3电弧炉控制系统方案

3电弧炉控制系统方案
3电弧炉控制系统方案

五矿<湖南)铁合金有限责任公司103#硅锰合金冶炼炉优化控制系统

中南大学信息科学与工程学院

二○一○年三月

一、开发背景

五矿<湖南)铁合金集团有限公司103#10000KV A矿热炉主要用于熔炼硅锰合金和碳锰合金,整个生产系统由炉体、供电变压器及保护系统、配加料系统、电极卷扬升降控制系统、电极压放子系统和炉体水冷系统等组成。目前,配加料子系统采用了计算机自动控制;电极压放子系统依靠人工凭经验综合考虑炉况、二次电压、一次电流、熔炼时间等因素,输入控制信号给PLC,由PLC来完成电极的定长压放;电极升降是依靠人工凭经验综合考虑二次电压、一次电流及炉盖温度等因素进行调节;供电变压器二次侧电压等级靠人工根据炉况和电压、电流、功率等因素凭经验进行调整。这种靠人工凭经验来控制冶炼过程的方法难以保证矿热炉稳定持续地工作在最佳工作范围内,调节过程相对滞后、工人操作强度大、工作效率低,容易出现电极烧结不好、耗电量大、炉况不稳定等问题,难以保证产品的产量和质量。

二、设计要求

针对五矿<湖南)铁合金集团有限公司103#矿热炉熔炼过程控制自动水平低下带来的各种问题,通过现场调研和与工艺技术人员交流沟通,结合生产的实际需要,搭建103#矿热炉优化控制系统,以达到如下目标:1.通过建立电极位置模型,在线检测电极的升降量和压放量,实现电极自动升降和自动压放;并通过采用合理的算法,计算电极长度及其位置,控制电极处于最优位置区域内,使三相有功功率平衡度在原有基础上提高2-3%,提高功率因数。

2.通过建立实时数据库,实时采集熔炼过程数据,实现整个矿热炉控制系统的运行监视、事故报警与记录、统计分析和报表打印、日常生产

管理以及安全管理等功能,并实现变压器的继电保护。

3.通过对矿热炉供电网电能质量在线检测与监视,实时监测电极升降压放等操作和供电电流电压、功率因数的对应状态,分析三相不平衡、无功损耗及其对用电设备的影响,分析谐波损耗及其波形畸变用电设备的影响,使电能质量各项指标的监测精度达到2%以上。

4.在保证产品质量的前提下,根据用电制度和造渣制度,综合考虑原料成分和品位、产品成分、矿热炉设备参数、熔炼过程状态参数等因数的影响,建立生产过程优化控制模型,优化供电电压等级及电极插入深度,提高稳定运行率5%以上。

三、设计方案

3.1系统总体结构

五矿<湖南)铁合金集团有限公司103#矿热炉优化控制系统由电极位置自动控制子系统、生产过程参数集中监视子系统、生产设备故障监测与预警子系统、生产过程优化控制子系统、电能质量在线检测与综合分析子系统五部分组成,系统的整体结构如图1所示。

图1 103#矿热炉优化控制系统总体结构

3.2 系统功能介绍

3.2.1电极位置自动控制子系统

电极位置自动控制包括电极位置检测和电极位置控制两大部分。电极位置检测的目的是建立电极位置模型,通过在线检测电极的升降量和压放量,计算电极长度及其位置。电极位置检测和长度的计算采用间接测量法求得,电极位置模型为

电极长度模型为:

式中,

为电极的初始位置;

为实测电极升降量;

为电极的压放量;

为电极的正常损耗量;

为电极异常损耗量;

为电极的长度;

为电极的初始长度。

由绝对式光电编码器检测得到;

由次数*固定压放量统计得到;

由炉料消耗量、生产过程状态参数、产量等推断可得到一个较准确

的消耗速率<此速率可以根据路况不同更改),累积超过30mm提示压

放。

可由手动输入估计的异常消耗量,超过30mm提示压放。

电极位置控制的主要包括电极升降控制和电极的压放控制。电极升降控制的目标是保持电极插入位置最佳,实现三相熔池有功功率平衡、有功功率大、功率因数高、线路电流小,保持较好的炉况。电极压放控制的目标是通过压放电极来补充电极的消耗量,以保持电极工作端的长度最佳。

1.电极升降控制

矿热炉冶炼过程中,由于工况复杂,干扰较多,三相电极的最优位置会实时改变。为使电极稳定工作于最优位置区域内,可通过升降电极来实现三相熔池有功功率平衡、有功功率大、功率因数高、线路电流小,并维持最佳的炉况。电极升降控制分为手动控制和自动控制两种方式,自动升降控制系统结构如图2所示。

图2 电极自动升降系统系统结构图

但由于矿热炉冶炼过程复杂,在冶炼过程中可能会出现一些特殊情况。为了能应对矿热炉冶炼过程中可能出现的各种情况,设置不同的电极调节方法:

炉况正常时,采用最优位置控制

此时控制信号由电极目前所处位置、最优插入深度和控制算法求得。

最优电极位置可由人工凭经验来设定,也可通过对大量历史数据<如电压、电流、有功功率、功率因数、炉气成分、炉膛温度等)分析,综合专家经验知识,经建模和优化计算得到。电极最优位置稳定控制结构如图3

所示,

工况参数:原料组分、配比、产量、能耗、电压、电流、功率因数

电极的消耗量、压

图3 电极最优位置稳定控制结构图

其中为电极设定的最优升降量,为电极实际升降量。控制器根

据实际升降量与电极设定最优升降量差值的大小来给定频率和升降时间,当差值较大时采用较高速度升降电极;当差值较小或炉况不稳定时,采用

较低速度升降电极。

◆ 当电流下降或上升幅度过大时,采用恒电流控制

此时控制信号由一次侧电流决定,以便使电路中的电流快速地恢复到

正常工作范围之内。

◆ 不可抬升电极的情况处理

出铁时,为防止出现塌料,出铁口附近的电极不能上抬;电极出现异常时,如中间凹陷,则一般不能抬升。

◆ 故障情况下电极的处理

当矿热炉自动控制系统出现故障时,系统给出相关状态信息并报警,提示操作人员切换到手动控制,以保证矿热炉的正常生产。

2. 电极压放控制

由于硅锰合金冶炼是连续进行的,随着冶炼过程的进行,电极会不断消耗,电极的工作端逐渐变短,其插入位置不断上移。为确保矿热熔炼炉处于最佳的熔炼状态,电极的插入位置必须要在适宜的范围内,因此,需

要对电极的消耗不断进行补充。电极压放控制系统的主要功能是通过压放电极来补充电极的消耗量,从而调整电极的插入位置。电极压放控制系统原理如图4所示。

压放信号

为确保放系统能可靠工作,根据生产的需要,设置了三种不同的压放方式:自动压放、手动压放和现场压放,具体的控制方式描述如下。

<1)自动压放

自动压放在电炉操作室内完成,这也是系统的主要运行方式。相关检

测与控制信号与PLC相连,由与PLC相连的上位机据谐波检测仪的分析结果及炉况最优化控制算法输出控制信号,经PLC根据相应状态检测信号自动控制相应电磁阀的起停,从而完成电极压放各环节之间的协调动作,

实现电极自动定长压放。决定电极是否压放的因素包括二次侧电压、一次电流、有功功率、功

率因素、及炉况、炉盖温度等。如二次侧电压过高、二次电流过小或炉盖温度过高时则需要进行压放。系统三相功率不均衡或功率因素过低时,综合考虑电极升降来作适当的压放操作。自动压放控制的思想如图5所示。

