第一章《三角形的初步认识》测试卷(含答案)
最新浙教版八年级数学上学期《三角形的初步认识》单元测试及答案解析.docx
《第1章三角形的初步认识》一、填空题1.已知三角形的两边分别为4和9,则此三角形的第三边可能是()A.4 B.5 C.9 D.132.如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=50°,则∠3的度数等于()A.50° B.30° C.20° D.15°3.如图所示,△ACB≌A′CB′,∠BCB′=30°,则∠ACA′的度数为()A.20° B.30° C.35° D.40°4.长为9,6,5,4的四根木条,选其中三根组成三角形,选法有()A.1种B.2种C.3种D.4种5.尺规作图是指()A.用直尺规范作图B.用刻度尺和圆规作图C.用没有刻度的直尺和圆规作图D.直尺和圆规是作图工具6.如图,BE、CF都是△ABC的角平分线,且∠BDC=110°,则∠A=()A.50° B.40° C.70° D.35°7.如图,在△ABC中,∠B=46°,∠C=54°,AD平分∠BAC,交BC于D,DE∥AB,交AC于E,则∠ADE的大小是()A.45° B.54° C.40° D.50°8.一副三角板如图叠放在一起,则图中∠α的度数为()A.75° B.60° C.65° D.55°9.如图,在△ABC中,∠CAB=70°,将△ABC绕点A逆时针旋转到△ADE的位置,连接EC,满足EC∥AB,则∠BAD的度数为()A.30° B.35° C.40° D.50°10.如图所示,△ABC与△BDE都是等边三角形,AB<BD.若△ABC不动,将△BDE绕点B旋转,则在旋转过程中,AE与CD的大小关系为()A.AE=CD B.AE>CD C.AE<CD D.无法确定二、认真填一填11.若三角形的两边长分别为3、4,且周长为整数,这样的三角形共有个.12.如图,在△ABC和△DEF中,已知:AC=DF,BC=EF,要使△ABC≌△DEF,还需要的条件可以是.(只填写一个条件)13.若△ABC≌△DEF,且∠A=110°,∠F=40°,则∠E= 度.14.在△ABC中,∠A:∠B:∠C=1:2:3,则∠A= ,∠C= .15.如图,在△ABC中,∠B=60°,∠C=40°,AD⊥BC于D,AE平分∠BAC;则∠DAE= .16.如图,D、E分别是△ABC边AB、BC上的点,AD=2BD,BE=CE,设△ADC的面积为S1,△ACE的面积为S2,若S△ABC=6,则S1﹣S2的值为.17.如图,将纸片△ABC沿DE折叠,点A落在点P处,已知∠1+∠2=100°,则∠A的大小等于度.18.如图,△ABC中,∠BAC=100°,EF,MN分别为AB,AC的垂直平分线,如果BC=12cm,那么△FAN的周长为cm,∠FAN= .三、解答题19.如图,点A、C、D、B 四点共线,且AC=DB,∠A=∠B,∠E=∠F.求证:DE=CF.20.如图,已知点A、F、E、C在同一直线上,AB∥CD,∠ABE=∠CDF,AF=CE.(1)从图中任找两组全等三角形;(2)从(1)中任选一组进行证明.21.如图,在△ABC中,∠B=40°,∠C=110°.(1)画出下列图形:①BC边上的高AD;②∠A的角平分线AE.(2)试求∠DAE的度数.22.作图,如图已知三角形ABC内一点P(1)过P点作线段EF∥AB,分别交BC,AC于点E,F(2)过P点作线段PD使PD⊥BC垂足为D点.23.如图,在△ABC中,AD平分∠BAC,AD的垂直平分线EF交BC的延长线于点F,连接AF,求证:∠CAF=∠B.24.如图,点D为锐角∠ABC内一点,点M在边BA上,点N在边BC上,且DM=DN,∠BMD+∠BND=180°.求证:BD平分∠ABC.25.如图,在长方形ABCD中,AB=8cm,BC=6cm,点E是CD的中点,动点P从A点出发,以每秒2cm的速度沿A→B→C→E运动,最终到达点E.若设点P运动的时间是t秒,那么当t取何值时,△APE的面积会等于10?26.(14分)课本拓展旧知新意:我们容易证明,三角形的一个外角等于与它不相邻的两个内角的和.那么,三角形的一个内角与它不相邻的两个外角的和之间存在怎样的数量关系呢?1.尝试探究:(1)如图1,∠DBC与∠ECB分别为△ABC的两个外角,试探究∠A与∠DBC+∠ECB之间存在怎样的数量关系?为什么?2.初步应用:(2)如图2,在△ABC纸片中剪去△CED,得到四边形ABDE,∠1=130°,则∠2﹣∠C= ;(3)小明联想到了曾经解决的一个问题:如图3,在△ABC中,BP、CP分别平分外角∠DBC、∠ECB,∠P与∠A有何数量关系?请利用上面的结论直接写出答案.3拓展提升:(4)如图4,在四边形ABCD中,BP、CP分别平分外角∠EBC、∠FCB,∠P与∠A、∠D有何数量关系?为什么?(若需要利用上面的结论说明,可直接使用,不需说明理由)《第1章三角形的初步认识》参考答案与试题解析一、填空题1.已知三角形的两边分别为4和9,则此三角形的第三边可能是()A.4 B.5 C.9 D.13【考点】三角形三边关系.菁优网版权所有【分析】根据三角形的第三边大于两边之差,而小于两边之和求得第三边的取值范围,再进一步选择.【解答】解:根据三角形的三边关系,得第三边大于5,而小于13.故选C.【点评】本题考查了三角形的三边关系,即三角形的第三边大于两边之差,而小于两边之和,此题基础题,比较简单.2.如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=50°,则∠3的度数等于()A.50° B.30° C.20° D.15°【考点】平行线的性质;三角形的外角性质.菁优网版权所有【专题】计算题.【分析】首先根据平行线的性质得到∠2的同位角∠4的度数,再根据三角形的外角的性质进行求解.【解答】解:根据平行线的性质,得∠4=∠2=50°.∴∠3=∠4﹣∠1=50°﹣30°=20°.故选:C.【点评】本题应用的知识点为:三角形的外角等于与它不相邻的两个内角的和.两直线平行,同位角相等.3.如图所示,△ACB≌A′CB′,∠BCB′=30°,则∠ACA′的度数为()A.20° B.30° C.35° D.40°【考点】全等三角形的性质.菁优网版权所有【分析】根据全等三角形性质求出∠ACB=∠A′CB′,都减去∠A′CB即可.【解答】解:∵△ACB≌A′CB′,∴∠ACB=∠A′CB′,∴∠ACB﹣∠A′CB=∠A′CB′﹣∠A′CB,∴∠ACA′=∠BCB′,∵∠BCB′=30°,∴∠ACA′=30°,故选B.【点评】本题考查了全等三角形性质的应用,注意:全等三角形的对应角相等.4.长为9,6,5,4的四根木条,选其中三根组成三角形,选法有()A.1种B.2种C.3种D.4种【考点】三角形三边关系.菁优网版权所有【专题】常规题型.【分析】要把四条线段的所有组合列出来,再根据三角形的三边关系判断能组成三角形的组数.【解答】解:四根木条的所有组合:9,6,5和9,6,4和9,5,4和6,5,4;根据三角形的三边关系,得能组成三角形的有9,6,5和9,6,4和6,5,4.故选:C.【点评】本题考查了三角形的三边关系,熟记三角形的任意两边之和大于第三边,两边之差小于第三边是解题的关键.5.尺规作图是指()A.用直尺规范作图B.用刻度尺和圆规作图C.用没有刻度的直尺和圆规作图D.直尺和圆规是作图工具【考点】作图—尺规作图的定义.菁优网版权所有【分析】根据尺规作图的定义作答.【解答】解:根据尺规作图的定义可知:尺规作图是指用没有刻度的直尺和圆规作图.故选C.【点评】尺规作图是指用没有刻度的直尺和圆规作图.6.如图,BE、CF都是△ABC的角平分线,且∠BDC=110°,则∠A=()A.50° B.40° C.70° D.35°【考点】三角形内角和定理;角平分线的定义.菁优网版权所有【分析】根据数据线的内角和定理以及角平分线的定义,可以证明.【解答】解:∵BE、CF都是△ABC的角平分线,∴∠A=180°﹣(∠ABC+∠ACB),=180°﹣2(∠DBC+∠BCD)∵∠BDC=180°﹣(∠DBC+∠BCD),∴∠A=180°﹣2(180°﹣∠BDC)∴∠BDC=90°+∠A,∴∠A=2(110°﹣90°)=40°.故选B.【点评】注意此题中的∠A和∠BDC之间的关系:∠BDC=90°+∠A.7.如图,在△ABC中,∠B=46°,∠C=54°,AD平分∠BAC,交BC于D,DE∥AB,交AC于E,则∠ADE的大小是()A.45° B.54° C.40° D.50°【考点】平行线的性质;三角形内角和定理.菁优网版权所有【分析】根据三角形的内角和定理求出∠BAC,再根据角平分线的定义求出∠BAD,然后根据两直线平行,内错角相等可得∠ADE=∠BAD.【解答】解:∵∠B=46°,∠C=54°,∴∠BAC=180°﹣∠B﹣∠C=180°﹣46°﹣54°=80°,∵AD平分∠BAC,∴∠BAD=∠BAC=×80°=40°,∵DE∥AB,∴∠ADE=∠BAD=40°.故选:C.【点评】本题考查了平行线的性质,三角形的内角和定理,角平分线的定义,熟记性质与概念是解题的关键.8.一副三角板如图叠放在一起,则图中∠α的度数为()A.75° B.60° C.65° D.55°【考点】三角形的外角性质;三角形内角和定理.菁优网版权所有【分析】因为三角板的度数为45°,60°,所以根据三角形内角和定理即可求解.【解答】解:如图,∵∠1=60°,∠2=45°,∴∠α=180°﹣45°﹣60°=75°,故选A.【点评】本题利用三角板度数的常识和三角形内角和定理,熟练掌握定理是解题的关键.9.如图,在△ABC中,∠CAB=70°,将△ABC绕点A逆时针旋转到△ADE的位置,连接EC,满足EC∥AB,则∠BAD的度数为()A.30° B.35° C.40° D.50°【考点】旋转的性质.菁优网版权所有【分析】根据两直线平行,内错角相等可得∠ACB=∠CAB,根据旋转的性质可得AC=AE,∠BAC=∠DAE,再根据等腰三角形两底角相等列式求出∠CAE,然后求出∠DAB=∠CAE,从而得解.【解答】解:∵CE∥AB,∴∠ACB=∠CAB=75°,∵△ABC绕点A逆时针旋转到△AED,∴AC=AE,∠BAC=∠DAE,∴∠CAE=180°﹣70°×2=40°,∵∠CAE+∠CAD=∠DAE,∠DAB+∠CAD=∠BAC,∴∠DAB=∠CAE=40°.故选C.【点评】本题考查了旋转的性质,平行线的性质,等腰三角形两底角相等的性质,熟记各性质并求出∠DAB=∠CAE是解题的关键.10.如图所示,△ABC与△BDE都是等边三角形,AB<BD.若△ABC不动,将△BDE绕点B旋转,则在旋转过程中,AE与CD的大小关系为()A.AE=CD B.AE>CD C.AE<CD D.无法确定【考点】全等三角形的判定与性质;等边三角形的性质.菁优网版权所有【分析】本题可通过证△ABE和△CBD全等,来得出AE=CD的结论.两三角形中,已知了AB=BC、BE=BD,因此关键是证得∠ABE=∠CBD;由于△ABC和△BED都是等边三角形,因此∠EBD=∠ABC=60°,即∠ABE=∠CBD=120°,由此可得证.【解答】解:∵△ABC与△BDE都是等边三角形,∴AB=BC,BE=BD,∠ABC=∠EBD=60°;∴∠ACB+∠CBE=∠EBD+∠CBE=120°,即:∠ABE=∠CBD=120°;∴△ABE≌△CBD;∴AE=CD.故选A.【点评】本题考查了全等三角形的判定与性质,等边三角形的性质,当出现两个等边三角形时,一般要利用等边三角形的边和角从中找到一对全等三角形.二、认真填一填11.若三角形的两边长分别为3、4,且周长为整数,这样的三角形共有 5 个.【考点】三角形三边关系;一元一次不等式组的整数解.菁优网版权所有【分析】设第三边的长为x,根据三角形的三边关系的定理可以确定x的取值范围,进而得到答案.【解答】解:设第三边的长为x,则4﹣3<x<4+3,所以1<x<7.∵x为整数,∴x可取2,3,4,5,6.故答案为5.【点评】此题主要考查了三角形的三边关系,关键是掌握三角形三边关系定理:三角形两边之和大于第三边.三角形的两边差小于第三边.12.如图,在△ABC和△DEF中,已知:AC=DF,BC=EF,要使△ABC≌△DEF,还需要的条件可以是AB=DE .(只填写一个条件)【考点】全等三角形的判定.菁优网版权所有【专题】开放型.【分析】根据“SSS”添加条件.【解答】解:若加上AB=DE,则可根据“SSS”判断△ABC≌△DEF.故答案为AB=DE.【点评】本题考查了全等三角形的判定:判定方法有“SSS”、“SAS”、“ASA”、“AAS”.13.若△ABC≌△DEF,且∠A=110°,∠F=40°,则∠E= 30 度.【考点】全等三角形的性质.菁优网版权所有【分析】根据全等三角形的性质得出∠D=∠A=110°,∠C=∠F=40°,进而得出答案.【解答】解:∵△ABC≌△DEF,∠A=110°,∠F=40°,∴∠D=∠A=110°,∠C=∠F=40°,∴∠DEF=180°﹣110°﹣40°=30°.故答案为:30;【点评】此题主要考查了全等三角形的性质,利用其性质得出对应角相等是解题关键.14.在△ABC中,∠A:∠B:∠C=1:2:3,则∠A= 30°.,∠C= 90°..【考点】三角形内角和定理.菁优网版权所有【分析】有三角形内角和180度,又知三角形内各角比,从而求出.【解答】解:由三角形内角和180°,又∵∠A:∠B:∠C=1:2:3,∴∠A=180°×=30°,∠C=180°×=90°.故填:30°,90°.【点评】本题考查三角形内角和定理,结合已知条件,从而很容易知道各角所占几分之几.而解得.15.如图,在△ABC中,∠B=60°,∠C=40°,AD⊥BC于D,AE平分∠BAC;则∠DAE= 10°.【考点】三角形内角和定理;三角形的外角性质.菁优网版权所有【分析】根据∠B=60°,∠C=40°可得∠BAC的度数,AE平分∠BAC,得到∠BAE和∠CAE 的度数,利用外角的性质可得∠AED的度数,再根据垂直定义,得到直角三角形,在直角△ABD中,可以求得∠DAE的度数.【解答】解:∵∠C=40°,∠B=60°,∴∠BAC=180°﹣40°﹣60°=80°,∵AE平分∠BAC,∴∠BAE=∠CAE=40°,∴∠AED=80°,∵AD⊥BC于D,∴∠ADC=90°,∴∠DAE=180°﹣80°﹣90°=10°,故答案为:10°.【点评】本题主要考查角平分线的定义和垂直的定义,外角性质,三角形内角和定理,综合利用各定理及性质是解答此题的关键.16.如图,D、E分别是△ABC边AB、BC上的点,AD=2BD,BE=CE,设△ADC的面积为S1,△ACE的面积为S2,若S△ABC=6,则S1﹣S2的值为 1 .【考点】三角形的面积.菁优网版权所有【专题】压轴题.【分析】根据等底等高的三角形的面积相等求出△AEC的面积,再根据等高的三角形的面积的比等于底边的比求出△ACD的面积,然后根据S1﹣S2=S△ACD﹣S△ACE计算即可得解.【解答】解:∵BE=CE,∴S△ACE=S△ABC=×6=3,∵AD=2BD,∴S△ACD=S△ABC=×6=4,∴S1﹣S2=S△ACD﹣S△ACE=4﹣3=1.故答案为:1.【点评】本题考查了三角形的面积,主要利用了等底等高的三角形的面积相等,等高的三角形的面积的比等于底边的比,需熟记.17.如图,将纸片△ABC沿DE折叠,点A落在点P处,已知∠1+∠2=100°,则∠A的大小等于50 度.【考点】三角形内角和定理;翻折变换(折叠问题).菁优网版权所有【分析】根据已知求出∠ADP+∠AEP=360°﹣(∠1+∠2)=260°,根据折叠求出∠ADE+∠AED=×260°=130°,根据三角形内角和定理求出即可.【解答】解:∵∠1+∠2=100°,∴∠ADP+∠AEP=360°﹣(∠1+∠2)=260°,∵将纸片△ABC沿DE折叠,点A落在点P处,∴∠ADE=∠ADP,∠AED=∠AEP,∴∠ADE+∠AED=×260°=130°,∴∠A=180°﹣(∠ADE+∠AED)=50°,故答案为:50.【点评】本题考查了三角形的内角和定理和折叠的性质的应用,注意:三角形的内角和等于180°,题目比较好,难度适中.18.如图,△ABC中,∠BAC=100°,EF,MN分别为AB,AC的垂直平分线,如果BC=12cm,那么△FAN的周长为12 cm,∠FAN= 20°.【考点】线段垂直平分线的性质.菁优网版权所有【分析】由EF,MN分别为AB,AC的垂直平分线,可得AF=BF,AN=CN,即可得△FAN的周长等于BC;又由∠BAC=100°,求得∠BAF+∠CAN=∠B+∠C=180°﹣∠BAC=80°,继而求得答案.【解答】解:∵EF,MN分别为AB,AC的垂直平分线,∴AF=BF,AN=CN,∴△FAN的周长为:AF+FN+AN=BF+FN+CN=BC=12cm;∴∠BAF=∠B,∠CAN=∠C,∵△ABC中,∠BAC=100°,∴∠BAF+∠CAN=∠B+∠C=180°﹣∠BAC=80°,∴∠FAN=∠BAC﹣(∠BAF+∠CAN)=20°.故答案为:12,20°.【点评】此题考查了线段垂直平分线的性质以及等腰三角形的判定与性质.此题难度不大,注意掌握数形结合思想与转化思想的应用.三、解答题19.如图,点A、C、D、B 四点共线,且AC=DB,∠A=∠B,∠E=∠F.求证:DE=CF.【考点】全等三角形的判定与性质.菁优网版权所有【专题】证明题.【分析】根据条件可以求出AD=BC,再证明△AED≌△BFC,由全等三角形的性质就可以得出结论.【解答】证明:∵AC=DB,∴AC+CD=DB+CD,即AD=BC,在△AED和△BFC中,∴△AED≌△BFC.∴DE=CF.【点评】本题考查了线段的数量关系,全等三角形的判定及性质的运用,解答时证明△AED≌△BFC是解答本题的关键.20.如图,已知点A、F、E、C在同一直线上,AB∥CD,∠ABE=∠CDF,AF=CE.(1)从图中任找两组全等三角形;(2)从(1)中任选一组进行证明.【考点】全等三角形的判定.菁优网版权所有【专题】证明题.【分析】(1)根据题目所给条件可分析出△ABE≌△CDF,△AFD≌△CEB;(2)根据AB∥CD可得∠1=∠2,根据AF=CE可得AE=FC,然后再证明△ABE≌△CDF 即可.【解答】解:(1)△ABE≌△CDF,△AFD≌△CEB;(2)∵AB∥CD,∴∠1=∠2,∵AF=CE,∴AF+EF=CE+EF,即AE=FC,在△ABE和△CDF中,,∴△ABE≌△CDF(AAS).【点评】此题主要考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.21.如图,在△ABC中,∠B=40°,∠C=110°.(1)画出下列图形:①BC边上的高AD;②∠A的角平分线AE.(2)试求∠DAE的度数.【考点】作图—复杂作图.菁优网版权所有【分析】(1)利用直角三角板一条直角边与BC重合,沿BC平移使另一直角边过A 画BC边上的高AD即可;再根据角平分线的做法作∠A的角平分线AE;(2)首先计算出∠BAE的度数,再计算出∠BAD的度数,利用角的和差关系可得答案.【解答】解:(1)如图所示:(2)在△ABC中,∠BAC=180°﹣11°﹣40°=30°,∵AE平分∠BAC,∴∠BAE=∠BAC=15°,在Rt△ADB中,∠BAD=90°﹣∠B=50°,∴∠DAE=∠DAB﹣∠BAE=35°.【点评】此题主要考查了复杂作图,以及角的计算,关键是正确画出图形.22.作图,如图已知三角形ABC内一点P(1)过P点作线段EF∥AB,分别交BC,AC于点E,F(2)过P点作线段PD使PD⊥BC垂足为D点.【考点】作图—基本作图.菁优网版权所有【分析】(1)根据过直线外一点作已知直线平行线的方法作图即可;(2)利用直角三角板,一条直角边与BC重合,沿BC平移,使另一条直角边过点P 画垂线即可.【解答】解:如图所示:.【点评】此题主要考查了基本作图,关键是掌握利用直尺做平行线的方法.23.如图,在△ABC中,AD平分∠BAC,AD的垂直平分线EF交BC的延长线于点F,连接AF,求证:∠CAF=∠B.【考点】线段垂直平分线的性质.菁优网版权所有【专题】证明题.【分析】EF垂直平分AD,则可得AF=DF,进而再转化为角之间的关系,通过角之间的平衡转化,最终得出结论.【解答】证明:∵EF垂直平分AD,∴AF=DF,∠ADF=∠DAF,∵∠ADF=∠B+∠BAD,∠DAF=∠CAF+∠CAD,又∵AD平分∠BAC,∴∠BAD=∠CAD,∴∠CAF=∠B.【点评】此题主要考查线段的垂直平分线的性质等几何知识.线段的垂直平分线上的点到线段的两个端点的距离相等.24.如图,点D为锐角∠ABC内一点,点M在边BA上,点N在边BC上,且DM=DN,∠BMD+∠BND=180°.求证:BD平分∠ABC.【考点】全等三角形的判定与性质;角平分线的性质.菁优网版权所有【专题】证明题.【分析】在AB上截取ME=BN,证得△BND≌△EMD,进而证得∠DBN=∠MED,BD=DE,从而证得BD平分∠ABC.【解答】解:如图所示:在AB上截取ME=BN,∵∠BMD+∠DME=180°,∠BMD+∠BND=180°,∴∠DME=∠BND,在△BND与△EMD中,,∴△BND≌△EMD(SAS),∴∠DBN=∠MED,BD=DE,∴∠MBD=∠MED,∴∠MBD=∠DBN,∴BD平分∠ABC.【点评】本题考查了三角形全等的判定和性质,等腰三角形的判定和性质.25.如图,在长方形ABCD中,AB=8cm,BC=6cm,点E是CD的中点,动点P从A点出发,以每秒2cm的速度沿A→B→C→E运动,最终到达点E.若设点P运动的时间是t秒,那么当t取何值时,△APE的面积会等于10?【考点】一元一次方程的应用;三角形的面积.菁优网版权所有【专题】几何动点问题.【分析】分为三种情况讨论,如图1,当点P在AB上,即0<t≤4时,根据三角形的面积公式建立方程求出其解即可;如图2,当点P在BC上,即4<t≤7时,由S△APE=S﹣S△PCE﹣S△PAB建立方程求出其解即可;如图3,当点P在EC上,即7<t≤9四边形AECB时,由S△APE==10建立方程求出其解即可.【解答】解:如图1,当点P在AB上,即0<t≤4时,∵四边形ABCD是矩形,∴AD=BC=6,AB=CD=8.∵AP=2t,∴S△APE=×2t×6=10,∴t=.如图2,当点P在BC上,即4<t≤7时,∵E是DC的中点,∴DE=CE=4.∵BP=2t﹣8,PC=6﹣(2t﹣8)=14﹣2t.∴S=(4+8)×6﹣×(2t﹣8)×8﹣(14﹣2t)×4=10,解得:t=7.5>7舍去;当点P在EC上,即7<t≤9时,PE=18﹣2t.∴S△APE=(18﹣2t)×6=10,解得:t=.总上所述,当t=或时△APE的面积会等于10.【点评】本题考查了矩形的性质的运用,三角形的面积公式的运用,梯形的面积公式的运用.解答时灵活运用三角形的面积公式求解是关键.26.课本拓展旧知新意:我们容易证明,三角形的一个外角等于与它不相邻的两个内角的和.那么,三角形的一个内角与它不相邻的两个外角的和之间存在怎样的数量关系呢?1.尝试探究:(1)如图1,∠DBC与∠ECB分别为△ABC的两个外角,试探究∠A与∠DBC+∠ECB之间存在怎样的数量关系?为什么?2.初步应用:(2)如图2,在△ABC纸片中剪去△CED,得到四边形ABDE,∠1=130°,则∠2﹣∠C= 50°;(3)小明联想到了曾经解决的一个问题:如图3,在△ABC中,BP、CP分别平分外角∠DBC、∠ECB,∠P与∠A有何数量关系?请利用上面的结论直接写出答案∠P=90°﹣∠A .3拓展提升:(4)如图4,在四边形ABCD中,BP、CP分别平分外角∠EBC、∠FCB,∠P与∠A、∠D有何数量关系?为什么?(若需要利用上面的结论说明,可直接使用,不需说明理由)【考点】三角形的外角性质;三角形内角和定理.菁优网版权所有【专题】探究型.【分析】(1)根据三角形的一个外角等于与它不相邻的两个内角的和表示出∠DBC+∠ECB ,再利用三角形内角和定理整理即可得解;(2)根据(1)的结论整理计算即可得解;(3)表示出∠DBC+∠ECB ,再根据角平分线的定义求出∠PBC+∠PCB ,然后利用三角形内角和定理列式整理即可得解;(4)延长BA 、CD 相交于点Q ,先用∠Q 表示出∠P ,再用(1)的结论整理即可得解.【解答】解:(1)∠DBC+∠ECB=180°﹣∠ABC+180°﹣∠ACB=360°﹣(∠ABC+∠ACB )=360°﹣(180°﹣∠A )=180°+∠A ;(2)∵∠1+∠2=∠180°+∠C ,∴130°+∠2=180°+∠C ,∴∠2﹣∠C=50°;(3)∠DBC+∠ECB=180°+∠A ,∵BP 、CP 分别平分外角∠DBC 、∠ECB ,∴∠PBC+∠PCB=(∠DBC+∠ECB )=(180°+∠A ),在△PBC 中,∠P=180°﹣(180°+∠A )=90°﹣∠A ;即∠P=90°﹣∠A ;故答案为:50°,∠P=90°﹣∠A ;(4)延长BA、CD于Q,则∠P=90°﹣∠Q,∴∠Q=180°﹣2∠P,∴∠BAD+∠CDA=180°+∠Q,=180°+180°﹣2∠P,=360°﹣2∠P.【点评】本题考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,三角形的内角和定理,角平分线的定义,熟记性质并读懂题目信息是解题的关键.。
