)中原、副边的极性不同,因此同相量图上可以看出原副边的180°相位差,所以应标记为“6”,即这种连接法成为Y/Y-6连接组(新标准用y,y6表示)。

三相变压器极性及连接组别

三相变压器极性及连接组别
总结词:通过测量两个线圈末端的极性,可以确定三角形连接变压器的极性。
曲折形(Z)连接的变压器极性判断
曲折形连接的变压器,其三个线圈按照一定的规律相互连接。极性判断时,需要 先确定曲折形连接的具体规律,然后根据规律判断每个线圈的极性。通常需要结 合变压器的铭牌、接线图等信息进行判断。
总结词:曲折形连接变压器的极性判断需要综合考虑多种因素,包括线圈的接线 规律、铭牌信息等。
极性及连接组别的选择还影响到无功补偿装置的补偿精度和响应速度,对 于电力系统的稳定性和经济性具有重要意义。
04
CATALOGUE
三相变压器极性及连接组别的测试方法
直流法测试三相变压器极性及连接组别
总结词
通过测量一次侧和二次侧的直流电阻来判定极性和连接组别。
详细描述
在三相变压器的一次侧和二次侧分别接入直流电源,测量各相的直流电阻值, 根据电阻值的大小和相位关系,可以判断出变压器的极性和连接组别。
3. 低压侧三个相绕组的末端连接 在一起形成中性点,但该中性点 不接地。
YNyn0d1连接组别
详细描述
1. 高压侧三个相绕组的首端分别 接到三相电源的A、B、C相上, 而它们的末端连接在一起称为中 性点,并接地。
2. 低压侧三个相绕组的首端分别 与高压侧相绕组的末端连接,形 成三角形接法。
总结词:中性点接地,高压侧三 角形接法,低压侧星形接法,低 压侧中性点不接地。
VS
详细描述
使用专用的变压器极性及连接组别测试仪 器,按照仪器操作说明进行测量,可以快 速准确地判断出变压器的极性和连接组别 。测试结果可以通过器自带的显示屏或 电脑软件进行查看和分析。
05
CATALOGUE
三相变压器极性及连接组别的维护与保养

三相变压器的连接组别(星形连接、三角形连接)

三相变压器的连接组别(星形连接、三角形连接)

三相变压器的连接组别(星形连接、三角形连接)三相变压器中,三个原边线圈与三相交流电源连接应当由两种解法,即星形连接和三角形0连接。

如下图(a)、(b)所示。

当星形连接(Y形)连接时,首端1U1、1V1、1W1为引出端时,将三相末端1U2、1V2、1W2连接在一起成为中性点,若要把中性点引出,则以“N”标志,接线方式用YN表示。

同样,三个副线圈的连接方式也应当有这两种接法。

三相变压器原、副边绕组都可用星形连接、三角形连接,用星形连接时,中性点可引出,也可不引出,这样原、副边绕组可有如下的组合:Y/Y或Y/Yn;Y/△或Yn/△;△/Y或△/Yn;△/△等连接方式。

但是,这些组合符号不足以完全说明原、副边绕组连接关系的全部情况,还应进一步用时针表示法来说明原、副边绕组间电动势的相位关系。

时钟盘上有两个指针,12个字码,分成12格,每格代表一个钟,一个圆周的角度是360°,故每格式30°。

以短针顺时针的方向计算,例如12点和11点之间应该是30°*11=330°;反过来时针向前转了300°,那必定指示300°/30°=10点。

变压器的连接组别就是用时计的表示方法说明原、副边线电压的相位关系。

三相变压器的一次绕组和二次绕组由于接线方式的不同,线电压间有一定相位差。

以一次线电压作长针,把它固定在12点上,二次侧相应线电压相量作为短针,如果他们相隔330度,则二次线电压相量必定落在330°/30=11点,如右图所示。

如果相差180°,那么二次电压相量必定落在6点上,也就是说这一组三相变压器接线组别属于6点。

Y/Y连接如下图所示,原副边绕组不仅都是Y连接,而且原边和副边都以同极性端作为首端,因此从相量图上可以看出原、副边的电动势是同相位,所以应标记为“12”,即把这种连接标记为Y/Y-12连接组。