电电电

电电电

图5 自动压放系统结构

电极自动压放的具体工作流程为:工业控制计算机获取谐波检测仪分

析所得的电炉一次侧电流、电压、有功功率、功率因素等信号及PLC采集得到的炉况、炉盖温度、液压系统状态等信号,结合当前各项电极位置,据最优化控制算法,判断各相电极是否需要压放并输出相应电极位置控制信号——PLC获取控制信号,开始压放相应电极——输出“上闸松”信号——对上闸液压压力继电器进行采样,直至其反馈状态为“松”,输出“立缸升”信号——对“立缸上限”行程开关进行采样,直至其被触发,输出“上闸紧”信号——对上闸液压压力继电器进行采样,直至其反馈状态为“紧”,输出“下闸松”信号——对下闸液压压力继电器进行采样,直至其反馈状态为“松”,输出“铜瓦松”信号——对铜瓦液压压力传感器进行采样,直至其压力下降至2.5Mpa<待确定),输出“立缸降”信号——对“压放量”通道进行采样,直至压放量达到规定值,输出“下闸

紧”信号——对下闸液压压力继电器进行采样,直至其反馈状态为“紧”,输出“铜瓦紧”信号——对铜瓦液压压力传感器进行采样,直至其压力上升至4Mpa。至此,一次压放过程结束。期间,若在设定时间内任一路压力继电器或行程开关未能达到期望状态,则停止压放过程并输出

相应报警信号。

<2)手动压放

手动压放在电炉操作室内完成。当上位机出现故障或系统中元器件出

现故障,不能进行自动压放时,为确保矿热炉生产系统的正常工作,需要人工控制PLC进行电极压放。在该方式下,由操作人员通过操作面板上的相应切换开关及按钮,将控制信号输入PLC,再由PLC完成电极的压放。

手动压放的思想如图6所示

电电电

图6电极压放控制系统手动压放系统结构图

其具体操作流程为:各切换开关至0°——运行方式选择“手动压

放”——按下“试灯”按钮,若所有状态指示灯均正常亮起,继续操作——选相<左45°:A相。右45°B相;右90°:C相)——上闸松<右45°,等待“上闸松”信号灯亮)——立缸升<右45°,等待“立缸上限”信号灯亮)——上闸紧<0°,等待“上闸紧”信号灯亮)——下闸”松<右45°,等待“下闸松”信号灯亮)——铜瓦松<右45°,等待“铜瓦松”信号灯亮)——立缸降<左45°,等待“立缸下限”信号灯亮)——下闸紧<0°,等待“下闸紧”信号灯亮)——铜瓦紧<0°,等待“铜瓦紧”信号灯亮)——立缸手柄回0°——选相开关回0°。至此,一次压放操作完成。若操作过程中,某信号灯在较长时间内没达到期望状态,则应立即停止压放操作并检查系统,查找故障。注:做完每次压放后,所有切换开关需要还原至0°,每次压放之前亦须确保各切换开关

均处在0°位置。

<3)现场压放

现场压放在液压站内进行。用于当PLC压放系统出现故障无法工作

或特殊情况下需要观察电极情况进行操作时使用。由于操作过程中可以直接看到电极的升降及上下抱闸和立缸的工作情况,建议使用现场压放完成倒拔电极过程。在该方式下,由有经验的操作人员直接观察液压站内的油压表读数及电极情况,控制与电磁阀直接相连的切换开关,完成电极压放的相应操作。该过程不需要PLC或工业控制计算机的参与。根据实际需要,现场压放分压放和倒拔两个过程,具体操作方法如下:压放过程:运行方式选择“现场压放”——选相——上闸松<右45°,上闸进油压力指示上升至4MPa)——立缸升<右45°,观察立缸上升距离至所要求值,要求不能达到最高位)——立缸手柄回“0”位<垂

直位置)——上闸紧<0°,上闸进油压力指示降至0MPa)——下闸松<右45°,下闸进油压力指示上升至4MPa)——铜瓦松<铜瓦进油压力指示降至 2.5MPa)——立缸降<左45°,观察立缸下降距离至所要求值,要求至最低位)——立缸手柄回“0”位——下闸紧<0°,下闸进油压力指示降至0MPa)——铜瓦紧<铜瓦进油压力指示上升至4.5MPa),压放

完成。倒拔过程:运行方式选择“现场压放”——选相——下闸松<右45°,下闸进油压力指示上升至4MPa)——铜瓦松<铜瓦进油压力指示降至 2.5MPa)——立缸升<右45°,观察立缸上升距离至所要求值,要求不能达到最高位)——立缸手柄回“0”位<垂直位置)——下闸紧<0°,下闸进油压力指示降至0MPa)——铜瓦紧<铜瓦进油压力指示上升至4.5MPa)——上闸松<右45°,上闸进油压力指示上升至4MPa)——立缸降<左45°,观察立缸下降距离至所要求值,要求至最低位)——立缸手柄回“0”位——上闸紧<0°,上闸进油压力指示降至0MPa)。

倒拔完成

3.2.2生产过程参数集中监视和生产设备故障监测与预警子系统

生产过程参数集中监视与生产设备故障监测与预警系统的主要功能是将生产过程的工艺流程和生产过程数据实时进行显示,并以图形、表格、曲线、动画等多种形式反映生产过程当前的工作状态,为工艺人员和操作人员提供技术指导。设备出现故障时,能及时告知故障源,为维修维护技术人员提供依据,系统结构如图7所示。

数字量输入模块

模拟量输入模块

数字量输出模块PLC 控制系统

工业控制计算机

电能质量在线监测与

分析系统

模拟量输出模块

图7生产过程参数集中监视和生产设备故障监测与预警子系统结构图

3.2.3电能质量在线监测与分析子系统 3.2.3 电能质量在线监测与分析子系统

电能质量在线检测与分析用于实时准确地检测出矿热炉各分相电压有效值3、分相电流有效值3、分相有功功率3、分相无功功率3、分相视在功率3、分相功率因数3、总有功功率1、总无功功率1、总视在功率1、电压相序检测3、电流相序检测3、分相电压谐波25*3、分相电流谐波25*3、总有功电能1、总无功电能1等参数,监测1~25次谐波电压和电流含有率25*3*2,统计谐波电压畸变率3、谐波电流畸变率3,二次侧三相电压、<三相电压平衡度、三相电流平衡度、三相有功功率平衡等图示方法)了解系统中谐波分量的大小、三相有功功率、无功功率、视在功率的平衡情况及功率因数的变化范围和趋势,为调节电极最优插入深度、选择最优供电电压等级和提高矿热炉功率因素提供依据。<合计331个变量)

3.3 详细设计 3.3.1 升降系统设计 1.原理图

电极升降系统原理图见附录1

2.I/O 点配置

3.元器件清单

3.3.2 压放系统设计

1.原理图

压放控制系统原理图见附录2 2.I/O点配置

3.元器件选型清单

3.3.3生产过程参数集中监视和生产设备故障监测与预警子系统

1.生产过程参数集中监视

生产过程参数主要在上位机通过工业以太网<或MPI)与PLC主机连接,PLC将现场采集的生产过程数据如电压、电流、功率因素、炉膛温度、炉内压力等实时数据传递给上位机。同时,整个系统的操作和工艺参数设定均可在计算机上完成,如在上位计算机上可以设定电极的插入深度、电极的升降速度,输入检测化验的质量指标等参数。