第一章三角形的初步认识测试卷含答案
第一章三角形的初步认识 测试卷姓名姓名_________________________________班级班级班级一、选一选(30分,每题3分)1. 1. 以下列各组线段为边,能组成三角形的是以下列各组线段为边,能组成三角形的是以下列各组线段为边,能组成三角形的是( ) ( ) A A..2cm 2cm、、2cm 2cm、、4cm B 4cm B..2cm 2cm、、6cm 6cm、、3cmC C..8cm 8cm、、6cm 6cm、、3cmD 3cm D..11cm 11cm、、4cm 4cm、、6cm 2. 2. 如图如图如图, , , △△ABD 的一个外角是的一个外角是( ) ( )A. A. ∠∠CB.C B.∠∠CADC.CAD C.∠∠ADBD.ADB D.∠∠ADC ADC (第(第2题)题) 3. 3. 锐角三角形中任意两个锐角的和必大于锐角三角形中任意两个锐角的和必大于锐角三角形中任意两个锐角的和必大于( ) ( ) A. 120A. 120°° B. 110 B. 110°°C. 100C. 100°°D. 90D. 90°°4. 4. 下面关于三角形高的说法正确的是下面关于三角形高的说法正确的是下面关于三角形高的说法正确的是( ) ( )A A.三角形的高就是顶点和对边的垂线.三角形的高就是顶点和对边的垂线.三角形的高就是顶点和对边的垂线B B B.钝角三角形的三条高交于三角形外部.钝角三角形的三条高交于三角形外部.钝角三角形的三条高交于三角形外部C C.锐角三角形的高都在三角形内部.锐角三角形的高都在三角形内部.锐角三角形的高都在三角形内部D D D.直角三角形有且仅有一条高.直角三角形有且仅有一条高.直角三角形有且仅有一条高 5. 5. 若若AD 是△是△ABC ABC 的中线的中线,,则下列结论错误的是则下列结论错误的是( ) ( ) A.AD 平分∠平分∠BAC B.BD=DC C.BAC B.BD=DC C.BAC B.BD=DC C.点点D 为BC 中点中点 D.BC=2DC D.BC=2DC6. 6. 如图,如图,如图,AC AC 与BD 相交于点O.O.已知已知OA=OC,OB=OD, OA=OC,OB=OD, 则能说明△则能说明△则能说明△AOB AOB AOB≌△≌△≌△COD COD 的理由是(的理由是( )) A. SSSB. ASAC. SASD. AAS(第6题) () (第第7题)7. 7. 如图如图如图,,点P 是∠是∠BAC BAC 的平分线AD 上一点上一点,PE ,PE ,PE⊥⊥AC 于点E,PE=5,E,PE=5,则点则点P 到AB 的距离是( )) A. 15 B. 10 C. 6 D. 58.△ABC 中,AD 是BC 边上的中线边上的中线,,△ABD 与△与△ACD ACD 的周长差是3cm,AC=7cm,3cm,AC=7cm,则则AB 的长是( ))A. 4B. 10C. 4或10D. 10 D. 无法判断无法判断无法判断9. 9. 如图如图如图,,在ΔABC 中BC 边上的垂直平分线交AC 于点D,AB=3,AC=7,D,AB=3,AC=7,则则ΔABD 的周长为( )) A. 10 B. 11 C. 15 D. 12OCBA 第6题图10. 10. 下列说法正确的是下列说法正确的是下列说法正确的是( ) ( )A 、有两边和其中一边所对的角对应相等的两个三角形全等;、有两边和其中一边所对的角对应相等的两个三角形全等;B 、有三个角对应相等的两个钝角三角形全等;、有三个角对应相等的两个钝角三角形全等;C 、有一条边和两个角对应相等的两个三角形全等;、有一条边和两个角对应相等的两个三角形全等;D 、两条边对应相等的两个锐角三角形全等;、两条边对应相等的两个锐角三角形全等;二、填一填 (30分,每题3分)1. 1. 在△在△在△ABC ABC 中,若∠若∠A=A=A=∠∠B, B, ∠∠C=300,则∠则∠A=A=A=∠∠B= B= ;;2. 2. 在△在△在△ABC ABC 中,中,AB AB AB==3,BC BC==7,则AC 的长x 的取值范围是的取值范围是 ;;3. 3. 如图如图如图,AD ,AD 是△是△ABC ABC 的中线的中线, , , △△ABD 的面积为30cm 2,则△则△ABC ABC 的面积是的面积是 cm cm 2;4. 4. 起重机支架上的三角形钢条结构利用的一个三角形的原理是起重机支架上的三角形钢条结构利用的一个三角形的原理是起重机支架上的三角形钢条结构利用的一个三角形的原理是 ;;5. 5. 如图如图如图,,△ABC 中,EF 为AC 的垂直平分线的垂直平分线,,若AF=4,AF=4,△△BCE 周长为15,15,则△则△则△ABC ABC 周长为周长为 ;;6. 6. 如图如图如图,,△ABC 中,∠ABC 和∠和∠ACB ACB 的平分线交于点O,O,若∠若∠若∠A=80A=800,则∠则∠BOC= BOC= BOC= ;; 7. 7. 如图如图如图,,△ABC 中,高BD BD、、CE 相交于点H,H,若∠若∠若∠A=50A=500,则∠则∠BHC= BHC= BHC= ;;8. 8. 把一副常用的三角形如图所示拼在一起,那么如图把一副常用的三角形如图所示拼在一起,那么如图把一副常用的三角形如图所示拼在一起,那么如图,,则∠则∠ACB ACB 是 度;度;度; 9. 9. 已知△已知△已知△ABC ABC 中, , ∠∠A:A:∠∠B:B:∠∠C=5:6:9,C=5:6:9,则△则△则△ABC ABC 为 三角形;三角形;三角形;10.10.如图如图如图,,已知AD=AE,AD=AE,要说明△要说明△要说明△ABE ABE ABE≌△≌△≌△ACD,ACD,ACD,还需要添加的条件是还需要添加的条件是还需要添加的条件是 ( ( (只要填一个只要填一个只要填一个 你认为正确的条件你认为正确的条件),),),全等的理由是全等的理由是全等的理由是 (填(填SSS,SAS,ASA 或AAS AAS)).三、解答题(6+8+8+8+10=40分)第3题图DCBAFE第5题图CBADEHC B A 第7题图A B C 第8题图题图第10题图题图CBAab a1、如图⊿、如图⊿ABC,ABC,ABC,∠∠BAC 是钝角是钝角,,按要求完成下列画图按要求完成下列画图,,用适当的符号在图中表示(不写作法,写出结论):①用刻度尺画AB 边上的中线CD; ②用三角尺画AC 边上的高BE; ③用尺规作∠③用尺规作∠BAC BAC 的角平分线AF.2、尺规作图:已知线段a,b 和∠α.求作求作::ΔABC,ABC,使使BC=a , AC=b , BC=a , AC=b , ∠∠C=C=∠∠α (画出图形画出图形,,保留作图痕迹保留作图痕迹,,不写作法不写作法,,写出结论写出结论) )3、如图:已知△、如图:已知△ABC ABC 中,中,AD AD AD⊥⊥BC 于D ,AE 为∠为∠BAC BAC 的平分线,且∠的平分线,且∠B=30B=30B=30°,°,°, ∠C=60C=60°求°求°求(1)(1)(1)∠∠CAE 的度数;的度数;(2)(2)(2)∠∠DAE 的度数。
(浙教版)八年级上《第1章三角形的初步认识》单元试卷有答案(数学)
第1章一、选择题(每小题3分,共30分)(第1题)1.如图,已知MB =ND ,∠MBA =∠NDC ,则下列条件中不能判定△ABM ≌△CDN 的是(B ) A. ∠M =∠N B. AM =CN C. AB =CD D. AM ∥CN2.已知三角形两边的长分别是4和10,则此三角形第三边的长可能是(C ) A. 5 B. 6 C. 12 D. 163.如图,图中∠1的度数为(D ) A. 40° B. 50° C. 60° D. 70°(第3题)(第4题)4.如图,把一块含有45°角的直角三角尺的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数为(C )A. 15°B. 20°C. 25°D. 30°(第5题)5.如图,在余料ABCD 中,AD ∥BC ,现进行如下操作:以点B 为圆心,适当长为半径画弧,分别交BA ,BC 于点G ,H ;再分别以点G ,H 为圆心,大于12GH 长为半径画弧,两弧在∠ABC 内部相交于点O ,画射线BO ,交AD 于点E .若∠A =96°,则∠EBC 的度数为(B )A. 45°B. 42°C. 36°D. 30°6.如图,已知∠1=∠2,AE ⊥OB 于点E ,BD ⊥OA 于点D ,AE ,BD 的交点为C ,则图中的全等三角形共有(C )A. 2对B. 3对C. 4对D. 5对, (第6题)) ,(第7题))7.如图,BE ⊥AC 于点D ,且AD =CD ,BD =E D.若∠ABC =72°,则∠E 等于(B ) A .18° B .36° C .54° D .72°【解】 可证△ADB ≌△CDE ,△ABD ≌△CBD ,∴∠E =∠ABD =12∠ABC =36°.(第8题)8.如图,△ABC 的三边AB ,BC ,CA 的长分别是100,110,120,其三条角平分线将△ABC 分为三个三角形,则S △ABO ∶S △BOC ∶S △CAO =(C )A .1∶1∶1B .9∶10∶11C .10∶11∶12D .11∶12∶13【解】 利用角平分线的性质定理可得△ABO ,△BOC ,△CAO 分别以AB ,BC ,AC 为底时,高线长相等,则它们的面积之比等于底之比.9.如图,BF 是∠ABD 的平分线,CE 是∠ACD 的平分线,BF 与CE 交于点G .若∠BDC =140°,∠BGC =110°,则∠A 的度数为(B )A. 70°B. 80°C. 50°D. 55° 【解】 连结B C.∵∠BDC =140°,∴∠DBC +∠DCB =40°. 又∵∠BGC =110°,∴∠GBC +∠GCB =70°. ∴∠GBD +∠GCD =30°. ∴∠ABD +∠ACD =60°.∴∠ABC +∠ACB =100°.∴∠A =80°.,(第9题)) ,(第10题))10.如图,在△ABC 中,AD 是∠BAC 的外角平分线,P 是AD 上异于A 的任意一点,设PB =m ,PC =n ,AB =c ,AC =b ,则m +n 与b +c 的大小关系是(A )A. m +n >b +cB. m +n <b +cC. m +n =b +cD. 无法确定(第10题解)【解】 如解图,在BA 的延长线上取一点E ,使AE =AC ,连结ED ,EP .∵AD 是∠BAC 的外角平分线, ∴∠CAD =∠EA D. 在△ACP 和△AEP 中,∵⎩⎨⎧AC =AE ,∠CAP =∠EAP ,AP =AP ,∴△ACP ≌△AEP (SAS ).∴PC =PE . 在△PBE 中,PB +PE >AB +AE , 即PB +PC >AB +A C.∵PB =m ,PC =n ,AB =c ,AC =b , ∴m +n >b +c .二、填空题(每小题3分,共30分)11.如图,已知△ABC 的周长为3 cm ,D ,E 分别是AB ,AC 上的点,将△ADE 沿直线DE 折叠,点A 落在点A ′处,且点A ′在△ABC 外部,则图中阴影部分图形的周长为__3__cm.,(第11题)) , (第12题))12.如图,在△ABC 中,AB >AC ,按以下步骤作图:分别以点B 和点C 为圆心,大于12BC 长为半径作圆弧,两弧相交于点M 和点N ;作直线MN 交AB 于点D ;连结C D.若AB =8,AC =4,则△ACD 的周长为12.13.已知三角形的三边长分别为3,5,x ,则化简式子|x -2|+|x -9|=__7__. 【解】 提示:2<x <8.(第14题)14.如图,在△ABC 中,已知∠1=∠2,BE =CD ,AB =5,AE =2,则CE =__3__. 【解】 在△ABE 和△ACD 中,∵⎩⎨⎧∠1=∠2,∠A =∠A ,BE =CD ,∴△ABE ≌△ACD (AAS ). ∴AC =AB =5.∵AE =2,∴CE =3.15.如图,在4×5的网格中,每个小正方形的边长都为1,在图中找两个格点D 和E ,使∠ABE =∠ACD =90°,并使AC =DC ,AB =EB ,则四边形BCDE 的面积为__3__.,(第15题)),(第15题解))【解】 如解图,四边形BCDE 的面积为8-3-32-12=3.(第16题)16.如图,四边形ABCD 的对角线AC ,BD 相交于点O ,△ABO ≌△ADO .有下列结论:①AC ⊥BD ;②CB =CD ;③△ABC ≌△ADC ;④AD =C D.其中正确结论的序号是①②③.【解】 ∵△ABO ≌△ADO ,∴∠AOB =∠AOD ,AB =AD ,∠BAO =∠DAO . ∵∠AOB +∠AOD =180°, ∴∠AOB =∠AOD =90°, ∴AC ⊥BD ,故①正确.在△ABC 和△ADC 中,∵⎩⎨⎧AB =AD ,∠BAC =∠DAC ,AC =AC ,∴△ABC ≌△ADC (SAS ), ∴CB =CD ,故②③正确.AD 与CD 不一定相等,故④错误. 综上所述,正确结论的序号是①②③.(第17题)17.如图,△ABC 三边的中线AD ,BE ,CF 的交点为G .若S △ABC =12,则图中阴影部分的面积是__4__.【解】 ∵△ABC 的三条中线AD ,BE ,CF 交于点G , ∴S △ABD =S △ACD ,S △AFG =S △BFG , S △AGE =S △CGE ,S △BDG =S △CDG , ∴S △ABG =S △ACG .∴S △BFG =S △CGE .同理,S △BFG =S △BDG ,∴图中6个小三角形的面积都相等.∴S 阴影=13S △ABC =4.18.如图,已知长方形纸片的一条边经过直角三角形纸片的直角顶点,若长方形纸片的一组对边与直角三角形的两条直角边相交成∠1,∠2,则∠2-∠1=90°.(第18题)(第18题解)【解】 如解图.∵AB ∥DC ,∴∠2=∠3.∵∠3+∠4=180°,∴∠2=180°-∠4. 又∵∠1+∠4=90°,即∠1=90°-∠4.∴∠2-∠1=180°-∠4-(90°-∠4)=90°.(第19题)19.如图,在△ABC 中,∠A =52°,∠ABC 与∠ACB 的平分线交于点D 1,∠ABD 1与∠ACD 1的平分线交于点D 2……依此类推,∠BD 5C 的度数是56°.【解】 ∵∠A =52°, ∴∠ABC +∠ACB =128°.∵BD 1,CD 1分别平分∠ABC 和∠ACB ,∴∠D 1BC +∠D 1CB =12(∠ABC +∠ACB )=64°.∴∠D 1=180°-64°=116°.同理,∠D 2=180°-64°-12×64°=84°……∴∠D 5=180°-64°-12×64°-⎝ ⎛⎭⎪⎫122×64°-⎝ ⎛⎭⎪⎫123×64°-⎝ ⎛⎭⎪⎫124×64°=56°.20.如图,图①是一块边长为1,周长记为P 1的等边三角形纸板,沿图①的底边剪去一块边长为12的等边三角形纸板后得到图②,然后沿同一底边依次剪去一块更小的等边三角形纸板(即边长为前一块被剪掉等边三角形纸板边长的12)后得到图③……记第n (n ≥3)块纸板的周长为P n ,则P n -P n-1=⎝ ⎛⎭⎪⎫12n -1.(第20题)【解】 ∵P 1=3,P 2=212,P 3=234,P 4=278,∴P 4-P 3=18=⎝ ⎛⎭⎪⎫123=⎝ ⎛⎭⎪⎫124-1……故P n -P n -1=⎝ ⎛⎭⎪⎫12n -1.三、解答题(共40分) 21.(6分)如图,△ABC ≌△A 1B 1C 1,AD ,A 1D 1分别是△ABC 和△A 1B 1C 1的角平分线.求证:AD =A 1D 1.(第21题)【解】 ∵△ABC ≌△A 1B 1C 1,∴AB =A 1B 1,∠B =∠B 1,∠BAC =∠B 1A 1C 1.∵AD ,A 1D 1分别是△ABC 和△A 1B 1C 1的角平分线,∴∠BAD =12∠BAC ,∠B 1A 1D 1=12∠B 1A 1C 1.∴∠BAD =∠B 1A 1D 1. 在△ABD 与△A 1B 1D 1中,∵⎩⎨⎧∠BAD =∠B 1A 1D 1,AB =A 1B 1,∠B =∠B 1,∴△ABD ≌△A 1B 1D 1(ASA ). ∴AD =A 1D 1.(第22题)22.(6分)如图,在△ABC 中,AB =CB ,∠ABC =90°,D 为AB 延长线上一点,点E 在BC 边上,且BE =BD ,连结AE ,DE ,C D.(1)求证:△ABE ≌△CB D.(2)若∠CAE =27°,∠ACB =45°,求∠BDC 的度数. 【解】 (1)∵∠ABC =90°, ∴∠CBD =90°=∠AB C. 在△ABE 和△CBD 中,∵⎩⎨⎧AB =CB ,∠ABE =∠CBD ,BE =BD ,∴△ABE ≌△CBD (SAS ). (2)∵△ABE ≌△CBD , ∴∠AEB =∠CD B.∵∠AEB 为△AEC 的外角,∴∠AEB =∠CAE +∠ACB =27°+45°=72°, ∴∠BDC =72°.(第23题)23.(6分)如图,△ABE和△ADC是△ABC分别沿着AB,AC边翻折180°形成的.若∠1∶∠2∶∠3=28∶5∶3,求∠α的度数.【解】∵∠1+∠2+∠3=180°,∠1∶∠2∶∠3=28∶5∶3,∴∠1=140°,∠2=25°,∠3=15°.设BE与CD的交点为F.∵△ABE和△ADC是△ABC分别沿着AB,AC边翻折180°形成的,∴△ABE≌△ABC≌△AD C.∴∠2=∠ABE,∠3=∠AC D.∴∠FBC=2∠2=2×25°=50°,∠FCB=2∠3=2×15°=30°.∵∠α是△FBC的一个外角,∴∠α=∠FBC+∠FCB=50°+30°=80°.24.(6分)如图,已知BD,CE是△ABC的高线,点F在BD上,BF=AC,点G在CE的延长线上,CG=A B.求证:AG⊥AF.(第24题)【解】∵BD,CE是△ABC的高线,∴∠BEC=∠CDB=90°.∵∠EHB=∠DHC,∴∠EBH=∠DCH.又∵BF=CA,AB=GC,∴△ABF≌△GCA(SAS).∴∠BAF=∠G.∵∠AEG=90°,∴∠G+∠GAE=90°,∴∠BAF+∠GAE=90°,即∠GAF=90°,∴AG⊥AF.(第25题)25.(6分)如图,已知BE,CF分别是△ABC中AC,AB边上的高线,在BE的延长线上取点P,使PB=AC,在CF的延长线上取点Q,使CQ=A B.求证:AQ⊥AP.【解】∵BE,CF分别是△ABC中AC,AB边上的高线,∴∠AEB=∠AFC=90°,∴∠ABP+∠EAF=90°,∠ACQ+∠EAF=90°,∴∠ABP=∠ACQ.在△ABP 和△QCA 中,∵⎩⎨⎧PB =AC ,∠ABP =∠QCA ,AB =QC ,∴△ABP ≌△QCA (SAS ). ∴∠APB =∠QA C.∴∠APB +∠PAE =∠QAC +∠PAE , 即180°-∠AEP =∠PAQ . ∴∠PAQ =90°,即AQ ⊥AP .26.(10分)旧知新意:我们知道,三角形的一个外角等于与它不相邻的两个内角的和,那么三角形的一个内角与它不相邻的两个外角的和之间存在怎样的数量关系呢?(1)尝试探究: 如图①,∠DBC 与∠ECB 分别为△ABC 的两个外角,试探究∠A 与∠DBC +∠ECB 之间的数量关系. (2)初步运用:如图②,在△ABC 纸片中剪去△CED ,得到四边形ABDE .若∠1=130°,则∠2-∠C =50°.小明联想到了曾经解决的一个问题:如图③,在△ABC 中,BP ,CP 分别平分外角∠DBC ,∠ECB ,则∠P与∠A 有何数量关系?请利用上面的结论直接写出答案:∠P =90°-12∠A .(3)拓展提升:如图④,在四边形ABCD 中,BP ,CP 分别平分外角∠EBC ,∠FCB ,则∠P 与∠A ,∠D 有何数量关系?(第26题)【解】 (1)∠DBC +∠ECB =(180°-∠ABC )+(180°-∠ACB )=360°-(∠ABC +∠ACB )=360°-(180°-∠A )=180°+∠A.(2)∵∠1+∠2=180°+∠C , ∴130°+∠2=180°+∠C , ∴∠2-∠C =50°.∵∠DBC +∠ECB =180°+∠A ,BP ,CP 分别平分外角∠DBC ,∠ECB ,∴∠PBC +∠PCB =12(∠DBC +∠ECB )=12(180°+∠A ),∴∠P =180°-(∠PBC +∠PCB )=180°-12(180°+∠A )=90°-12∠A ,即∠P =90°-12∠A.(第26题解)(3)如解图,延长BA ,CD 相交于点Q ,则∠P =90°-12∠Q ,∴∠Q =180°-2∠P ,∴∠BAD +∠CDA =180°+∠Q =180°+180°-2∠P =360°-2∠P .。
最新浙教版 八年级数学初二上册《第1章三角形的初步认识》单元测试卷含答案解析
《第1章三角形的初步认识》一、填空题1.已知三角形的两边分别为4和9,则此三角形的第三边可能是()A.4 B.5 C.9 D.132.如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=50°,则∠3的度数等于()A.50° B.30° C.20° D.15°3.如图所示,△ACB≌A′CB′,∠BCB′=30°,则∠ACA′的度数为()A.20° B.30° C.35° D.40°4.长为9,6,5,4的四根木条,选其中三根组成三角形,选法有()A.1种B.2种C.3种D.4种5.尺规作图是指()A.用直尺规范作图B.用刻度尺和圆规作图C.用没有刻度的直尺和圆规作图D.直尺和圆规是作图工具6.如图,BE、CF都是△ABC的角平分线,且∠BDC=110°,则∠A=()A.50° B.40° C.70° D.35°7.如图,在△ABC中,∠B=46°,∠C=54°,AD平分∠BAC,交BC于D,DE∥AB,交AC于E,则∠ADE的大小是()A.45° B.54° C.40° D.50°8.一副三角板如图叠放在一起,则图中∠α的度数为()A.75° B.60° C.65° D.55°9.如图,在△ABC中,∠CAB=70°,将△ABC绕点A逆时针旋转到△ADE的位置,连接EC,满足EC ∥AB,则∠BAD的度数为()A.30° B.35° C.40° D.50°10.如图所示,△ABC与△BDE都是等边三角形,AB<BD.若△ABC不动,将△BDE绕点B旋转,则在旋转过程中,AE与CD的大小关系为()A.AE=CD B.AE>CD C.AE<CD D.无法确定二、认真填一填11.若三角形的两边长分别为3、4,且周长为整数,这样的三角形共有个.12.如图,在△ABC 和△DEF 中,已知:AC=DF ,BC=EF ,要使△ABC ≌△DEF ,还需要的条件可以是 .(只填写一个条件)13.若△ABC ≌△DEF ,且∠A=110°,∠F=40°,则∠E= 度.14.在△ABC 中,∠A :∠B :∠C=1:2:3,则∠A= ,∠C= .15.如图,在△ABC 中,∠B=60°,∠C=40°,AD ⊥BC 于D ,AE 平分∠BAC ;则∠DAE= .16.如图,D 、E 分别是△ABC 边AB 、BC 上的点,AD=2BD ,BE=CE ,设△ADC 的面积为S 1,△ACE 的面积为S 2,若S △ABC =6,则S 1﹣S 2的值为 .17.如图,将纸片△ABC 沿DE 折叠,点A 落在点P 处,已知∠1+∠2=100°,则∠A 的大小等于 度.18.如图,△ABC 中,∠BAC=100°,EF ,MN 分别为AB ,AC 的垂直平分线,如果BC=12cm ,那么△FAN 的周长为 cm ,∠FAN= .三、解答题19.如图,点A、C、D、B 四点共线,且AC=DB,∠A=∠B,∠E=∠F.求证:DE=CF.20.如图,已知点A、F、E、C在同一直线上,AB∥CD,∠ABE=∠CDF,AF=CE.(1)从图中任找两组全等三角形;(2)从(1)中任选一组进行证明.21.如图,在△ABC中,∠B=40°,∠C=110°.(1)画出下列图形:①BC边上的高AD;②∠A的角平分线AE.(2)试求∠DAE的度数.22.作图,如图已知三角形ABC内一点P(1)过P点作线段EF∥AB,分别交BC,AC于点E,F(2)过P点作线段PD使PD⊥BC垂足为D点.23.如图,在△ABC中,AD平分∠BAC,AD的垂直平分线EF交BC的延长线于点F,连接AF,求证:∠CAF=∠B.24.如图,点D为锐角∠ABC内一点,点M在边BA上,点N在边BC上,且DM=DN,∠BMD+∠BND=180°.求证:BD平分∠ABC.25.如图,在长方形ABCD中,AB=8cm,BC=6cm,点E是CD的中点,动点P从A点出发,以每秒2cm 的速度沿A→B→C→E运动,最终到达点E.若设点P运动的时间是t秒,那么当t取何值时,△APE 的面积会等于10?26.(14分)课本拓展旧知新意:我们容易证明,三角形的一个外角等于与它不相邻的两个内角的和.