(完整word版)一元一次方程中常见的等量关系.docx
一元一次方程等量关系(学生版)
一次方程等量关系方法一:根据常见的公式寻找等量关系1、 工作问题和工程问题(1) 单人工作:工作总量=工作效率×工作时间(2) 多人合作:甲的工作总量+乙的工作总量+。
=工作总量【例】某工作甲单独做4天完成,乙单独做8天完成。
现甲先做1天,然后和乙共同完成余下工作。
问甲一共做了几天?【例】一项工程,甲队独做要120天完成,如果甲队先做10天,乙队再做5天,就可以完成这项工程的245,乙队单独做这项工程需要多少天?2、 行程问题路程=速度×时间(特别注意:两地的距离不变)(1)追击问题:①同时不同地出发:前者走的路程+两地间距离=追者走的路程前者走的时间=追者走的路程②同地不同时出发:前者走的路程=追者走的路程前者走的时间=追者走的时间+等待时间【例】甲乙两地路程为180千米,一人骑自行车从甲地出发每小时走15千米,另一人骑摩托车从乙地出发。
已知,摩托车速度是自行车速度的3倍,若两人同向而行,骑自行车在先且出发2小时,问摩托车经过多少时间追上自行车?【例】甲乙两人都以不变的速度在400米环形跑道上跑步,两人在同一地方同时出发同向而行,甲的速度为100米/分,乙的速度是甲速度的3/2倍,问经过多长时间后两人首次相遇?第二次相遇呢?(2)相遇问题:甲走的路程+乙走的路程=两地间的距离【例】甲乙两站之间相距360千米,上午9点1刻,一辆慢车和一辆快车分别分别从两站相向开往对方车站,经过3小时相遇,已知快车速度是慢车的1.5倍,问两车在什么时刻相距90千米?【例】上午8时,甲乙两人从A、B两地同时出发,相向而行,上午9时,两人相距54km,两人继续前进,到上午11时,两人又相距54km,已知甲每小时比乙多走3km,求A、B两地的距离。
(3)航行问题:①顺风(水)速度=静风(水)中的速度+风(水)速度②逆风(水)速度=静风(水)中的速度-风(水)速度引申:在静风(水)中的速度=1(顺风(水)速度+逆风(水)速度)2风(水)中的速度=1(顺风(水)速度-逆风(水)速度)2【例】一轮船往返于甲、乙两码头之间,顺水航行需要3小时,逆水航行比顺水多用30分钟,若轮船在静水中的速度为26千米/时。
(完整word版)初一数学一元一次方程应用题各类型经典题
初一数学一元一次方程应用题各类型经典题一、行程问题:包括相遇、追击、环形跑道和飞行、航行的速度问题其基本关系是:路程=时间×速度(一)相遇问题的等量关系:甲行距离+乙行距离=总路程(二)追击问题的等量关系:(1)同时不同地:慢者行的距离+两者之间的距离=快者行的距离(2)同地不同时:甲行距离=乙行距离或慢者所用时间=快者所用时间+多用时间(三)环形跑道常用等量关系:(1)同时同向出发:快的走的路程-环行跑道周长=慢的走的路程(第一次相遇)(2)同时反向出发:甲走的路程+乙走的路程=环行周长(第一次相遇)(四)航行问题常用的等量关系:(1)顺水速度=静水速度+水流速度(2)逆水速度=静水速度-水流速度(3)顺速–逆速= 2水速;顺速+ 逆速= 2船速(4)顺水的路程= 逆水的路程例题1、甲、乙两地相距162公里,一列慢车从甲站开出,每小时走48公里,一列快车从乙站开出,每小时走60公里试问:1)两列火车同时相向而行,多少时间可以相遇?2)两车同时反向而行,几小时后两车相距270公里?3)若两车相向而行,慢车先开出1小时,再用多少时间两车才能相遇?4)若两车相向而行,快车先开25分钟,快车开了几小时与慢车相遇?5)两车同时同向而行(快车在后面),几小时后快车可以追上慢车?6)两车同时同向而行(慢车在后面),几小时后两车相距200公里?例题2、某连队从驻地出发前往某地执行任务,行军速度是6千米/小时,18分钟后,驻地接到紧急命令,派遣通讯员小王必须在一刻钟内把命令传达到该连队,小王骑自行车以14千米/小时的速度沿同一路线追赶连队,问是否能在规定时间内完成任务?练习:1、小明每天早上要在7:20之前赶到距家1000米的学校上学,一天,小明以80米/分的速度出发,5分后,小明的爸爸发现他忘了带语文书,于是,爸爸立即以180米/分的速度去追小明,并且在途中追上了他。
问:(1)爸爸追上小明用了多长时间?(2)追上小明时,距离学校还有多远?2、一架飞机飞行两城之间,顺风时需要5小时30分钟,逆风时需要6小时,已知风速为每小时24公里,求两城之间的距离和无风时飞机的速度?3、甲、乙两人环绕周长是400米的跑道散步,如果两人从同一地点背道而行,那么过2分钟他们两人就要相遇。
(完整word版)一元一次方程——和差倍分问题
一元一次方程应用题-—和、差、倍、分问题一、学习重点:这类问题主要应搞清各量之间的关系,注意关键词语.仔细读题,找出表示和、差、倍、分关系的关键字,例如:“大,小,多,少,增加,减少……”,并据题意设出未知数,利用这些关键字表示出含有未知数的量,最后利用题目中的量与量之间的关系列出方程。
1、倍数关系:通过关键词语“是几倍,增加几倍,增加到几倍,增加百分之几……”来体现。
2、多少关系:通过关键词语“多、少、和、差……”来体现。
增长量=原有量×增长率现在量=原有量+增长量一般设未知数要找跟所有关系联系最紧密的那个量。
二、基础练习题:1、a比b多5,则a=______;a比b少3,则a=______;a是b的2倍,则a=____;a增加3倍,则a=_____;a增加到3倍,则a=_____;将a增加b,则a=_____;将a增加到b,则a=_____。
2、已知甲数比乙数小12,甲乙两数的和为50,甲数为_____;乙数为_____.3、已知甲数比乙数的3倍多12,甲乙两数的和是60,甲数为_____;乙数为_____。
4、已知甲数是10,增加40%后甲数为______;在此基础上减少50%后甲数为_______.5、已知甲数的3倍是乙数与—2的和的2倍,甲数与乙数的差为5,甲数为_____;乙数为_____。
6、三个连续偶数的和是360,中间的偶数为_____。
7、三个连续奇数的和为361,中间的奇数为_____。
8、甲班有a人,乙班的人数是甲班人数的2倍少b人,则乙班的人数为_________.9、某校共有学生1049人,女生占男生的40%,则男生的人数为__________。
例题1:禽养场养鸡和鸭共4600只,养的鸡比鸭的4倍还多100只,禽养场的鸡鸭各多少只?练习:足球的表面是由一些呈多边形的黑白皮块缝合而成的,共计有32块,已知黑色皮块数比白色皮块数的一半多2,问两种皮块各有多少?做题:10、11例题2:一根电线长240米,把它截成三段,使第一段比第二段长20米,第三段长是第一段的2倍。
一元一次方程应用题常见类型及等量关系
一元一次方程应用题常见类型及等量关系湖北翟升华搜集整理班级姓名一、和、差、倍、分问题此类题既可有示运算关系,又可表示相等关系,要结合题意特别注意题目中的关键词语的含义,如相等、和差、几倍、几分之几、多、少、快、慢等,它们能指导我们正确地列出代数式或方程式。
二、等积变形问题等积变形是以形状改变而体积不变为前提。
常用等量关系为:原料体积=成品体积。
常见几何图形的面积、体积、周长计算公式,依据形虽变,但体积不变.①圆柱体的体积公式:V=底面积×高=S·h=πr2h②长方体的体积:V=长×宽×高=abc三、行程问题基本量之间的关系:路程=速度×时间;时间=路程÷速度;速度=路程÷时间。
(1)相遇问题:①甲行距+乙行距=原距;②(甲速+乙速)×相遇时间=相遇距离。
(2)追及问题:①快行距-慢行距=原距;②(快速-慢速)×追及时间=追及距离。
(3)航行问题:顺水(风)速度=静水(风)速度+水流(风)速度;逆水(风)速度=静水(风)速度-水流(风)速度;静水(风)速度=(顺水(风)速度+逆水(风)速度)÷2;水流(风)速度=(顺水(风)速度-逆水(风)速度)÷2。
抓住两码头间距离不变,水流速和船速(静水速)不变的特点考虑相等关系.(4)环形跑道上的相遇和追及问题:同地反向而行的等量关系是两人走的路程和等于一圈的路程;同地同向而行的等量关系是两人所走的路程差等于一圈的路程。
(5)车上(离)桥(隧道)问题:①车上桥指车头接触桥到车尾接触桥的一段过程,所走路程为一个车长;②车离桥指车头离开桥到车尾离开桥的一段路程。
所走的路程为一个车长;③车过桥指车头接触桥到车尾离开桥的一段路程,所走路程为:一个车长 +桥长;④车完全在桥上指车尾接触桥到车头离开桥的一段路程,所行路程为:桥长 - 一个车长。