上位机采用WINCC作为组态软件,实现过程监控、数据存档、流程显示及人机交互等功能。PLC编程软件采用STEP7V5.3,用于PLC系统组态、程序设计与调试及软件与数据的下载与上传。工控机外接打印机以打印报表,保证工控机的正常工作和数据的完整记录。

图8 生产过程参数集中监视

2.生产设备故障监测与预警

矿热炉生产系统各设备在长时间运行过程中,会出现多种故障隐患,如炉盖温度过高,液压系统管路油压过低、油量不足,炉体冷却系统系统管路堵塞、流量不足、水压过低电炉变压器过热等,及时准确地发现故障

隐患,为系统维护、维修提供方便。

3.炉体状态监测与预警

炉体状态检测的参数包括炉盖温度、炉膛压力、冷却水水压等,当炉盖温度超过上限值或三相熔池温度严重不等时发出报警信号;当炉内压力过高或出现负压时,调整排气阀开度,确保炉内维持微正压状态,当排气阀出现故障开度不能调节时,发出报警信号;当炉盖冷却水水压过低时,发出报警信号,系统原理及PLC 连线如图9所示。

电电电电电电电电电电电电电电电电电电电电A 电电电电电电电电电电电电电电电电电电电电电

电电电电电电电电电电电电电电电

B 电电电电电

C 电电电电

电电电电电电电电电

电电电电电电电电电电电电电电电电

电/电电电电电电电电电电电电电电电电电电电

图9 炉体状态监测及烟道蝶阀控制PLC 连线图

(1) 原理图

炉体状态监测及烟道蝶阀控制原理图见附录3 (2) I /O 点配置

(3)元器件清单

4.变压器状态监测与预警

为保证电炉变压器安全运行,需要对变压器保护信号进行监视,并在上位机显示保护预告信号,出现故障时发出报警信号。变压器监视的状态包括变压器配电柜的开合闸、变压器油位高、油温高、重瓦斯、轻瓦斯、变压器油泵停止、变压器油压低等,当变压器出现异常情况时及时报警。103#炉变压器已经配有变压器继电器综合保护装置,且综合保护装置后台带有RS485通讯接口,因此上位机通过RS485总线通信方式与综合保护装置通讯获取变压器状态参数。变压器状态监测与预警系统原理如图10所示。

变压器综合保

护装置

图10变压器状态监测与预警

5.电炉变压器冷却器状态监视

该功能模块主要对变压器冷却系统进行状态监视,以保证炉变冷却系统的正常运行,需要监视的状态有:油泵启/停状态的监视,水压、油压、油温、油流量。电炉变压器冷却器状态监视原理如图案11所示。

<1)原理图

电弧炉控制系统方案

五矿(湖南)铁合金有限责任公司103#硅锰合 金冶炼炉优化控制系统 方 案 设 计 说 明 书 中南大学信息科学与工程学院 二○一○年三月

一、开发背景 五矿(湖南)铁合金集团有限公司103#10000KV A矿热炉主要用于熔炼硅锰合金和碳锰合金,整个生产系统由炉体、供电变压器及保护系统、配加料系统、电极卷扬升降控制系统、电极压放子系统和炉体水冷系统等组成。目前,配加料子系统采用了计算机自动控制;电极压放子系统依靠人工凭经验综合考虑炉况、二次电压、一次电流、熔炼时间等因素,输入控制信号给PLC,由PLC来完成电极的定长压放;电极升降是依靠人工凭经验综合考虑二次电压、一次电流及炉盖温度等因素进行调节;供电变压器二次侧电压等级靠人工根据炉况和电压、电流、功率等因素凭经验进行调整。这种靠人工凭经验来控制冶炼过程的方法难以保证矿热炉稳定持续地工作在最佳工作范围内,调节过程相对滞后、工人操作强度大、工作效率低,容易出现电极烧结不好、耗电量大、炉况不稳定等问题,难以保证产品的产量和质量。 二、设计要求 针对五矿(湖南)铁合金集团有限公司103#矿热炉熔炼过程控制自动水平低下带来的各种问题,通过现场调研和与工艺技术人员交流沟通,结合生产的实际需要,搭建103#矿热炉优化控制系统,以达到如下目标:1.通过建立电极位置模型,在线检测电极的升降量和压放量,实现电极自动升降和自动压放;并通过采用合理的算法,计算电极长度及其位置,控制电极处于最优位置区域内,使三相有功功率平衡度在原有基础上提高2-3%,提高功率因数。 2.通过建立实时数据库,实时采集熔炼过程数据,实现整个矿热炉控制系统的运行监视、事故报警与记录、统计分析和报表打印、日常生产管

道闸系统两种方案对比(捷顺)

正盛太古港招商中心两种道闸方案对比正盛太古港营销中心位于洪城路188号,为了大道更好的营销效果,对于出路口车场这块需达到:智能化、高大上、广告效果。现提供两种方案供领导参考。 一、广告道闸 1、图片 1.2、现场效果图 1.3、其他现场示例图 1.4、该款道闸特点 a、属于广告道闸,广告面积大 b、3.5米以下起杆速度5~6秒;3.5米以上起杆速度8秒若用在智能化车场里面会影响使用效果。 c、道闸杆最长为4米,而根据现场情况,道闸杆需要4.5米(道路两边各宽6.2米和6.1米) d、地处受风口,容易受损。 e、该款道闸多为旧写字楼及小区使用,不显高档。 f、主机材质为铁质,闸杆有铝合金和塑料组成,不耐用。 二、新款豪华道闸 2、图片 2.1 、现场效果图 夜晚效果:道闸侧面P字灯,具备绚丽显示效果。关闭状态亮红灯,开启状态亮绿灯 2.2 、除了灯光效果外,另外可加载广告灯箱,如下: 2.3、此款道闸特点: a、自带灯光效果,无广告。可加载广告箱,但广告面积不大 b、速度2~6秒可调 c、杆长4-6米,可根据现场条件定制 d、道闸与车牌识别一体机主机配套,同为麒麟金更显高档 三、其他情况说明 1、以上两种道闸都配同一款车牌识别,通过智能高清车牌识别一体机对车辆图像或者视频序列进行分析,得到每一辆车唯一的“车牌号码”,并以“车牌号码”作为车辆进出的唯一凭证,对进出车辆进行识别、验证、计费缴费、放行的停车场管理系统。

2、领导车辆、内部员工车辆、固定车辆自动放行。重要临时车辆有意向客户可转为固定车 辆进行自动放行,前提是由营销公司确定客户性质。 3、根据现场条件,为了会更好的识别效果。建议岗亭往后移,靠近水池。如图: 岗亭往后移至图上位置,离洪城路面5.6米为最佳拍摄位置,无需地感,可用视频流进行识 别。由于每个车道大于4米,出路口需个增加一台辅助摄像机;若用防撞柱隔离一道四米的 车道,则不需辅助摄像机。 四、报价参考 不含广告 二选一

电弧炉炼钢车间的设计方案

1电弧炉炼钢车间的设计方案 1.1电炉车间生产能力计算 1.1.1电炉容量和座数的确定 在进行电炉炉型设计之前首先要确定电弧炉的容量和座数,它主要与车间的生产规模,冶炼周期,作业率有关。 在同一车间,所选电炉容量的类型一般认为不超过两种为宜。座数也不宜过多,一般设置一座或两座电炉。为了确定电炉的容量和座数,首先要估算每次出岗量q : y G q a ητ8760= 式中 G a —车间产品方案中确定的年产量,80万t ; τ—冶炼周期,55min=0.917h ; η—作业率,年日历天数 年作业天数=η×100% 本设计取90%; Y —良坯收得率,连铸一般95%~98%,本设计取98%; 带入数据计算得 q=95.0t 。 根据估算出的每次出钢量选取HX 2-100系列一座,以下是主要技术性能: 1.1.2电炉车间生产技术指标 (1)产量指标 年产量80万t ; 小时出钢量: (2)质量指标 钢坯合格率 98%; (3) 作业率指标