那么,三角形的一个内角与它不相邻的两个外角的和之间存在怎样的数量关系呢?1.尝试探究:(1)如图1,∠DBC与∠ECB分别为△ABC的两个外角,试探究∠A与∠DBC+∠ECB之间存在怎样的数量关系?为什么?2.初步应用:(2)如图2,在△ABC纸片中剪去△CED,得到四边形ABDE,∠1=130°,则∠2﹣∠C= ;(3)小明联想到了曾经解决的一个问题:如图3,在△ABC中,BP、CP分别平分外角∠DBC、∠ECB,∠P与∠A有何数量关系?请利用上面的结论直接写出答案.3拓展提升:(4)如图4,在四边形ABCD中,BP、CP分别平分外角∠EBC、∠FCB,∠P与∠A、∠D有何数量关系?为什么?(若需要利用上面的结论说明,可直接使用,不需说明理由)《第1章三角形的初步认识》参考答案与试题解析一、填空题1.已知三角形的两边分别为4和9,则此三角形的第三边可能是()A.4 B.5 C.9 D.13【考点】三角形三边关系.【分析】根据三角形的第三边大于两边之差,而小于两边之和求得第三边的取值范围,再进一步选择.【解答】解:根据三角形的三边关系,得第三边大于5,而小于13.故选C.【点评】本题考查了三角形的三边关系,即三角形的第三边大于两边之差,而小于两边之和,此题基础题,比较简单.2.如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=50°,则∠3的度数等于()A.50° B.30° C.20° D.15°【考点】平行线的性质;三角形的外角性质.【专题】计算题.【分析】首先根据平行线的性质得到∠2的同位角∠4的度数,再根据三角形的外角的性质进行求解.【解答】解:根据平行线的性质,得∠4=∠2=50°.∴∠3=∠4﹣∠1=50°﹣30°=20°.故选:C.【点评】本题应用的知识点为:三角形的外角等于与它不相邻的两个内角的和.两直线平行,同位角相等.3.如图所示,△ACB≌A′CB′,∠BCB′=30°,则∠ACA′的度数为()A.20° B.30° C.35° D.40°【考点】全等三角形的性质.【分析】根据全等三角形性质求出∠ACB=∠A′CB′,都减去∠A′CB即可.【解答】解:∵△ACB≌A′CB′,∴∠ACB=∠A′CB′,∴∠ACB﹣∠A′CB=∠A′CB′﹣∠A′CB,∴∠ACA′=∠BCB′,∵∠BCB′=30°,∴∠ACA′=30°,故选B.【点评】本题考查了全等三角形性质的应用,注意:全等三角形的对应角相等.4.长为9,6,5,4的四根木条,选其中三根组成三角形,选法有()A.1种B.2种C.3种D.4种【考点】三角形三边关系.【专题】常规题型.【分析】要把四条线段的所有组合列出来,再根据三角形的三边关系判断能组成三角形的组数.【解答】解:四根木条的所有组合:9,6,5和9,6,4和9,5,4和6,5,4;根据三角形的三边关系,得能组成三角形的有9,6,5和9,6,4和6,5,4.故选:C.【点评】本题考查了三角形的三边关系,熟记三角形的任意两边之和大于第三边,两边之差小于第三边是解题的关键.5.尺规作图是指()A.用直尺规范作图B.用刻度尺和圆规作图C.用没有刻度的直尺和圆规作图D.直尺和圆规是作图工具【考点】作图—尺规作图的定义.【分析】根据尺规作图的定义作答.【解答】解:根据尺规作图的定义可知:尺规作图是指用没有刻度的直尺和圆规作图.故选C.【点评】尺规作图是指用没有刻度的直尺和圆规作图.6.如图,BE、CF都是△ABC的角平分线,且∠BDC=110°,则∠A=()A.50° B.40° C.70° D.35°【考点】三角形内角和定理;角平分线的定义.【分析】根据数据线的内角和定理以及角平分线的定义,可以证明.【解答】解:∵BE、CF都是△ABC的角平分线,∴∠A=180°﹣(∠ABC+∠ACB),=180°﹣2(∠DBC+∠BCD)∵∠BDC=180°﹣(∠DBC+∠BCD),∴∠A=180°﹣2(180°﹣∠BDC)∴∠BDC=90°+∠A,∴∠A=2(110°﹣90°)=40°.故选B.【点评】注意此题中的∠A和∠BDC之间的关系:∠BDC=90°+∠A.7.如图,在△ABC中,∠B=46°,∠C=54°,AD平分∠BAC,交BC于D,DE∥AB,交AC于E,则∠ADE的大小是()A.45° B.54° C.40° D.50°【考点】平行线的性质;三角形内角和定理.【分析】根据三角形的内角和定理求出∠BAC,再根据角平分线的定义求出∠BAD,然后根据两直线平行,内错角相等可得∠ADE=∠BAD.【解答】解:∵∠B=46°,∠C=54°,∴∠BAC=180°﹣∠B﹣∠C=180°﹣46°﹣54°=80°,∵AD平分∠BAC,∴∠BAD=∠BAC=×80°=40°,∵DE∥AB,∴∠ADE=∠BAD=40°.故选:C.【点评】本题考查了平行线的性质,三角形的内角和定理,角平分线的定义,熟记性质与概念是解题的关键.8.一副三角板如图叠放在一起,则图中∠α的度数为()A.75° B.60° C.65° D.55°【考点】三角形的外角性质;三角形内角和定理.【分析】因为三角板的度数为45°,60°,所以根据三角形内角和定理即可求解.【解答】解:如图,∵∠1=60°,∠2=45°,∴∠α=180°﹣45°﹣60°=75°,故选A.【点评】本题利用三角板度数的常识和三角形内角和定理,熟练掌握定理是解题的关键.9.如图,在△ABC中,∠CAB=70°,将△ABC绕点A逆时针旋转到△ADE的位置,连接EC,满足EC ∥AB,则∠BAD的度数为()A.30° B.35° C.40° D.50°【考点】旋转的性质.【分析】根据两直线平行,内错角相等可得∠ACB=∠CAB,根据旋转的性质可得AC=AE,∠BAC=∠DAE,再根据等腰三角形两底角相等列式求出∠CAE,然后求出∠DAB=∠CAE,从而得解.【解答】解:∵CE∥AB,∴∠ACB=∠CAB=75°,∵△ABC绕点A逆时针旋转到△AED,∴AC=AE,∠BAC=∠DAE,∴∠CAE=180°﹣70°×2=40°,∵∠CAE+∠CAD=∠DAE,∠DAB+∠CAD=∠BAC,∴∠DAB=∠CAE=40°.故选C.【点评】本题考查了旋转的性质,平行线的性质,等腰三角形两底角相等的性质,熟记各性质并求出∠DAB=∠CAE是解题的关键.10.如图所示,△ABC与△BDE都是等边三角形,AB<BD.若△ABC不动,将△BDE绕点B旋转,则在旋转过程中,AE与CD的大小关系为()A.AE=CD B.AE>CD C.AE<CD D.无法确定【考点】全等三角形的判定与性质;等边三角形的性质.【分析】本题可通过证△ABE和△CBD全等,来得出AE=CD的结论.两三角形中,已知了AB=BC、BE=BD,因此关键是证得∠ABE=∠CBD;由于△ABC和△BED都是等边三角形,因此∠EBD=∠ABC=60°,即∠ABE=∠CBD=120°,由此可得证.【解答】解:∵△ABC与△BDE都是等边三角形,∴AB=BC,BE=BD,∠ABC=∠EBD=60°;∴∠ACB+∠CBE=∠EBD+∠CBE=120°,即:∠ABE=∠CBD=120°;∴△ABE≌△CBD;∴AE=CD.故选A.【点评】本题考查了全等三角形的判定与性质,等边三角形的性质,当出现两个等边三角形时,一般要利用等边三角形的边和角从中找到一对全等三角形.二、认真填一填11.若三角形的两边长分别为3、4,且周长为整数,这样的三角形共有 5 个.【考点】三角形三边关系;一元一次不等式组的整数解.【分析】设第三边的长为x,根据三角形的三边关系的定理可以确定x的取值范围,进而得到答案.【解答】解:设第三边的长为x,则4﹣3<x<4+3,所以1<x<7.∵x为整数,∴x可取2,3,4,5,6.故答案为5.【点评】此题主要考查了三角形的三边关系,关键是掌握三角形三边关系定理:三角形两边之和大于第三边.三角形的两边差小于第三边.12.如图,在△ABC和△DEF中,已知:AC=DF,BC=EF,要使△ABC≌△DEF,还需要的条件可以是AB=DE .(只填写一个条件)【考点】全等三角形的判定.【专题】开放型.【分析】根据“SSS”添加条件.【解答】解:若加上AB=DE,则可根据“SSS”判断△ABC≌△DEF.故答案为AB=DE.【点评】本题考查了全等三角形的判定:判定方法有“SSS”、“SAS”、“ASA”、“AAS”.13.若△ABC≌△DEF,且∠A=110°,∠F=40°,则∠E= 30 度.【考点】全等三角形的性质.【分析】根据全等三角形的性质得出∠D=∠A=110°,∠C=∠F=40°,进而得出答案.【解答】解:∵△ABC≌△DEF,∠A=110°,∠F=40°,∴∠D=∠A=110°,∠C=∠F=40°,∴∠DEF=180°﹣110°﹣40°=30°.故答案为:30;【点评】此题主要考查了全等三角形的性质,利用其性质得出对应角相等是解题关键.14.在△ABC中,∠A:∠B:∠C=1:2:3,则∠A= 30°.,∠C= 90°..【考点】三角形内角和定理.【分析】有三角形内角和180度,又知三角形内各角比,从而求出.【解答】解:由三角形内角和180°,又∵∠A:∠B:∠C=1:2:3,∴∠A=180°×=30°,∠C=180°×=90°.故填:30°,90°.【点评】本题考查三角形内角和定理,结合已知条件,从而很容易知道各角所占几分之几.而解得.15.如图,在△ABC中,∠B=60°,∠C=40°,AD⊥BC于D,AE平分∠BAC;则∠DAE= 10°.【考点】三角形内角和定理;三角形的外角性质.【分析】根据∠B=60°,∠C=40°可得∠BAC的度数,AE平分∠BAC,得到∠BAE和∠CAE的度数,利用外角的性质可得∠AED的度数,再根据垂直定义,得到直角三角形,在直角△ABD中,可以求得∠DAE的度数.【解答】解:∵∠C=40°,∠B=60°,∴∠BAC=180°﹣40°﹣60°=80°,∵AE平分∠BAC,∴∠BAE=∠CAE=40°,∴∠AED=80°,∵AD⊥BC于D,∴∠ADC=90°,∴∠DAE=180°﹣80°﹣90°=10°,故答案为:10°.【点评】本题主要考查角平分线的定义和垂直的定义,外角性质,三角形内角和定理,综合利用各定理及性质是解答此题的关键.16.如图,D 、E 分别是△ABC 边AB 、BC 上的点,AD=2BD ,BE=CE ,设△ADC 的面积为S 1,△ACE 的面积为S 2,若S △ABC =6,则S 1﹣S 2的值为 1 .【考点】三角形的面积.【专题】压轴题.【分析】根据等底等高的三角形的面积相等求出△AEC 的面积,再根据等高的三角形的面积的比等于底边的比求出△ACD 的面积,然后根据S 1﹣S 2=S △ACD ﹣S △ACE 计算即可得解.【解答】解:∵BE=CE ,∴S △ACE =S △ABC =×6=3,∵AD=2BD ,∴S △ACD =S △ABC =×6=4,∴S 1﹣S 2=S △ACD ﹣S △ACE =4﹣3=1.故答案为:1.【点评】本题考查了三角形的面积,主要利用了等底等高的三角形的面积相等,等高的三角形的面积的比等于底边的比,需熟记.17.如图,将纸片△ABC 沿DE 折叠,点A 落在点P 处,已知∠1+∠2=100°,则∠A 的大小等于 50 度.【考点】三角形内角和定理;翻折变换(折叠问题).【分析】根据已知求出∠ADP+∠AEP=360°﹣(∠1+∠2)=260°,根据折叠求出∠ADE+∠AED=×260°=130°,根据三角形内角和定理求出即可.【解答】解:∵∠1+∠2=100°,∴∠ADP+∠AEP=360°﹣(∠1+∠2)=260°,∵将纸片△ABC沿DE折叠,点A落在点P处,∴∠ADE=∠ADP,∠AED=∠AEP,∴∠ADE+∠AED=×260°=130°,∴∠A=180°﹣(∠ADE+∠AED)=50°,故答案为:50.【点评】本题考查了三角形的内角和定理和折叠的性质的应用,注意:三角形的内角和等于180°,题目比较好,难度适中.18.如图,△ABC中,∠BAC=100°,EF,MN分别为AB,AC的垂直平分线,如果BC=12cm,那么△FAN的周长为12 cm,∠FAN= 20°.【考点】线段垂直平分线的性质.【分析】由EF,MN分别为AB,AC的垂直平分线,可得AF=BF,AN=CN,即可得△FAN的周长等于BC;又由∠BAC=100°,求得∠BAF+∠CAN=∠B+∠C=180°﹣∠BAC=80°,继而求得答案.【解答】解:∵EF,MN分别为AB,AC的垂直平分线,∴AF=BF,AN=CN,∴△FAN的周长为:AF+FN+AN=BF+FN+CN=BC=12cm;∴∠BAF=∠B,∠CAN=∠C,∵△ABC中,∠BAC=100°,∴∠BAF+∠CAN=∠B+∠C=180°﹣∠BAC=80°,∴∠FAN=∠BAC﹣(∠BAF+∠CAN)=20°.故答案为:12,20°.【点评】此题考查了线段垂直平分线的性质以及等腰三角形的判定与性质.此题难度不大,注意掌握数形结合思想与转化思想的应用.三、解答题19.如图,点A、C、D、B 四点共线,且AC=DB,∠A=∠B,∠E=∠F.求证:DE=CF.【考点】全等三角形的判定与性质.【专题】证明题.【分析】根据条件可以求出AD=BC,再证明△AED≌△BFC,由全等三角形的性质就可以得出结论.【解答】证明:∵AC=DB,∴AC+CD=DB+CD,即AD=BC,在△AED和△BFC中,∴△AED≌△BFC.∴DE=CF.【点评】本题考查了线段的数量关系,全等三角形的判定及性质的运用,解答时证明△AED≌△BFC 是解答本题的关键.20.如图,已知点A、F、E、C在同一直线上,AB∥CD,∠ABE=∠CDF,AF=CE.(1)从图中任找两组全等三角形;(2)从(1)中任选一组进行证明.【考点】全等三角形的判定.【专题】证明题.【分析】(1)根据题目所给条件可分析出△ABE≌△CDF,△AFD≌△CEB;(2)根据AB∥CD可得∠1=∠2,根据AF=CE可得AE=FC,然后再证明△ABE≌△CDF即可.【解答】解:(1)△ABE≌△CDF,△AFD≌△CEB;(2)∵AB∥CD,∴∠1=∠2,∵AF=CE,∴AF+EF=CE+EF,即AE=FC,在△ABE和△CDF中,,∴△ABE≌△CDF(AAS).【点评】此题主要考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.21.如图,在△ABC中,∠B=40°,∠C=110°.(1)画出下列图形:①BC边上的高AD;②∠A的角平分线AE.(2)试求∠DAE的度数.【考点】作图—复杂作图.【分析】(1)利用直角三角板一条直角边与BC重合,沿BC平移使另一直角边过A画BC边上的高AD即可;再根据角平分线的做法作∠A的角平分线AE;(2)首先计算出∠BAE的度数,再计算出∠BAD的度数,利用角的和差关系可得答案.【解答】解:(1)如图所示:(2)在△ABC中,∠BAC=180°﹣11°﹣40°=30°,∵AE平分∠BAC,∴∠BAE=∠BAC=15°,在Rt△ADB中,∠BAD=90°﹣∠B=50°,∴∠DAE=∠DAB﹣∠BAE=35°.【点评】此题主要考查了复杂作图,以及角的计算,关键是正确画出图形.22.作图,如图已知三角形ABC内一点P(1)过P点作线段EF∥AB,分别交BC,AC于点E,F(2)过P点作线段PD使PD⊥BC垂足为D点.【考点】作图—基本作图.【分析】(1)根据过直线外一点作已知直线平行线的方法作图即可;(2)利用直角三角板,一条直角边与BC重合,沿BC平移,使另一条直角边过点P画垂线即可.【解答】解:如图所示:.【点评】此题主要考查了基本作图,关键是掌握利用直尺做平行线的方法.23.如图,在△ABC中,AD平分∠BAC,AD的垂直平分线EF交BC的延长线于点F,连接AF,求证:∠CAF=∠B.【考点】线段垂直平分线的性质.【专题】证明题.【分析】EF垂直平分AD,则可得AF=DF,进而再转化为角之间的关系,通过角之间的平衡转化,最终得出结论.【解答】证明:∵EF垂直平分AD,∴AF=DF,∠ADF=∠DAF,∵∠ADF=∠B+∠BAD,∠DAF=∠CAF+∠CAD,又∵AD平分∠BAC,∴∠BAD=∠CAD,∴∠CAF=∠B.【点评】此题主要考查线段的垂直平分线的性质等几何知识.线段的垂直平分线上的点到线段的两个端点的距离相等.24.如图,点D为锐角∠ABC内一点,点M在边BA上,点N在边BC上,且DM=DN,∠BMD+∠BND=180°.求证:BD平分∠ABC.【考点】全等三角形的判定与性质;角平分线的性质.【专题】证明题.【分析】在AB上截取ME=BN,证得△BND≌△EMD,进而证得∠DBN=∠MED,BD=DE,从而证得BD平分∠ABC.【解答】解:如图所示:在AB上截取ME=BN,∵∠BMD+∠DME=180°,∠BMD+∠BND=180°,∴∠DME=∠BND,在△BND与△EMD中,,∴△BND≌△EMD(SAS),∴∠DBN=∠MED,BD=DE,∴∠MBD=∠MED,∴∠MBD=∠DBN,∴BD平分∠ABC.【点评】本题考查了三角形全等的判定和性质,等腰三角形的判定和性质.25.如图,在长方形ABCD中,AB=8cm,BC=6cm,点E是CD的中点,动点P从A点出发,以每秒2cm 的速度沿A→B→C→E运动,最终到达点E.若设点P运动的时间是t秒,那么当t取何值时,△APE 的面积会等于10?【考点】一元一次方程的应用;三角形的面积.【专题】几何动点问题.【分析】分为三种情况讨论,如图1,当点P在AB上,即0<t≤4时,根据三角形的面积公式建立方程求出其解即可;如图2,当点P在BC上,即4<t≤7时,由S△APE =S四边形AECB﹣S△PCE﹣S△PAB建立方程求出其解即可;如图3,当点P在EC上,即7<t≤9时,由S△APE==10建立方程求出其解即可.【解答】解:如图1,当点P在AB上,即0<t≤4时,∵四边形ABCD是矩形,∴AD=BC=6,AB=CD=8.∵AP=2t,∴S△APE=×2t×6=10,∴t=.如图2,当点P在BC上,即4<t≤7时,∵E是DC的中点,∴DE=CE=4.∵BP=2t﹣8,PC=6﹣(2t﹣8)=14﹣2t.∴S=(4+8)×6﹣×(2t﹣8)×8﹣(14﹣2t)×4=10,解得:t=7.5>7舍去;当点P在EC上,即7<t≤9时,PE=18﹣2t.∴S△APE=(18﹣2t)×6=10,解得:t=.总上所述,当t=或时△APE的面积会等于10.【点评】本题考查了矩形的性质的运用,三角形的面积公式的运用,梯形的面积公式的运用.解答时灵活运用三角形的面积公式求解是关键.26.课本拓展旧知新意:我们容易证明,三角形的一个外角等于与它不相邻的两个内角的和.那么,三角形的一个内角与它不相邻的两个外角的和之间存在怎样的数量关系呢?1.尝试探究:(1)如图1,∠DBC与∠ECB分别为△ABC的两个外角,试探究∠A与∠DBC+∠ECB之间存在怎样的数量关系?为什么?2.初步应用:(2)如图2,在△ABC纸片中剪去△CED,得到四边形ABDE,∠1=130°,则∠2﹣∠C= 50°;(3)小明联想到了曾经解决的一个问题:如图3,在△ABC中,BP、CP分别平分外角∠DBC、∠ECB,∠P与∠A有何数量关系?请利用上面的结论直接写出答案∠P=90°﹣∠A .3拓展提升:(4)如图4,在四边形ABCD中,BP、CP分别平分外角∠EBC、∠FCB,∠P与∠A、∠D有何数量关系?为什么?(若需要利用上面的结论说明,可直接使用,不需说明理由)【考点】三角形的外角性质;三角形内角和定理.【专题】探究型.【分析】(1)根据三角形的一个外角等于与它不相邻的两个内角的和表示出∠DBC+∠ECB ,再利用三角形内角和定理整理即可得解;(2)根据(1)的结论整理计算即可得解;(3)表示出∠DBC+∠ECB ,再根据角平分线的定义求出∠PBC+∠PCB ,然后利用三角形内角和定理列式整理即可得解;(4)延长BA 、CD 相交于点Q ,先用∠Q 表示出∠P ,再用(1)的结论整理即可得解.【解答】解:(1)∠DBC+∠ECB=180°﹣∠ABC+180°﹣∠ACB=360°﹣(∠ABC+∠ACB )=360°﹣(180°﹣∠A )=180°+∠A ;(2)∵∠1+∠2=∠180°+∠C ,∴130°+∠2=180°+∠C ,∴∠2﹣∠C=50°;(3)∠DBC+∠ECB=180°+∠A ,∵BP 、CP 分别平分外角∠DBC 、∠ECB ,∴∠PBC+∠PCB=(∠DBC+∠ECB )=(180°+∠A ),在△PBC 中,∠P=180°﹣(180°+∠A )=90°﹣∠A ;即∠P=90°﹣∠A;故答案为:50°,∠P=90°﹣∠A;(4)延长BA、CD于Q,则∠P=90°﹣∠Q,∴∠Q=180°﹣2∠P,∴∠BAD+∠CDA=180°+∠Q,=180°+180°﹣2∠P,=360°﹣2∠P.【点评】本题考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,三角形的内角和定理,角平分线的定义,熟记性质并读懂题目信息是解题的关键.。
2023-2024学年人教版八年级数学上册第一章《三角形的初步认识》检测卷附答案解析
2023-2024学年八年级数学上册第一章《三角形的初步认识》检测卷(满分120分)一、选择题(本大题共有10个小题,每小题3分,共30分)1.小芳有两根长度为4cm 和8cm 的木条,她想钉一个三角形木框,桌上有下列长度的几根木条,她应该选择长度为()的木条.A.3cm B.5cm C.12cm D.17cm2.等腰三角形的两条边长分别为8和4,则它的周长等于()A.12B.16C.20D.16或203.下面四个图形中,线段BD 是ABC 的高的图形是()A.B.C.D.4.下列判定两直角三角形全等的方法,错误的是()A.两条直角边对应相等B.斜边和一直角边对应相等C.两个锐角对应相等D.斜边和一锐角对应相等5.如图,为估计池塘岸边A、B 的距离,小方在池塘的一侧选取一点O,测得OA=19米,OB=10米,A、B 间的距离不可能是()A.26米B.12米C.9米D.15米6.如图,点B ,E ,C ,F 在同一直线上,AB DE =,BC EF =,添加一个条件能判定ABC DEF ≌△△的是()A.AB DE ∥B.A D ∠=∠C.ACB F ∠=∠D.AC DF∥7.如图,AD ,AE ,AF 分别是ABC 的中线,角平分线,高.则下列各式中错误..的是()A.90AFB ∠=︒B.AE CE =C.2BC CD =D.12BAE BAC∠=∠8.如图,在ABC 中,已知点,,D E F 分别为边,,BC AD CE 的中点,且ABC 的面积是12,则BEF △的面积是()A.3B.4C.6D.89.如图,在ABC 中,30A ∠=︒,50B ∠=︒,将点A 与点B 分别沿MN 和EF 折叠,使点A 、B 与点C 重合,则NCF ∠的度数为()A.10︒B.15︒C.20︒D.30︒10.如图,在Rt△ABC 中,∠C =90°,∠B =30°,以点A 为圆心,任意长为半径画弧分别交AB ,AC 于点M 和N ,再分别以M ,N 为圆心,大于1MN 2的长为半径画弧,两弧交于点P ,连接AP 并延长交BC 于点D ,则下列说法中:①AD 是∠BAC 的平分线;②点D 在线段AB 的垂直平分线上;③S △DAC :S △ABC =1:2.正确的是()A.①②B.①③C.②③D.①②③二、填空题(本大题共有6个小题,每小题3分,共18分)11.已知等腰三角形的两边长分别是4cm 和8cm ,则周长为_______12如图,将Rt ABC △绕直角顶点C 顺时针旋转90︒,得到A B C ''' ,连接AA ',若65B ∠=︒,则1∠的度数是_______13.如图,ABC DEF ≌△△,点,,,B E C F 在一条直线上.已知8,5BC EC ==,则CF 的长为______14.如图,AB AC =,AD AE BAC DAE =∠=∠,,点B 、D 、E 在同一条直线上,若125360∠=︒∠=︒,,则2∠的度数为___________15.如图,在ABC 中,AD 是高,AE 是角平分线,若118∠=︒,68C ∠=︒,则BAC ∠的度数为_____16.如图△ABC 中,∠C =90°,以顶点A 为圆心,任意长为半径画弧,分别交AC ,AB 于点M ,N ,再分别以点M ,N 为圆心,大于12MN 的长为半径画弧,两弧交干点P ,作射线AP 交边BC 于点D ,若CD =4,BD =5,AC =12,则△ABD 的面积是________;三、解答题(本大题共有6个小题,共52分)17.如图,已知AB CD =,AB CD ,BE CF =,求证A D ∠=∠.18.已知:如图,AB DE ∥,AB DE =,AF DC =.求证:B E ∠=∠.19.如图,点B ,F ,C ,E 在直线l 上(F ,C 之间不能直接测量),点A ,D 在l 异侧,测得AB DE =,AB DE ∥,A D ∠=∠.(1)求证:ABC DEF ≌△△;(2)若10BE =,3BF =,求FC 的长度.20.已知:如图,AB //CD ,AB =CD ,BF =CE .(1)求证: ABF ≌ DCE .(2)已知∠AFC =80°,求∠DEC 的度数.21.