新标准用(y,y0)表示在图(b)中原、副边的极性不同,因此同相量图上可以看出原副边的180°相位差,所以应标记为“6”,即这种连接法成为Y/Y-6连接组(新标准用y,y6表示)。

三相变压器连接组别

三相变压器连接组别

Yy联结的三相变压器,共有Yy0、Yy4、Yy8、Yy6、Yy10、Yy2六种联结组别,标号为偶数Yd联结的三相变压器,共有Yd1、Yd5、Yd9、Yd7、Yd11、Yd3六种联结组别,标号为奇数国家标准规定,单相双绕组电力变压器只有ⅠⅠ0联结组别一种。

三相双绕组电力变压器规定只有Yyn0、Yd11、YNd11、YNy0和Yy0五种。

变压器的联接组别的表示方法是:大写字母表示一次侧(或原边)的接线方式,小写字母表示二次侧(或副边)的接线方式。

Y(或y)为星形接线,D(或d)为三角形接线。

数字采用时钟表示法,用来表示一、二次侧线电压的相位关系,一次侧线电压相量作为分针,固定指在时钟12点的位置,二次侧的线电压相量作为时针。

变压器接线方式有4种基本连接形式:“Y,y”、“D,y”、“Y,d”和“D,d”。

我国只采用“Y,y”和“Y,d”。

由于Y连接时还有带中性线和不带中性线两种,不带中性线则不增加任何符号表示,带中性线则在字母Y后面加字母n表示。

据GB/T6451-1999《三相油浸式电力变压器技术参数和要求》和GB/T10228-1997《干式电力变压器技术参数和要求》规定,配电变压器可采用Dyn11联结。

而我国新颁布的国家规范《民用建筑电气设计规范》、《工业与民用供配电系统设计规范》、《10KV及以下变电所设计规范》等推荐采用Dyn11联结变压器用作配电变压器。

现在国际上大多数国家的配电变压器均采用Dyn11联结,主要是由于采用Dyn11联结较之采用Yyn0联结有优点:3.1D联结对抑制高次谐波的恶劣影响有很大作用3.1.1在D联结绕组中的三次谐波环流能够在变压器中产生三次谐波磁动势,它与低压绕组的三次谐波磁动势平衡抵消;3.1.2高压相绕组的三次谐波电动势在D联结回路中环流,三次谐波电流可在D联结的一次绕组内形成环流,使之不致注入公共的高压电网中去。

3.2Dyn11联结变压器的零序阻抗比Yyn0联结变压器小得多,有利于低压单相接地短路故障的切除。

三相变压器的连接组别

三相变压器的连接组别

OCCUPATION 1492011 10三相变压器的连接组别文/陈玉江变压器的并联运行,是指变压器的一次绕组都接在某一电压等级的公共母线上,而各变压器的二次绕组也都接在另一电压等级的公共母线上,共同向负载供电的运行方式。