作业率:90% (4)材料消耗指标 a金属材料消耗 一般为废钢、返回废钢、合金料于脱氧合金。 b炼钢扶住材料消耗 石灰、以及其他造渣材料和脱氧粉剂。 c耐火材料消耗 主要用于炉衬的各种耐火砖以及钢包的耐火材料。 d其它原材料消耗 电极和工具材料。 e动力热力消耗指标 主要为电能和各种气体和燃油等。车间设计产品大纲见下表: (5)连铸生产技术指标 连铸比 铸坯成坯率 连铸收得率 (6)生产的钢种:主要生产Q215,年产量80万吨,连铸坯尺寸选取200×200mm方坯; 1.2 电炉车间设计方案 1.2.1电炉炼钢车间设计与建设的基础材料 (1)建厂条件 1)各种原料的供应条件,特别是钢铁材料来源; 2)产品销售对象及其对产品质量的要求; 3)水电资源情况,所在地区的产品加工,配件制作的协作条件; 4)交通运输条件,水路运输及地区公铁路的现状与发展计划; 5)当地气象,地质条件; 6)环境保护的要求; 在上述各项主要建厂条件之中,原材料条件对于工艺设计的关系尤为密切重要。 (2)工艺制度 确定工艺制度是整个工艺设计的基本方案,是设备选择,工艺布置等一系列问题的设计基础。确定工艺制度的主要依据是产品大纲所规定的钢种,生产规模,原材料条件以及后步工序的设计方案。 1)冶炼方法:利用超高功率电弧炉进行单渣冶炼,然后进行炉外精炼; 2)浇注方法:采用全连铸; 3)连铸坯的冷却处理与精整:铸坯在冷床上冷却并精整; 4)在技术或产量方面应留有一定的余地。 1.2.2电炉炼钢车间的组成

大型炼钢电弧炉对电网及自身的影响和抑制方案

大型炼钢电弧炉对电网及自身的影响和抑制方案.txt26选择自信,就是选择豁达坦然,就是选择在名利面前岿然不动,就是选择在势力面前昂首挺胸,撑开自信的帆破流向前,展示搏击的风采。大型炼钢电弧炉对电网及自身的影响和抑制方案 翁利民,陈允平,舒立平 (武汉大学电气工程学院,湖北省武汉市430072) 摘要:详细分析了现代大型炼钢电弧炉对电网不利影响的4个方面:即电压波动、电压畸变、负序电压与电流、功率因数低,并结合实际从量的概念上认识其对自身在增加损耗、继电保护误动、增加网损、降低生产效益等方面的影响;介绍了抑制电弧炉的常规有效措施,得出了合理的结论。 关键词:电压闪变;电压波动;SVC;滤波器 1 引言 现代大型超高功率炼钢电弧炉,由于其容量大,是用电大户,对电网的影响具有举足轻重的作用。它具有功率因数低,无功波动负荷大且急剧变动,产生有害的高次谐波电流,三相负荷严重不平衡产生负序电流等对电网不利的因素,使得电网电能质量恶化,危及发配电和大量用户,也影响电炉自身的产量、质量,使电耗、电极消耗增大,从而成为电网的主要公害之一。现在有关大型电炉对电网公害抑制的研究也正在深入开展,有必要对其不利影响和抑制对策作一概述性的分析。 2 现代大型电炉对电网的影响 2.1 引起电网电压急剧波动 大型电炉在打孔期和熔化期电弧长度急剧变化,引起无功负荷急剧波动,其工作短路功率为电炉变压器额定功率的两倍左右,其最大波动无功为电炉变压器额定功率的1.5倍左右(具体倍数取决于短网阻抗、电炉变压器阻抗、供电系统阻抗之和的大小,总阻抗大则工作短路倍数小,反之则大)。无功的急剧波动,引起电网电压的急剧波动,其波动频率一般为1~15Hz,使灯光和电视机屏幕产生闪烁,使人视觉疲劳而感到烦躁,此外还影响到晶闸管设备和精密仪表等的稳定运行,甚至产生质量事故。国标GB12326-2000《电能质量电压允许波动和闪变》规定了电力系统公共供电点各级电压等级的电压波动和闪变允许值。 2.2 使电网电压波形产生畸变 电炉在熔化和打孔期,电弧电流是不规则的,且急剧变化,其电流波形不是正弦波,可分解为2次和2次以上的各次谐波电流,主要为2~7次,其中2次和3次最大,其平均值可达基波分量的5%~10%,最大可达15%~30%;4~7次平均值为2%~6%,最大值可达6%~15%。而电网中的铁磁元件也产生高次谐波,以3次和5次谐波电流较大,其中3次分量最大,而电炉刚好也是3次谐波电流很大,这对电网是极为不利的。谐波电流流入电网,使其电压波形发生畸变,引起电气设备发热、振动,增加损耗,干扰通信,使电力电缆局部放电绝缘损坏,电容器过载损坏等,国家标准GB/T14549-1993《电能质量公用电网谐波》规定了电压波形畸变率限值。 2.3 使电网电压产生负序分量 电炉在熔化期,特别是打孔期,各相电弧电压是独立变化的,三相电弧各自发生急剧无规则变化,故其三相电流是不对称的。在正常生产情况下,产生的负序电流约为电炉变压器额定电流的25%左右;在不正常情况下,如一相断弧时,可达56%左右,如两相短路的同时,第三相又断弧,此时可达86%左右。负序电流流入电网,使电网电压产生负序分量,影响发电机和用电设备使用效果,严重时可能造成损坏,还会使继电保护误动作,其严重程度一般用不平衡度(即负序电压与正序电压分量之比的百分数)表示,国标GB/T15543-1995《电能

普通电弧炉设计与电极升降控制

普通电弧炉的一般设计与电极升降控制

摘要: 为了提高所熔炼速度和钢水的质量、减少电能及电极的消耗量、保证维持规定的电气工作条件,使设备获得较高的生产率。从电弧炉的一般设计概况,到电弧炉电极的升降控制。系统了解电弧炉中存在的缺点与不足。通过分析,更好的提高电气控制的稳定性,提高电网提高熔炼速度。 关键词:电弧炉、短网电流、电极升降。

目录 一、电弧炉的简介及特点 1.电弧炉简介 2.电弧炉特点 二、电弧炉的一般设计 1.电弧炉组成部分 2.炉体设计 3.变压器设计 4.短网电流的计算 5.电极直径计算 6.电极升降计算 7.其他相关参数 三、电极升降自动控制 1.调节器的组成及工作原理 2.调节器的结构原理 四、小结 五、参考文献

一、电弧炉的简介及特点 1.电弧炉简介 电弧炉是利用电极间电弧产生的热能冶炼金属的一种设备。电弧炉炼钢就是靠电极与炉料之间放电产生的电弧,使电能在弧光中转变为热能,并借助辐射和电弧的直接作用加热并熔化金属和炉渣,冶炼出各种成分的钢和合金。 现代化炼钢电弧炉均为直接加热、炉底不导电式电炉。该电炉按直接加热金属的原理工作,电弧发生在每一电极与炉料之间,