已知:如图,在Rt ABC △中,90ACB ∠=︒,过点C 作CD AB ⊥,垂足为D .在射线CD 上截取CE CA =,过点E 作EF CE ⊥,交CB 的延长线于点F .(1)求证:ABC CFE △△≌;(2)若9AB =,4EF =,求BF 的长.22.在ABC 中,90o ACB AC BC ∠=,=,直线MN 经过点C ,且AD MN ⊥于D ,BE MN ⊥于E .(1)当直线MN 绕点C 旋转到图1的位置时,求证:①ACD CBE ≌;②DE AD BE =+.(2)当直线MN 绕点C 旋转到图2的位置时,求证:DE AD BE -=;(3)当直线MN 绕点C 旋转到图3的位置时,试问DE AD BE 、、具有怎样的等量关系?请写出这个等量关系解答卷二、选择题(本大题共有10个小题,每小题3分,共30分)1.小芳有两根长度为4cm 和8cm 的木条,她想钉一个三角形木框,桌上有下列长度的几根木条,她应该选择长度为()的木条.A.3cm B.5cm C.12cm D.17cm【答案】B2.等腰三角形的两条边长分别为8和4,则它的周长等于()A.12B.16C.20D.16或20【答案】C3.下面四个图形中,线段BD 是ABC 的高的图形是()A.B.C.D.【答案】D4.下列判定两直角三角形全等的方法,错误的是()A.两条直角边对应相等B.斜边和一直角边对应相等C.两个锐角对应相等D.斜边和一锐角对应相等【答案】C5.如图,为估计池塘岸边A、B 的距离,小方在池塘的一侧选取一点O,测得OA=19米,OB=10米,A、B 间的距离不可能是()A.26米B.12米C.9米D.15米【答案】C6.如图,点B ,E ,C ,F 在同一直线上,AB DE =,BC EF =,添加一个条件能判定ABC DEF ≌△△的是()A.AB DE ∥B.A D ∠=∠C.ACB F ∠=∠D.AC DF∥【答案】A7.如图,AD ,AE ,AF 分别是ABC 的中线,角平分线,高.则下列各式中错误..的是()A.90AFB ∠=︒B.AE CE =C.2BC CD =D.12BAE BAC∠=∠【答案】B9.如图,在ABC 中,已知点,,D E F 分别为边,,BC AD CE 的中点,且ABC 的面积是12,则BEF △的面积是()A.3B.4C.6D.8【答案】A9.如图,在ABC 中,30A ∠=︒,50B ∠=︒,将点A 与点B 分别沿MN 和EF 折叠,使点A 、B 与点C 重合,则NCF ∠的度数为()A.10︒B.15︒C.20︒D.30︒【答案】C10.如图,在Rt△ABC 中,∠C =90°,∠B =30°,以点A 为圆心,任意长为半径画弧分别交AB ,AC 于点M 和N ,再分别以M ,N 为圆心,大于1MN 2的长为半径画弧,两弧交于点P ,连接AP 并延长交BC 于点D ,则下列说法中:①AD 是∠BAC 的平分线;②点D 在线段AB 的垂直平分线上;③S △DAC :S △ABC =1:2.正确的是()A.①②B.①③C.②③D.①②③【答案】A四、填空题(本大题共有6个小题,每小题3分,共18分)11.已知等腰三角形的两边长分别是4cm 和8cm ,则周长为_______【答案】20cm12如图,将Rt ABC △绕直角顶点C 顺时针旋转90︒,得到A B C ''' ,连接AA ',若65B ∠=︒,则1∠的度数是_______【答案】20°13.如图,ABC DEF ≌△△,点,,,B E C F 在一条直线上.已知8,5BC EC ==,则CF 的长为______【答案】315.如图,AB AC =,AD AE BAC DAE =∠=∠,,点B 、D 、E 在同一条直线上,若125360∠=︒∠=︒,,则2∠的度数为___________【答案】35︒15.如图,在ABC 中,AD 是高,AE 是角平分线,若118∠=︒,68C ∠=︒,则BAC ∠的度数为_____【答案】80°16.如图△ABC 中,∠C =90°,以顶点A 为圆心,任意长为半径画弧,分别交AC ,AB 于点M ,N ,再分别以点M ,N 为圆心,大于12MN 的长为半径画弧,两弧交干点P ,作射线AP 交边BC 于点D ,若CD =4,BD =5,AC =12,则△ABD的面积是________;【答案】30五、解答题(本大题共有6个小题,共52分)17.如图,已知AB CD =,AB CD ,BE CF =,求证A D ∠=∠.证明:∵AB CD ,∴B C ∠=∠,又∵AB DC =,BE CF =,∴()SAS ABE DCF ≌△△,∴A D ∠=∠.18.已知:如图,AB DE ∥,AB DE =,AF DC =.求证:B E ∠=∠.证明:∵AB DE ∥,∴A D ∠=∠,∵AF DC =,∴AF CF DC CF+=+即AC DF=在ABC 与DEF 中AC DFA D AB DE=⎧⎪∠=∠⎨⎪=⎩,∴()SAS ABC DEF ≌△△,∴B E ∠=∠.20.如图,点B ,F ,C ,E 在直线l 上(F ,C 之间不能直接测量),点A ,D 在l 异侧,测得AB DE =,AB DE ∥,A D ∠=∠.(1)求证:ABC DEF ≌△△;(2)若10BE =,3BF =,求FC 的长度.解:(1)证明:∵AB DE ∥,∴ABC DEF ∠=∠,在ABC 和DEF 中,A DAB DE ABC DEF∠=∠⎧⎪=⎨⎪∠=∠⎩∴()ASA ABC DEF ≌△△;(2)解:由(1)知()ASA ABC DEF ≌△△,∴BC EF =,∴BF FC CE FC +=+,∴3BF CE ==,∵10BE =,∴10334FC BE BF CE =--=--=,∴FC 的长度是4.20.已知:如图,AB //CD ,AB =CD ,BF =CE .(1)求证: ABF ≌ DCE .(2)已知∠AFC =80°,求∠DEC的度数.(1)证明:∵AB //CD ,∴∠B =∠C ,在 ABF 与 DCE 中,AB DC B C BF CE=⎧⎪∠=∠⎨⎪=⎩,∴ ABF ≌DCE (SAS ).(2)解:∵∠AFB +∠AFC =180°,∠AFC =80°,∴∠AFB =180°﹣∠AFC =100°,由(1)知, ABF ≌ DCE ,∴∠AFB =∠DEC ,∴∠DEC =100°.22.已知:如图,在Rt ABC △中,90ACB ∠=︒,过点C 作CD AB ⊥,垂足为D .在射线CD 上截取CE CA =,过点E 作EF CE ⊥,交CB 的延长线于点F.(1)求证:ABC CFE △△≌;(2)若9AB =,4EF =,求BF 的长.解:(1)∵CD AB ⊥,EF CE ⊥,∴AB EF ∥,∴ABC F ∠=∠,在ABC 和CFE 中,ABC FACB E AC CE∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()AAS ABC CFE △△≌;(2)∵ABC CFE △△≌,∴9AB CF ==,4BC EF ==,∴5BF CF BC =-=.22.在ABC 中,90o ACB AC BC ∠=,=,直线MN 经过点C ,且AD MN ⊥于D ,BE MN ⊥于E.(1)当直线MN 绕点C 旋转到图1的位置时,求证:①ACD CBE ≌;②DE AD BE =+.(2)当直线MN 绕点C 旋转到图2的位置时,求证:DE AD BE -=;(3)当直线MN 绕点C 旋转到图3的位置时,试问DE AD BE 、、具有怎样的等量关系?请写出这个等量关系解:(1)如图①∵90ADC ACB ∠=∠=︒,∴123290︒∠∠∠∠+=+=,∴13∠=∠.又∵AC BC =,90ADC CEB ∠=∠=︒,∴ADC CEB ≅ .②∵ADC CEB ≅ ,∴CE AD =,CD BE =,∴DE CE CD AD BE =+=+.(2)∵90ACB CEB ∠=∠=︒,∴12290CBE ∠∠∠∠︒+=+=,∴1CBE ∠=∠.又∵90AC BC ADC CEB ∠∠︒=,==,∴ACD CBE ≅ ,∴CE AD CD BE =,=,∴DE CE CD AD BE =-=-.(3)当MN 旋转到图3的位置时,AD DE BE 、、所满足的等量关系是DE BE AD =-(或AD BE DE BE AD DE -+=,=等).∵90ACB CEB ∠=∠=︒,∴90ACD BCE CBE BCE ∠∠∠∠︒+=+=,∴ACD CBE ∠=∠,又∵90AC BC ADC CEB ∠∠︒=,==,∴ACD CBE ≅ ,∴AD CE CD BE ==,,∴DE CD CE BE AD =-=-.。
浙教版 八年级数学上册 第1章 三角形的初步认识 单元测试卷 (含解析)
八年级(上)数学第1章三角形的初步认识单元测试卷一.选择题(共10小题)1.下面有四个图案,其中不是轴对称图形的是A.B.C.D.2.等腰三角形的一个内角是,则另外两个角的度数分别是A.B.C.或D.3.下列条件中不能判定两个直角三角形全等的是A.两个锐角分别对应相等B.两条直角边分别对应相等C.一条直角边和斜边分别对应相等D.一个锐角和一条斜边分别对应相等4.已知直角三角形的两边长分别为3和4,则斜边长为A.4B.5C.4或5D.5或5.用反证法证明“”时应先假设A.B.C.D.6.如图和△中,,再添两个条件不能够全等的是A.,B.,C.,D.,7.已知,如图,在中,,,是的平分线,,则图中等腰三角形一共有A.2个B.3个C.4个D.5个8.已知等腰三角形的两边长分别为、,且、满足,则此等腰三角形的周长是A.8B.11C.12D.11或139.将两个底边相等的等腰三角形按照如图所示的方式拼接在一起(隐藏互相重合的底边)的图形俗称为“筝形”.假如“筝形”下个定义,那么下面四种说法中,你认为最能够描述“筝形”特征的是A.有两组邻边相等的四边形称为“筝形”B.有两组对角分别相等的四边形称为“筝形”C.两条对角线互相垂直的四边形称为“筝形”D.以一条对角线所在直线为对称轴的四边形称为“筝形”10.如图,在等腰中,为的平分线,,,,则A.B.C.D.二.填空题(共8小题)11.已知等腰三角形的两边长分别是2和4,那么这个等腰三角形的周长是.12.已知在中,,,,那么.13.等腰,,平分交于,如果,则.14.如果在直角三角形中,一个锐角是另一个锐角的3倍,那么这个三角形中最小的一个角等于度.15.如图,直角中,,,当时,.16.如图,,,垂足分别是,,(若要用“”得到,则应添加的条件是.(写一种即可)17.如图,在中,度,如果过点画一条直线能把分割成两个等腰三角形,那么度.18.如图,是一个钢架结构,在角内部最多只能构造五根等长钢条,且满足,则的度数最大为度.三.解答题(共6小题)19.用反证法证明一个三角形中不能有两个角是直角.20.如图,中,,是中点,.求的长.21.如图,已知,平分.求证:是等腰三角形.22.如图,,是上的一点,且,,求证:.23.如图,在中,,是的平分线,,交于点.(1)求证:.(2)若,求的度数.24.如图,已知中,,,,、是边上的两个动点,其中点从点开始沿方向运动,且速度为每秒,点从点开始沿方向运动,且速度为每秒,它们同时出发,设出发的时间为秒.(1)出发2秒后,求的长;(2)当点在边上运动时,出发几秒钟后,能形成等腰三角形?(3)当点在边上运动时,求能使成为等腰三角形的运动时间.参考答案一.选择题(共10小题)1.下面有四个图案,其中不是轴对称图形的是A.B.C.D.解:、不是轴对称图形,故本选项符合题意;、是轴对称图形,故本选项不符合题意;、是轴对称图形,故本选项不符合题意;、是轴对称图形,故本选项不符合题意.故选:.2.等腰三角形的一个内角是,则另外两个角的度数分别是A.B.C.或D.解:,,①当底角时,则,;②当顶角时,,,;即其余两角的度数是,或,,故选:.3.下列条件中不能判定两个直角三角形全等的是A.两个锐角分别对应相等B.两条直角边分别对应相等C.一条直角边和斜边分别对应相等D.一个锐角和一条斜边分别对应相等解:、两个锐角对应相等,不能说明两三角形能够完全重合,符合题意;、可以利用边角边判定两三角形全等,不符合题意;、可以利用边角边或判定两三角形全等,不符合题意;、可以利用角角边判定两三角形全等,不符合题意.故选:.4.已知直角三角形的两边长分别为3和4,则斜边长为A.4B.5C.4或5D.5或解:直角三角形的两边长分别为3和4,①4是此直角三角形的斜边;②当4是此直角三角形的直角边时,斜边长为.综上所述,斜边长为4或5.故选:.5.用反证法证明“”时应先假设A.B.C.D.解:用反证法证明“”时,应先假设.故选:.6.如图和△中,,再添两个条件不能够全等的是A.,B.,C.,D.,解:选项,,,可利用判定△,同理选项,也可利用判定△,选项,,可利用判定△,选项,,,只能证明△,不能证明△.故选:.7.已知,如图,在中,,,是的平分线,,则图中等腰三角形一共有A.2个B.3个C.4个D.5个解:,是等腰三角形;,是等腰三角形;是的平分线,,,,是等腰三角形;和为等腰三角形;图中等腰三角形的个数有5个;故选:.8.已知等腰三角形的两边长分别为、,且、满足,则此等腰三角形的周长是A.8B.11C.12D.11或13解:解得:,当4为腰时,三边为3,3,5,由三角形三边关系定理可知,周长为:.当5为腰时,三边为5,5,3,符合三角形三边关系定理,周长为:.故选:.9.将两个底边相等的等腰三角形按照如图所示的方式拼接在一起(隐藏互相重合的底边)的图形俗称为“筝形”.假如“筝形”下个定义,那么下面四种说法中,你认为最能够描述“筝形”特征的是A.有两组邻边相等的四边形称为“筝形”B.有两组对角分别相等的四边形称为“筝形”C.两条对角线互相垂直的四边形称为“筝形”D.以一条对角线所在直线为对称轴的四边形称为“筝形”解:由题意:“筝形”的一条对角线是另一条对角线的垂直平分线,所以:“筝形”是轴对称图形,对称轴是对角线所在的直线.故选:.10.如图,在等腰中,为的平分线,,,,则A.B.C.D.解:在等腰中,为的平分线,,,,,,,,,,故选:.二.填空题(共8小题)11.已知等腰三角形的两边长分别是2和4,那么这个等腰三角形的周长是10.解:2是腰长时,三角形的三边分别为2、2、4,,不能组成三角形,2是底边时,三角形的三边分别为2、4、4,能组成三角形,周长.故答案为:10.12.已知在中,,,,那么.解:如图所示:可知为的一个直角边,在中,根据勾股定理有:,即,解得:.故答案为:.13.等腰,,平分交于,如果,则3.解:,平分,,故答案为:3.14.如果在直角三角形中,一个锐角是另一个锐角的3倍,那么这个三角形中最小的一个角等于22.5度.解:在直角三角形中,设最小的锐角的度数为,则另一个锐角的度数则为.则,即,解得,,即这个直角三角形中最小的一个角等于.故答案是:22.5.15.如图,直角中,,,当时,.解:设,,,,,,,,,,,故答案为:.16.如图,,,垂足分别是,,(若要用“”得到,则应添加的条件是或.(写一种即可)解:若添加,在和中,,;若添加,在和中,,.故答案为:或.17.如图,在中,度,如果过点画一条直线能把分割成两个等腰三角形,那么度.解:如图,设过点的直线与交于点,则与都是等腰三角形,度,,,,,,,故答案为.18.如图,是一个钢架结构,在角内部最多只能构造五根等长钢条,且满足,则的度数最大为150度.解:,,,,,,,,,最小为,的度数最大为,故答案为:150.三.解答题(共6小题)19.用反证法证明一个三角形中不能有两个角是直角.【解答】证明:假设三角形的三个内角、、中有两个直角,不妨设,则,这与三角形内角和为相矛盾,不成立;所以一个三角形中不能有两个直角.20.如图,中,,是中点,.求的长.解:,点是中点,,,,点是中点,.21.如图,已知,平分.求证:是等腰三角形.【解答】证明:,,平分,,,是等腰三角形.22.如图,,是上的一点,且,,求证:.【解答】证明:,.,和是直角三角形,而.23.如图,在中,,是的平分线,,交于点.(1)求证:.(2)若,求的度数.【解答】(1)证明:是的平分线,,,,,.(2)解:,,,,.24.如图,已知中,,,,、是边上的两个动点,其中点从点开始沿方向运动,且速度为每秒,点从点开始沿方向运动,且速度为每秒,它们同时出发,设出发的时间为秒.(1)出发2秒后,求的长;(2)当点在边上运动时,出发几秒钟后,能形成等腰三角形?(3)当点在边上运动时,求能使成为等腰三角形的运动时间.解:(1),,,;(2),,根据题意得:,解得:,即出发秒钟后,能形成等腰三角形;(3)①当时,如图1所示,则,,.,,,,,秒.②当时,如图2所示,则,秒.③当时,如图3所示,过点作于点,则,,,,秒.综上所述:当为11秒或12秒或13.2秒时,为等腰三角形.。
浙教版八年级数学上《第1章三角形的初步认识》单元测试含答案
《第1章三角形的初步认识》一、选择题1.下列各组线段中,能组成三角形的是()A.4,6,10 B.3,6,7 C.5,6,12 D.2,3,62.在△ABC中,∠A﹣∠C=∠B,那么△ABC是()A.等边三角形B.锐角三角形C.钝角三角形D.直角三角形3.如图所示,是用直尺和圆规作一个角等于已知角的示意图,则说明∠A′O′B′=∠AOB的依据是()A.SAS B.SSS C.AAS D.ASA4.如图AB⊥AD,AB⊥BC,则以AB为一条高线的三角形共有()个.A.1 B.2 C.3 D.45.如图所示,△BDC′是将长方形纸片ABCD沿BD折叠得到的,图中(包括实线、虚线在内)共有全等三角形()对.A.2 B.3 C.4 D.5A.作两条相交直线B.∠α和∠β相等吗?C.全等三角形对应边相等 D.若a2=4,求a的值A.垂直于同一直线的两条直线平行B.有两边和其中一边上的高对应相等的两个三角形全等C.三角形三个内角中,至少有2个锐角D.有两条边和一个角对应相等的两个三角形全等8.如图,对任意的五角星,结论正确的是()A.∠A+∠B+∠C+∠D+∠E=90° B.∠A+∠B+∠C+∠D+∠E=180°C.∠A+∠B+∠C+∠D+∠E=270°D.∠A+∠B+∠C+∠D+∠E=360°9.如图,在△ABC中,∠C=90°,AC=BC,AD是△ABC的角平分线,DE⊥AB于E.若AB=6cm,则△DEB的周长为()A.5cm B.6cm C.7cm D.8cm10.如图,BF是∠ABD的平分线,CE是∠ACD的平分线,BF与CE交于G,若∠BDC=130°,∠BGC=100°,则∠A的度数为()A.60° B.70° C.80° D.90°二、填空题11.工人师傅在做完门框后,为防止变形常常像图中所示的那样上两条斜拉的木条(即图中的AB,CD两根木条),这样做的依据是______.13.如图,在△ABC中,AD⊥BC于D,AE为∠BAC的平分线,且∠DAE=15°,∠B=35°,则∠C=______°.14.如图,AB=AC,要使△ABE≌△ACD,应添加的条件是______(添加一个条件即可).16.已知三角形的三边长分别是3、x、9,则化简|x﹣5|+|x﹣13|=______.17.如图,在△ABC中,AB=AC,AB的中垂线DE交AC于点D,交AB于点E,如果BC=10,△DBC的周长为22,那么AB=______.18.如图所示,∠E=∠F=90°,∠B=∠C,AE=AF.给出下列结论:①∠1=∠2;②BE=CF;③△ACN≌△ABM;④CD=DN.其中正确的结论是______.(将你认为正确的结论的序号都填上)19.已知,∠α=50°,且∠α的两边与∠β的两边互相垂直,则∠β=______.20.若三角形的周长为13,且三边均为整数,则满足条件的三角形有______种.三、解答题21.如图,已知△ABC,请按下列要求作图:(1)用直尺和圆规作△ABC的角平分线CG.(2)作BC边上的高线(本小题作图工具不限).(3)用直尺和圆规作△DEF,使△DEF≌△ABC.22.阅读填空:如图,已知∠AOB.要画出∠AOB的平分线,可分别在OA,OB上截取OC=OD,OE=OF,连结CF,DE,交于P点,那么射线OP就是∠AOB的平分线.要证明这个作法是正确的,可先证明△EOD≌△______,判定依据是______,由此得到∠OED=∠______;再证明△PEC≌△______,判定依据是______,由此又得到PE=______;最后证明△EOP≌△______,判定依据是______,从而便可证明出∠AOP=∠BOP,即OP平分∠AOB.24.已知:如图,在△ABC中,∠BAC=90°,AB=AC,MN是经过点A的直线,BD⊥MN,CE⊥MN,垂足分别为D、E.(1)求证:①∠BAD=∠ACE;②BD=AE;(2)请写出BD,DE,CE三者间的数量关系式,并证明.《第1章三角形的初步认识》参考答案与试题解析一、选择题1.下列各组线段中,能组成三角形的是()A.4,6,10 B.3,6,7 C.5,6,12 D.2,3,6【解答】解:A、∵4+6=10,不符合三角形三边关系定理,∴以4、6、10为三角形的三边,不能组成三角形,故本选项错误;B、∵3+6>7,6+7<3,3+7>6,符合三角形三边关系定理,∴以3、6、7为三角形的三边,能组成三角形,故本选项正确;C、∵5+6<12,不符合三角形三边关系定理,∴以5、6、12为三角形的三边,不能组成三角形,故本选项错误;D、∵2+3<6,不符合三角形三边关系定理,∴以2、3、6为三角形的三边,不能组成三角形,故本选项错误;故选B.2.在△ABC中,∠A﹣∠C=∠B,那么△ABC是()A.等边三角形B.锐角三角形C.钝角三角形D.直角三角形【解答】解:∵∠A+∠B+∠C=180°,∴∠C+∠B=180°﹣∠A,而∠A﹣∠C=∠B,∴∠C+∠B=∠A,∴180°﹣∠A=∠A,解得∠A=90°,∴△ABC为直角三角形.故选D.3.如图所示,是用直尺和圆规作一个角等于已知角的示意图,则说明∠A′O′B′=∠AOB的依据是()A.SAS B.SSS C.AAS D.ASA【解答】解:由作法易得OD=O′D′,OC=O′C′,CD=C′D′,依据SSS可判定△COD≌△C'O'D',故选:B.4.如图AB⊥AD,AB⊥BC,则以AB为一条高线的三角形共有()个.A.1 B.2 C.3 D.4【解答】解:∵AB⊥AD,AB⊥BC,∴以AB为一条高线的三角形有△ABD,△ABE,△ABC,△ACE,一共4个.故选D.5.如图所示,△BDC′是将长方形纸片ABCD沿BD折叠得到的,图中(包括实线、虚线在内)共有全等三角形()对.A.2 B.3 C.4 D.5【解答】解:∵△BDC′是将长方形纸片ABCD沿BD折叠得到的,∴C′D=CD,BC′=BC,∵BD=BD,∴△CDB≌△C′DB(SSS),同理可证明:△ABE≌△C′DE,△ABD≌△C′DB,△ABD≌△CDB三对全等.所以,共有4对全等三角形.故选C.A.作两条相交直线B.∠α和∠β相等吗?C.全等三角形对应边相等 D.若a2=4,求a的值故选C.A.垂直于同一直线的两条直线平行B.有两边和其中一边上的高对应相等的两个三角形全等C.三角形三个内角中,至少有2个锐角D.有两条边和一个角对应相等的两个三角形全等故选C.8.如图,对任意的五角星,结论正确的是()A.∠A+∠B+∠C+∠D+∠E=90° B.∠A+∠B+∠C+∠D+∠E=180°C.∠A+∠B+∠C+∠D+∠E=270°D.∠A+∠B+∠C+∠D+∠E=360°【解答】解:∵∠1=∠2+∠D,∠2=∠A+∠C,∴∠1=∠A+∠C+∠D,∵∠1+∠B+∠E=180°,∴∠A+∠B+∠C+∠D+∠E=180°,故选:B.9.如图,在△ABC中,∠C=90°,AC=BC,AD是△ABC的角平分线,DE⊥AB于E.若AB=6cm,则△DEB的周长为()A.5cm B.6cm C.7cm D.8cm【解答】解:∵AD是△ABC的角平分线,DE⊥AB,∴CD=DE,∴△DEB的周长=BD+DE+BE,=BD+CD+BE,=BC+BE,=AC+BE,=AE+BE,=AB,∵AB=6cm,∴△DEB的周长=6cm.故选B.10.如图,BF是∠ABD的平分线,CE是∠ACD的平分线,BF与CE交于G,若∠BDC=130°,∠BGC=100°,则∠A的度数为()A.60° B.70° C.80° D.90°【解答】解:连接BC.∵∠BDC=130°,∴∠DBC+∠DCB=180°﹣130°=50°,∵∠BGC=100°,∴∠GBC+∠GCB=180°﹣100°=80°,∵BF是∠ABD的平分线,CE是∠ACD的平分线,∴∠GBD+∠GCD=∠ABD+∠ACD=30°,∴∠ABC+∠ACB=110°,∴∠A=180°﹣110°=70°.故选B.二、填空题11.工人师傅在做完门框后,为防止变形常常像图中所示的那样上两条斜拉的木条(即图中的AB,CD两根木条),这样做的依据是三角形的稳定性.【解答】解:这样做的依据是三角形的稳定性,故答案为:三角形的稳定性.【解答】解:题设为:对顶角,结论为:相等,故写成“如果…那么…”的形式是:如果两个角是对顶角,那么它们相等,故答案为:如果两个角是对顶角,那么它们相等.13.如图,在△ABC中,AD⊥BC于D,AE为∠BAC的平分线,且∠DAE=15°,∠B=35°,则∠C=65 °.【解答】解:如图,∵AD⊥BC,∴∠ADE=90°.