变压器并联运行有如下优点:一是提高了供电的可靠性。

多台变压器并联运行时,如果其中一台变压器发生故障或需要检修,那么另外几台变压器可分担它的负载继续供电。

二是提高运行效率。

可根据电力系统中负荷的变化,调整投入并联的变压器台数,以减小电能损耗。

三是减少一次投资。

可根据用电量的增加,分期分批安装变压器。

三相变压器并联运行的条件有三个:联结组别相同;变比相同;短路电压相同。

当连接组别不同的变压器并联运行时会导致短路烧毁变压器。

变压器的连接组别是指变压器一、二次绕组的连接方式和组别号的总称。

组别号是指用时钟表示法表示一、二侧同名线电压的相量关系。

规定一次侧线电压相量(E AB )为分针指向12点,二次侧对应线电压相量(E ab )为时针,它指向几点就是变压器连接的组别号。

下面以常见的Y,y和Y,d接法探讨总结变压器连接的规律。

一、Y,y接法已知变压器的绕组连接图,及各相一,二次侧的同名端,判断连接组别。

题图变压器绕组连接图一次侧相量图二次侧相量图时钟标号图例1图例2图例3图图1例1:如图1所示,根据给定绕组连接图,分别做出一次侧相量图和二次侧相量图。

需要注意的是:根据时钟表示法的要求,一次侧相量图最好按图中方位画出;而二次侧需要根据一、二次侧间相位关系画出。

最后,根据E AB 和E ab的相位关系确定连接组标号为Y,y0。

为了后面分析的方便,及便于记忆,特作以下规定:一次侧接线图及相量图不变。

二次侧绕组的同名端侧,称为同名端出线;反之,称为异名端出线。

例1中图示即为同名端出线。

二次侧各相量的方向与一次侧同一铁心的相量方向对应。

例2:如图1所示,通过作图,可以确定连接标号为Y,y6。

需要注意的是由于同名端与例1不同,使得二次侧相电势与一次电势相反。

三相变压器连接组别要点

三相变压器连接组别要点

E C
c *
时钟 11点
E ab E b
b
B/b
z
E B
E c E ac源自顺C时 A/a 针 C/c
E a
E b
E c
y
x EA EC
XY Z
x E b
z
图3-10
y
aA
C (b)
(a)
Y,d11连接组
综上所述,三相变压器的连接组别与高、低压绕 组的连接方式、绕组的绕向及端头标志有关。改变其 中任意一个因素,都将影响变压器的连接组别。
概念:把高压绕组的线电势相量作为时钟的长 针(分针),固定指向“12”点,对应的低压绕组线 电势相量作为时钟的短针(时针),其所指的钟点 数就是变压器的连接组别号。
例如:Y,d5 Y,d5表示三相变压器的高压绕组按星形连接,低压 绕组按三角形连接,低压绕组线电势滞后对应的高 压绕组线电势 5 30 150 。
3.2.3 三相变压器连接组别的确定 连接组别用来反映变压器高、低压侧绕组的连接方 式,以及高、低压侧绕组对应线电势的相位关系。 基本的三相连接方式有:
Y,y连接 Y,d连接
D,y连接 D,d连接
由于变压器高、低压绕组对应线电势之间的相位差 总是30°的倍数,所以常用“时钟法”来表示其相位关 系。
1. 时钟法
Z
顺 时
E ab
*
E a
E b
E c
y
(a) 图3-8
x
Aa
XY E bE A
A/a E C
c

C/c
E a
y
E c
C
x
z
(b) Y,y0或Y,y12连接组

三相变压器的连接组别(星形连接、三角形连接)

三相变压器的连接组别(星形连接、三角形连接)

三相变压器的连接组别(星形连接、三角形连接)三相变压器中,三个原边线圈与三相交流电源连接应当由两种解法,即星形连接和三角形0连接。

如下图(a)、(b)所示。

当星形连接(Y形)连接时,首端1U1、1V1、1W1为引出端时,将三相末端1U2、1V2、1W2连接在一起成为中性点,若要把中性点引出,则以“N”标志,接线方式用YN表示。

同样,三个副线圈的连接方式也应当有这两种接法。

三相变压器原、副边绕组都可用星形连接、三角形连接,用星形连接时,中性点可引出,也可不引出,这样原、副边绕组可有如下的组合:Y/Y或Y/Yn;Y/△或Yn/△;△/Y或△/Yn;△/△等连接方式。

但是,这些组合符号不足以完全说明原、副边绕组连接关系的全部情况,还应进一步用时针表示法来说明原、副边绕组间电动势的相位关系。

时钟盘上有两个指针,12个字码,分成12格,每格代表一个钟,一个圆周的角度是360°,故每格式30°。

以短针顺时针的方向计算,例如12点和11点之间应该是30°*11=330°;反过来时针向前转了300°,那必定指示300°/30°=10点。

变压器的连接组别就是用时计的表示方法说明原、副边线电压的相位关系。

三相变压器的一次绕组和二次绕组由于接线方式的不同,线电压间有一定相位差。

以一次线电压作长针,把它固定在12点上,二次侧相应线电压相量作为短针,如果他们相隔330度,则二次线电压相量必定落在330°/30=11点,如右图所示。

如果相差180°,那么二次电压相量必定落在6点上,也就是说这一组三相变压器接线组别属于6点。

Y/Y连接如下图所示,原副边绕组不仅都是Y连接,而且原边和副边都以同极性端作为首端,因此从相量图上可以看出原、副边的电动势是同相位,所以应标记为“12”,即把这种连接标记为Y/Y-12连接组。