己熔化的金属则形成负荷的中心点。 2.电弧炉的特点 电弧炉进行冶炼,电弧炉是一个多变量、非线性、大滞后、强藕合、时变、随机干扰较强的系统,使得系统电极位置、电弧长度、电弧电流以及系统功率很难保持最佳工作状态。电极升降调节系统是电弧炉的重要组成部分,其工作性能的好坏直接影响钢的产量、质量和能源消耗。在电弧炉冶炼过程中,三相交流电弧炉的电力负载是不稳定的、不对称的;无功冲击及闪变;产生谐波电流。 电弧炉的整个炼钢过程一般分为熔化期、氧化期、还原期三个时期,由于各个时期所完成的任务不同,因而相应地对冶炼温度和功率的要求也不同。 (熔化期)开始熔化阶段,固体炉料熔化,能量需求最大。 (氧化期)初精炼及加热阶段。 (还原期)精炼期,此阶段输入能量只需平衡热损耗。 在废钢冶炼时电弧炉的工作特性为:

环保厕所智能控制系统设计方案

环保厕所智能控制系统设计方案 一、环保厕所控制技术现状 经调研和分析,现在已经使用的由昆明惠云夜光工程有限责任公司研制的发泡式环保厕所存在以下几点缺陷: 1、发泡式环保厕所控制分散,操作不便 发泡式环保厕所设备控制较为分散,仅控制柜就有5个之多。在厕所实际运行和维护过程中,较多的控制柜和烦杂的连线,不仅提高了产品的成本,而且会造成施工、维修、维护上的极大不便。同时,就美观性而言,这样的设计也会使产品的外观大打折扣,难于上档次。操作上也不方便。 2、坑位发泡控制器与信息显示屏的连线较多 发泡式环保厕所的每个坑位发泡控制器都要通过4根连线与厕所的信息显示屏相连,可想而知,随着厕所规模的扩大,坑位的增加,与显示屏的连线数量是惊人的,这不仅会增加成本、提高故障率、造成施工的不便,而且也不符合控制的实用性和先进性,造成系统升级换代,产品智能化的极大制约。 3、无故障自诊断功能 随着企业的发展和市场的扩大,发泡式环保厕所的应用量也会逐渐扩大,厕所维护的工作量也会更为加大,仅靠人力去处理运行中出现的问题,不仅增加维护成本,还费时费力。随着产品的升级,更智能化、现代化的产品的逐步推出,产品急需高可靠性、且具有故障自诊断功能,不仅可以提升产品的档次,而且节省产品的维护成本,从而提高产品的竞争力。 4、无远程监控功能 调查中发现,对于厕所的主管部门或相关单位有时需要了解环保厕所的运行情况或故障排查情况,但又不能立刻到达现场,这就需要各个环保厕所能与相关部门实现远程通信,使得相关的人员不必到达现场也可以完成相应的工作,提高工作效率,符合信息化发展的方向。 二、现有技术改造方案分析 针对以上缺陷,昆明惠云夜光工程有限责任公司,昆明贝灵电子有限责任公司提出了下一代环保厕所设备中央控制系统技术改造方案,经研究,我们认为,这一技术改造方案采用集中控制的方法,由一台中央处理器来完成信号采集、处理和设

2 捷顺停车场系统硬件调试

捷顺停车场系统硬件调试 停车场系统调试步骤: 设备接线-->单机调试-->数据库安装-->软件安装-->联网调试-->测试功能-->完成调试。 一、设备接线 1系统设备组成: 2出入口控制机接线(现场有变更建议参考控制机附图)

说明: 上图为P19菲尼克斯端子主要接线口: A、10、11接地感线圈 B、2、3、4、5、6、7接道闸隔离板J4对应的开、关、停、开到位、关到位、GND, 若使用RS485开闸则只需接GND、12V、道闸RS485A、道闸RS485B C、8、9接485转换器的A(485+、)B(485-) 3道闸隔离板接线 A、作用 该板实现停车场控制电平控制信号与数字道闸之间的光电隔离,且具有道闸RS485接口的隔离及防雷保护的功能,可有效的减少、消除道闸通过地线环路对控制机电源及信号干扰,并增强道闸RS485接口的抗雷击、干扰能力。 B、接线方法见下图(有两种接线方式,一种为电平开闸模式,只需将图中接带※标识的端子即可,适用于所有道闸,另一种为RS485模式,只需接不带※标识的端子,只用于数字道闸)

123 J1 1 2345678J3 123456 J4 道闸485隔离板JSPJ0104接线图 485A 485B PGND VDD GND2OpdIn CldIn OpenOut CloseOut TA TB O p e n C l o s e O p d C l d +12V G N D 1 接控制机道闸控制485A 接控制机道闸控制485B 接大地 *接车场控制机O P E N *接车场控制机C L O S E *接车场控制机开到位*接车场控制机关到位*接车场控制机+12V *接车场控制机G N D 接道闸V D D 接道闸G N D *接道闸O P EN *接道闸C LO SE *接道闸开到位*接道闸关到位接道闸R S 485A 接道闸R S 485B JSPJ0104(2008.05.26) 备注: 1、该板主要实现道闸RS485隔离、防雷, 2、D4为电源指示灯,D2为正在通讯的 3、接大地线务必保证可靠接地。 及电平信号的光电隔离; 状态指示; 4、用RS485方式控制道闸时,带*号接口不用接线。 图15-4 C 、安装 道闸隔离板可以安装在道闸机箱内或者读卡机中,为了便于维护建议安装在读卡机中。 4 002捷威数字道闸接线 A 、 J4接线排说明:

3电弧炉控制系统方案

五矿<湖南)铁合金有限责任公司103#硅锰合金冶炼炉优化控制系统 方 案 设 计 说 明 书 中南大学信息科学与工程学院 二○一○年三月

一、开发背景 五矿<湖南)铁合金集团有限公司103#10000KV A矿热炉主要用于熔炼硅锰合金和碳锰合金,整个生产系统由炉体、供电变压器及保护系统、配加料系统、电极卷扬升降控制系统、电极压放子系统和炉体水冷系统等组成。目前,配加料子系统采用了计算机自动控制;电极压放子系统依靠人工凭经验综合考虑炉况、二次电压、一次电流、熔炼时间等因素,输入控制信号给PLC,由PLC来完成电极的定长压放;电极升降是依靠人工凭经验综合考虑二次电压、一次电流及炉盖温度等因素进行调节;供电变压器二次侧电压等级靠人工根据炉况和电压、电流、功率等因素凭经验进行调整。这种靠人工凭经验来控制冶炼过程的方法难以保证矿热炉稳定持续地工作在最佳工作范围内,调节过程相对滞后、工人操作强度大、工作效率低,容易出现电极烧结不好、耗电量大、炉况不稳定等问题,难以保证产品的产量和质量。 二、设计要求 针对五矿<湖南)铁合金集团有限公司103#矿热炉熔炼过程控制自动水平低下带来的各种问题,通过现场调研和与工艺技术人员交流沟通,结合生产的实际需要,搭建103#矿热炉优化控制系统,以达到如下目标:1.通过建立电极位置模型,在线检测电极的升降量和压放量,实现电极自动升降和自动压放;并通过采用合理的算法,计算电极长度及其位置,控制电极处于最优位置区域内,使三相有功功率平衡度在原有基础上提高2-3%,提高功率因数。 2.通过建立实时数据库,实时采集熔炼过程数据,实现整个矿热炉控制系统的运行监视、事故报警与记录、统计分析和报表打印、日常生产