又∵∠DAE=15°,∴∠AED=75°.∵∠B=35°,∴∠BAE=∠AED﹣∠B=40°.又∵AE为∠BAC的平分线,∴∠BAC=2∠BAE=80°,∴∠C=180°﹣∠B﹣∠BAC=65°.故答案是:65.14.如图,AB=AC,要使△ABE≌△ACD,应添加的条件是∠B=∠C或AE=AD (添加一个条件即可).【解答】解:添加∠B=∠C或AE=AD后可分别根据ASA、SAS判定△ABE≌△ACD.故答案为:∠B=∠C或AE=AD.故答案为:假,x=1.16.已知三角形的三边长分别是3、x、9,则化简|x﹣5|+|x﹣13|= 8 .【解答】解:∵三角形的三边长分别是3、x、9,∴6<x<12,∴x﹣5>0,x﹣13<0,∴|x﹣5|+|x﹣13|=x﹣5+13﹣x=8,故答案为:8.17.如图,在△ABC中,AB=AC,AB的中垂线DE交AC于点D,交AB于点E,如果BC=10,△DBC的周长为22,那么AB= 12 .【解答】解:∵AB的中垂线DE交AC于点D,交AB于点E,∴AD=BD,∵△DBC的周长为22,∴BC+CD+BD=BC+CD+AD=BC+AC=22,∵BC=10,∴AC=12.∵AB=AC,∴AB=12.故答案为:12.18.如图所示,∠E=∠F=90°,∠B=∠C,AE=AF.给出下列结论:①∠1=∠2;②BE=CF;③△ACN≌△ABM;④CD=DN.其中正确的结论是①②③.(将你认为正确的结论的序号都填上)【解答】解:∵∠E=∠F=90°,∠B=∠C,AE=AF,∴△ABE≌△ACF,∴AC=AB,BE=CF,即结论②正确;∵AC=AB,∠B=∠C,∠CAN=∠BAM,∴ACN≌△ABM,即结论③正确;∵∠BAE=∠CAF,∵∠1=∠BAE﹣∠BAC,∠2=∠CAF﹣∠BAC,∴∠1=∠2,即结论①正确;∴△AEM≌△AFN,∴AM=AN,∴CM=BN,∴△CDM≌△BDN,∴CD=BD,∴题中正确的结论应该是①②③.故答案为:①②③.19.已知,∠α=50°,且∠α的两边与∠β的两边互相垂直,则∠β=130°或50°.【解答】解:①如图1,∵∠a+∠β=180°﹣90°﹣90°=180°,∠α=50°,∴∠β=130°,②如图2,若∠a的两边分别与∠β的两边在同一条直线上,∴∠a=∠β=50°,综上所述,∠β=130°或50°.故答案是:130°或50°.20.若三角形的周长为13,且三边均为整数,则满足条件的三角形有 4 种.【解答】解:设三边长分别为a≤b≤c,则a+b=13﹣c>c≥,∴≤c<,故c=5,或6;分类讨论如下:①当c=5时,b=4,a=4或b=3,a=5;②当c=6时,b=5,a=2或b=4,a=3;∴满足条件的三角形的个数为4,故答案为:4.三、解答题21.如图,已知△ABC,请按下列要求作图:(1)用直尺和圆规作△ABC的角平分线CG.(2)作BC边上的高线(本小题作图工具不限).(3)用直尺和圆规作△DEF,使△DEF≌△ABC.【解答】解:(1)如图1,CG为所作;(2)如图1,AH为所作;(3)如图2,△DEF为所作.22.阅读填空:如图,已知∠AOB.要画出∠AOB的平分线,可分别在OA,OB上截取OC=OD,OE=OF,连结CF,DE,交于P点,那么射线OP就是∠AOB的平分线.要证明这个作法是正确的,可先证明△EOD≌△FOC ,判定依据是SAS ,由此得到∠OED=∠OFC ;再证明△PEC≌△PFD ,判定依据是AAS ,由此又得到PE= PF ;最后证明△EOP≌△FOP ,判定依据是SSS ,从而便可证明出∠AOP=∠BOP,即OP平分∠AOB.【解答】解:作法:(1)分别在OA,OB上截取OC=OD,OE=OF,连接CF,DE,交于P点,(2)连接OP即可,在△EOD与△FOC中,,∴△EOD≌△FOC(SAS),∴∠OED=∠OFC,在△PEC与△PFD中,,∴△PEC≌△PFD(AAS),∴PE=PF.在△EOP与△FOP中,,∴△EOP≌△FOP(SSS),∴∠AOP=∠BOP,即OP平分∠AOB.故答案为:FOC,SAS,OFC;PFD,AAS,PF;△FOP,SSS,【解答】解:已知:如图,△ABC≌△EFC,AD、EH分别是△ABC和△EFC的对应边BC、FG上的高.求证:AD=EH.证明:∵△ABC≌△EFC,∴AB=EF,∠B=∠F,∵AD、EH分别是△ABC和△EFC的对应边BC、FG上的高,∴∠ADB=∠EHF=90°,在△ABD和△EFH中,∴△ABD≌△EFH(AAS),∴AD=EH.24.已知:如图,在△ABC中,∠BAC=90°,AB=AC,MN是经过点A的直线,BD⊥MN,CE⊥MN,垂足分别为D、E.(1)求证:①∠BAD=∠ACE;②BD=AE;(2)请写出BD,DE,CE三者间的数量关系式,并证明.【解答】解:(1)①∵∠BAC=90°,∴∠BAD+∠CAE=90°,∵CE⊥MN,∴∠ACE+∠CAE=90°,∴∠BAD=∠ACE;②∵BD⊥MN,∴∠BDA=∠AEC=90°,在△ABD和△CAE中,,∴△ABD≌△CAE,∴BD=AE;(2)∵△ABD≌△CAE,∴BD=AE,AD=CE,∵AE=AD+DE,∴BD=CE+DE.。
浙教版八上数学第一章 三角形的初步知识 单元练习卷(含答案)
浙教版八上数学第一章一、单选题1.下列生活实例中,利用了“三角形稳定性”的是( )A.B.C.D.2.如图,△ABC≌△EBD,AB=4cm,BD=7cm,则CE的长度为( )A.1cm B.2cm C.3cm D.4cm3.如图,在△ABC中,∠C=90°,AD是∠A角平分线,DE⊥AB于点E,CD=2,BC=6,则BE=( )A.2B.22C.23D.64.如图,下面是利用尺规作∠AOB的角平分线OC的作法,在用尺规作角平分线过程中,用到的三角形全等的判定方法是( )作法:①以O为圆心,适当长为半径画弧,分别交OA,OB于点D,E;②分别以D,E为圆心,大于1DE的长为半径画弧,两弧在∠AOB内交于一点C;2③画射线OC,射线OC就是∠AOB的角平分线.A.ASA B.SAS C.SSS D.AAS5.如图,将△ABC绕点A逆时针旋转一定的角度,得到△ADE,且AD⊥BC.若∠CAE=45°,∠E=60°,则∠BAC的大小是( )A.60°B.65°C.75°D.95°6.如图,已知锐角∠AOB,根据以下要求作图.(1)在射线OA上取点C和点E,以点O为圆心,OC,OE的长为半径画弧,分别交射线OB于点D,F;(2)连接CF,DE交于点P.则下列结论错误的是( )A.CE=DFB.点P在∠AOB的平分线上C.PE=PFD.若∠AOB=60°,则∠CPD=120°7.三边长度都是整数的三角形称为整数边三角形,若一个三角形的最长边长为8,则满足条件的整数边三角形共有( )A.8个B.10个C.12个D.20个8.如图所示,在△ABC中,点O是∠BCA与∠ABC的平分线的交点,已知△ABC的面积是12,周长是8,则点O到边BC的距离OD是( )A.1B.2C.3D.49.如右图,将△ABC沿DE、HG、EF翻折,三个顶点均落在点O处,若∠1=129°,则∠2的度数为( )A.49°B.50°C.51°D.52°10.如图,点E是BC的中点,AB⊥BC,DC⊥BC,AE平分∠BAD,下列结论:①∠AED=90∘;②∠ADE=∠CDE;③DE=BE;④AD=AB+CD,四个结论中成立的是( )A.①②④B.①②③C.③④D.①③二、填空题11.已知三角形的三边长分别是2、7、x,且x为奇数,则x= .12.“两直线平行,同位角相等”是 命题(真、假).13.如图,在△ABC中,∠BDC=125°,如果∠ABC与∠ACB的平分线交于点D,那么∠A= 度.14.在△ABC中,BD平分∠ABC,如果AB=12,BC=8,△ABD的面积为24,则△CBD的面积为 15.如图,在Rt△ABC中,DE是斜边AB的垂直平分线,连接BD,若∠CBD=26°,则∠A= 度.16.如图,已知AD为△ABC的中线,AB=10cm,AC=7cm,△ACD的周长为20cm,则△ABD的周长为 cm.三、解答题17.如图,在△ABC中,∠ADB=∠ABD,∠DAC=∠DCA,∠BAD=32°,求∠BAC的度数.18.如图,AB=CB,BE=BF,∠1=∠2,证明:△ABE≌△CBF.19.如图,△ABC中,∠ABC=30°,∠ACB=50°,DE、FG分别为AB、AC的垂直平分线,E、G分别为垂足.(1)∠BAC的度数为______,∠DAF的度数为______;(2)若△DAF的周长为20,求BC的长.20.如图,已知在△ABC中,AB=AC=10cm,BC=8cm,D为AB的中点.点P在线段BC上以3cm/s 的速度由点B出发向终点C运动,同时点Q在线段CA上以acm/s的速度由点C出发向终点A运动,设点P的运动时间为ts.(1)求CP的长;(用含t的式子表示)(2)若以C、P、Q为顶点的三角形和以B,D,P为顶点的三角形全等,且∠B和∠C是对应角,求t,a 的值.21.定义:在一个三角形中,如果有一个角是另一个角的1,我们称这两个角互为“和谐角”,这个2三角形叫做“和谐三角形” .例如:在△ABC中,如果∠A=70°,∠B=35°,那么∠A与∠B互为“和谐角”,△ABC为“和谐三角形”.问题1:如图1,△ABC中,∠ACB=90°,∠A=60°,点D是线段 A BB 上一点(不与A、B 重合),连接CD(1)如图1,△ABC 是“和谐三角形”吗?为什么?(2)如图1,若CD⊥AB,则△ACD、△BCD是“和谐三角形” 吗?为什么?(3)问题2:如图2,△ABC 中,∠ACB=60°,∠A=80°,点 D 是线段AB 上一点(不与A、B 重合),连接CD,若△ACD 是“和谐三角形”,求∠ACD 的度数.22.“转化”是数学中的一种重要思想,即把陌生的问题转化成熟悉的问题,把复杂的问题转化成简单的问题,把抽象的问题转化为具体的问题.(1)请你根据已经学过的知识求出下面星形图(1)中∠A+∠B+∠C+∠D+∠E的度数;(2)若对图(1)中星形截去一个角,如图(2),请你求出∠A+∠B+∠C+∠D+∠E+∠F的度数;(3)若再对图(2)中的角进一步截去,你能由题(2)中所得的方法或规律,猜想图3中的∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠M+∠N的度数吗?只要写出结论,不需要写出解题过程)23.(1)阅读理解:问题:如图1,在四边形ABCD中,对角线BD平分∠ABC,∠A+∠C=180°.求证:DA=DC.思考:“角平分线+对角互补”可以通过“截长、补短”等构造全等去解决问题.方法1:在BC上截取BM=BA,连接DM,得到全等三角形,进而解决问题;方法2:延长BA到点N,使得BN=BC,连接DN,得到全等三角形,进而解决问题.结合图1,在方法1和方法2中任选一种,添加辅助线并完成证明.(2)问题解决:如图2,在(1)的条件下,连接AC,当∠DAC=60°时,探究线段AB,BC,BD之间的数量关系,并说明理由;(3)问题拓展:如图3,在四边形ABCD中,∠A+∠C=180°,DA=DC,过点D作DE⊥BC,垂足为点E,请直接写出线段AB、CE、BC之间的数量关系.答案解析部分1.【答案】B2.【答案】D3.【答案】C4.【答案】C5.【答案】C6.【答案】D7.【答案】C8.【答案】C9.【答案】C10.【答案】A11.【答案】712.【答案】真13.【答案】7014.【答案】1615.【答案】3216.【答案】2317.【答案】解:在三角形ABD中,(180°﹣32°)=74°,∠ADB=∠ABD=12在三角形ADC中,∠ADB=37°,∠DAC=∠DCA=12∴∠BAC=∠DAC+∠BAD=37°+32°=69°.18.【答案】证明:∵∠1=∠2,∴∠1+∠FBE=∠2+∠FBE,即∠ABE=∠CBF在△ABE与△CBF中,{AC=CB∠ABE=∠CBFBE=BF∴△ABE≌△CBF(SAS).19.【答案】(1)100°,20°;(2)20.20.【答案】(1)CP =(8﹣3t )cm(2)t =43,a =154或t =1,a =321.【答案】(1)解:ΔABC 是“和谐三角形”,理由如下:∵∠ACB =90°,∠A =60°,∴∠B =30°,∴∠B =12∠A ,∴ΔABC 是“和谐三角形”;(2)解:ΔACD 、ΔBCD 是“和谐三角形”,理由如下:∵∠ACB =90°,∠A =60°,∴∠B =30°,∵CD ⊥AB ,∴∠ADC =∠BDC =90°,∴∠ACD =30°,∠BCD =60°.在ΔACD 中,∵∠A =60°,∠ACD =30°,∴∠ACD =12∠A ,∴ΔACD 为和谐三角形”;在ΔBCD 中,∵∠BCD =60°,∠B =30°,∴∠B =12∠BCD ,∴ΔBCD 为和谐三角形”;(3)解:若ΔACD 是“和谐三角形”,由于点D 是线段AB 上一点(不与A 、B 重合),则∠ACD =12∠A 或∠ACD =12∠ADC .当∠ACD =12∠A 时,∠ACD =12∠A =40°;当∠ACD =12∠ADC 时,∠A +3∠ACD =180°,即3∠ACD =100°,∴∠ACD =100°3.综上,∠ACD 的度数为40°或100°3.22.【答案】(1)解:如图,∵∠1=∠2+∠D=∠B+∠E+∠D ,∠1+∠A+∠C=180°,∴∠A+∠B+∠C+∠D+∠E=180°(2)解:∵∠1=∠2+∠F=∠B+∠E+∠F ,∠1+∠A+∠C+∠D=360°,∴∠A+∠B+∠C+∠D+∠E+∠F=360°(3)解:∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠M+∠N=180×5+180=1080°.23.【答案】(1)解:方法1:在 BC 上截 BM =BA ,连接 DM ,如图.∵BD 平分 ∠ABC ,∴∠ABD =∠CBD .在 ΔABD 和 ΔMBD 中, {BD =BD∠ABD =∠MBD BA =BM ,∴ΔABD≌ΔMBD ,∴∠A =∠BMD , AD =MD .∵∠BMD +∠CMD =180° , ∠C +∠A =180° .∴∠C =∠CMD .∴DM =DC ,∴DA =DC .方法2:延长 BA 到点N ,使得 BN =BC ,连接 DN ,如图.∵BD 平分 ∠ABC ,∴∠NBD =∠CBD .在 ΔNBD 和 ΔCBD 中, {BD =BD∠NBD =∠CBD BN =BC ,∴ΔNBD≌ΔCBD .∴∠BND =∠C , ND =CD .∵∠NAD +∠BAD =180° ,∠C +∠BAD =180° .∴∠BND =∠NAD ,∴DN =DA ,∴DA =DC .(2)解: AB 、 BC 、 BD 之间的数量关系为: AB +BC =BD . (或者: BD ―CB =AB , BD ―AB =CB ).延长 CB 到点P ,使 BP =BA ,连接 AP ,如图2所示.由(1)可知 AD =CD ,∵∠DAC =60° .∴ΔADC 为等边三角形.∴AC =AD , ∠ADC =60° .∵∠BCD +∠BAD =180° ,∴∠ABC =360°―180°―60°=120° .∴∠PBA =180°―∠ABC =60° .∵BP =BA ,∴ΔABP 为等边三角形.∴∠PAB =60° , AB =AP .∵∠DAC =60° ,∴∠PAB +∠BAC =∠DAC +∠BAC ,即 ∠PAC =∠BAD .在 ΔPAC 和 ΔBAD 中, {PA =BA∠PAC =∠BAD AC =AD ,∴ΔPAC≌ΔBAD .∴PC =BD ,∵PC =BP +BC =AB +BC ,∴AB +BC =BD .(3)BC ―AB =2CE。
2022年浙教版八年级数学上册第一章《三角形的初步认识》测试卷附答案解析
2022年八年级数学上册第一章《三角形的初步认识》综合测试卷一.选择题(共10小题,满分30分,每小题3分)1.如图,一只手握住了一个三角形的一部分,则这个三角形是()A.钝角三角形B.直角三角形C.锐角三角形D.以上都有可能2.如图,窗户打开后,用窗钩AB可将其固定,其所运用的几何原理是()A.两点之间,线段最短B.两点确定一条直线C.垂线段最短D.三角形具有稳定性3.木工要做一个三角形支架,现有两根木条的长度分别为12cm和5cm,则不能作为第三根木条的长度为()A.6cm B.9cm C.13cm D.16cm4.下列说法中正确的是()A.三角形的三条中线必交于一点B.直角三角形只有一条高C.三角形的中线可能在三角形的外部D.三角形的高线都在三角形的内部5.将一副三角板和一个直尺按如图所示的位置摆放,则∠1的度数为()度.A.45B.60C.75D.1056.下列尺规作图的语句正确的是()A.延长射线AB到D B.以点D为圆心,任意长为半径画弧C.作直线AB=3cm D.延长线段AB至C,使AC=BC7.下列命题是真命题的是()A.三角形的外角大于它的内角B.三角形的任意两边之和大于第三边C.内错角相等D.直角三角形的两角互余8.如图,在△ABC 和△ABD 中,已知AC =AD ,则添加以下条件,仍不能判定△ABC ≌△ABD 的是()A .BC =BDB .∠ABC =∠ABD C .∠C =∠D =90°D .∠CAB =∠DAB9.如图所示,△ABC ≌△AEF ,在下列结论中,不正确的是()A .∠EAB =∠FACB .BC =EF C .∠BAC =∠CAFD .CA 平分∠BCF 10.有下列说法,其中正确的有()①只有两个三角形才能完全重合;②如果两个图形全等,那么它们的形状和大小一定相同;③两个正方形一定是全等图形;④面积相等的两个图形一定是全等图形.A .1个B .2个C .3个D .4个二.填空题(共6小题,满分24分,每小题4分)11.如图,已知BD 是△ABC 的中线,AB =5,BC =3,且△ABD 的周长为12,则△BCD 的周长是.12.如图,△ABD ≌△ACE ,且点E 在BD 上,∠CAB =40°,则∠DEC =.13.如图,△ABC 中,∠B =80°,∠C =70°,将△ABC 沿EF 折叠,A 点落在形内的A ′,则∠1+∠2的度数为.14.对于命题“如果1290∠+∠=︒,那么12∠≠∠”,能说明它是假命题的反例是_____________15.如图所示,在△ABC 中,∠A =70°,内角∠ABC 和外角∠ACD 的平分线交于点E ,则∠E =.16.如图,CA ⊥BC ,垂足为C ,AC =3cm ,BC =9cm ,射线BM ⊥BQ ,垂足为B ,动点P 从C 点出发以1cm /s 的速度沿射线CQ 运动,点N 为射线BM 上一动点,满足PN =AB ,随着P 点运动而运动,当点P 运动秒时,△BCA 与点P 、N 、B 为顶点的三角形全等.三.解答题(共7小题,满分66分)17.(6分)已知a,b,c分别是三角形的三条边长,试化简:|b+c﹣a|+|b﹣c﹣a|+|c﹣a﹣b|.18.(8分19.(8分)如图,CD交BF于点E,以点D为顶点,射线DC为一边,利用尺规作图法在DC的右侧作∠CDG,使∠CDG=∠B.(不写作法,保留作图痕迹)20.(10分)如图,点A、D、C、B在同一条直线上,△ADF≌△BCE,∠B=33°,∠F=27°,BC=5cm,CD=2cm.求:(1)∠1的度数.(2)AC的长.21.(10分)如图,在△ABC中,AD平分∠BAC交BC于点D,BE平分∠ABC交AD于点E.(1)若∠C=50°,∠BAC=60°,求∠ADB的度数;(2)若∠BED=45°,求∠C的度数.22.(本题12分)如图,在△ABC中,AD⊥BC,AE平分∠BAC,∠B=70°,∠C=30°,求:(1)∠BAE的度数;(2)∠DAE的度数.23.(12分)如图,已知直线EF∥GH,给出下列信息:①AC⊥BC;②BC平分∠DCH;③∠ACD=∠DAC.(1)请在上述3条信息中选择其中两条作为条件,其余的一条信息作为结论组成一个真命题,你选择的条件是,结论是(只要填写序号),并说明理由;(2)在(1)的条件下,若∠ACG比∠BCH的2倍少3度,求∠DAC的度数.参考答案一.选择题(共10小题,满分30分,每小题3分)1.D .2.D .3.A .4.A .5.C .6.B .7.B .8.B .9.C .10.A .二.填空题(共5小题,满分20分,每小题4分)11.10.12.140°.13.60°.14.45°,45°15.35°.16.0或6或12或18.三.解答题(共8小题,满分70分)17.【解答】解:∵a ,b ,c 分别是三角形的三条边长,∴b +c >a ,c +a >b ,a +b >c ,∴b +c ﹣a >0,b ﹣c ﹣a <0,c ﹣a ﹣b <0,则|b +c ﹣a |+|b ﹣c ﹣a |+|c ﹣a ﹣b |=b +c ﹣a ﹣(b ﹣c ﹣a )﹣(c ﹣a ﹣b )=b +c ﹣a ﹣b +c +a ﹣c +a +b =a +b +c .18.证明:∵AB =CD ,∴AB +BC =CD +BC ,∴AC =BD ,∵CE//DF ,∴∠D =∠ECA ,在△AEC 与△BFD 中,∠A=∠FBDAC =BD ∠ECA =∠D,∴△AEC ≌△BFD(ASA),∴CE =DF .19.【解答】解:如图所示,∠CDG 即为所求.20.【解答】解:(1)∵△ADF ≌△BCE ,∠F =27°,∴∠E =∠F =27°,∵∠1=∠B +∠E ,∠B =33°,∴∠1=60°;(2)∵△ADF ≌△BCE ,BC =5cm ,∴AD =BC =5cm ,∵CD =2cm ,∴AC =AD +CD =7cm .21.【解答】解:(1)∵AD 平分∠BAC ,∠BAC =60°,∴.∵∠ADB 是△ADC 的外角,∠C =50°,∴∠ADB =∠C +∠DAC =80°;(2)∵AD 平分∠BAC ,BE 平分∠ABC ,∴∠BAC =2∠BAD ,∠ABC =2∠ABE .∵∠BED是△ABE的外角,∠BED=45°,∴∠BAD+∠ABE=∠BED=45°.∴∠BAC+∠ABC=2(∠BAD+∠ABE)=90°.∵∠BAC+∠ABC+∠C=180°,∴∠C=180°﹣(∠BAC+∠ABC)=90°.22.解析:(1)∵∠B+∠C+∠BAC=180°,∴∠BAC=180°﹣∠B﹣∠C=180°﹣70°﹣30°=80°.∵AE平分∠BAC,∴4021=∠=∠BACBAE.(2)∵AD⊥BC,∴∠ADB=90°,∴∠BAD=90°﹣∠B=90°﹣70°=20°.∴∠DAE=∠BAE﹣∠BAD=40°﹣20°=20°.23.【解答】解:(1)选择的条件是②③,结论是①,理由如下:∵EF∥GH,∴∠ACG=∠DAC,∵∠ACD=∠DAC,∴∠ACG=∠ACD,∵BC平分∠DCH,∴∠DCB=∠BCH,∴∠ACG+∠BCH=∠ACD+∠DCB=×180°=90°,即∠ACB=90°,∴AC⊥BC;(2)设∠BCH=x°,则∠ACG=(2x﹣3)°,∵∠ACG+∠BCH=90°,∴x°+(2x﹣3)°=90°,解得x=31,∴∠ACG=(2x﹣3)°=59°,∴∠DAC=∠ACG=59°.。
2024年浙教版数学八上第一章 三角形的初步认识 单元测试卷(含答案)