四、工程问题基本数量关系:工作总量=工作效率×工作时间;合做的效率=各单独做的效率的和。
一元一次方程公式大全
一元一次方程公式大全一元一次方程是初中数学学习中的重要内容,也是数学建模和解决实际问题的基础。
在学习一元一次方程时,我们需要熟练掌握一元一次方程的基本概念、解法和应用。
本文将为大家详细介绍一元一次方程的相关知识,包括一元一次方程的定义、一元一次方程的解法、一元一次方程的应用以及一元一次方程的实例分析,希望能够帮助大家更好地理解和掌握这一部分内容。
一、一元一次方程的定义。
一元一次方程是指未知数只有一个,且未知数的最高次数为一的方程。
一元一次方程的一般形式为ax+b=0,其中a和b是已知数,a≠0,x是未知数。
在解一元一次方程时,我们的目标是找到未知数x的值,使得方程成立。
二、一元一次方程的解法。
解一元一次方程的常用方法有,等式性质法、加减消去法、乘除消去法、代入法等。
下面我们分别来介绍这些解法的具体步骤。
1. 等式性质法,根据等式两边相等的性质,可以对方程进行等式性质变形,最终得到方程的解。
2. 加减消去法,通过加减消去,将方程中的一些项相互抵消,从而简化方程,最终求得方程的解。
3. 乘除消去法,通过乘除消去,可以将方程中的一些项进行消去,从而简化方程,最终求得方程的解。
4. 代入法,将已知的数代入方程中,求解未知数的值,从而得到方程的解。
三、一元一次方程的应用。
一元一次方程在日常生活中有着广泛的应用,例如,小明买了若干本书,每本书的价格是10元,他一共花了60元,那么小明买了几本书?这个问题可以用一元一次方程来表示和解决。
又如,某商品原价100元,现在打8折出售,打折后的价格是多少?这个问题也可以用一元一次方程来表示和解决。
四、一元一次方程的实例分析。
现在我们通过几个实例来分析一元一次方程的具体应用。
例1,某数的3倍加上5等于20,求这个数。
解,设这个数为x,根据题意可以列出方程3x+5=20,然后通过等式性质变形,得到3x=15,最终求得x=5。
所以这个数是5。
例2,某数的一半加上3等于7,求这个数。
(完整word版)七年级一元一次方程解应用题分类【大量题目】【经典全面】
列方程解应用题第一讲和、差、倍、分,盈亏等实际问题的解法1.和、差、倍、分问题例1 小明做了一个实验,把黄豆育成豆芽后,重量可以增加7.5倍,如果小明想要得到3400千克黄豆芽,需要多少千克黄豆?2.盈亏问题例2 用化肥若干千克给一块麦田追肥,每公顷6kg还差17 kg;每公顷5kg就余下3kg.问这块麦田有多少公顷?共有化肥多少千克?3.劳力调配问题例3 在甲处劳动的有52人,在乙处劳动的有23人,现从甲、乙两地共调12人到丙处劳动,使在甲处劳动的人数是在乙处劳动人数的2倍,求应该从甲、乙两处各调走多少人?4.产品配套问题例4星光服装厂接受生产一些某种型号的学生服装的订单,已知每3m长的某种布料可做上衣2件或裤子3条,一件上衣和一条裤子为一套,计划用750 m长的这种布料生产学生服。
应分别用多少布料生产上衣和裤子才能恰好配套?共能生产多少套5.比赛积分问题例5 在一次有12队参加的足球循环赛(每两个队之间赛且只赛一场),规定胜一场计3分,平一场计1分,负一场计0分,某队在这次循环赛中胜场比负场多2场,结果共积18分,问该队战平几场?6.容积(体积)问题例6 一个容器装47 L水,另一个容器装58 L水。
如果将第二个容器的水倒满第一个容器,那么第二个容器剩下的水相当于这个容器容量的一半;如果将第一个容器的水倒满第二个容器,那么第一个容器的水相当于这个容器容积的三分之一,求这两个容器的容量各是多少?基础达标演练l.一桶油连桶重8 kg,油用去一半后连桶重4.5 kg,则桶中原有油多少?2.在甲处工作的有272人,在乙处工作的有196人,如果乙处工作人数是甲处工作人数的1/3,应从乙处调多少人到甲处?3.某课外兴趣小组的女生占全组人数的1/3,再加人6名女生后,女生人数就占原来的一半,问此课外兴趣小组原有多少人?4.甲、乙两仓共有大米50 t,从甲仓取出1/10,从乙仓取出2/5,则两仓所剩大米相等。
(完整word版)沪科版-一元一次方程应用题
专题四一元一次方程应用题(1)和差倍分、形积变化、储蓄问题、工程问题、配套问题【知识清单】〈一元一次方程应用题〉解题步骤:审—设—列-解-答审:审清题意,分清题中的已知量和未知量,找出题中的数量关系;设:设未知数,用未知数表示有关的量;列:根据题中的相等关系,列出一元一次方程;解:解所列出的一元一次方程;答:写出答案(包括单位)<和差倍分问题>1。
等量关系:增长量=原有量×增长率,现有量=原有量+增长量2。
找等量关系的方法:抓住关键词语,如共、多、少、倍、几分之几,以原有量、现有量等之间的关系,推导出等量关系。
<形积变化>1。
常用体积公式:(1)圆柱体积=底面积×高(2)圆锥体积=1×底面积×高3(3)长方体体积=长×宽×高(4)正方形体积=棱长×棱长×棱长2. 形状发生了变化,而体积没有变化,此时等量关系为变化前后体积相等;3. 形状、面积发生了变化,而周长没有变,此时等量关系为变化前后周长相等;4。
形状、体积不同,但根据题意能找出体积之间的关系,把这个关系作为等量关系。
<储蓄问题〉1。
本金:储户存进银行的钱;利息:银行付给储户的酬金;本息和:本金和利息合在一起;利率:利息与本金的比2。
等量关系:本金×利率×期数=利息本金+利息=本息和月(年)利息=月(年)利率本金〈配套问题>1. 等量关系:加工(或生产)的各种零配件的总数量比等于一套组合件中各种零配件的数量比.2。
配套关系的特点:出现“几个A配几个B”或“某个部件由几个A和几个B组成"3。
审题时,要注意对题目中“恰好"“最多”等关键词的理解〈工程问题>1。
公式:工作量=工作效率×工作时间合作的效率=各单独做的效率和2。
工程问题中,当工作总量未给出具体数量时,常把总工作量看作“1"3. 等量关系:各部分的工作量之和等于总工作量题型一:和差倍分问题例1 儿子今年13岁,父亲今年40岁,请问哪一年父亲的年龄是儿子的4倍?例2 一个两位数,个位上的数是十位上的数的 3 倍,如果把十位与个位上的数对调,那么所得的两位数比原来的两位数大 36,求原来的两位数。
一元一次方程及其应用找等量关系
永成教育一对一讲义教师:学生:日期:星期:时段: 课题一元一次方程学习目标与分析学习重点学习方法知识回顾;自主学习学习内容与过程教师分析与批改找等量关系式的四种方法1、根据题目中的关键句找等量关系。
应用题中反映等量关系的句子,如“合唱队的人数比舞蹈队的3倍多15人”、“桃树和杏树一共有180棵”这样的句子叫做应用题的关键句。
在列方程解应用题时,同学们可以根据关键句来找等量关系。
例如:买3支钢笔比买5支圆珠笔要多花0.9元。
每支圆珠笔的价钱是0.6元,每支钢笔多少钱?2、用常见数量关系式作等量关系。
我们已学过了如“工效×工时=工作总量”、“速度×时间=路程”、“单价×数量=总价”、“单产量×数量=总产量”等常见数量关系式,可以把这些常见数量关系式作为等量关系式来列方程。
例如:甲乙两辆汽车同时从相距237千米的两个车站相向开出,经过3小时两车相遇,甲车每小时行38千米,乙车每小时行多少千米?23、把公式作为等量关系。
在解答一些几何形体的应用题时,我们可以把有关的公式作为等量关系。
例如:一个梯形的面积是30平方分米,它的上底是4分米,下底是8分米。
求梯形的高。
4、画出线段图找等量关系对于数量关系比较复杂,等量关系不够明显的应用题我们可以先画出线段图,再根据线段图找出等量关系。
例如:东乡农场计划耕6420公顷耕地,已经耕了5天,平均每天耕780公顷,剩下的要3天耕完,平均每天要耕多少公顷?第五节、打折销售 一 知识总结1、概念与公式(1)进价:购进商品时的价格(有时也叫成本价)。
(2)售价:在销售商品时的售出价(有时称成交价,卖出价) (3)标价:在销售时标出的价(有时称原价,定价)(4)利润:在销售商品的过程中的纯收入, 利润 = 售价 – 进价(5)利润率:利润占进价的百分率,即利润率 = 利润 ÷进价×100%利润率进价进价折数标价=-⨯⨯%10)((6)打折:卖货时,按照标价乘以十分之几或百分之几十,则称将您的孩子就是最优秀的孩子办家长满意的教育3 标价进行了几折。
(完整word版)一元一次方程应用题专题