出入口控制系统设计方案

目录 1.系统概述 (1) 2.系统需求分析 (1) 3.编制依据 (1) 4.方案设计 (1) 4.1系统总体结构 (2) 4.1.1管理层 (2) 4.1.2控制层 (2) 4.1.3执行层 (2) 4.2系统架构图 (2) 4.3设备选型及优势 (3) 4.3.1双门互琐功能 (3) 4.3.2双人同进同出功能 (3) 4.3.3读卡器选型 (3) 4.3.4信号传输 (3) 4.3.5系统控制 (4) 4.3.6持卡人管理 (4) 4.3.7门禁模式管理 (4) 4.4系统设备主要性能指标 (4) 4.4.1Pro3000双门控制器 (5) 4.4.2智能感应卡读卡器JT-MCR-45-32 (6) 4.4.3Winpak门禁控制管理软件 (7) 4.5门禁系统功能 (11) 4.5.1门禁控制 (11) 4.5.2编程管理 (12) 4.5.3卡及持卡人管理 (12) 4.5.4在线监控和报警功能 (12) 4.5.5数据和事件记录查询及生成报表 (13) 4.5.6电子巡更管理 (13)

4.5.7电子地图控制 (13) 4.5.8集成联动 (13) 4.5.9通信及连接 (14)

1.系统概述 门禁系统主要由识别卡、前端设备(读卡器、门状态探测设备、锁具、门禁控制器等)、传输设备、系统管理服务器、管理控制工作站、制卡设备(制卡数码照相机、卡证打印机、制卡工作站)及相关应用软件组成。 2.系统需求分析 门禁系统是保证授权人自由出入、限制未授权人进入未获授权区域、对强行闯入的行为进行报警,从而保证门禁控制区域的安全。门禁系统应该对医院的出入人员进行管理,确保医院的安全、有序是十分必要且必须的。门禁系统需要满足省医院各部门的系统的独立管理,并且实现远程联网管理。医院门禁系统需要与监控系统、报警系统相联动,当门禁系统正常开门时,报警系统撤防,工作人员可以自由工作,当门禁系统非正常开门时,报警系统布防,将报警图像在监控中心的工作站上显示出来,并进行录像。 3.编制依据 《建筑电气工程施工质量验收规范》(GB50303-2002) 《建筑工程施工质量验收统一标准》(GB50300-2001) 《智能建筑工程质量验收规范》(GB50339-2003) 《安全防范系统验收规则》(GA308-2001) 《智能建筑设计标准》(GB/T50314-2000)《安全防范系统通用图形符号》(GA/T74-2000) 4.方案设计 本系统在楼内的药库,出入院收费处,计算机室、ICU、NICU、中心供应、手术部等净化区域以及病房护理单元出入口均设门禁控制器,共设置201套出入口控制点。此系统可通过系统设置,完成在紧急情况下,如消防报警发生时,自动开启相关受控门的功能,以便人员及时疏散,确保人身安全。若有人非法进入这

高阻抗电弧炉的设计特点和应用

高阻抗电弧炉的设计特点和应用 引言高阻抗电弧炉是一种高效率的新型炼钢炉,它具有一系列突出的优点:能大幅度地降低电能和电极消耗、能显著地减少对供电电网的短路冲击和谐波污染。 高阻抗电弧炉吸取了近25年来出现的所有电弧炉炼钢新技术,再加上泡沫渣的成功应用,使得一直发展缓慢的交流电弧炉在电弧稳定性、效率和对电网短路冲击减少方面均可同直流电弧炉相媲美。 本文介绍了带饱和电抗器和固定电抗器的高阻抗电弧炉。前者具有高超的伏安特性,使短路电流很小,基本上达到了恒电流电弧炉特性。 1 高阻抗电弧炉的供电电源1.1 对供电可靠性的要求电弧炉属于热加工设备,如果中途停电,会造成很大的损失:使电耗和原材料增加,使产品质量下降,甚至造成整炉钢水报废,炉子越大损失越大。根据有关规范规定,电弧炉属于二级负荷。 对于炉子容量在50t及以上的电弧炉通常由两路独立高压电源供电,炉容较小的可由一路高压电源供电。 1.2 公共供电点的确定电弧炉的公共供电点系指其与电力系统相连接的供电点,并接有其他用户负荷。对公共供电点的要求主要考虑以下因素: 1)供电变压器容量要能适应电弧炉负荷特性的要求; 2)由电弧炉负荷引起的公共供电点的电压波动和电压闪变值、以及谐波电流值不得超过国标GBl4549-93中的允许值; 3)由电弧炉负荷引起的公共供电点的电压不对称度不得超过2%。 电弧炉的公共供电点有两种情况,其一是电弧炉系统直接与电力系统相连接;其二是电弧炉系统通过企业总变电所与电力系统相连接。电弧炉一般不由车间变电所供电。 当电弧炉由企业总变电所母线供电时,为了防止对其他负荷供电质量产生不良影响,一般要求供电变压器的容量为电炉变压器容量的2.5倍以上。当不能满足此要求时,或增大供电变压器容量;或采用专用中间变压器供电,这需要经过技术经济比较来确定。 当采用专用中间变压器供电时,该变压器容量的选择,应与电炉变压器经常过负荷运行状

3电弧炉控制系统方案

#硅锰合湖南)铁合金有限责任公司103五矿<金冶炼炉优化控制系统 方 案 设 计 说 明 书 中南大学信息科学与工程学院 二○一○年三月

1 / 29 一、开发背景 #10000KV A103<湖南)铁合金集团有限公司矿热炉主要用于熔炼五矿硅锰合金和碳锰合金,整个生产系统由炉体、供电变压器及保护系统、配加料系统、电极卷扬升降控制系统、电极压放子系统和炉体水冷系统等组成。目前,配加料子系统采用了计算机自动控制;电极压放子系统依靠人工凭经验综合考虑炉况、二次电压、一次电流、熔炼时间等因素,输入控制信号给PLC,由PLC来完成电极的定长压放;电 极升降是依靠人工凭经验综合考虑二次电压、一次电流及炉盖温度等因素进行调节;供电变压器二次侧电压等级靠人工根据炉况和电压、电流、功率等因素凭经验进行调整。这种靠人工凭经验来控制冶炼过程的方法难以保证矿热炉稳定持续地工作在最佳工作范围内,调节过程相对滞后、工人操作强度大、工作效率低,容易出现电极烧结不好、耗电量大、炉况不稳定等问题,难以保证产品的产量和质量。 二、设计要求 #矿热炉熔炼过程控制自动103针对五矿<湖南)铁合金集团有限公司水平低下带来的各种问题,通过现场调研和与工艺技术人员交流沟通,结#矿热炉优化控制系统,以达到如下目标:103 合生产的实际需要,搭建1.通过建立电极位置模型,在线检测电极的升降量和压放量,实现电极自动升降和自动压放;并通过采用合理的算法,计算电极长度及其位置,控制电极处于最优位置区域内,使三相有功功率平衡度在原有基础上提高2-3%,提高功率因数。 2.通过建立实时数据库,实时采集熔炼过程数据,实现整个矿热炉