第一章三角形的初步认识单元测试卷一、选择题1.以下列数值为长度的各组线段中,能组成三角形的是( )A.2,4,7B.3,3,6C.5,8,2D.4,5,62.下列汽车标志中,不是由多个全等图形组成的是( )A.B.C.D.3.已知△ABC的三边长为a,b,c,化简|a+b-c|-|b-a-c|的结果是( )A.2b-2c B.-2b C.2a+2b D.2a4.能说明命题“一个钝角与一个锐角的差一定是锐角”是假命题的反例是( )A.∠1=91°,∠2=50°B.∠1=89°,∠2=1°C.∠1=120°,∠2=40°D.∠1=102°,∠2=2°5.如图,点B、C、D在同一直线上,若△ABC≌△CDE,DE=4,BD=13,则AB等于( )A.7B.8C.9D.106.如图所示,△ABC≌△BAD,点A与点B,点C与点D是对应顶点,如果∠DAB=50°,∠DBA=40°,那么∠DAC的度数为( )A.50°B.40°C.10°D.5°7.如图,OP平分∠MON,PA⊥ON于点A,点Q是射线OM上的一个动点.若PA = 2,则PQ的长不可能是( )A.4B.3.5C.2D.1.58.在下面四个命题是真命题的个数有( )(1)互相垂直的两条线段一定相交;(2)有且只有一条直线垂直于已知直线;(3)两条直线被第三条直线所截,同位角相等;(4)从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离.A.3个B.2个C.1个D.0个9.如图,已知线段a,h作等腰△ABC,使AB=AC,且BC=a,BC边上的高AD=h.张红的作法如下:(1)作线段BC=a;(2)作线段BC的垂直平分线MN,MN与BC相交于点D;(3)在直线MN上截取线段h;(4)连结AB,AC,则△ABC为所求的等腰三角形.上述作法的四个步骤中,有错误的一步你认为是( )A.(1)B.(2)C.(3)D.(4)10.如图,△ABC为直角三角形,∠ACB=90°,AD为∠CAB的平分线,与∠ABC的平分线BE交于点E,BG是△ABC的外角平分线,AD与BG相交于点G,则∠ADC与∠GBF的和为( )A.120°B.135°C.150°D.160°二、填空题11.将命题“同角的补角相等”改写成“如果……那么……”的形式为 12.如图,在△ABC和△DEF中,A、F、C、D在同一直线上,AF=DC,AB=DE,当添加条件 时,就可得到△ABC≌△DEF(只需填一个你认为正确的条件即可).13.如图,△ABC≌△CDE ,若∠D =35°,∠ACB =45°,则∠DCE 的度数为 .14.已知:∠AOB .求作:∠AOB 的平分线.作法:(1)以点O 为圆心,适当长为半径画弧,交OA 于点M ,交OB 于点N ;(2)分别以点M ,N 为圆心,大于12MN 的长为半径画弧,两弧在∠AOB 的内部相交于点P ;(3)画射线OP ,射线OP 即为所求(如图).从上述作法中可以判断△MOP≌△NOP ,其依据是 (在“SSS ”“SAS ”“AAS ”“ASA ”中选填)15.如图,在△ABC 中,AD 是BC 边上的中线,CE 是AB 边上的高,若AB =3,S △ADC =6,则CE 的长度为 .16.如图,点 C 在线段 BD 上,AB ⊥BD 于 B ,ED ⊥BD 于 D .∠ACE =90°,且 AC =5cm ,CE =6cm ,点 P 以 2cm/s 的速度沿 A→C→E 向终点 E 运动,同时点 Q 以 3cm/s 的速度从 E 开始,在线段 EC 上往返运动(即沿 E→C→E→C→…运动),当点 P 到达终点时,P ,Q 同时停止运动.过 P ,Q 分别作 BD 的垂线,垂足为 M ,N .设运动时间为 ts ,当以 P ,C ,M 为顶点的三角形与△QCN 全等时,t 的值为 .三、作图题17.如图,按下列要求图:(要求有明显的作图痕迹,不写作法)(1)作出△ABC的角平分线CD;(2)作出△ABC的中线BE;(3)作出△ABC的高BG.四、解答题18.某同学用10块高度都是5cm的相同长方体小木块,垒了两堵与地面垂直的木墙,木墙之间刚好可以放进一个等腰直角三角板ABD(∠ABD=90°,BD=BA),点B在CE上,点A和D分别与木墙的顶端重合.(1)求证:△ACB≌△BED;(2)求两堵木墙之间的距离.19.我们把两组邻边相等的四边形叫做“筝形”.如图,四边形ABCD是一个筝形,其中AB=CB,AD=CD.对角线AC,BD相交于点O,OE⊥AB,OF⊥CB,垂足分别是E,F.求证OE=OF.20.如图,在△ABC中,E是AB上一点,AC与DE相交于点F,F是AC的中点,AB∥CD.(1)求证:△AEF≌△CDF;(2)若AB=10,CD=7,求BE的长.21.如图,在Rt△ABC中,AC=BC,∠ACB=90°,BF平分∠ABC交AC于点F,AE⊥BF于点E,AE,BC的延长线交于点M.(1)求证:AB=BM;(2)求证:BF=2AE.22.如图,△ABC是等边三角形,点D在AC上,以BD为一边作等边△BDE,连接CE.(1)说明△ABD ≌△CBE的理由;(2)若∠BEC=82°,求∠DBC的度数.23.如图,∠ACB=90°,AC=BC,AD⊥MN,BE⊥MN,垂足分别是D,E.(1)求证:△ADC≌△CEB;(2)猜想线段AD,BE,DE之间具有怎样的数量关系,并说明理由.24.如图,△ABC中,点D在BC边上,∠BAD=100°,∠ABC的平分线交AC于点E,过点E作EF⊥AB,垂足为F,且∠AEF=50°,连接DE.(2)若AB=7,AD=4,CD=8,S△ACD=15,求△ABE的面积.答案解析部分1.【答案】D 2.【答案】C 3.【答案】A 4.【答案】D 5.【答案】C 6.【答案】C 7.【答案】D 8.【答案】(1)D 9.【答案】C 10.【答案】B11.【答案】如果两个角是同一个角的补角,那么这两个角相等12.【答案】BC=EF (答案不唯一)13.【答案】100°14.【答案】SSS 15.【答案】816.【答案】1或115或23517.【答案】(1)解:如图:CD 是所求的△ABC 的角平分线;(2)解:如图:BE 是所求的△ABC 的中线;(3)解:如图BG 为所求的△ABC 的高.18.【答案】(1)证明:由题意得:AB =BD ,∠ABD =90°,AC ⊥CE ,DE ⊥CE ,∴∠BED =∠ACB =90°,∴∠BDE+∠DBE =90°,∠DBE+∠ABC =90°,∴∠BDE =∠ABC ,在△ACB 和△BED 中,{∠ABC =∠BDE ∠ACB =∠BED BD =AB,∴△ACB ≌△BED (AAS );(2)解:由题意得:AC =5×3=15(cm ),DE =7×5=35(cm ),∵△ACB ≌△BED ,∴DE =BC =35cm ,BE =AC =15cm ,∴DE =DC+CE =50(cm ),答:两堵木墙之间的距离为50cm .19.【答案】证明:∵在△ABD 和△CBD 中, {AB =CB AD =CD BD =BD ,∴△ABD ≌△CBD (SSS ),∴∠ABD=∠CBD,∴BD平分∠ABC.又∵OE⊥AB,OF⊥CB,∴OE=OF.20.【答案】(1)证明:∵AB//CD∴∠A=∠DCF∵∠AFE=∠DFC∵ F是AC的中点,∴AF=CF∴△AEF≌△CDF(2)解:∵△AEF≌△CDF∴AE=CD∵BE=AB-AE=AB-CD=10-7=321.【答案】(1)证明:∵BF平分∠ABC,∴∠ABE=∠MBE,∵AE⊥BF,∴∠AEB=∠MEB=90°,∵BE=BE∴△ABE≌△MBE(ASA)∴AB=BM(2)证明:∵△ABE≌△MBE,∴AE=EM,∴AM=2AE,∵∠ACB=90°,∠MEB=90°,∴∠BCF=∠ACM=90°,∠M+∠CBF=∠M+∠CAM=90°,∴∠CBF=∠CAM,∵BC=AC,∴△BCF≌△ACM(ASA),∴BF=AM,∴BF=2AE.22.【答案】(1)解:△ABD ≌△CBE,理由如下:∵△ABC与△BDE是等边三角形,∴AB=BC,BD=BE,∠ABC=∠DBE=60°,∵∠DBC=∠DBC,∴∠ABD=∠CBE∴△ABD≌△CBE(SAS);(2)解:由(1)可得:△ABD ≌△CBE,∵∠BEC=82°,∴∠BEC=∠BDA=82°,∵∠ACB=60°,∠ADB=∠DBC+∠ACB,∴∠DBC=22°.23.【答案】(1)证明:∵AD⊥MN,BE⊥MN,∴∠ADC=∠CEB=90°.∵∠ACD+∠ECB=∠CBE+∠ECB=90°,∴∠ACD=∠CBE.在△ADC和△CEB中{∠ADC=∠CEB∠ACD=∠CBEAC=BC∴△ADC≌△CEB;(2)解:AD=BE+DE,理由如下:∵△ADC≌△CEB,∴CD=BE,AD=CE.∴CE=CD+DE=BE+DE.∴AD=BE+DE.24.【答案】(1)证明:如图,过点E作EG⊥AD于G,EH⊥BC于H,∵EF⊥AB,∠AEF=50°,∴∠FAE=90°−50°=40°,∵∠BAD=100°,11 / 11∴∠CAD =180°−∠BAD−∠FAE =40°,∴∠FAE =∠CAD =40°,∴CA 为∠DAE 的平分线,又EF ⊥AB ,EG ⊥AD ,∴EF =EG ,∵BE 是∠ABC 的平分线,∴EF =EH ,∴EG =EH ,∴点E 在∠ADC 的平分线上,∴DE 平分∠ADC ;(2)解:设EG =x ,则EF =EH =EG =x ,∴S △ACD =S △ADE +S △CDE =12AD ⋅EG +12CD ⋅EH =15,即:12×4x +12×8x =15,解得,x =52,∴S △ABE =12AB ⋅EF =12×7×52=354,∴△ABE 的面积为354.。
2023-2024学年浙教版八年级数学上册第一章《三角形的初步认识》单元试题卷附答案解析
2023-2024学年八年级数学上册第一章《三角形的初步认识》单元试题卷(满分120分)一、选择题(本大题共有10个小题,每小题3分,共30分)1.下面各组线段中,能组成三角形的是()A.6,9,14B.8,8,16C.10,5,4D.5,11,62.在ABC 中,A ∠是钝角,下列图中画BC 边上的高线正确的是()A. B.C. D.3.用直尺和圆规作一个角等于已知角,如图,能得出AOB AO B '''∠=∠的依据是()A.SASB.SSS C.ASA D.AAS 4.如图,在ABC 中,90C ∠=︒,4AC =,13DC AD =,BD 平分ABC ∠,则点D 到AB 的距离等于()A.83B.43C.2D.15.如图,工人师傅设计了一种测零件内径AB 的卡钳,卡钳交叉点O 为AA '、BB '的中点,只要量出A B ''的长度,就可以道该零件内径AB 的长度.依据的数学基本事实是()A.两边及其夹角分别相等的两个三角形全等B.两角及其夹边分别相等的两个三角形全等C.两余直线被一组平行线所截,所的对应线段成比例D.两点之间线段最短6.如图,点B E C F 、、、在一条直线上,已知AB DF ∥,AB DF =,下列条件中,不能判断ABC DEF ≌△△的是()A.BE CF =B.AC DE =C.A D ∠=∠D.AC DE∥7.下列说法正确的是()A.三角形的角平分线是一条射线B.三角形的三条中线总在三角形内部C.钝角三角形的三条高都在三角形内部D.三角形的三条中线的交点可能在三角形外部8.如图,在Rt ABC △中,90C ∠=︒,以顶点A 为圆心,适当长为半径画弧,分别交AC ,AB 于点M N ,,再分别以点M N ,为圆心,大于12MN 的长为半径画弧,两弧交于点P ,作射线AP 交边BC 于点D ,若3CD =,10AB =,则ABD △的面积是()A.15B.30C.45D.609.如图,已知C D ∠=∠,AC AD =,增加下列条件:①AB AE =;②BC ED =;③12∠=∠;④B E ∠∠=.其中能使ABC ≌AED △的条件有()A.4个B.3个C.2个D.1个10.如图,直线12l l ∥,点C 、A 分别在1l 、2l 上,以点A 为圆心,适当长为半径画弧,交AC 、2l 于点D 、E ;分别以D 、E 为圆心,大于12DE 长为半径画弧,两弧交于点F ;作射线AF 交1l 于点B .若130BCA ∠=︒,则1∠的度数为()A.20︒B.25︒C.30︒D.50︒二、填空题(本大题共有6个小题,每小题3分,共18分)11.如图,在△ABC 中,D,E 分别是AB,AC 上的点,点F 在BC 的延长线上,DE∥BC,若∠1=50°,∠2=110°,则∠A=____.12.如图,在ABC 和BAD 中,ABC BAD ∠=∠,若要使ABC BAD ≌,则需要补充的条件是______.(写出一个即可)13.如图,△ADB≌△ECB,若∠CBD=40°,BD⊥EC,则∠D 的度数为____.14.如图,△ABC 中,AD⊥BC,AE 平分∠BAC,∠B=60°,∠BAC=110°,则∠DAE=_____.15.一个三角形的两边长分别为3和5,第三边长为偶数,则第三边长可能为________【答案】4或616.如图,AD 是ABC ∆的中线,CE 是ACD ∆的中线,DF 是CDE ∆的中线,若2DEF S ∆=,则ABC S ∆等于_______17.如图,在△ABC 中,90C ∠=︒,以A 为圆心,任意长为半径画弧,分别交AC ,AB 于点M ,N 再分别以M ,N 为圆心,大于12MN 长为半径画弧,两弧交于点O ,作射线AO ,交BC 于点E ,已知AB =10,20ABE S =△,则CE 的长为_______18.如图,在ABC 中,BD 和CD 分别平分ABC ∠和ACB ∠,若40A ∠=︒,则D ∠的大小为______.三、解答题(本大题共有4个小题,共52分)19.如图,已知//AB CD ,AB CD =,BF CE =.求证:AE DF =且//AE DF .20.如图,点B ,F ,C ,E 在直线l 上(F ,C 之间不能直接测量),点A ,D 在l 异侧,测得AB DE =,AB DE ∥,A D ∠=∠.(1)求证:ABC DEF ≌△△;(2)若10BE =,3BF =,求FC 的长度.21.如图,点A 、D 、C 、F 在同一条直线上,AD =CF ,AB =DE ,BC =EF .(1)求证:△ABC ≌△DEF ;(2)若∠A =60°,∠B =80°,求∠F 的度数.22.(1)问题发现:如图1,△ACB 和△DCE 均为等边三角形,点A 、D 、E 在同一直线上,连接BE .①请直接写出∠AEB 的度数为_____;②试猜想线段AD 与线段BE 有怎样的数量关系,并证明;(2)拓展探究:图2,△ACB 和△DCE 均为等腰三角形,∠ACB =∠DCE =90°,点A 、D 、E 在同-直线上,CM 为△DCE 中DE 边上的高,连接BE ,请判断∠AEB 的度数线段CM 、AE 、BE 之间的数量关系,并说明理由.一选择题(本大题共有10个小题,每小题3分,共30分)1.A2.D3.B4.D5.A6.B7.B8.A9.B10.B二填空题(本大题共有6个小题,每小题3分,共18分)11.60°12.BC AD =(答案不唯一)13.50°14.25°.15.4或616.1617.418.110︒三、解答题(本大题共有4个小题,共52分)19.证明:BF CE = ,BF EF CE EF ∴+=+,即BE CF =,//AB CD Q ,B C ∴∠=∠,在ABE 与CDF 中,AB CDB C BE CF=⎧⎪∠=∠⎨⎪=⎩,()ABE CDF SAS ∴△≌△,AEB DFC ∴∠=∠,AE DF=//AE DF ∴.20.解:(1)证明:∵AB DE ∥,∴ABC DEF ∠=∠,在ABC 和DEF 中,A DAB DE ABC DEF∠=∠⎧⎪=⎨⎪∠=∠⎩∴()ASA ABC DEF ≌△△;(2)解:由(1)知()ASA ABC DEF ≌△△,∴BC EF =,∴BF FC CE FC +=+,∴3BF CE ==,∵10BE =,∴10334FC BE BF CE =--=--=,∴FC 的长度是4.21.解:(1)∵AD=CF,∴AD+CD=CD+CF,即AC=DF,在 ABC 和 DEF 中,AB=DEBC=EF AC=DF⎧⎪⎨⎪⎩∴ ABC≌ DEF(SSS);(2)由(1)可得 ABC≌ DEF,∴∠F=∠ACB,根据三角形内角和180°,∠A=60°,∠B=80°,∴∠ACB=180°-60°-80°=40°,∴∠F=40°22.解:(1)①∵∠ACB =∠DCE ,∠DCB =∠DCB ,∴∠ACD =∠BCE ,在△ACD 和△BCE 中,AC BCACD BCE CD CE=⎧⎪∠=∠⎨⎪=⎩,∴△ACD ≌△BCE ,∴AD =BE ,∠CEB =∠ADC =180°−∠CDE =120°,∴∠AEB =∠CEB −∠CED =60°;②AD =BE .证明:∵△ACD ≌△BCE ,∴AD =BE .(2)∠AEB =90°;AE =2CM +BE ;理由如下:∵△ACB 和△DCE 均为等腰直角三角形,∠ACB =∠DCE =90°,∴AC =BC ,CD =CE ,∠ACB =∠DCB =∠DCE -∠DCB ,即∠ACD =∠BCE ,∴△ACD ≌△BCE ,∴AD =BE ,∠BEC =∠ADC =135°.∴∠AEB =∠BEC -∠CED =135°-45°=90°.在等腰直角△DCE 中,CM 为斜边DE 上的高,∴CM =DM =ME ,∴DE =2CM .∴AE =DE +AD =2CM +BE .。
七年级第一章三角形的初步认识练习及答案
第一章 三角形一、细心选一选1.下列说法正确的是……………………………………………………………( ) A.周长相等的两个三角形全等 B.面积相等的两个三角形全等 C.三个角对应相等的两个三角形全等 D.三条边对应相等的两个三角形全等2.下列各组线段能组成三角形的是……………………………………………( ) A.3cm ,3cm ,6cm B.7cm,4cm,5cm C.3cm,4cm,8cm D.4.2cm,2.8cm,7cm3.下列图形中,与已知图形全等的是………………………………………………( )4.如图,已知△ABC ≌△CDE,其中AB=CD,那么下列结论中, 不正确的是……………………… ( )A.AC=CEB.∠BAC=∠CDE C.∠ACB=∠ECD D.∠B=∠D5.下列条件中,不能判定三角形全等的是……………………………………( ) A.三条边对应相等 B.两边和一角对应相等 C.两角和其中一角的对边对应相等 D.两角和它们的夹边对应相等6. 如图,把图形沿BC 对折,点A 和点D 重合,那么图中共有 全等三角形…………………………………………( ) A.1对 B.2对 C.3对 D.4对7.在△ABC 和△A ′B ′C ′中,已知AB= A ′B ′,∠B=∠B ′要保证△ABC ≌△A ′B ′C ′,可补充的条件是…………………………………………………………………………( )A.∠B+∠A=900B.AC= A ′C ′C.BC=B ′C ′D. ∠A+∠A ′=9008.已知在△ABC 和△A ′B ′C ′中,AB= A ′B ′,∠B=∠B ′,补充下面一个条件,不能说明△ABC ≌△A ′B ′C ′的是………………………………………………………………( )A. BC=B ′C ′B. AC= A ′C ′C. ∠C=∠C ′D. ∠A=∠A ′(A) (B) (C)(D)第3题图ABCDE第4题ABDCE9.如图,已知AE=CF,BE=DF.要证△ABE ≌△CDF,还需添加的一个条件是………( ) A.∠BAC=∠ACD B.∠ABE=∠CDF C.∠DAC=∠BCA D.∠AEB=∠CFD10.如图AD 是△ABC 的角平分线,DE 是△ABD 的高,EF 是△ACD 的高,则…( ) A.∠B=∠C B.∠EDB=∠FDC C.∠ADE=∠ADF D. ∠ADB=∠ADC 11.如图AC 与BD 相交于点O ,已知AB=CD,AD=BC,则图中全等三角形有………( ) A.1对 B.2对 C.3对 D.4对 12.如图,D 、E 分别是AB,AC 上一点,若∠B=∠C ,则在下列条件中,无法判定△ABE ≌△ACD 是………………………………( ) A.AD=AE B.AB=ACC.BE=CDD.∠AEB=∠ADC 二、专心填一填:13.如图,△ABC ≌△DEF,点B 和点E, 点A 和点D 是对应顶点, 则AB= ,CB= , ∠C= ,∠CAB= . 14.若已知两个三角形有两条边对应,则要视这两个三角形全等, 还需增加的条件可以是 或 .17.在△ABC 和△DEF 中,AB=4, ∠A=350, ∠B=700,DE=4, ∠D= , ∠E=700,根据 判定△ABC ≌△DEF.18.如图,在△ABC 和△DEF 中AB=DC(BC=DA(=⎧⎪⎨⎪⎩已知)已知)()∴△ABC ≌△DEF( )19.如图∠B=∠DEF,AB=DE,要证明△ABC ≌△DEF ,(1)若以“ASA ”为依据,需添加的条件是 ; (2)若以“SAS ”为依据,需添加的条件是 . 20.如图,△ABC 中,AB=AC=13cm ,AB 的垂直平分线交AB 于D, 交AC 于E,若△EBC 的周长为21cm,则BC= cm.A B C DF E第9题AA AAA 第10题A BCDO第11题ABCE第12题D第13题ABC DEF第19题B CAE CD第18题ABC DA BCE D第20题三、耐心答一答:23.(本题6分)如图,已知BD=CD ,∠1=∠2.说出△ABD ≌△ACD 的理由.轴对称单元试题一、填空题:1、轴对称是指____个图形的位置关系;轴对称图形是指____个具有特殊形状的图形。
2020-2021学年浙教版八年级数学第一章《三角形的初步认识》测试卷(含答案)
2020-2021年浙教版八年级数学第一章《三角形的初步认识》测试卷姓名班级一、选择题(每题3分,共30分)1.如图所示,图中以AB为边的三角形的个数是()A.3B.4C.5D.62.如图所示,为估计假山A,B两端的距离,小明在一侧选取了一点C,如果测得AC = 18 m,BC = 12 m,那么AB之间的距离不可能是()A.12 mB.16 mC.18 mD.30 m3.下列命题中,属于真命题的是()A.同旁内角互补B.相等的角是对顶角C.同位角相等,两直线平行D.直角三角形两个锐角互补4.如图所示,AB = DB,BC = BE,欲证△ABE≌△DBC,则需补充的条件可以是()A.∠A = ∠DB.∠E = ∠CC.∠A = ∠CD.∠1 = ∠25.如图所示,下列说法中,错误的是()A.∠1不是△ABC的外角B.∠B < ∠1 + ∠2C.∠ACD是△ABC的外角D.∠ACD > ∠A + ∠B6.要测量河两岸相对的两点A,B之间的距离,先在AB的垂线BF上取两点C,D,使CD= BC,再作出BF的垂线DE,使A,C,E三点在同一条直线上(如图所示),可以说明△EDC≌△ABC,得ED= AB,因此测得的ED的长就是AB的长.判定△EDC≌△ABC最恰当的理由是()A.边角边B.角边角C.边边边D.以上都不正确7.如图所示,∠A = 60°,∠B = 80°,则∠1 + ∠2等于()A.100°B.120°C.140°D.150°8.下列说法中,正确的是()A.相等的角是对顶角B.同旁内角相等,两直线平行C.直线外一点到这条直线的垂线段,叫做点到直线的距离D.经过直线外一点,有且只有一条直线与这条直线平行9.如图所示,∠ABD,∠ACD的平分线交于点P.若∠A = 60°,∠D = 20°,则∠P的度数为()A.15°B.20°C.25°D.30°10.如图所示,将△ABC的三边AB,BC,CA分别延长至B′,C′,A′,且使BB′ = AB,CC′ = 2BC,AA′ = 3AC.若S△ABC = 1,则S △A′B′C′等于()A.15B.16C.17D.18二、填空题(每题4分,共24分)11.如图所示,已知E为直线AD上一点,∠1 = ∠2,∠B = ∠C,请写出图中一组相等的线段: _________ .12.如图所示,在△ABC中,CD= DE,AC= AE,∠DEB= 110°,则∠C=_________ .13.已知三角形的两边长为3和5,且周长为偶数,则第三边长为 _________ .14.如图所示,将△ABC沿着DE对折,点A落到点A′处.若∠BDA′+∠CEA′ = 70°,则∠A = _________ .15.如图所示,∠AOB= 90°,OA= OB,直线l经过点O,分别过A,B两点作AC⊥l于点C,BD⊥l于点D.若AC = 10,BD = 6,则CD = _________ .16.如图所示,已知△ABF≌△ACF≌△DBF,∠FAB:∠ABF:∠AFB= 4:7:25,则∠AED的度数为 _________ .三、解答题(共66分)17.(6分)如图所示,在一把三角尺ABC上截一个三角形ADE,使得∠EDA= ∠B(不写作法,保留作图痕迹),那么DE与BC有怎样的位置关系?18.(8分)如图所示,A,B,C,D四点在同一条直线上,请你从下面四项中选出三个选项作为条件,余下一个作为结论,构成一个真命题,并进行证明.①AB = CD;②∠ACE = ∠D;③∠EAC = ∠FBD;④AE = BF.你选择的条件是: _________ (填序号,下同),你选择的结论是: _________ .19.(8分)如图所示,工人师傅要在墙壁的点O处用钻打孔,使孔口从墙壁对面的点B处打开,墙壁厚是35 cm,点B与点O的铅直距离AB长是20 cm.工人师傅在旁边墙上与AO水平的线上截取OC = 35 cm,作CD⊥0C,使CD = 20 cm,连结OD,然后沿着DO的方向打孔,结果钻头正好从点B处打出,这是什么道理呢?请说明理由.20.(10分)如图所示,已知C是线段AE上一点,DC⊥AE,DC= AC,B是CD上一点,CB = CE.(1)求证:△ACB≌△DCE.(2)若∠E = 65°,求∠A的度数.(3)若AE = 11,BC = 3,求BD的长.21.(10分)我们知道,任何一个三角形的三条内角平分线相交于一点.如图所示,△ABC的三条内角平分线相交于点I,过点I作DE⊥AI分别交AB,AC于点D,E.(1)请你通过画图、度量,填写下表(图画在草稿纸上,并尽量画准确).(2)从上表中你发现了∠BIC与∠BDI之间有何数量关系?请写出来,并说明其中的道理.22.(12分)如图1所示,点A,E,F,C在同一条直线上,AE= CF,过点E,F分别作DE⊥AC,BF⊥AC,连结AB,CD,BD.已知AB∥CD,请解答下列问题:(1)求证:BD平分EF.(2)若将DE向右平移,将BF向左平移,得到如图2所示的图形,在其余条件不变的情况下,(1)中的结论是否仍然成立?请说明理由.23.(12分)定义引入:在一个三角形中,如果一个角的度数是另一个角度数的3倍,那么这样的三角形我们称之为“和谐三角形”如:三个内角分别为105°,40°,35°的三角形是“和谐三角形”.概念理解:如图1所示,∠MON= 60°,在射线OM上找一点A,过点A作AB⊥OM交ON于点B,以A为端点作射线AD,交线段OB于点C(点C不与O,B重合).(1)∠ABO的度数为 _________ ,△AOB _________ (填“是”或“不是”)“和谐三角形”.(2)若∠ACB = 80°,求证:△AOC是“和谐三角形”.应用拓展:(3)如图2所示,点D在△ABC的边AB上,连结DC,作∠ADC的平分线交AC于点E,在DC上取点F,使∠EFC+ ∠BDC= 180°,∠DEF= ∠B.若△BCD是“和谐三角形”,求∠B的度数.参考答案。