一元一次方程应用题专题1.列一元一次方程解应用题的一般步骤(1)审题:弄清题意.(2)找出等量关系:找出能够表示本题含义的相等关系.(3)设出未知数,列出方程:设出未知数后,表示出有关的含字母的式子,•然后利用已找出的等量关系列出方程.(4)解方程:解所列的方程,求出未知数的值.(5)检验,写答案:检验所求出的未知数的值是否是方程的解,•是否符合实际,检验后写出答案.2。
和差倍分问题增长量=原有量×增长率现在量=原有量+增长量3。
等积变形问题常见几何图形的面积、体积、周长计算公式,依据形虽变,但体积不变.①圆柱体的体积公式V=底面积×高=S·h= r2h②长方体的体积V=长×宽×高=abc4.数字问题一般可设个位数字为a,十位数字为b,百位数字为c.十位数可表示为10b+a,百位数可表示为100c+10b+a.然后抓住数字间或新数、原数之间的关系找等量关系列方程.5.市场经济问题(1)商品利润=商品售价-商品成本价(2)商品利润率=商品利润×100%商品成本价(3)商品销售额=商品销售价×商品销售量(4)商品的销售利润=(销售价-成本价)×销售量(5)商品打几折出售,就是按原标价的百分之几十出售,如商品打8折出售,即按原标价的80%出售.6.行程问题:路程=速度×时间时间=路程÷速度速度=路程÷时间(1)相遇问题:快行距+慢行距=原距(2)追及问题: 快行距-慢行距=原距(3)航行问题:顺水(风)速度=静水(风)速度+水流(风)速度逆水(风)速度=静水(风)速度-水流(风)速度抓住两码头间距离不变,水流速和船速(静不速)不变的特点考虑相等关系.7.工程问题:工作量=工作效率×工作时间完成某项任务的各工作量的和=总工作量=18.储蓄问题×100%利息=本金×利率×期数利率=每个期数内的利息本金经典例题基础练习:1、列方程表示下列语句所表示的等量关系:①某校共有学生1049人,女生占男生的40%,求男生的人数.②两个村共有834人,甲村的人数比乙村的人数的一半还少111人,两村各有多少人?(3)某人共用142元买了两种水果共20千克,已知甲种水果每千克8元,乙水果每千克6元,问这两种水果各有多少千克?2.(1)将一批工业最新动态信息输入管理储存网络,甲独做需6小时,乙独做需4小时,甲先做30分钟,然后甲、乙一起做,则甲、乙一起做还需多少小时才能完成工作?(2)、一项工程,甲单独做20天完成,乙单独做10天完成,现在由乙先独做几天后,剩下的部分由甲独做,先后共话12天完成,问乙做了几天?3.(1)兄弟二人今年分别为15岁和9岁,多少年后兄的年龄是弟的年龄的2倍?(2)、小强比他叔叔小30岁,而两年前,小强的年龄是他叔叔的1/3 ,求小强叔叔今年的年龄。
一元一次方程(知识点完整版)
第三章:一元一次方程本章板块⎪⎪⎪⎩⎪⎪⎪⎨⎧程实际问题与一元一次方方程的解解方程等式的基本性质定义一元一次方程.5.4.3.2.1 知识梳理【知识点一:方程的定义】方程:含有未知数的等式就叫做方程。
注意未知数的理解,n m x ,,等,都可以作为未知数。
题型:判断给出的代数式、等式是否为方程 方法:定义法例1、判定下列式子中,哪些是方程?(1)4=+y x (2)2>x (3)642=+(4)92=x (5)211=x【知识点二:一元一次方程的定义】一元一次方程:①只含有一个未知数(元);②并且未知数的次数都是1(次);③这样的整式方程叫做一元一次方程。
题型一:判断给出的代数式、等式是否为一元一次方程 方法:定义法例2、判定下列哪些是一元一次方程?0)(22=+-x x x ,712=+x π,0=x ,1=+y x ,31=+xx ,x x 3+,3=a题型二:形如一元一次方程,求参数的值方法:2x 的系数为0;x 的次数等于1;x 的系数不能为0。
例3、如果()051=+-mx m 是关于x 的一元一次方程,求m 的值例4、若方程()05122=+--ax x a 是关于x 的一元一次方程,求a 的值【知识点三:等式的基本性质】等式的性质1:等式两边都加上(或减去)同个数(或式子),结果仍相等。
即:若a=b ,则a ±c=b ±c等式的性质2:等式两边同时乘以同一个数,或除以同一个不为0的数,结果仍相等。
即:若b a =,则bc ac =;若b a =,0≠c 且cb c a = 例5、运用等式性质进行的变形,不正确的是( )A 、如果a=b ,那么a-c=b-cB 、如果a=b ,那么a+c=b+cC 、如果a=b ,那么cbc a = D 、如果a=b ,那么ac=bc 【知识点四:解方程】方程的一般式是:()00≠=+a b ax 题型一:不含参数,求一元一次方程的解 方法:步骤具体做法 依据 注意事项1.去分母在方程两边都乘以各分母的最小公倍数等式基本性质2防止漏乘(尤其整数项),注意添括号; 2.去括号先去小括号,再去中括号,最后去大括号 去括号法则、分配律括号前面是“+”号,括号可以直接去,括号前面是“-”号,括号里的每一项都要变号3.移项把含有未知数的项都移到方程的一边,其他项都移到方程的另一边(移项一定要变号)等式基本性质1 移项要变号,不移不变号;4.合并同类项将方程化简成()0≠=a b ax合并同类项法则计算要仔细5.化系数为1 方程两边同时除以未知数的系数a ,得到方程的解 等式基本性质2 计算要仔细,分子分母勿颠倒例7、解方程2583243=--+x x练习1、()()()35123452+--=-+-x x x x练习2、14.01.05.06.01.02.0=+--x x 练习3、x =+⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛+221413223题型二:解方程的题中,有相同的含x 的代数式方法:利用整体思想解方程,将相同的代数式用另一个字母来表示,从而先将方程化简,并求值。
七年级上册数学《一元一次方程》-知识点整理[1]
七年级上册数学《一元一次方程》-知识点整理(word版可编辑修改) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(七年级上册数学《一元一次方程》-知识点整理(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为七年级上册数学《一元一次方程》-知识点整理(word版可编辑修改)的全部内容。
一元一次方程知识要点解析一、一元一次方程构成要素:1、是等式;2、含有未知数,且只能是一个;3、未知数的次数有且为“1”(一次整式),且次数不为“0";二、一元一次方程的基本形式: ax = b三、一元方程的解:使方程中等号左右两边相等的未知数的值四、解方程的理论依据:等式的基本性质:性质(1):等式两边都加上(或减去)同一个数(或式子),结果仍相等.用式子形式表示为:如果a=b,那么a±c=b±c;性质(2):等式两边乘同一个数,或除以同一个不为0的数,结果仍相等.用式子形式表示为:如果a=b那么a×c=b×c,a÷c=b÷c(c≠0);五、解一元一次方程的基本步骤:要善于认真观察方程的结构特征,灵活采用解方程的一些技巧,随机应变(灵活打乱步骤)解方程,能达到事半功倍的效果.对于一般解题步骤与解题技巧来说,前者是基础,后者是机智,只有真正掌握了一般步骤,才能熟能生巧。
解一元一次方程常用的技巧有:1)有多重括号,去括号与合并同类项可交替进行2)当括号内含有分数时,常由外向内先去括号,再去分母3)当分母中含有小数时,可用分数的基本性质化成整数4)运用整体思想,即把含有未知数的代数式看作整体进行变形六、实际问题与一元一次方程1、用一元一次方程解决实际问题的一般步骤是:1)审题,搞清已知量和待求量,分析数量关系. ( 审题,寻找等量关系)2)根据数量关系与解题需要设出未知数,建立方程;3)解方程;4)检查和反思解题过程,检验答案的正确性以及是否符合题意.并作答2、用一元一次方程解决实际问题的典型类型1)数字问题:①:数的表示方法:一个三位数的百位数字为a,十位数字是b,个位数字为c则这个三位数表示为:abc,10010=++abc a b c(其中a、b、c均为整数,且1≤a≤9,0≤b≤9,0≤c≤9)②:用一个字母表示连续的自然数、奇数、偶数等规律数2)和、差、倍、分问题:关键词是“是几倍,增加几倍,增加到几倍,增加百分之几,增长率,哪个量比哪个量……”3)工程问题:工作总量=工作效率×工作时间,注意产品配套问题;4)行程问题:路程=速度×时间5)利润问题:商品利润=商品售价-商品成本价=商品利润率×商品成本价商品售价=商品成本价×(1+利润率)6)利息问题:①顾客存入银行的钱叫做本金,银行付给顾客的酬金叫利息,本金和利息合称本息和,存入银行的单位时间数叫做期数,利息与本金的比叫做利率.利息的20%付利息税.②利息=本金×利率×期数,本息和=本金+利息,利息税=利息×税率(20%).7)几何问题:必须掌握几何图形的性质、周长、面积等计算公式,注意等积变形;8)优化方案问题9)浓度问题:溶液×浓度=溶质10)盈亏问题:关键从盈(过剩)、亏(不足)两个角度把握事物的总量11)年龄问题:抓住人与人的岁数是同时增长的12)增长率问题:原量×(1+增长率)=增长后的量,原量×(1+减少率)=减少后的量七、、思想方法(本单元常用到的数学思想方法小结)1)建模思想:通过对实际问题中的数量关系的分析,抽象成数学模型,建立方程的思想2)方程思想:用方程解决实际问题的思想就是方程思想。