中央控制系统设计方案

中央控制系统设计方案 随着我国经济的迅猛发展,当前专业A V技术的突飞猛进,最近这几年来的表现尤为突出,最明显的就是大屏幕投影显示设备的广泛而迅速的铺开,视迅会议、监控中心等自然不在话下,在机场、街头、广场、商场、娱乐等大型商业设施,大屏幕就如雨后春笋般冒了出来,正在日益逼近老百姓的日常工作和生活起居,大屏幕投影显示设备已经是任何有规模的会议厅、监控中心、现场演出和音乐会及娱乐场所的必备装置;无论是大屏幕前投还是背投,在教育、商务、政府、娱乐等方面都获得广泛应用,在显示效果和规模上体现用户单位的形象和实力,更表现用户单位在先进科技的应用方面已达到国内一流水平。 本系统采用SONY产品系列VPL-PX40高性能数字投影机, 组成大屏幕投影显示系统, 选用彩讯图像信号控制器, 它是特别设计适用于1x2的显示模式, 控制器可输入3组视频信号, 在配套的控制软件操控下, 可将计算器信号或视频信号放至全屏, 形成大画面, 或打开多组窗口, 形成Multi-Window的画面, 展现实时的图像。 本公司的智能集控系统更可使系统操作化烦为简, 操作者只要在一个5.7’彩色触摸屏上“一触即可“,十分简捷方便。如果需要扩展控制更多的设备(如,窗帘、灯光或其他红外、串口控制设备等),只要

增加相应的扩展模块即可。 大屏幕规格: 本技术方案中的大屏幕显示系统是基于SONY公司的VPL-PX40系列的LCD投影机为主体组合而成.VPL-PX40系列LCD投影机采用3片XGA ( 1024x768) 液晶板, 最新的数字TFT技术使投影机具极高的亮度透过率, 提供高亮度输出. 系统配置选用具有高分辨率的投影机、SVS专业背投影显示屏幕、RGB 解像度的图像处理器、A V 矩阵切换器、中央集中控制系统(专用控制软件和无线控制触摸屏)及相关外围设备等组成。 100英寸SVS大屏幕显示屏总体尺寸:2083 mm(宽) x 1575 mm(高), 长宽比为4:3 单屏尺寸:2083 mm(宽) x 1575 mm(高) 组合尺寸:4166mm(宽) x 1575 mm(高) 根据实际工程实施经验,我们建议屏幕底座高度高于80厘米左右,控制台到大屏幕的观看距离不小于4 - 6米。同时,为了方便安装维护,需要提供 4 米以上的安?空间。根据实际场地要求,配备一次反射光学镜,安装空间可减少60%。投影机配备相对应的广角镜头,还可以将安装空间缩短至1.1米左右。 系统功能: 本系统是根据现代化大屏幕显示系统的技术要求和设计目标、场地因素,结合国内现代化显示系统的特点,以及本公司在众多实际大

炼钢厂30T电弧炉电气自动化控制技术文件

天远炼钢有限公30T电弧炉电气控制 系统改造技术文件 供方:XXXXXXX 需方:天远炼钢有限公 1.总则 电弧炉电气控制系统主要完成三相电极升降及自动功率控制功能,要求技术先进、性能可靠,操作方便。 2.系统构成及说明 2.1 硬件:操作台(上位机:17‘液晶显示,256M/40XCD/80G,PLC:S7-300,CPU314系列) 2.2 软件:西门子最新授权的相关软件STEP7,上位机组态软件KINGVIEW 2.3 系统功能说明如下: 2.3.1 上位机具有管理、参数显示功能。能够显示三相冶炼电流、电压、给定电流数值,具有棒图显示。同时还可以通过上位机控制三相电极手动升降速度。 2.3.2P LC采用西门子最新产品(S7-300,CPU314,模拟量为光隔 12BIT,开关量为16BIT,备用I/O点为10%) 2.3.3操作台仪表显示三相冶炼电压、电流;档位显示;高压分、合 闸显示;炉变故障显示;液压站控制等 2.3.4设定电流采用电位器给定,电流调节采用最优模糊控制方法, 三相冶炼功率平衡,自动设定非灵敏区,控制支臂升降,有手

动/自动两种方式。 2.3.5自动起弧,穿井快速跟踪。 2.3.6低压电器元件采用国内名牌产品 以上技术要求可在技术交流中具体明确 1概述 电弧炉以及精炼炉在运行过程中其产生的高次谐波及强电磁场所形成的强大干扰,是严重威胁控制和通讯系统安全运行的主要原因。50吨炼钢电弧炉的电炉变压器额定容量为31500KVA,二次额定电流可达到42KA以上,其冲击和短路电流有时可达到和超过100KA。强电磁场和电弧的弧光放电引起的宽带噪声干扰及高次谐波分量与闪变(电压波动),成为计算机及通讯网络,电子设备稳定和安全运行的主要问题。在方案设计和系统设计及PLC选型以及制造工艺设计时,都必须充分考虑和关注到系统所处的恶劣运行现场工业环境的抗扰问题。 在为太钢集团公司第一炼钢厂设计的50吨炼钢电弧炉及60吨钢包精炼炉控制系统中?穴50吨电弧炉和60吨钢包精炼炉的系统总结构图略,可向作者索取?雪,两台电炉的控制系统全部采用SIEMENS公司的S7-300系列PLC及其通讯技术。经过现场调试和运行结果证明该系统运行状态良好,性能可靠稳定。 2系统的总体设计 2.1硬件结构的设计

智能照明控制系统设计方案剖析

正奇金融广场 智能照明控制系统 设 计 方 案 书 项目名称:正奇金融广场 项目类别:智能照明控制系统 文本类型:设计方案

概述 *****多功能商业大楼。该大楼智能照明控制系统为地上二至五层,其主要功能区有上百间商铺,走廊,卫生间及一些公共区域。

第一部分:前言 网络时代的发展,应引入智能化的概念。在传统的楼宇自控系统中,一般只包括了综合布线、计算机网络、安防、消防、闭路电视监控等子系统。但近年来,随着经济的发展和科技的进步,人们对照明灯具节能和科学管理提出了更高的要求,使得照明控制在智能化领域的地位越来越重要。而在楼宇大厦建设热潮中,各大公司企业和他们的建设者也意识到了智能照明的重要性。商业楼宇大功率动力和制冷设备比重较少,照明灯具则相对比重更多。使用照明控制系统,更能体现其在节能与管理方面的优势,提高学校的科学管理水平。 节能是照明控制系统的最大优势。传统的楼宇公共区域照明工作模式,只能是白天关灯,晚上开灯。而采用了智能照明控制系统后,我们可以根据不同场合、不同的人流量,进行时间段、工作模式的细分,把不必要的照明关掉,在需要时自动开启。同时,系统还能充分利用自然光,自动调节室内照度。控制系统实现了不同工作场合的多种照明工作模式,在保证必要照明的同时,有效减少了灯具的工作时间,节省了不必要的能源开支,也延长了灯具的寿命。 第二部分:商场用电现状 2.1商场用电概述 随着改革开放的不断深入和发展,各行各业正在发生着日新月异的变化,建筑行业的崛起和变化更是来势迅猛、内容纷繁,现代化的建筑千姿百态、造型各异并逐步呈现出高、大、全、新的特点。现代建筑的层数越来越高,占地面积越来越大,内部设施越来越完善,功能越来越齐全,所用设备和材料则越来越新。商业建筑的发展必然伴随着照明创新的繁荣,现代商业建筑照明设计的发展趋势

电阻炉温度控制系统的设计说明

电炉温度控制系统设计

摘要 热处理是提高金属材料及其制品质量的重要技术手段。近年来随工业的发展, 对金属材料的性能提出了更多更高的要求,因而热处理技术也向着优质、高效、节能、无公害方向发展。电阻炉是热处理生产中应用最广泛的加热设备,加热时恒温过程的测量与控制成为了关键技术,促使人们更加积极地研制热加工工业过程的温度控制器。 此设计针对处理电阻炉炉温控制系统,设计了温度检测和恒温控制系统,实现了基本控制、数据采样、实时显示温度控制器运行状态。控制器采用51 单片机作为处理器,该温度控制器具有自动检测、数据实时采集处理及控制结果显示等功能,控制的稳定性和精度上均能达到要求。满足了本次设计的技术要求。 关键词:电阻炉,温度测量与控制,单片机