三角形的初步认识单元测试卷(一)及答案
CABD第6题21AFED CB第一章 三角形的初步认识能力提升测试卷(一)一、选择题(共10小题,每小题3分,共30分)温馨提示:每小题四个答案中只有一个是正确的,请把正确的答案选出来!1.在下列条件中:①∠A+∠B=∠C ,②∠A ∶∠B ∶∠C=2∶3∶4,③∠A=90°-∠B ,④∠A=∠B=21∠C 中,能确定△ABC 是直角三角形的条件有( ) A 、1个; B 、2个; C 、3个; D 、4个 2.如图,∠BAC=90°,AD ⊥BC ,则图中互余的角有( ) A 、2对; B 、3对; C 、4对; D 、5对; 3.下列说法错误的是( )A. 三角形三条中线交于三角形内一点;B. 三角形三条角平分线交于三角形内一点C. 三角形三条高交于三角形内一点;D. 三角形的中线、角平分线、高都是线段 4.如图,AC 与BD 相交于点O,已知AB=CD,AD=BC,则图中全等的三角形有( ) A. 1对 B. 2对 C. 3对 D. 4对5.如图,在△ABC 中,AD 是角平分线,AE 是高,已知∠BAC=2∠B ,∠B=2∠DAE ,那么∠ACB 为( )A. 80°B. 72°C. 48°D. 36°6.如图,直线表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有( )A. 一处B. 两处C. 三处D. 四处 7. 如图,∠1=∠2,∠C=∠B ,结论中不正确的是( )A. △DAB ≌△DACB. △DEA ≌△DFAC. CD=DED. ∠AED=∠AFD8. 如图,A ,B ,C ,D ,E ,F 是平面上的6个点,则∠A+∠B+∠C+∠D+∠E+∠F 的度数是( ) A. 180° B.360° C.540° D.720°第4题第5题 ADEABCDNM第7题9.直线L ⊥线段AB 于点O ,且OA=OB ,点C 为直线L 上一点,且有CA=8cm ,则CB 的长度为( )A 、4cmB 、8cmC 、16cmD 、无法求出10.如图,点D 、E 分别在AC 、AB 上,已知AB=AC ,添加下列条件, 不能说明ΔABD ≌ΔACE 的是( )A 、∠B=∠CB 、AD=AEC 、∠BDC=∠CEBD 、BD=CE 二、填空题(共6小题,每小题4分,共24分)温馨提示:填空题必须是将最简洁最正确的答案填在空格处! 11. △ABC 中,AB=9,BC=2,周长是偶数,则AC= 。
【浙教版】八年级数学上册《三角形的初步知识》单元测试卷(含答案)
第 1 章三角形的初步知识检测卷一、选择题 (每题2分,共20分 )第1题图1.如图,为预计池塘两岸A, B 间的距离,杨阳在池塘一侧选用了一点P,测得 PA=16m, PB= 12m,那么 AB 间的距离不行能是()A. 5m B. 15m C .20m D. 28m2.一个三角形三个内角的度数之比为2∶ 3∶ 5,这个三角形必定是()A.锐角三角形B.直角三角形C .钝角三角形D.等腰三角形第3题图3.张师傅不当心将一块三角形玻璃打破成如图中的三块,他准备去店里从头配置一块与本来如出一辙的,最省事的做法是()A.带 1去B.带 2去C.带 3 去D.三块都带去4.以下说法:① 全等三角形的面积相等;② 全等三角形的周长相等;③ 全等三角形的对应角相等;④全等三角形的对应边相等.此中正确的有()A.1 个B.2 个C.3 个D.4 个5.如图,以下A, B,C ,D 四个三角形中,能和模板中的△ ABC完整重合的是(A)第 5题图6.BD是△ABC的中线,若AB= 5cm, BC= 3cm,则△ ABD 与△ BCD 的周长之差是()A. 1cm B. 2cm C. 3cm D . 5cm7.如图,已知MB = ND ,∠ MBA =∠ NDC ,以下不可以判断△ ABM≌△ CDN的条件是()A.∠ M =∠N B.AB= CD C.AM =CN D.AM ∥ CN第7题图第8题图第9题图第10题图8.如图, AD 是△ ABC 中∠ BAC 的角均分线,DE⊥ AB 于点 E, S△ABC= 7, DE = 2,AB=4,则 AC 长是()A.3B.4C.6D.59.如图,锐角三角形ABC 中,直线l 为 BC 的中垂线,直线m 为∠ ABC 的角均分线,l 与 m 订交于 P 点.若∠ BAC = 60°,∠ ACP = 24°,则∠ ABP 是() A. 24°B. 30°C. 32°D. 36°10.如图,在△ ABC 中,∠ C= 90°,∠ B= 30°,以点A 为圆心,随意长为半径画弧1分别交 AB,AC 于点 M 和 N ,再分别以点M ,N 为圆心,大于2MN 的长为半径画弧,两弧交于点 P,连接 AP 并延伸交BC 于点 D,则以下说法中正确的个数是()① AD 是∠ BAC 的均分线;②∠ ADC = 60°;③点 D 在 AB 的中垂线上;④ S△DAC∶ S△ABC =1∶3.图中A.1 个B.2 个C.3 个D.4个二、填空题 (每题3分,共30分 )11.木匠师傅在做完门框后,为防备变形经常像图中所示那样钉上两条斜拉的木板条AB、 CD 两个木条),这样做依据的数学道理是____.( 即第 11题图第12题图第13题图第15题图12.如图,点 D ,E 分别在线段AB , AC 上, BE , CD 订交于点O ,AE = AD ,要使△ABE ≌△ ACD ,需增添一个条件是 ____________________________________________ (只要求写一个条件 ).13.一副拥有30°和45°角的直角三角板,如图叠放在一同,则图中∠ α 的度数是________________________________________________________________________ .14.能够用来证明命题“ 假如a,b是有理数,那么|a+b|= |a|+ |b|”是假命题的反例可以是 ____.15.如图,在△ ABC 中,∠ C= 90°, BD 均分∠ ABC ,交 AC 于 D. 若 DC =3,则点 D 到 AB 的距离是__________.16.如图,在△ ABC 中, AB = 12, EF 为 AC 的垂直均分线,若EC = 8,则 BE 的长为________________________________________________________________________ .第16题图第18题图第19题图第20题图17.一个三角形的两边长分别是 3 和 7,且第三边长为奇数,这样的三角形的周长最大值是 ___________.18.如图,在△ ABC 中,高BD, CE订交于点H ,若∠ BHC = 110°,则∠ A 等于________________________________________________________________________ .19.如图,把△ ABC 纸片沿 DE 折叠,当点 A 落在四边形BCDE 内部时,∠ A,∠ 1,∠ 2 之间有一种数目关系一直保持不变,这类关系是___.20.如图,在△ ABC 中, BC 边不动,点 A 竖直向上运动,∠ A 愈来愈小,∠B,∠ C 愈来愈大,若∠ A 减少α度,∠ B 增添β度,∠ C 增添γ度,则α,β,γ 三者之间的等量关系是 ___.三、解答题 (共50分 )21.(6 分)已知线段a,b 及∠α,用直尺和圆规作△ABC,使∠B=∠ α,AB=a,BC=b.第21题图22.( 7 分)如图,△ABC ≌△ ADE ,且∠ CAD = 35°,∠B=∠ D= 20°,∠ EAB = 105°,求∠ BFD 和∠ BED 的度数.第22题图23.(6 分)如图,△ ABC 与△ BAD 中, AD 与 BC 订交于点M ,∠ 1=∠ 2,________,试说明△ABC≌△BAD. 请你在横线上增添一个条件,使得它能够用“AAS”来说明△ ABC ≌△ BAD ,并写出说理过程.第23题图24.(7 分)(永州中考)如图,在四边形ABCD 中,∠ A=∠ BCD = 90°, BC =DC ,延伸AD 到 E 点,使 DE =AB.第24题图( 1)求证:∠ABC=∠EDC;( 2)求证:△ABC≌△EDC.25.(8 分)如图,在△ ABC 中,∠ C= 90°, BE 均分∠ ABC ,AF 平格外角∠ BAD ,BE 与 FA 交于点 E.求∠ E 的度数.第25题图26.(8 分)如图,在△ ABC 中,AC = 6cm,AB =9cm,D 是边 BC 上一点, AD 均分∠ BAC ,在 AB 上截取 AE =AC ,连接 DE ,已知 DE = 2cm, BD =3cm.求:( 1)线段BC的长;( 2)若∠ACB的均分线CF 交 AD 于点 O,且 O 到 AC 的距离是acm,请用含 a 的代数式表示△ ABC 的面积.第26题图27.(8 分)如图,在△ ABC 中, AB = AC ,∠ BAC =90°,∠ 1=∠ 2,CE ⊥ BD 交 BD 的延伸线于点 E ,求证: BD= 2CE.第27题图参照答案第 1 章三角形的初步知识检测卷一、选择题1.D 2.B 3.C 4.D 5.A 6.B7.C8.A9.C10.D二、填空题11.三角形的稳固性12.AB=AC或∠B=∠C或∠ADC=∠AEB13.75°14.答案不独一,如a=- 1, b= 3 等异号两数15.316.417.1918.70°19.2∠A=∠1+∠220.α=β+γ三、解答题21.略22.∠BFD=90°,∠BED=70°23.答案不独一,如横线上增添的条件是∠C=∠ D.原因以下:在△ ABC 与△ BAD 中,∠C=∠ D (已知),∠2=∠ 1(已知),AB = BA (公共边),∴△ ABC ≌△ BAD(AAS) .第24题图24.(1)证明:在四边形ABCD 中,∵∠ A =∠ BCD = 90°,∴∠ B +∠ ADC = 180°.又∵∠ ADC +∠ EDC = 180°,∴∠ ABC =∠ EDC.(2)证明:连接 AC.在△ ABC 和△ EDC 中,BC = DC,∵∠ABC=∠ EDC,AB = ED,∴△ ABC ≌△ EDC.25.∠E=45°26.(1)BC=5cm(2)10acm227.证明:延伸CE 与 BA 的延伸线交于点F,∵∠ BAC = 90°, CE⊥BD ,∴∠ BAC =∠ DEC ,∵∠ ADB =∠ CDE ,∴∠ ABD =∠ DCE ,在△ BAD 和△ CAF 中,∠BAD =∠ CAF ,AB =AC,∠ABD =∠ DCE,∴△ BAD ≌△ CAF(ASA) ,∴BD = CF,在△ BEF 和△ BEC 中,∠ 1=∠ 2,BE= BE,∠BEF =∠ BEC ,∴△ BEF ≌△ BEC(ASA) ,∴CE= EF,∴ DB = 2CE.第27题图。
浙教版八年级上册数学第1章《三角形的初步认识》单元测试卷(含答案)
浙教版八年级上册数学第1章《三角形的初步认识》单元测试卷满分120分姓名:___________班级:___________学号:___________一.选择题(共12小题,满分36分,每小题3分)1.下列长度线段能组成三角形的是()A.1cm,2cm,3cm B.4cm,5cm,10cmC.6cm,8cm,13cm D.5cm,5cm,10cm2.三角形的三条中线、三条角平分线、三条高都是()A.直线B.射线C.线段D.射线或线段3.如图,用三角板作△ABC的边AB上的高线,下列三角板的摆放位置正确的是()A.B.C.D.4.如图,在△ABC中,BO平分∠ABC,CO平分∠ACB,∠A=50°,则∠BOC=()A.50°B.65°C.105°D.115°5.如图,△ABC的中线AD、BE相交于点F,若△ABF的面积是4,则四边形FDCE的面积是()A.4 B.4.5 C.3.5 D.56.如图,已知△ABC,点D在BC的延长线上,∠ACD=140°,∠ABC=50°,则∠A的大小为()A.50°B.140°C.120°D.90°7.小明同学有一块玻璃的三角板,不小心掉到地上碎成了三块,现要去文具店买一块同样的三角板,最省事的是()A.带②去B.带①去C.带③去D.三块都带去8.如图,△ABC≌△DEF,BC=7,EC=4,则CF的长为()A.2 B.3 C.5 D.79.下列条件中,不能判定△ABC与△DEF一定全等的是()A.AB=DE,BC=EF,∠A=∠D=90°B.AB=DE,BC=EF,∠A=∠D=80°C.AB=DE,∠A=∠D=90°,∠B=∠E=40°D.BC=EF,∠A=∠D=80°,∠B=∠E=40°10.下列命题是真命题的是()A.如果a2=b2,那么a=b B.0的平方根是0C.如果∠A与∠B是内错角,那么∠A=∠B D.负数没有立方根11.有甲、乙、丙三人,甲说乙在说谎,乙说丙在说谎,丙说甲和乙都在说谎,则()A.甲说实话,乙和丙说谎B.乙说实话,甲和丙说谎C.丙说实话,甲和乙说谎D.甲、乙、丙都说谎12.如图,AD交BC于点O,∠BAD的角平分线与△OCD的外角∠OCE的角平分线交于点P,则∠P与∠B、∠D的数量关系为()A.∠P=B.∠P=C.∠P=90°+∠B+∠D D.∠P=90°﹣∠B+∠D二.填空题(共8小题,满分24分,每小题3分)13.命题“直角三角形的两个锐角互余”的逆命题是命题.(填“真”或“假”)14.如图,为了加固小板凳,用两枚钉子A,B将一根木条钉在它上面,这和做法的几何原理是利用了三角形的.15.已知三角形的两条边长分别为3cm和2cm,如果这个三角形的第三条边长为奇数,则这个三角形的周长为cm.16.如图,把两根钢条的中点连在一起,可以做到一个测量工件内槽宽的工具(长钳),在图中,要测量工件内槽宽AB,只要测就可以了.17.如图,四边形ABCD≌四边形A'B'C'D',则∠A的大小是.18.如图,在△ABC中,∠C=90°,∠B=30°,以点A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于P,连接AP并延长交BC于点D,则∠ADB=度.19.如图,已知:∠A=∠D,∠1=∠2,下列条件中:①∠E=∠B;②EF=BC;③AB=EF;④AF=CD.能使△ABC≌△DEF的有.(填序号)20.如图,直线a、b、c、d互不平行,以下结论正确的是.(只填序号)①∠1+∠2=∠5;②∠1+∠3=∠4;③∠1+∠2+∠3=∠6;④∠3+∠4=∠2+∠5.三.解答题(共8小题,满分60分)21.(6分)如图,已知线段AC,BD相交于点E,∠A=∠D,BE=CE,求证:△ABE≌△DCE.22.(6分)生活中的说理小明、小红、小丽三人中一个是班长,一个是学习委员,一个是生活委员.现在知道小红比生活委员年龄大,小明与学习委员不同岁,学习委员比小丽年龄小.请你猜一猜他们当中谁是班长,并说明理由.23.(6分)如图,已知:AD平分∠BAC,点F是AD反向延长线上的一点,EF⊥BC,∠1=40°,∠F=15°.求:∠B和∠C的度数.24.(7分)如图,AE,DE分别平分∠BAC和∠BDC,∠B=∠BDC=45°,∠C=51°,求∠E的度数.25.(8分)已知,已知△ABC的周长为33cm,AD是BC边上的中线,.(1)如图,当AC=10cm时,求BD的长.(2)若AC=12cm,能否求出DC的长?为什么?26.(8分)如图,在△ABC中,∠ABC=110°,∠A=40°.(1)作△ABC的角平分线BE(点E在AC上;用尺规作图,不写作法,保留作图痕迹);(2)在(1)的条件下,求∠BEC的度数.27.(9分)如图①,在Rt△ABC中,∠C=90°,BC=9cm,AC=12cm,AB=15cm,现有一动点P,从点A出发,沿着三角形的边AC→CB→BA运动,回到点A停止,速度为3cm/s,设运动时间为ts.(1)如图(1),当t=时,△APC的面积等于△ABC面积的一半;(2)如图(2),在△DEF中,∠E=90°,DE=4cm,DF=5cm,∠D=∠A.在△ABC 的边上,若另外有一个动点Q,与点P同时从点A出发,沿着边AB→BC→CA运动,回到点A停止.在两点运动过程中的某一时刻,恰好△APQ≌△DEF,求点Q的运动速度.28.(10分)如图,∠BAD=∠CAE=90°,AB=AD,AE=AC,AF⊥CB,垂足为F.(1)求证:△ABC≌△ADE;(2)求∠F AE的度数;(3)求证:CD=2BF+DE.参考答案一.选择题(共12小题,满分36分,每小题3分)1.解:A、1+2=3,不能构成三角形,故此选项错误;B、4+5=9<10,不能构成三角形,故此选项错误;C、6+8>13,能构成三角形,故此选项正确;D、5+5=10,不能构成三角形,故此选项错误.故选:C.2.解:三角形的三条中线、三条角平分线、三条高都是线段,故选:C.3.解:A,C,D都不是△ABC的边AB上的高,故选:B.4.解:∵∠A=50°,∴∠ABC+∠ACB=180°﹣∠A=180°﹣50=130°,∵BO平分∠ABC,CO平分∠ACB,∴∠OBC=∠ABC,∠OCB=∠ACB,∴∠OBC+∠OCB=(∠ABC+∠ACB)=65°,在△OBC中,∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣65°=115°.故选:D.5.解:∵△ABC的中线AD、BE相交于点F,∴BD=CD,点F为△ABC的重心,∴BF=2EF,AF=2FD,∴S△BFD=S△ABF=×4=2,S△AEF=S△ABF=×4=2,∵S△ABD=S△ACD=4+2=6,∴四边形FDCE的面积=6﹣2=4.故选:A.6.解:∵∠ACD=∠A+∠ABC,∴∠A=∠ACD﹣∠ABC,∵∠ACD=140°,∠ABC=50°,∴∠A=140°﹣50°=90°故选:D.7.解:带③去符合“角边角”可以配一块同样大小的三角板.故选:C.8.解:∵△ABC≌△DEF,∴EF=BC=7,∵EC=4,∴CF=3,故选:B.9.解:A、∵AB=DE,BC=EF,∠A=∠D=90°,∴根据HL证明Rt△ABC≌Rt△DEF,不符合题意;B、∵AB=DE,BC=EF,∠A=∠D=80°,根据ASS不能推出△ABC≌△DEF,故本选项符合题意;C、∵AB=DE,∠A=∠D=90°,∠B=∠E=40°,∴利用ASA能推出△ABC≌△DEF,故本选项不符合题意;D、∵BC=EF,∠A=∠D=80°,∠B=∠E=40°,∴利用AAS能推出△ABC≌△DEF,故本选项不符合题意;故选:B.10.解:A、如果a2=b2,那么a=±b,故原命题错误,是假命题;B、0的平方根是0,正确,是真命题,符合题意;C、内错角不一定相等,故原命题错误,是假命题;D、负数的立方根是负数,故原命题错误,是假命题,故选:B.11.解:A、若甲说的是实话,即乙说的是谎话,则丙没有说谎,即甲、乙都说谎是对的,与甲说的是实话相矛盾,故A不合题意;B、若乙说的是实话,即丙说的谎话,即甲、乙都说谎是错了,即甲,乙至少有一个说了实话,与乙说的是实话不矛盾,故B符合题意;C、若丙说的是实话,甲、乙都说谎是对的,那甲说的乙在说谎是对的,与丙说的是实话相矛盾,故C不合题意;D、若甲、乙、丙都说谎,与丙说的甲和乙都在说谎,相矛盾,故D不合题意;故选:B.12.解:设∠P AB=∠OAP=x,∠ECP=∠PCB=y,则有,①﹣2×②可得:∠B﹣2∠P=∠D﹣2∠D﹣180°,∴∠P=,故选:A.二.填空题(共8小题,满分24分,每小题3分)13.解:命题“直角三角形的两个锐角互余”的逆命题是两个锐角互余的三角形是直角三角形,逆命题是真命题;故答案为:真.14.解:为了加固小板凳,用两枚钉子A,B将一根木条钉在它上面,这和做法的几何原理是利用了三角形的稳定性.故答案为稳定性.15.解:设第三边长为x.根据三角形的三边关系,则有3﹣2<x<2+3,即1<x<5,因为第三边的长为奇数,所以x=3,所以周长=3+3+2=8.故答案为:8;16.解:答:只要测量A'B'.理由:连接AB,A'B',如图,∵点O分别是AC、BB'的中点,∴OA=OA',OB=OB'.在△AOB和△A'OB'中,OA=OA',∠AOB=∠A'OB'(对顶角相等),OB=OB',∴△AOB≌△A'OB'(SAS).∴A'B'=AB.答:需要测量A'B'的长度,即为工件内槽宽AB,故答案为:A'B'17.解:∵四边形ABCD≌四边形A'B'C'D',∴∠D=∠D′=130°,∴∠A=360°﹣75°﹣60°﹣130°=95°,故答案为:95°.18.解:∵在△ABC中,∠C=90°,∠B=30°,∴∠CAB=60°,又∵AD是∠BAC的平分线,∴∠CAD=∠BAD=∠CAB=30°,∴∠ADB=90°+30°=120°,故答案为:120;19.解:①∠E=∠B,不符合全等三角形的判定定理,不能推出△ABC≌△DEF,∴①错误;②EF=BC,符合全等三角形的判定定理,可以用AAS证明△ABC≌△DEF,∴②正确;③AB=EF,不符合全等三角形的判定定理,不能推出△ABC≌△DEF,∴③错误;④∵AF=CD,∴AF+FC=CD+FC,∴AC=DF,在△ABC和△DEF中,,∴△ABC≌△DEF(ASA),∴④正确;故答案为:②④.20.解:由三角形外角的性质可知:∠5=∠1+∠2,∠4=∠1+∠3,∠6=∠4+∠2=∠3+∠5,∴∠6=∠1+∠2+∠3,故①②③正确,故答案为①②③.三.解答题(共8小题,满分60分)21.证明:∵在△ABE和△DCE中,,∴△ABE≌△DCE(AAS).22.解:小丽是班长,理由:由小明与学习委员不同岁,可得小明非学习委员,则是班长或者生活委员;由学习委员比小丽年龄小,可得小丽非学习委员,则是班长或者生活委员;由小红比生活委员年龄大,可得小红是学习委员,由年龄可以判断小丽是班长.23.解:∵EF⊥BC,∴∠DEF=90°,∵∠F=15°,∠ADE+∠F+∠DEF=180°,∴∠ADE=75°,∵AD平分∠BAC,∠1=40°,∴∠BAC=2∠DAC=2∠1=80°,∴∠DAC=40°,∵∠ADE+∠C+∠DAC=180°,∴∠C=180°﹣40°﹣75°=65°,∵∠B+∠C+∠BAC=180°,∴∠B=180°﹣65°﹣80°=35°.24.解:∵∠B=∠BDC=45°,∴AB∥CD,∵∠C=51°,∵AE,DE分别平分∠BAC和∠BDC,∴∠BAE=BAC=,∠EDB=BDC=,∵∠AFB=∠DFE,∴∠E=∠B+∠BAE﹣∠BDE=45°+﹣=48°.25.解:(1)∵,AC=10cm,∴AB=15cm.又∵△ABC的周长是33cm,∴BC=8cm.∵AD是BC边上的中线,∴.(2)不能,理由如下:∵,AC=12cm,∴AB=18cm.又∵△ABC的周长是33cm,∴BC=3cm.∵AC+BC=15<AB=18,∴不能构成三角形ABC,则不能求出DC的长.26.解:(1)如图,BE即为所求;(2)由(1)得,BE平分∠ABC,∵∠ABC=110°,∴,∵∠A=40°,∴∠AEB=180°﹣55°﹣40°=85°,∴∠BEC=180°﹣85°=95°.27.解:(1)①当点P在BC上时,如图①﹣1,若△APC的面积等于△ABC面积的一半;则CP=BC=cm,此时,点P移动的距离为AC+CP=12+=,移动的时间为:÷3=秒,②当点P在BA上时,如图①﹣2若△APC的面积等于△ABC面积的一半;则PD=BC,即点P为BA中点,此时,点P移动的距离为AC+CB+BP=12+9+=cm,移动的时间为:÷3=秒,故答案为:或;(2)△APQ≌△DEF,即,对应顶点为A与D,P与E,Q与F;①当点P在AC上,如图②﹣1所示:此时,AP=4,AQ=5,∴点Q移动的速度为5÷(4÷3)=cm/s,②当点P在AB上,如图②﹣2所示:此时,AP=4,AQ=5,即,点P移动的距离为9+12+15﹣4=32cm,点Q移动的距离为9+12+15﹣5=31cm,∴点Q移动的速度为31÷(32÷3)=cm/s,综上所述,两点运动过程中的某一时刻,恰好△APQ≌△DEF,点Q的运动速为cm/s 或cm/s.28.证明:(1)∵∠BAD=∠CAE=90°,∴∠BAC+∠CAD=90°,∠CAD+∠DAE=90°,∴∠BAC=∠DAE,在△BAC和△DAE中,,∴△BAC≌△DAE(SAS);(2)∵∠CAE=90°,AC=AE,∴∠E=45°,由(1)知△BAC≌△DAE,∴∠BCA=∠E=45°,∵AF⊥BC,∴∠CF A=90°,∴∠CAF=45°,∴∠F AE=∠F AC+∠CAE=45°+90°=135°;(3)延长BF到G,使得FG=FB,∵AF⊥BG,∴∠AFG=∠AFB=90°,在△AFB和△AFG中,,∴△AFB≌△AFG(SAS),∴AB=AG,∠ABF=∠G,∵△BAC≌△DAE,∴AB=AD,∠CBA=∠EDA,CB=ED,∴AG=AD,∠ABF=∠CDA,∴∠G=∠CDA,∵∠GCA=∠DCA=45°,在△CGA和△CDA中,,∴△CGA≌△CDA(AAS),∴CG=CD,∵CG=CB+BF+FG=CB+2BF=DE+2BF,∴CD=2BF+DE.。