一元一次方程知识点总结
一元一次方程知识点总结一、等式与方程1.等式:(1)定义:含有等号的式子叫做等式.(2)性质:①等式两边同时加上(或减去)同一个整式,等式的值不变.若a b=那么a c b c+=+②等式两边同时乘以一个数或除以同一个不为0的整式,等式的值不变.若a b=那么有ac bcc≠)÷=÷(0=或a c b c③对称性:若a b=,则b a=.④传递性:若a b=,b c=则a c=.(3)拓展:①等式两边取相反数,结果仍相等.如果a b=,那么a b-=-②等式两边不等于0时,两边取倒数,结果仍相等.如果0=≠,那么11a b=a b③等式的性质是解方程的基础,很多解方程的方法都要运用到等式的性质.如移项,运用了等式的性质①;去分母,运用了等式的性质②.④运用等式的性质,涉及除法运算时,要注意转换后除数不能为0,否则无意义.2.方程:(1)定义:含有未知数的等式叫做方程.(2)说明:①方程中一定有含一个或一个以上未知数,且方程是等式,两者缺一不可.②未知数:通常设x、y、z为未知数,也可以设别的字母,全部小写字母都可以.未知数称为元,有几个未知数就叫几元方程.一道题中设两个方程时,它们的未知数不能一样!③“次”:方程中次的概念和整式的“次”的概念相似.指的是含有未知数的项中,未知数次数最高的项对应的次数,也就是方程的次数.未知数次数最高是几就叫几次方程.④方程有整式方程和分式方程.整式方程:方程的两边都是关于未知数的整式的方程叫做整式方程.分式方程:分母中含有未知数的方程叫做分式方程.二、一元一次方程1.一元一次方程的概念:(1)定义:只含有一个未知数(元)且未知数的指数是1(次)的整式方程叫做一元一次方程.(2)一般形式:0+=(a,b为常数,x为未知数,且0a≠).ax b(3)注意:①该方程为整式方程.②该方程有且只含有一个未知数.③该方程中未知数的最高次数是1.④化简后未知数的系数不为0.如:212x x-=,它不是一元一次方程.⑤未知数在分母中时,它的次数不能看成是1次.如13x+=,它不是一x元一次方程.2.一元一次方程的解法:(1)方程的解:能使方程左右两边相等的未知数的值叫做方程的解,一般写作:“?x=”的形式.(2)解方程:求出方程的解的过程,也可以说是求方程中未知数的值的过程,叫解方程.(3)移项:①定义:从方程等号的一边移到等号另一边,这样的变形叫做移项.②说明:Ⅰ移项的标准:看是否跨过等号,跨过“=”号才称为移项;移项一定改变符号,不移项的不变.Ⅱ移项的依据:移项实际上就是对方程两边进行同时加减,根据是等式的性质①.Ⅲ移项的原则:移项时一般把含未知数的项向左移,常数项往右移,使左边对含未知数的项合并,右边对常数项合并,方便求解.(4)解一元一次方程的一般步骤及根据:①去分母——等式的性质②②去括号——分配律③移项——等式的性质①④合并——合并同类项法则⑤系数化为1——等式的性质②⑥检验——把方程的解分别代入方程的左右边看求得的值是否相等(在草纸上)(5)一般方法:①去分母,程两边同时乘各分母的最小公倍数.②去括号,一般先去小括号,再去中括号,最后去大括号.但顺序有时可依据情况而定使计算简便,本质就是根据乘法分配律.③移项,方程中含有未知数的项移到方程的另一边,其余各项移到方程的另一边移项时别忘记了要变号.(一般都是把未知数移到一起)④合并同类项,合并的是系数,将原方程化为ax b=(0a≠)的形式.⑤系数化1,两边都乘以未知数的系数的倒数.⑥检验,用代入法,在草稿纸上算.(6)注意:(对于一元一次方程的一般步骤要熟练掌握,更要观察所求方程的形式、特点,灵活变化解题步骤)①分母是小数时,根据分数的基本性质,把分母转化为整数,局部变形;②去分母时,方程两边各项都乘各分母的最小公倍数,Ⅰ此时不含分母的项切勿漏乘,即每一项都要乘Ⅱ分数线相当于括号,去分母后分子各项应加括号(整体思想);③去括号时,不要漏乘括号内的项,不要弄错符号;④移项时,切记要变号,不要丢项,有时先合并再移项,以免丢项;⑤系数化为1时,方程两边同乘以系数的倒数或同除以系数,不要弄错符号(打草稿认真计算);⑥不要生搬硬套解方程的步骤,具体问题具体分析,找到最佳解法;⑦分数、小数运算时不能嫌麻烦,不要跳步,一步步仔细算.(7)补充:分数的基本性质:与等式基本性质②不同.分数的分子分母两个整体同时乘以同一个不为0的数或除以同一个不为0的数,分数的值不变.3.一元一次方程的应用:(1)解决实际应用题的策略:①审题:就是多读题,读懂题,读的时候一定沉下心去,不能慌不要急躁,要细,一个字一个字的精读,要慢,边读边思考.找到已知条件,未知条件,找到数量关系和等量关系,可以用笔在题目中标注下来重要信息和数量关系,审题往往伴随下个步骤.②设出适当未知数,往往问什么设什么,有时也间接设未知数,然后用未知数通过关系表示出其他相关的量.③找出等量关系,用符号语言表示就是列出方程.(2)分析问题方法:①文字关系分析法,找关键字词句分析实际问题中的数量关系②表格分析法,借助表格分析分析实际问题中的数量关系③示意图分析法,通过画图帮助分析实际问题中的数量关系(3)设未知量方法:一个应用题,往往涉及到几个未知量,为了利用一元一次方程来解应用题,我们总是设其中一个未知量为x,并用这个未知数的代数式去表示其他的未知量,然后列出方程.①设未知量的原则就是设出的量要便于分析问题,与其它量关系多,好表示其它量,好表示等量关系;②有直接设未知量和间接设未知量,还有不常见的辅助设未知量.(4)找等量关系的方法:“等量关系”特指数量间的相等关系,是数量关系中的一种.数学题目中常含有多种等量关系,如果要求用方程解答时,就需找出题中的等量关系.①标关键词语,抓住关键句子确定等量关系.(比如多,少,倍,分,共)解题时只要找出这种关键语句,正确理解关键语句的含义,就能确定等量关系.②紧扣基本公式,利用基本关系确定等量关系就是根据常见的数量关系确定等量关系.(比如体积公式,单价×数量=总价,单产量×数量=总产量,速度×时间=路程,工效×时间=工作总量等.这些常见的基本数量关系,就是等量关系)③通过问题中不变的量,相等的量确定等量关系.就是用不同的方法表示同一个量,从而建立等量关系.④借助线段图确定等量关系。
一元一次方程的应用(word版)
一元一次方程的应用知识要点:列方程解应用题是一元一次方程的主要应用,应用题是初中数学学习过程中的热门题型,其联系实际,反映现实中的数量关系,涉及的知识点较多,综合性较强,且具有一定的灵活性.列方程解应用题要求学生不仅能熟练地解方程,而且要善于从实际问题中抽象出数学关系,并用代数式和方程将其表达出来,列方程解应用题对学生的理解能力、分析能力以及计算能力都有较高的要求.用一元一次方程分析和解决实际问题的基本过程可概括为:(1)审:审题,分析题中已知什么,求什么,明确各数量之间的关系;(2)找:找出能够表示应用题全部含义的一个相等关系;(3)设:设未知数(一般求什么就设什么x);(4)列:根据这个相等关系列出需要的等式,从而列出方程;(5)解:解所列出的方程,求出未知数的值;(6)答:检验所求解是否符合题意,写出答案(包括单位名称).一、基础能力测试〖一〗填空1.仓库存放的大米运出15%后,还剩42500千克,这个仓库原来存放大米x千克,列方程为____________________2.若个位上的数是十位上的数的2倍,且把十位与个位上的数对调后,所得新两位数比原两位数大36,要求原两位数.设_____________________,列方程为___________________.3.甲、乙两车分别以每小时48km和每小时72km的速度从相距360km的A、B两地出发.1)若同时出发,相向而行,行了x小时两车相遇.