新标准用(y,y0)表示在图(b)中原、副边的极性不同,因此同相量图上可以看出原副边的180°相位差,所以应标记为“6”,即这种连接法成为Y/Y-6连接组(新标准用y,y6表示)。

我国三相变压器的标准连接组别Yyn0课件

我国三相变压器的标准连接组别Yyn0课件
缺点
由于采用三相三柱式铁芯结构,容量 较小,适用于中小型变压器;同时由 于铁芯结构对称性较差,容易产生偏 磁现象。
03
Yyn0连接组别的设计与 制作
变压器的设计流程
明确设计需求
根据实际应用场景,明确变压器的设 计要求,如输入输出电压、功率、电 流、阻抗等参数。
选择合适的铁芯和绕组
根据设计需求,选择合适的铁芯形状 和尺寸,并设计绕组的匝数、线径和 排列方式。
应用案例三:新能源发电中的变压器连接
新能源发电概述
随着新能源技术的不断发展,新能源发电在能源 结构中的比重逐渐增加。变压器作为新能源发电 系统中的重要组成部分,其连接组别对于系统的 稳定运行具有重要影响。
连接方式
新能源发电系统中的变压器通常采用单元接线的 方式,即每个单元配备一台变压器。在这种方式 下,采用Yyn0连接组别的变压器能够实现各单元 的平衡输出,提高系统的稳定性。
计算损耗和效率
根据变压器的实际运行条件,计算损 耗和效率,优化设计方案。
确定冷却方式
根据变压器的功率和运行环境,确定 合适的冷却方式,如自然冷却、强制 风冷等。
Yyn0连接组别的设计要点
连接组别的定义
01
Yyn0连接组别是指三相变压器的三个绕组(高压侧、中压侧和
低压侧)之间的连接关系。
相序的确定
02
绝缘处理
绕组之间和绕组与铁芯之间应进行可靠的绝缘处 理,以防止电气故障的发生。
04
Yyn0连接组别的测试与 评估
测试方案与步骤
连接测试线路
按照Yyn0连接组别的接线方式 ,将变压器与测试仪器、测量 仪表连接起来。
执行测试
在设定的测试条件下,启动测 试仪器,记录变压器的运行数 据。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电机学
三相变压器的联结组别
一、绕组的标记方式(又叫标号)
三相绕组的如何连接,如何标号直接影响到联结组的组别,也影响变压器的性能。

首端
A B C(高压边)
(头)
a b c(低压边)
末端
X Y Z(高压边)
(尾)
x y z(低压边)
二、高低压绕组间相电压的相位关系
三相变压器,属于一个铁心柱上绕的两个绕组,只有两个“同相”或“反相”。

决定原则为绕向和标号。

同相
绕向相同,标号相同(同相)
A到X;低压线圈电势由
到x,(图a)
绕向相反,标号相反
A到X;低压线圈电势由
到x,(图d)
反相
绕向相反,标号相同
A到X;低压线圈电势由
到x,(图b)
绕向相同,标号相反 (图c)
三、高低压侧线电压的相位关系---联结组
联结组关系决定原则:(1)高低压线圈的绕向;(2)高低压线圈的标号;(3)三相线圈的连接 方法(Y ,Y N ,D ,Z 等)
其相位不是唯一的60°,30°,180°,还有其他90°,120°,240°等。

恰好是30°的倍 数,这就启发我们找一个方法来表示。

1 时钟表示法
(
如E AB), 时(如E ab)。

E AB 相量永远指向钟表的12∶00,可理解为相量图上 的A 为分针的轴,点B 为分针的矢端;E ab 相量为时针的a B 点的方向。

此外, 联结组符号中的“Y”,“D”和
2 根据线圈接线图画出对应的电压相量图和联结组符号
3根据联结组符号画出对应的电压相量图和线圈接线图。

相关文档
最新文档