目录 一、绪论 ....................................................................................................... - 1 - 1.1 选题背景........................................................................................ - 1 - 1.2 电阻炉国发展动态........................................................................... - 1 - 1.3 设计主要容 .................................................................................... - 2 - 二、温度测量系统的设计要求........................................................................... - 3 - 2.1 设计任务......................................................................................... - 3 - 2.2 系统的技术参数................................................................................ - 3 - 2.3 操作功能设计................................................................................... - 4 - 三、系统硬件设计........................................................................................... - 5 - 3.1 CPU选型........................................................................................ - 5 - 3.2 温度检测电路设计.............................................................................. - 6 - 3.2.1 温度传感器的选择..................................................................... - 6 - 3.2.1.1热电偶的测温原理 ......................................................... - 7 - 3.2.1.2 热电偶的温度补偿......................................................... - 7 - 3.2.2 炉温数据采集电路的设计.......................................................... - 8 - 3.2.2.1 MAX6675芯片.......................................................... - 8 - 3.2.2.2 MAX6675的测温原理................................................. - 9 - 3.2.2.3 MAX6675 与单片机的连接.......................................... - 10 - 3.3 输入/输出接口设计......................................................................... - 10 - 3.4 保温定时电路设计 .......................................................................... - 13 - 3.4.1 DS1302 与单片机的连接....................................................... - 13 - 3.5 温度控制电路设计............................................................................ - 14 - 系统硬件电路图...................................................................................... - 17 - 四、系统软件设计......................................................................................... - 19 - 4.1 软件总体设计 .................................................................................. - 19 - 4.2 主程序设计 ..................................................................................... - 19 - 4.3 温度检测及处理程序设计................................................................... - 20 - 4.4 按键检测程序设计............................................................................ - 23 - 4.5 显示程序设计 .................................................................................. - 25 - 4.6 输出程序设计 .................................................................................. - 27 - 4.7中值滤波 ......................................................................................... - 28 - 五、结论 ..................................................................................................... - 30 - 参考文献 ..................................................................................................... - 31 -

浴室系统控制系统方案设计

浴室燃气锅炉控制方案中石化工建设 2015年11月17日 目录

一、系统概述 (3) 二、控制器特点 (3) 三、控制器功能描述 (3) 四、控制器电源条件与安装要求 (7) 五、控制器硬件组成 (7) 六、项目实施与售后服务 (9) 七、配置清单及价格 (11) 一、系统概述 本项目初步设计针燃气锅炉控制系统,本项目的主要工艺设备有: ●适用对象:燃气热水锅炉 二、控制器特点 ◆采用西门子公司的S7-200系列的PLC模块作为核心控制器; ◆显示采用MCGS 7″彩色触摸屏,全中文图文操作界面,多窗口画面系统

工况显示; ◆故障自动识别、直观指示与处理; ◆数据分析、历史运行数据查询方便; ◆具有标准的RS232/485接口/MODBUS协议,实现与楼宇自控或DCS的连 接,实现多台锅炉的群控功能。 三、控制器功能描述 3.1 控制系统监测点 3.2控制系统原理图

缺水:由磁翻板液位计(带低位、低低位、高位、高高位信号)传输到PLC有PLC来控制,当缺水时停止所有设备的运行。 热水泵控制: 水泵为一用一备,在热水管出口直管1。5M处安装压力变送器,信号传输到PLC ,设定压力为2.5公斤,保持管道水压为2.5公斤。过24个小时自动切换。 冷水泵控制: 水泵为一用一备,在热水管出口直管1M处安装压力变送器,信号传输到PLC ,设定压力为2.5公斤,保持管道水压为2.5公斤。过24个小时自动切换。 回水控制: 在回水管上安装一温度传感器和电磁阀,信号传输到PLC,当水温低于45度时打开电磁阀,调节回水温度在55度左右。 定时控制 该系统设有定时自控和非定时自控功能。系统可在24小时设置六组定时工作时段(各时段上班时间、下班时间、锅炉水箱温度上限、下限); 启动定时功能后,电脑根据当前时间使系统自动进入上班或下班,不同 时段可根据用户设置不同的温度围进行自控。

捷顺道闸使用说明书模板

完美WORD格式.整理 捷顺道 捷顺道闸使用说明书闸 使用说明书 深圳市捷顺科技实业股份有限公司SHENZHEN JIESHUN SCIENCE AND TECHNOLOGY INDUSTRY CO.,LTD.

完美WORD格式.整理0

完美WORD格式.整理 捷顺道闸使用说明书 尊敬的用户: 非常感谢您选购深圳市捷顺科技实业股份有限公司的捷威道闸,该道闸采用先进的直流伺服技术和全电路无触点控制技术,使整机运行更加平稳、可靠。而且采用了数字化电路自学习检测功能,有 效地杜绝砸车现象,使系统运行更安全可靠。并配备了标准的外接电气接口,可配置车辆检测器以及 上位机,实现系统的自动控制。可广泛适用于道路管理、道路收费及停车场管理等系统中。 您所购买的捷威道闸,是按照 ISO9001:2000 质量管理体系的要求研制、生产的,是经严格、认真检验合格的产品。 本系列产品是技术性较强之设备,为了保证其安全、可靠的运行,以及确保使用安全,在本手册中,对在系统运行过程中,应注意的事项进行了特别的注明,请您在使用本设备之前,首先仔细阅读本说明书,以免由于操作不当而损害您的权益。

完美WORD格式.整理 1

完美WORD格式.整理 捷顺道闸使用说明书 版权声明: 捷顺和是深圳市捷顺科技实业股份有限公司的注册商标。 本手册版权归深圳市捷顺科技实业股份有限公司所有,未经书面许可,任何单位和个人不得复制、传播其中的内容,违者要对造成的损失承担责任。 本公司保留对该软件进行升级、完善的权利,所以我们不能保证本手册与您所购买的软件完全一致,但我们会定期对本手册进行审查并修订。本手册如有任何修订,恕不另行通知。 客户服务和技术支持承诺 用户自购买产品之日起,由深圳捷顺科技实业股份有限公司提供一年的免费保修和免费技术支持,并实行终身维护,超过免费保修期只收维护成本费。但当用户对本系列产品有下列行为时,本承诺将自动终止。 (1)用户自行改装、拆卸以及其他不能保证本产品软硬件完整性的操作时。 (2)用户未按照本说明书的内容进行正确的使用而导致产品全部或部分损坏的。 安全警告 (1)本系列产品是技术性较强之设备,使用时系统若发生故障,应及时通知我公司售后服务部门或授权服务机构进行处理,切不可随意拆卸,以免损坏内部结构或操作不当而损害您的权益。 (2)本系列产品在使用时带有危险电压,应定期检查系统保护地接线,以免造成不必要的人身伤害。 (3)本系列产品在运行时,开关闸速度较快,在闸机进行开、关操作的过程中,严禁行人及车辆通过闸杆的下面,以防造成不必要的人身伤害。 (4)请参照说明正确使用设备的接口电特性,以免损坏设备和用户的设备。 (5)设备无防爆设计,请勿使用设备于含有易燃易爆环境。如需要请选购本公司其它型号的产品。

相关文档
最新文档