列方程为______________________.2)若乙车先出发25分钟,相向而行甲车行了x小时两车相遇.列方程为__________________.3)若同时出发,相向而行,行了x小时后,两车相距60km,列方程为____________________.4)若同时出发,同向而行x小时,乙追上甲,列方程为_______________.4.一列火车匀速行驶,经过一条长300米的隧道要20秒时间.隧道的顶上有一盏灯,垂直向下发光,灯光照在火车上的时间是10s.若设车长为x米,则列方程为________________.5.一些相同的房间需要粉刷墙面. 一天3名一级技工去粉刷8个房间,结果其中有50 m2墙面未来得及粉刷;同样时间内5名二级技工粉刷了10个房间之外,还多粉刷了另外的40 m2墙面.每名一级技工比二级技工一天多粉刷10 m2墙面.设每个房间需要粉刷的墙面面积为xm2,则可方程为_______________.6.在5点到6点之间,若5点x分时,时针与分针重合,可列方程___________________,设5点x分时,时针与分针成直角,可列方程_______________.7.含盐30%的盐水有60千克,放在秤上蒸发,当盐水变为含盐40%时,秤得盐水的重是多少千克?设称得盐水的重量是x千克,可列方程__________________.8.某车间有工人68人,平均每人每天加工大齿轮16个或小齿轮10个,又知2个大齿轮与3个小齿轮配成一套,要使每天生产的大小齿轮刚好配套,设生产大齿轮的工人有x人,则生产小齿轮的工人有_____人,根据题意可列方程___________________.9.某商品标价330元,以9折出售后获利10%,设该商品进价为x元,可列方程____________.若商品进价为900元,出售时打6折还盈利10%,设商品标价为x元,可列方程______________.进价900元商品按25%利润定价,实际售出时打多少折仍可盈利135元.设实际售出时打x折,可列方程_________.10.图书城开展学生优惠售书活动,凡一次性购书不超过200元的一律九折优惠,超过200元的,其中200元按九折计算,超过200元的部分按八折优惠,某学生第一次去购书付款72元,第二次又去购书享受了八折优惠,他查看了所买书的定价,发现两次共节省34元,求该学生第二次购书实际付款多少元.设该学生第二次购书的定价为x 元,可列方程_______________.11.如果足球由小黑白块的皮缝合而成,若黑块(正五边形)有12块,则白块 (正六边形)有_____块.12.“巍巍古寺在山林,不知寺内几多僧.三百六十四只碗,看看用尽不差争.三人共食一碗饭,四人共吃一碗羹.请问先生明算者,算来寺内几多僧.” 该古寺中有多少个僧人,设该古寺中有x 个僧人,可列方程_____________.二、综合、提高、创新【例1】小明家准备装修一套新房,若甲、乙两个装饰公司,合作需6周完成,若甲公司单独做4周后,剩下的由乙公司来做,还需9周完成;已知甲公司每周需工钱0.5万元,乙公司每周需工钱154万元,若只选一个公司单独完成,从节约的角度考虑,小明家是选甲公司,还是乙公司?请你说说理由【例2】某人乘船由A 地顺流而下到B 地,然后又逆流而上到C 地,共乘船4小时,已知船在静水中的速度为每小时7.5千米,水流速度为每小时2.5千米,若A ,C 两地相距10千米,则A ,B 两地的距离为多少千米?【例3】某学校七年级(1)班组织课外活动,准备举行一次羽毛球比赛,去商店购买羽毛球拍和羽毛球,每副球拍25元,每只球2元.甲商店说:“羽毛球及球拍都打9折”;乙商店说:“买一副球拍赠送2只羽毛球. 学校准备买2副羽毛球拍若干只羽毛球,问买多少只羽毛球时到两商店购买一样合算?【例4】甲、乙两班学生到集市上购买苹果,苹果的价格如表:甲班分两次共购买苹果70千克(第二次多于第一次),共付费189元;乙班一次购买苹果70千克.(1)乙班比甲班少付多少元?(2)甲班第一次,第二次分别购买苹果多少千克?购苹果数不超过30千克30千克以上但不超过50千克50千克以上每千克价格3元 2.5元2元【例5】(1)依法纳税是每个公民应尽的义务,根据全国人大常委会2011年6月30日决议,将个税起征点提高到3500元,将超额累进税率中第1级由5%降低到3%,修改后的个税法将于2011年9月1日起施行.下面是修改后的最新的个人所得税税率表:个人所得税税率表一级数全月应纳税所得额税率(%)1 不超过1500元的部分 32 超过1500元至4500元的部分103 超过4500元至9000元的部分204 超过9000元至35000元的部分255 超过35000元至55000元的部分306 超过55000元至80000元的部分357 超过80000元的部分45(注:本表称全月应纳税所得额是指在依照《中华人民共和国个人所得税法》第六条的规定,以每月收入额减去三千五百元以后的余额.)①某场一名工人某年3月的收入额为4400元,问他应交税款多少元?②某公司一名职员某年4月应交税款1165元,问该月他的收入是多少元?③某公司一名职员某年10月应交税款5855元,问该月他税前的收入是多少元?(2)为了加强工人的节水意识,合理利用水资源,某市采用价格调控菁优网手段达到节水的目的.该市自来水收费价格见价目表.若某户居民1月份用水8m3,则应收水费:2×6+4×(8-6)=20元.(1)若该户居民2月份用水12.5m3,则应收水费________元;(2)若该户居民5月份交水费52元,则该户居民5月份共用水多少立方米?(3)若该户居民3、4月份共用水15m3(4月份用水量超过3月份),共交水费44元,则该户居民3,4月份各用水多少立方米?【例6】某工厂生产某种产品,每件产品的出厂价为50元,其成本价为25元,其成本价为25元,因为在生产过程中,平均每生产一件产品有0.5 m3污水排出,为了净化环境,工厂设计两种方案对污水进行处理,并准备实施.方案一:工厂水先净化处理后再排出.每处理1 m3污水所用原料费为2元,并且每月排污设备损耗费为30000元.方案二:工厂污水排到污水厂统一处理,每处理1 m3污水需付14元的排污费.某月产品的总量为n件,请问:若你作为厂长在不污染环境又节约资金的前提下应选择哪种处理污水的方案?请通过计算加以说明.【例7】有甲、乙、丙三种商品,如果购甲3件、乙7件、丙1件共需315元钱,购甲4件、乙10件、丙1件共需420元.那么购甲、乙、丙三种商品各一件共需多少元?【例8】某中学租用两辆小汽车(设速度相同)同时送1名带队老师和7名七年级学生到市区参加数学竞赛,每辆车限坐4人(不包括司机),其中一辆小汽车在距离考场15千米的地方出现故障,此时离截止进考场时刻还有42分钟,这时唯一可利用的只有另一辆小汽车,且这辆车的平均速度是60千米/时,人步行速是5千米/时(上、下车时间忽略不计).①小汽车送4人到达考场后,然后再回到出故障处接其他人.请你通过计算说明他们能否在截止进考场的时刻前到达考场?②如果你是带队老师,请你设计一个运送方案,使他们能在截止进考场的时刻前到达考场,并通过计算说明方案的可行性.三、反馈练习 (一)〖填空〗1.一个三位数它的百位上的数比十位上的数的2倍大1,个位上的数比十位上的数的3倍小1.这个三位数的百位上的数字和个位上的数字对调,得到的三位数比原来的三位数大99,设原来的十位为x ,则可列方程为_________________________________. 2.一个六位数abcde 的4倍是abcde 9,求这个六位数.设abcde 为x ,则可列方程为____________. 3.一工程队修路,第一天修了全程的41,第二天比第一天多修了4%,两天共修了510米,这段路有x 米,则可列方程为___________________.4.上午九点钟的时候,时针与分针成直角,设下一次时针与分针成直角是9点x 分,则可列方程为______________________.5.某商店将某种DVD 按进价提高35%,然后打出“九折酬宾,外送50元出租车费”的广告,结果每台仍获利208元,设每台DVD 的进价是x 元,则可列方程为________________________.6.某城市按以下规定收取每月煤气费:用煤气如果不超过60立方米,按每立方米0.8元收费;如果超过60立方米,超过部分按每立方米1.2元收费.已知某用户4月份的煤气费平均每立方米0.88元,设4月份这用户煤气用量为x 立方米,则可列方程为__________________.7.