三角形初步认识测试卷一含详细答案
三角形的初步认识测试卷一一、填空题(共10小题,每小题5分,满分50分)1.(5分)如图,在△ABC中,它的三个内角分别是_________,_________,_________,三条边分别是_________,_________,_________.2.(5分)下图所示图形中,共有_________个三角形,其中以B为顶点的三角形有_________个,以AB 为边的三角形有_________个.3.(5分)已知三角形的两边长分别是5cm,3cm,第三边的长是偶数,则第三边的长为_________cm或_________cm.4.(5分)若三角形的三个内角度数之比为1:4:4,则三角形的最小内角的度数是_________度.5.(5分)三角形的三个内角中,最多有_________个钝角,_________个直角,_________个锐角.6.(5分)如图,△ABC中,AD是BC边上的中线,BE是△ABC的一条角平分线,则有:_________=_________ =∠ABC,_________=_________=BC.7.(5分)在△ABC中,∠A=60°,∠B=30°,则∠C=_________度,它是_________三角形.(填钝角,直角或锐角)8.(5分)如图所示,△ABC一条外角平分线与BC的延长线交于点D,已知∠B=30°,∠ACB=100°,则∠D=_________度.9.(5分)如图所示,AD是△ABC中BC边上的中线,已知△ABC的面积为12,则△ACD的面积等于_________.10.(5分)如图,△ABC中,∠A=80°,BP平分∠ABC,CP平分∠ACB,则∠BPC=_________度.二、选择题(共10小题,每小题4分,满分40分)11.(4分)以下列长度为边的三条线段能组成三角形的组数是()12.(4分)如图所示,△ABC中AD⊥BC,AE是△ABD的角平分线,则下列线段中最短的是()13.(4分)如图,若已知∠B=50°,∠C=60°,AE是∠BAD的角平分线,则∠EAC的度数为()14.(4分)如图,图中锐角三角形的个数是()17.(4分)如图所示,若有∠BAD=∠CAD,∠BCE=∠ACE,则下列结论中错误的是()BCE=∠18.(4分)如图,△ABC的三个内角大小分别为x,x,3x,则x的值为()20.(4分)我们知道三角形的内角和为180°,而四边形可以分成两个三角形,故它的内角和为2×180°=360°,五边形则可以分成3个三角形,它的内角和为3×180°=540°(如图),依此类推,则八边形的内角和为()三、解答题(共7小题,满分0分)21.判断下列各组线段是否能组成三角形.(1)a=3.2cm,b=2.1cm,c=5cm;(2)a=2cm,b=2cm,c=4cm;(3)a=1cm,b=4cm,c=4cm.22.如图,在△ABC中,请作图:①画出△ABC的一条角平分线;②画出△ABC中AC边上的中线;③画出△ABC中BC边上的高.23.已知三角形的一个外角等于60°,且三角形中与这个外角不相邻的两个内角中,其中一个比另一个大10°,则这个三角形的三个内角分别是多少?24.如图所示,AD是△ABC的中线,AB=6cm,AC=5cm,求△ABD和△ADC的周长的差.25.如图,在直角△ABC中,∠ACB=90°,CD是AB边上的高,CE是△ABC的角平分线.已知∠CEB=110°,求∠ECB,∠ECD的度数.26.如图,△ABC中,∠ABC的平分线与∠ACE的平分线相交于点D,(1)若∠ABC=60°,∠ACB=40°,求∠A和∠D度数;(2)由第(1)小题的计算,发现∠A和∠D有什么关系?它们是不是一定有这种关系?请作出说明.27.如图,△ABC中,BM,BN三等分∠ABC,CM,CN三等分∠ACB,且∠A=54°,求∠BNM度数.三角形的初步认识测试卷一参考答案与试题解析EBC=BD=CD=BC(=50∠BD=DC=BCBC+AD BC+AD∠ABC=ACD==∠。
【浙教版】八年级数学上册第一章《三角形的初步认识》单元测试题(含解析)
是( )5.如图所示,一位同学书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一7.下列命题中,真命题的是(A. 如果一个四边形两条对角线相等,那么这个四边形是矩形B. 如果一个平行四边形两条对角线相互垂直,那么这个四边形是菱形 第一章 三角形的初步认识单元测试题 .单选题(共 10题;共 30分) 1.下面命题正确的是( ) A.一组对边平行,另一组对边相等的四边形是平行四边形。
B.等腰梯形的两个角一定相等。
C.对角线互相垂直的四边形是菱形。
D. 三角形三条边上的中线相交于一点 ,并且这一点到三个顶点的距离相等 2.用直尺和圆规作一个角等于已知角的示意图如下,则说明∠ A ′O ′B ′∠=AOB 的根据是( )A.SASB.ASA ) 3.等腰三角形一腰上的高与另一腰的夹角为 30 °,则顶角的度数为( A.60 B.120C.60 °或 150 °D.60 °或 120 ° 4.如图,四边形 ABCD 是正方形,延长 BC 至点 E ,使 CE=CA ,连接 AE 交 CD 于点 F ,则∠ AFC 的度数 A.150B.125 D.112.5样的三角形,那么这两个三角形完全一样的依据是( ).A.SSSB.SAS D.ASA6.以下列各组线段长为边能组成三角形的是( A.1 cm , 2cm ,4cm; B.8cm ,6cm ,4cm; C. 12cm , 5cm ,6cm D.2cm ,3cm ,6cmC.135 )C.如果一个四边形两条对角线平分所在的角,那么这个四边形是菱形D. 如果一个四边形两条对角线相互垂直平分,那么这个四边形是矩形12. 如图, AD 是△ ABC 的边 BC 上的中线,已知 AB=5cm ,AC=3cm ,则△ABD 与△ACD 的周长之差为 cm.13. _______________________________________________________________ △ABC 中,∠ BAC :∠ ACB :∠ ABC=4: 3:2,且△ ABC ≌△ DEF ,则∠ DEF = ________________ 度.14. ① 三角形的三条角平分线交于一点,这点到三条边的距离相等;② 三角形的三条中线交于一点;③ 三角形的三条高线所在的直线交于一点;④ 三角形的三条边的垂直平分线交于一点,这点到三个顶点的距离相等 . 以上说法中正确的是 _________________________ .15. ________________________________________________________ 如图, BF.CF 是△ ABC 的两个外角的平分线,若∠ A=50°,则∠ BFC= _____________________________ 度.8.下列命题中,真命题的个数是(① 全等三角形的周长相等③ 全等三角形的面积相等) ② 全等三角形的对应角相等 ④ 面积相等的两个三角形全等D.1 9.若△ ABC ≌△ DEF ,△ ABC 的周长为 100cm ,DE=30cm ,DF=25cm ,那么 BC 长( A.55 cm B.45cm C.30cm D.25cm10.在 △ ABC 中, ∠ B 的平分线与 ∠C 的平分线相交于 O ,且 ∠ BOC=130 °,则 ∠A=(A.50 °B.60 °.填空题(共 8题;共 24分) C.80 D.100 11. 用直尺和圆规作一个角等于已知角的示意图如图所示,则说明△ DOC ≌△ D 'O'C'的依据是_______16.如图,点 D,B,C点在同一条直线上,∠ A=60°,∠ C=50°,∠ D=25°,则∠ 1=18.如图,在△ ABC中,将∠ C沿 DE 折叠,使顶点 C落在△ ABC内 C′处,若∠A=75°,∠B=65°,∠1=40°,则∠ 2的度数为三.解答题(共5题;共36分)19.如图,已知 E是∠ AOB 的平分线上的一点, EC⊥OA,ED⊥OB,垂足分别是 C,D.求证: OE 垂直平分 CD.17.如图所示, BE⊥ AC 于点度.20.如图,在△ ABC中,CD⊥AB,垂足为 D,点 E在 BC上,EF⊥AB,垂足为 F.∠1=∠2,∠3=105°,求∠ ACB 的度数 .21.如图,已知 DE∥BC,CD是∠ACB的平分线,∠B=70°,∠ACB=50°,求∠EDC 和∠BDC的度数.22.如图所示,已知∠ ACB 和∠ADB 都是直角,且AC=AD ,P 是 AB 上任意一点.23.如图, OM 平分∠POQ,MA⊥OP,MB⊥OQ,A.B为垂足, AB交OM于点N.四.综合题(共1题;共10分)24.如图,在 Rt△ABC 中,∠ C=90°,以 AC为一边向外作等边三角形 ACD,点E为 AB的中点,连结 DE(1)证明 DE ∥ CB;(2) 探索 AC 与 AB 满足怎样的数量关系时,四边形 DCBE 是平行四边形 .答案解析部分一.单选题1.【答案】 D【考点】线段垂直平分线的性质,菱形的判定,等腰梯形的性质,命题与定理【解析】【分析】此题需要根据平行四边形的判定 .等腰梯形的性质 .菱形 .三角形垂直平分线的性质四个知识点,分别对四个结论进行判断,然后得出正确的结果 .【解答】A.一组对边平行,另一组对边相等的四边形是平行四边形或等腰梯形,故本选项错误;B.等腰梯形的两个角不一定相等,还可能互补,故本选项错误;C.对角线互相垂直的平行四边形是菱形,故本选项错误;D.三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等,故本选项正确;故选 D.【点评】本题考查了平行四边形的判定 .等腰梯形的性质 .菱形 .三角形垂直平分线的性质,考查的知识点较多,但难度不大,注意细心判断各个选项 .2.【答案】 D【考点】全等三角形的判定与性质【解析】【分析】由作法易得 OD=O′D′,OC=O′C′,CD=C′D′,得到三角形全等,由全等得到角相等,是用的全等的性质,全等三角形的对应角相等 .【解答】由作法易得 OD=O′D′,OC=O′C′,CD=C′D′,依据 SSS可判定△COD≌△ C'O'D'(SSS),则△ COD ≌△ C'O'D ',即∠ A'O'B'=∠ AOB(全等三角形的对应角相等). 故选 D.【点评】本题考查了全等三角形的判定与性质;由全等得到角相等是用的全等三角形的性质,熟练掌握三角形全等的性质是正确解答本题的关键 .3.【答案】 D【考点】三角形内角和定理,等腰三角形的性质【解析】【分析】等腰三角形的高相对于三角形有三种位置关系,三角形内部,三角形的外部,三角形的边上 .根据条件可知第三种高在三角形的边上这种情况不成了,因而应分另两种情况进行讨论。
第1章《三角形的初步知识》培优提升卷含答案
第1章《三角形的初步认识》培优提升卷班级______ 姓名_______一、选择题(每题3分,共30分)1.现有四根木棒,长度分别为4cm ,6cm ,8cm ,10cm ,从中任取三根木棒,能组成三角形的个数为( )A .1个B .2个C .3个D .4个2.如图所示,一个60°角的三角形纸片,剪去这个60°角后,得到一个四边形,则∠+∠12 的度数为( )A.120°B. 180°C. 240°D. 300°第2题 第4题 第5题 3.根据下列已知条件,能惟一画出△ABC 的是( )A .AB =3,BC =4,CA =8 B .AB =4,BC =3,∠A =30° C .∠A =60°,∠B =45°,AB =4D .∠C =90°,AB =64.如图,A ,B ,C ,D ,E ,F 是平面上的6个点,则∠A +∠B +∠C +∠D +∠E +∠F 的度数是( ) A. 180° B.360° C.540° D.720°5.如图,一副分别含有30°和45°角的两个直角三角板,拼成如下图形,其中∠C=90°,∠B=45°,∠E=30°,则∠BFD 的度数是( ) A . 15°B . 25°C . 30°D . 10°6.下列命题:(1)无限小数是无理数 (2)绝对值等于它本身的数是非负数 (3) 垂直于同一直线的两条直线互相平行 (4) 有两边和其中一边的对角对应相等的两个三角形全等, (5)面积相等的两个三角形全等,是真命题的有( ) A.1个 B.2个 C.3个 D.4个2160°7.如图,在△ABC 和△DEB 中,已知AB=DE ,还需添加两个条件才能使△ABC≌△DEC,不能添加的一组条件是( )A.BC=EC ,∠B=∠EB. BC=ECC. BC=DC ,∠A=∠DD.∠B=∠E,∠A=∠D8.如图,在△ABC 中,AD 是角平分线,AE 是高,已知∠BAC =2∠B ,∠B =2∠DAE ,那么∠ACB 为( )A. 80°B. 72°C. 48°D. 36°第7题 第8题 第10题9.若三角形的周长为18,且三边都是整数,则满足条件的三角形的个数有( )A 、4个B 、5个C 、6个D 、7个10.如图所示,点B 、C 、E 在同一条直线上,△ABC 与△CDE 都是等边三角形,则下列结论不一定成立的是( )A.△ACE ≌△BCDB.△BGC ≌△AFCC.△DCG ≌△ECFD.△ADB ≌△CEA 二、填空题(每题4分,共24分)11.已知三角形的三边长分别是3、x 、9,则化简135-+-x x =12.如图,长方形ABCD 中(AD>AB),M 为CD 上一点,若沿着AM 折叠,点N 恰落在BC 上,则∠ANB+∠MNC=___________13.如图,在△ABC 中,∠B =47°,三角形的外角∠DAC 和∠ACF 的平分线交于点E ,则∠AEC =______°BFDE ACDCBAE第12题 第13题 第16题14.在△ABC中,AB=8,AC=6,则BC边上的中线AD 的取值范围是15.已知三条不同的直线a,b,c在同一平面内,下列四个命题:①如果a∥b,a⊥c,那么b⊥c;②如果b∥a,c∥a,那么b∥c;③如果b⊥a,c⊥a,那么b⊥c;④如果b⊥a,c⊥a,那么b∥C.其中为真命题的是__________.(填写所有真命题的序号)16.在数学活动课上,小明提出这样一个问题:如图,∠B=∠C=900,E是BC的中点,DE平分∠ADC,∠CED=35°,,则∠EAB是多少度?大家一起热烈地讨论交流,小英第一个得出正确答案,是______。
浙教版八年级上数学第一章三角形的初步认识单元试卷含答案
第一章 三角形初步知识综合一.选择题1.一个三角形的两边长分别是2cm 和9cm ,第三边的长是一个奇数,则第三边长为( )A 、5cmB 、7cmC 、9cmD 、11cm2..有下列关于两个三角形全等的说法: (1)三个角对应相等的两个三角形全等;(2)三条边对应相等的两个三角形全等;(3)两角与一边对应相等的两个三角形全等;(4)两边和一角对应相等的两个三角形全等.其中正确的个数是:( )A . 1 B. 2 C. 3 D. 43.三角形的高( ).A. 一定在三角形的内部B. 至少有两条在三角形的内部C. 或者都在三角形的内部,或者有两条在三角形的外部;D. 以上都不对4.如图,在△ABC 中,∠B =67°,∠C =33°,AD 是△ABC 的角平分线,则∠CAD 的度数为( )A. 040B. 045C. 050D. 055 5.21AF EDCB BCAPD E第8题第9题A CO第10题5. 如图,在△ABC 中,AD 是角平分线,AE 是高,已知∠BAC=2∠B ,∠B=2∠DAE ,那么∠ACB 为( )A. 80°B. 72°C. 48°D. 36°6.如图,在△ABC 和△DEB 中,已知AB =DE ,还需添加两个条件才能使△ABC ≌△DEC , 不能添加的一组条件是( )A. E B CE BC ∠=∠=,B. DC AC CE BC ==,C. D A DC BC ∠=∠=,D. D A E B ∠=∠∠=∠,7. 如图,∠1=∠2,∠C =∠B ,结论中不正确的是( )A. △DAB ≌△DACB. △DEA ≌△DF AC. CD =DED. ∠AED =∠AFDABCDNM8.如图,PD ⊥AB , PE ⊥AC , 垂足分别为D , E ,且AP 平分∠BAC ,则△APD 与△APE 全等的理由是( )A 、SASB 、ASAC 、SSSD 、AAS9.如图,在△ABC 中,AB =AC ,AB 的中垂线DE 交AC 于点D ,交AB 于E 点,如果BC =10,△BDC 的周长为22,那么△ABC 的周长是( )A 、24B 、30C 、32D 、3410.如图,在△ABC 中,∠ABC 与∠ACB 的角平分线交于点O ,且∠A =α,则∠BOC的度数是( )A. 11802α︒-B. 1902α︒+C. 1902α︒- D. 12α 二、填空题11.如图,A ,B ,C 三点在同一条直线上,∠A =∠C =90°,AB =CD ,请添加一个适当的条件 ,使得△EAB ≌△BCD .第7题AB CD第11题第15题第16题12.设△ABC 的三边为a 、b 、c ,化简_______|b a c ||a c b ||c b a |=--+--+--13.命题:对顶角相等,改写成“如果......那么......”的形式为_______________14.已知BD 、CE 是△ABC 的高,直线BD 、CE 相交所成的角中有一个角为70°,则∠BAC=________°15..如图,D 是△ABC 内任意一点,连接DA 、DB 、DC .试说明:DA +DB +DC >21(AB +BC +CA ) 理由_________________________________________________________________. 16.如图,把矩形ABCD 沿AM 折叠,使D 点落在BC 上的N 点处,如果AD =35cm , DM =5cm ,∠DAM =30°,则AN =_____cm ,NM =______cm ,∠BNA =_________度;三、解答题17.已知四边形ABCD 是平行四边形(如图),把△ABD 沿对角线BD 翻折180°得到△AˊBD. (1) 利用尺规作出△AˊBD .(要求保留作图痕迹,不写作法);(2)设D Aˊ 与BC 交于点E ,求证:△BAˊE ≌△DCE .18.如图,在ABC ∆中,90C ∠=︒ ,点D 是AB 边上的一点,DM AB ⊥,且DM AC =,过点M 作ME BC ∥交AB 于点E 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第3题图
D C
B
A
第4题图
D
C
B A F
E
第5题图
C
B
A O
C
B
A 第6题图D E
H C
B
A
第7题图
第一章《三角形的初步认识》测试卷
姓名___________
一、填空题 (30分) :
1、在Rt △ABC 中,一个锐角为250, 则另一个锐角为________;
2、 在△ABC 中,AB =3,BC =7,则AC 的长x 的取值范围是________;
3、如图,AD 是△ABC 的中线, △ABC 的面积为100cm 2,则△ABD 的面积是
______cm 2;
4、如图, △ABC 中, ∠ABC=740,AD 为△ABC 的高,则∠BAD=_______;
5、如图, △ABC 中,AB=12,EF 为AC 的垂直平分线,若EC=8,则BE 的长为_______;
6、如图, △ABC 中,∠ABC 和∠ACB 的平分线交于点O,若∠A=700,则∠BOC=_______;
7、如图, △ABC 中,高BD 、CE 相交于点H,若∠A=600,则∠BHC=_____;
8、 如上右图,∠1∶∠2∶∠3=1∶2∶3,则∠4=________;
9、已知△ABC 中, ∠A= ∠B= ∠C,则△ABC 为___________ 三角形;
10、 如图,四边形ABCD 是一防洪堤坝的横截面,AE ⊥CD ,BF ⊥CD ,且AE=BF ,∠D=∠C ,问AD 与BC 是否相等?说明你的理由。
解:在△ADE 和△BCF 中, ∠D=∠C ( ) ∠AED=∠ (垂直的意义) AE=BF ( ) ∴△ADE ≌△BCF (_______ ) ∴AD=BC (______________________)
二、选择题(30分):
2
131
43
2
1
1、以下列各组线段为边,能组成三角形的是( ); A .2cm 、2cm 、4cm B .2cm 、6cm 、3cm C .8cm 、6cm 、3cm D .11cm 、4cm 、6cm
2、 有下列关于两个三角形全等的说法: ㈠三个角对应相等的两个三角形全等;㈡三条边对应相等的两个三角形全等;㈢两角与一边对应相等的两个三角形全等;㈣两边和一角对应相等的两个三角形全等.其中正确的个数是( );
A.1
B.2
C.3
D.4
3、如右图,三角形的外角是( ); A. ∠1 B.∠2 C.∠3 D.∠4
4、若三角形的一个外角小于和它相邻的内角,则这个三角形为( ); A.锐角三角形 B.钝角三角形 C. 直角三角形 D 无法确定
5、对于三角形的内角,下列判断中不正确的是( ); A.至少有两个锐角 B.最多有一个直角 C.必有一个角大于600 D.至少有一个角不小于600
6、下列四组中一定是全等三角形的是( );
A .两条边对应相等的两个锐角三角形
B .面积相等的两个钝角三角形
C .斜边相等的两个直角三角形
D .周长相等的两个等边三角形 7、若AD 是△ABC 的中线,则下列结论错误的是( ); A.AD 平分∠BAC B.BD=DC C.AD 平分BC D.BC=2DC
8.如果三角形的一个内角等于其他两个内角的差,那么这个三角形是 ( ) A.锐角三角形 B.钝角三角形 C.直角三角形 D.无法确定 9. 如图,在ΔABC 中,BC 边上的垂直平分线交AC 于点D, 已知AB=3,AC=7,BC=8,则ΔABD 的周长为: A.10 B.11 C.15 D.12
10.如果一个三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是 ( )
A.锐角三角形
B.钝角三角形
C.直角三角形
D.无法确定
三、解答题(6+8+8+8+10=40分):
1、如图,在⊿ABC 中, ∠BAC 是钝角,按要求完成下列画图,并用适当的符号在图中表示(必须写出结论):
C
B
A
a
b
a E D
C
B
A
2
1
①∠BAC 的角平分线 ②AC 边上的高 ③AB 边上的中线
2、尺规作图:已知线段a,b 和∠α. 求作:ΔABC,使BC=a , AC=b , ∠C=∠α (画出图形,保留作图痕迹,不写作法,写出结论)
3、如图:已知△ABC 中,AD ⊥BC 于D ,AE 为∠BAC 的平分线,且∠B=35°, ∠C=65°求∠DAE 的度数。
4、如图,已在AB=AC,AD=AE, ∠1=∠2,试说明ΔABD ≌ΔACE 的理由. 解:∵∠1=∠2( ) ∴∠1+∠ =∠2+∠
即:∠BAD=∠CAE 在△BAD 和△CAE 中 AB=AC ( ) ∠BAD=∠CAE
AD=AE ( ) ∴△BAD ≌△CAE( )
5、如图.在△ABC 和△DEF 中,B 、E 、C 、F 在同一直线上,下面有四个条件.请你在其中选三个作为已知条件,余下的一个作为结论,写出—个正确的结沦,并说明理由。
①AB =DE ;②AC =DF ;③∠ABC =∠DEF ;④BE =CF .(填写序号即可) 已知: ; 结沦: ;
A
B
E D
C
理由:
四、附加题(9+11=20分):
1、设计三种不同方案,把ΔABC 的面积三等分
2、如图,点E 、A 、B 、F 在同一条直线上,AD 与BC 交于点O,已知∠CAE=∠DBF,AC=BD. 说出∠CAD=∠DBC 的理由
参考答案:
一、填空题:
1、650
2、4<x<10
3、50
4、160
5、4
6、1250
7、1200
8、720
9、直角
10、已知,BFC,已知,AAS,全等三角形的对应边相等。
二、选择题:
三、解答题:
1、(略).
2、(略).
3、150.
4、已知,BAE,BAE,已知,已知,SAS.
5、答案不唯一.
四、附加题:
1、(略);
2、解:∵∠CAE=∠DBF(已知)
∴∠CAB=∠DBA(等角的补角相等)
在△ABC和△DBA中
AC=BD(已知)
∠CAB=∠DBA
AB=BA(公共边)
∴△ABC≌△DBA(SAS)
∴∠ABC=∠BAD(全等三角形的对应角相等)∴∠CAB-∠BAD=∠DBA-∠ABC
即:∠CAD=∠DBC。