某织布厂现有职工100名,为获得更高的利润,与港商签订制衣合同,已知每人每天能织布20米,或利用所织的布制衣5件,制衣一件需布2米,将布直接销售,每米可获利2元,将布制成衣服后销售,每件衣服可获利20元,若每名工人一天只能做一项工作,且不计其它因素,设安排a 名工人制衣,回答下列问题:(1)一天中制衣所获得的利润A =________________元(用含a 的代数式表示); (2)一天中剩余布所获得的利润B =______________元(用含a 的代数式表示); (3)要使一天所获得总利润为6640元,则可列方程为_______________________.8.甲、乙两人都以不变速度在400米的环形跑道上跑步,两人在同一地方同时出发同向而行,甲的速度为100米/分,乙的速度是甲速度的23倍,问经过多少时间后两人首次相遇.设经过x 分钟,两人首次相遇,可列方程___________________________.(二)〖解答〗 1.解方程:(1)312-x -6110+x =412+x ; (2)5.05.14-x -2.08.05-x =1.02.1x-.2.有23人在甲处劳动,17人在乙处劳动,现调20人去支援,使在甲处劳动人数是在乙处劳动的人数的2倍,应调往甲、乙两处各多少人?3.世贸广场某品牌西装每套定价400元,领带每条定价80元.“十一”黄金周期间,商场促销提供两种优惠方案:(1)买一套西装送一条领带;(2)西装和领带均按九折付款.某高校一次性购买西装20套,领带多少条时,两种优惠方案所付钱相等.4.某校七年级(1)(2)两班共102人,组织参加科普展览,已知(1)班人数比(2)班人数多,每班单独购票比合在一起购票要多花150元,科普展览票价如表,求两班人数各是多少?人数(n ) n <50 50≤n <100n ≥100 票价10985.武汉市居民用电电费目前实行梯度价格表(为计算方便,数据进行了处理)月用电(单位:千瓦时,统计为整数)单价(单位:元)180及以内0.5超过180但不超过400的部分0.6400以上的部分0.8(1)若用电150千瓦时,应交电费_________元,若用电250千瓦时,应交电费_________元,(2)若居民王成家12月应交电费150元,请计算他们家12月的用电量.(3)若居民王成家12月份交纳的电费,经过计算,平均每千瓦时0.55元,请计算他们家12月的用电量.6.青春商场经销甲、乙两种商品,甲种商品每件进价20元,售价26元;乙种商品每件售价45元,利润率为50%.(1)若该商场同时购进甲、乙两种商品共100件,总进价恰好用去2600元,求能购进甲种商品各多少件?(2)若该商场准备用4220元钱购进甲、乙两种商品,为使销售后的利润最大,请你给出进货方案;(3)在“元旦”期间,该商场对甲、乙两种商品进行如下的优惠促销活动.打折前一次性购物总金额优惠措施不超过300元不优惠超过300元,但不超过400元售价打九折超过400元售价打八折按上述优惠条件,若小矾第一天只购买甲种商品,付款260元,第二天只购买乙种商品实际付款324元,求小矾这两天在商场购买甲、乙两种商品一共多少件?7.某乳制品厂,现有鲜牛奶10吨,若直接销售,每吨可获利500元;若制成酸奶销售,每吨可获利1200元;若制成奶粉销售,每吨可获利2000元,本工厂的生产能力是:若制成酸奶,每天可加工鲜牛奶3吨;若制成奶粉,每天可加工鲜牛奶1吨(两种加工方式不能同时进行).受气温条件限制,这批鲜牛奶必须在4天内全部销售或加工完成.为此该厂设计了以下两种可行方案:方案一:4天时间全部用来生产奶粉,其余直接销售鲜奶;方案二:将一部分制成奶粉,其余制成酸奶,并恰好4天完成.你认为哪种方案获利最多,为什么?8.从两块分别重10千克和15千克且含铜的百分比不同的合金上各切下重量相等的一块,再把切下的每一块与另一块切后剩余的部分合在一起,熔炼后两者含铜的百分比恰好相等,问切下的一块重量是多少千克?竞赛选练1.若四个不同的整数a 、b 、c 、d 满足()()()()255555=----d c b a,则a+b+c+d=( ) A 、15 B 、20 C 、25 D 、28 2.a 与b 互为相反数,且54=-b a ,那么=+++-12ab a bab a ____________.3.若n 为正整数且()099912=-+++-d c b a ,则()()()nn b a d c b a d 2122-----的值为( )A 、-1000B 、1000C 、-999D 、9994.计算:9019727185617424163015201941213652211+-+-+-+-。
一元一次方程等量关系
一元一次方程等量关系方法一:根据常见的公式寻找等量关系1、 工作问题和工程问题(1) 单人工作:工作总量=工作效率×工作时间(2) 多人合作:甲的工作总量+乙的工作总量+。
=工作总量【例】某工作甲单独做4天完成,乙单独做8天完成。
现甲先做1天,然后和乙共同完成余下工作。
问甲一共做了几天?甲单独一天可以完成总量的1/4,乙单独一天完成1/8;甲干1天后剩余:1-1*1/4=3/4设甲乙共同完成余下的需要X 天则X*(1/4+1/8)=3/4解得X=2天所以甲一共干了:1+2=3天【例】一项工程,甲队独做要120天完成,如果甲队先做10天,乙队再做5天,就可以完成这项工程的245,乙队单独做这项工程需要多少天? 解:设乙队的工作效率为X ,得:5X+10/120=5/24解得X=1/40答:乙队单独做这项工程需要40天2、 行程问题路程=速度×时间(特别注意:两地的距离不变)(1)追击问题:①同时不同地出发:前者走的路程+两地间距离=追者走的路程前者走的时间=追者走的路程②同地不同时出发:前者走的路程=追者走的路程前者走的时间=追者走的时间+等待时间【例】甲乙两地路程为180千米,一人骑自行车从甲地出发每小时走15千米,另一人骑摩托车从乙地出发。
已知,摩托车速度是自行车速度的3倍,若两人同向而行,骑自行车在先且出发2小时,问摩托车经过多少时间追上自行车?解:设摩托车经过时间x 追上自行车自行车行驶的路程:S 自=15*(x+2)摩托车行驶的路程:S 摩=15*3x由于S 自=S 摩+180,代入数据,得x=7答:摩托车7小时追上【例】甲乙两人都以不变的速度在400米环形跑道上跑步,两人在同一地方同时出发同向而行,甲的速度为100米/分,乙的速度是甲速度的3/2倍,问经过多长时间后两人首次相遇?第二次相遇呢?首先要相遇,肯定是乙超了甲足足一圈乙的速度:100*3/2=150m/min 设第一次相遇经过时间为X150X-100X=400X=8设第二次相遇经过时间为Y150Y-100Y=400*2Y=16(2)相遇问题:甲走的路程+乙走的路程=两地间的距离【例】甲乙两站之间相距360千米,上午9点1刻,一辆慢车和一辆快车分别分别从两站相向开往对方车站,经过3小时相遇,已知快车速度是慢车的1.5倍,问两车在什么时刻相距90千米?设慢车速度为V,则快车速度为 1.5V,相约90千米所用时间为t列方程1。
中考数学复习指导:常见一元一次方程应用题中的等量关系
常见一元一次方程应用题中的等量关系等量关系是列方程解应用题的重要依据.一元一次方程应用题中的等量关系通常有哪些呢?下面结合例题归纳出十类常见的等量关系,供同学们学习时参考:第一类:相遇问题相遇问题中的等量关系:甲(从A出发)所走的路程+乙(从B出发)所走的路程=A、B两地间的路程.在求解时,应注意灵活运用公式:路程=速度×时间.例1 A、B两地相距700千米,甲车从A出发行使120千米后,乙车行使6小时后两车相遇.若乙车速度是甲车速度的32,则甲车速度是多少千米/小时?解设甲车速度是x千米/小时,则乙车速度是32x千米/小时,依题意得:6x+6×32x+120=720,解这个方程得x=40.答:甲车速度是40千米/小时.第二类:追及问题①同地不同时:前者走的路程=追者走的路程;②同时不同地:前者走的路程+两地间的距离=追者走的路程.例2 小明、小亮两人相距5千米,按照小明在前小亮在后的顺序两人同时出发同向而行.已知小明的速度是3千米/小时,小亮的速度是4千米/小时,那么经过多少小时后小亮能追上小明?解设经过x小时后小亮能追上小明,依题意得:3x+5=4x,解这个方程得x=5.答:经过5小时后小亮能追上小明.第三类:航行问题抓住两地距离不变,静水速度不变的特点考虑相等关系建立方程.在求解时往往会用到以下两道公式:①顺水速度=静水速度+水流速度;②逆水速度=静水速度-水流速度,例3 某轮船往返于A 、B 两个港口之间,逆水航行时需3小时,顺水航行时需2小时,若水流速度是3千米/小时,那么轮船在静水中的速度是多少千米/小时?解 设轮船在静水中的速度是x 千米/小时,则轮船在顺水中的速度是(x +3)千米/小时,轮船在逆水中的速度是(x -3)千米/小时,依题意得:2(x +3)=3(x -3),解这个方程得x =15.答:轮船在静水中的速度是15千米/小时.第四类:立体几何问题当立体几何图形发生变化时,其高度、底面积等都可能随之变化,但是图形的体积保持不变.这是我们列一元一次方程解立体几何图形问题的关键.例4 用直径为90mm 的圆钢,铸造一个底面边长都是131mm ,高度是81mm 的长方体钢锭,请问需要截取多长的一段圆钢?(结果保留π)解 设需要截取x mm 的一段圆钢,依题意得:解这个方程得x =686.44π 答:需要截取686.44πmm 的一段圆钢.第五类:商品销售问题①利润=销售价-成本价;②商品的销售额=销售价×销售量;③销售价=进价×(1+提价的百分数)或者销售价=进价×(1-降价的百分数); ④打折后的销售价=标价×打折的百分数(其中,打几折就是按原价的十分之几出售). 例5 小华的妈妈为爸爸买了一件上衣和一条裤子,共用了306元,其中上衣按标价打七折,裤子按标价打八折,上衣的标价为300元,那么裤子的标价为多少元?解 设裤子的标价为x 元,依题意得:300×0.7+0.8x =306,解这个方程得x =120.答:裤子的标价为120元,第六类:利息问题①利息=本金×利率×期数;②本息和=本金+利息,其中本金是指顾客存入银行的钱;利息指银行付给顾客的报酬;期数指存入银行的时间;利率指每个期数内的利息与本金的比,而本金与利息的和叫做本息和.例6 六年前妈妈为小英存了一个6年期的教育储蓄,现在取出时共得本息和18240元.如果当时的年利率为3.6%,请问妈妈当时存入银行多少钱?解设妈妈当时存入银行x元,依题意得:x+x·3.6%×6=18240.解这个方程得x=15000.答:妈妈当时存入银行15000元.第七类:数字调位问题抓住新数与原数之间的联系,寻找相等关系.例7有一个两位数,两个数位上的数字之和是3.如果把个位数字与十位数字对调,得到的新两位数比原数大9,那么这个两位数是多少?解设个位数字为x,则十位数字为3-x,依题意得:10x+(3-x)=10(3-x)+x+9,解这个方程得x=2,则3-x=1.答:这个两位数是12.第八类:浓度问题利用变化后的溶质的不同表示方法作为等量关系.例8 浓度为25%的一杯盐水中,加入1.25克盐后,盐水浓度为35%,那么原来那杯浓度为25%的盐水的质量为多少克?解设原来那杯浓度为25%的盐水的质量为x克,则其中含盐的质量为25%x,加入1. 25克盐后,盐水的质量为x+1.25克,依题意得:25%x+1.25=(x+1.25)×35%,解这个方程得x=8.125.答:原来那杯浓度为25%的盐水的质量为8.125克.第九类:调派问题此类问题中一般有两个未知数,等量关系也有两个.如果设一个未知数为x,则利用其中一个等量关系把另一个未知数用含x的代数式表示,然后利用另一个等量关系列出方程.例9在甲处工作的有21人,在乙处工作的有12人.为加快进度,又派来18人分到甲、乙两处,使甲处工作的人数是乙处工作人数的2倍,请问应往甲、乙两处各派多少人?解设派往甲处x人,则派往乙处18-x人.调派后甲处有21+x人,乙处有[12+(18-x)]人,依题意得:21+x=2[12+(18-x)],解这个方程得x=13,则18-x=5.答:派往甲处13人,则派往乙处5人.第十类:工程问题两个或几个工作效率不同的对象所完成的工作量的和等于工作总量.其中工作量=工作效率×工作时间,而在求解时往往把工作总量看作单位“1”.例10 一项工程,甲队单独做10小时完成,乙队单独做15小时完成,丙队单独做20小时完成,开始时三队合作,中途甲队另有任务,剩下的由乙和丙两队完成,从开始到工程完成共用6小时,请问甲队实际做了多少小时?解设甲队实际做了x小时,则乙和丙两队合作了6-x小时,依题意得:=1.解这个方程得x=3.答:甲队实际做了3小时.综上可见,一元一次方程应用题中的等量关系是多种多样的,我们在解题时要认真审题,仔细分析,找出问题中的等量关系,灵活运用解题策略,才能顺利解决问题.。
一元一次方程知识点总结
一元一次方程知识点总结一、等式与方程1.等式:(1)定义:含有等号的式子叫做等式.(2)性质:①等式两边同时加上(或减去)同一个整式,等式的值不变.若a b=那么a c b c+=+②等式两边同时乘以一个数或除以同一个不为0的整式,等式的值不变.若a b=那么有ac bc=或a c b c÷=÷(0c≠)③对称性:若a b=,则b a=.④传递性:若a b=,b c=则a c=.(3)拓展:①等式两边取相反数,结果仍相等.如果a b=,那么a b-=-②等式两边不等于0时,两边取倒数,结果仍相等.如果0a b=≠,那么11 a b =③等式的性质是解方程的基础,很多解方程的方法都要运用到等式的性质.如移项,运用了等式的性质①;去分母,运用了等式的性质②.④运用等式的性质,涉及除法运算时,要注意转换后除数不能为0,否则无意义.2.方程:(1)定义:含有未知数的等式叫做方程.(2)说明:①方程中一定有含一个或一个以上未知数,且方程是等式,两者缺一不可.②未知数:通常设x、y、z为未知数,也可以设别的字母,全部小写字母都可以.未知数称为元,有几个未知数就叫几元方程.一道题中设两个方程时,它们的未知数不能一样!③“次”:方程中次的概念和整式的“次”的概念相似.指的是含有未知数的项中,未知数次数最高的项对应的次数,也就是方程的次数.未知数次数最高是几就叫几次方程.④方程有整式方程和分式方程.整式方程:方程的两边都是关于未知数的整式的方程叫做整式方程.分式方程:分母中含有未知数的方程叫做分式方程.二、一元一次方程1.一元一次方程的概念:(1)定义:只含有一个未知数(元)且未知数的指数是1(次)的整式方程叫做一元一次方程.(2)一般形式:0ax b+=(a,b为常数,x为未知数,且0a≠).(3)注意:①该方程为整式方程.②该方程有且只含有一个未知数.③该方程中未知数的最高次数是1.④化简后未知数的系数不为0.如:212x x-=,它不是一元一次方程.⑤未知数在分母中时,它的次数不能看成是1次.如13xx+=,它不是一元一次方程.2.一元一次方程的解法:(1)方程的解:能使方程左右两边相等的未知数的值叫做方程的解,一般写作:“?x=”的形式.(2)解方程:求出方程的解的过程,也可以说是求方程中未知数的值的过程,叫解方程.(3)移项:①定义:从方程等号的一边移到等号另一边,这样的变形叫做移项.②说明:Ⅰ移项的标准:看是否跨过等号,跨过“=”号才称为移项;移项一定改变符号,不移项的不变.Ⅱ移项的依据:移项实际上就是对方程两边进行同时加减,根据是等式的性质①.Ⅲ移项的原则:移项时一般把含未知数的项向左移,常数项往右移,使左边对含未知数的项合并,右边对常数项合并,方便求解.(4)解一元一次方程的一般步骤及根据:①去分母——等式的性质②②去括号——分配律③移项——等式的性质①④合并——合并同类项法则⑤系数化为1——等式的性质②⑥检验——把方程的解分别代入方程的左右边看求得的值是否相等(在草纸上)(5)一般方法:①去分母,程两边同时乘各分母的最小公倍数.②去括号,一般先去小括号,再去中括号,最后去大括号.但顺序有时可依据情况而定使计算简便,本质就是根据乘法分配律.③移项,方程中含有未知数的项移到方程的另一边,其余各项移到方程的另一边移项时别忘记了要变号.(一般都是把未知数移到一起)④合并同类项,合并的是系数,将原方程化为ax b=(0a≠)的形式.⑤系数化1,两边都乘以未知数的系数的倒数.⑥检验,用代入法,在草稿纸上算.(6)注意:(对于一元一次方程的一般步骤要熟练掌握,更要观察所求方程的形式、特点,灵活变化解题步骤)①分母是小数时,根据分数的基本性质,把分母转化为整数,局部变形;②去分母时,方程两边各项都乘各分母的最小公倍数,Ⅰ此时不含分母的项切勿漏乘,即每一项都要乘Ⅱ分数线相当于括号,去分母后分子各项应加括号(整体思想);③去括号时,不要漏乘括号内的项,不要弄错符号;④移项时,切记要变号,不要丢项,有时先合并再移项,以免丢项;⑤系数化为1时,方程两边同乘以系数的倒数或同除以系数,不要弄错符号(打草稿认真计算);⑥不要生搬硬套解方程的步骤,具体问题具体分析,找到最佳解法;⑦分数、小数运算时不能嫌麻烦,不要跳步,一步步仔细算.(7)补充:分数的基本性质:与等式基本性质②不同.分数的分子分母两个整体同时乘以同一个不为0的数或除以同一个不为0的数,分数的值不变.3.一元一次方程的应用:(1)解决实际应用题的策略:①审题:就是多读题,读懂题,读的时候一定沉下心去,不能慌不要急躁,要细,一个字一个字的精读,要慢,边读边思考.找到已知条件,未知条件,找到数量关系和等量关系,可以用笔在题目中标注下来重要信息和数量关系,审题往往伴随下个步骤.②设出适当未知数,往往问什么设什么,有时也间接设未知数,然后用未知数通过关系表示出其他相关的量.③找出等量关系,用符号语言表示就是列出方程.(2)分析问题方法:①文字关系分析法,找关键字词句分析实际问题中的数量关系②表格分析法,借助表格分析分析实际问题中的数量关系③示意图分析法,通过画图帮助分析实际问题中的数量关系(3)设未知量方法:一个应用题,往往涉及到几个未知量,为了利用一元一次方程来解应用题,我们总是设其中一个未知量为x,并用这个未知数的代数式去表示其他的未知量,然后列出方程.①设未知量的原则就是设出的量要便于分析问题,与其它量关系多,好表示其它量,好表示等量关系;②有直接设未知量和间接设未知量,还有不常见的辅助设未知量.(4)找等量关系的方法:“等量关系”特指数量间的相等关系,是数量关系中的一种.数学题目中常含有多种等量关系,如果要求用方程解答时,就需找出题中的等量关系.①标关键词语,抓住关键句子确定等量关系.(比如多,少,倍,分,共)解题时只要找出这种关键语句,正确理解关键语句的含义,就能确定等量关系.②紧扣基本公式,利用基本关系确定等量关系就是根据常见的数量关系确定等量关系.(比如体积公式,单价×数量=总价,单产量×数量=总产量,速度×时间=路程,工效×时间=工作总量等.这些常见的基本数量关系,就是等量关系)③通过问题中不变的量,相等的量确定等量关系.就是用不同的方法表示同一个量,从而建立等量关系.④借助线段图确定等量关系。
【最新】五年级一元一次方程-精选word文档 (8页)
本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!== 本文为word格式,下载后可方便编辑和修改! ==五年级一元一次方程篇一:自编五年级上册一对一一元一次方程赵老师一对一个性化教案1、用字母表示数加法交换律:a+b=b+a 加法结合律:(a+b)+c=a+(b+c)乘法交换律:a×b=b×a 乘法结合律:(a×b)×c=a×(b×c)乘法分配律:(a+b)×c=a×c+b×c减法的性质:a-b-c=a-(b+c)除法的性质:a÷b÷c=a÷(b×c)1、教学字母与字母书写。
a×b=b×a(a×b)×c=a×(b×c)可以写成:a·b=b·a或ab=ba (a·b)·c=a·(b·c)或(ab) c=a(bc)(a+b)×c=a×c+b×c可以写成:(a+b)·c=a·c+b·c或(a+b)c=ac+bc其它运算符号能省略吗?数字与数字之间的乘号能省略吗?为什么?只有字母与字母、数字与字母之间的乘号才可以省略不写。
2、教学用字母表示计算公式的意义和方法。
用S表示面积,C表示周长,a表示边长你能写出正方形的面积和周长公式吗?练习:1、填空:(1)a+a=()a×a=()(2)当a=5时,2a=(),a的平方=()2、同学们在操场上做操,五年级站了x列,平均每列20人,六年级有a人。
说出下面各式所表示的意义:(1) 30x(2)30x+a (3)a—30x3、小结;用含有字母的式子不仅可以表示数量关系,也可以表示数量。
2. 解简易方程方程的意义含有未知数的等式称为方程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年上一元一次方程1、行程
行程的基本公式:速度×= 路程常见的等量关系(1) 相遇
一般公式:× 速度和= 相遇路程
一、由意得
例:甲、乙两地相距 1500千米,两汽同从两地相向而行,其中吉普每小行 60 千米,是客速度的 1.5 倍。
注意数学用,如:等于,⋯⋯与⋯⋯相等,一共有,剩余,是⋯⋯(1)几小后两相遇?
(2)若吉普先开 40 分,那么客开出两相遇?
的几倍,比⋯⋯多几等等。
例 1:一个数的1
与 3 的差等于最大的一位数,求个数。
( 2)追及
7
一般公式:
例 2:一个三位数,三个数位上的数字之和是17,百位上的数字比十
出地不同,同出:×速度差 = 路程差(追及路程)
位上的数大 7,个位上的数字是十位上的三倍,求个三位数。
出地相同,先后出: A× A速度= B× B速度
例 3 :从正方形的皮上,截去一个2cm 的方形条,剩余的面是
80cm2,,那么原来皮的是多少?
例:小明家距离学校 1000米。
一天小明以80 米每分的速度去上学, 5
二、前后不分后爸爸小明没文,开始以180米每分的速度去追小明,并在途中追上了他。
例1:在要将一个底面半径 3,高 12 的柱条重新熔成一个底面半径 9
的柱,求熔后的柱高。
例 2:小一本,每天
( 3)形跑道
20 ,需要 12 天完,如果每天多 4
分析意,分析两人路程差或者差,将形跑道直
,需要多少天完?如果每天少两,需要几天完?
相遇或者追及。
三、算公式
例:甲乙两人在形跑道上跑步。
已知跑道一圈400 米,乙每例如面公式,公式等等。
3
秒跑 6 米,甲的速度是乙的。
4
四、数量关系
( 1)若甲、乙两人在环形跑道上相距8 米处同时相向出发,经过几秒( 5)火车问题
两人相遇?火车过桥总路程= 桥长 + 火车身长
( 2)若甲在乙前 8 米处同时同向出发,那么经过多长时间两人首次相火车完全在桥上时的路程= 桥长 - 火车身长
遇?火车过隧道总路程= 隧道长 + 火车身长
火车完全在隧道里的路程= 隧道长 - 火车身长
(4)顺流(风)逆流(风))以及上下坡问题例:一座桥长1000 米,一列火车从桥上通过,从上桥到离开桥公用1静水速度是指船在静水中的速度,也就是船自身的速度。
无风速度是分钟,整列火车全在桥上的时间为40 秒,求火车的长度。
指飞机在没有风的速度,也就是飞机自身的速度。
顺水实际速度= 静水速度+ 水速
逆水实际速度= 静水速度-水速2、利润问题
顺风实际速度= 无风速度+ 风速利润中的常用概念:进价(成本),标价,售价,利润,利润率,折逆风实际速度= 无风速度-风速扣。
顺水实际速度+ 逆水实际速度= 2 静水速度商品利润 =商品售价- 商品进价
商品售价 =商品标价× 折扣(折扣为换算来的百分数)例 1:一辆货轮航行于 A、B 两码头之间,水流速度为3km/h ,顺水需商品利润率= (商品利润÷商品进价)× 100%
要 2.5 小时,逆水需 3 小时。
求 A、B 两码头之间的距离。
例 1:某商品的进价为250 元,按标价的九折销售,利润率为15.2%,例 2:一艘轮船本身速度不变,从武汉到重庆需要 5 昼夜,从重庆到求商品的标价。
武汉需要 7 昼夜。
试问一块木排从重庆漂流到武汉需要多久?
例 2:某商品标价2200 元,打八折出售,利润率为 10%。
求商品进价。
例 3:一条河道按顺序排列着A、 B、C 三个码头,某船从 A 码头顺流
而下到 C 码头,然后逆流返回到 B 码头,共用了 9 小时。
已知船在静水中例 3:某商品的进价是1000 元,标价是 1500 元,商店要求此商品利
速度为 7.5km/h ,水流速度是 2.5km/h ,A、B 两码头相距15 千米,求 A、C润率不得低于 5%,则此商品最低可以打几折?
之间的距离。
3、利息问题
银行存款的常用概念:本金,利息,本息和,期数,利率,利息税。
利率用来计算利息,利息和本金是最后取到手的钱数,如果有利息税,则要把利息税扣除,才是到手的最终钱数。
利息 = 本金× 利率× 期数
本息和= 本金+ 利息
利息税= 利息× 税率作单位 1,则甲每天能完成该工程的
11
15
,即甲的工作效率就是15 ,同理乙的工作效率就是
1
1,本身并没有单位,所
12
,注意此时工作总量为
以工作效率也是没有单位的。
如果甲、乙共同完成这项工程,由题意得甲、
1111
乙的效率和为
+ 12,根据公式需要的工作时间为 1 ÷(15+ 12)。
15
例:某同学父母存了两笔钱,共10000 元作为教育基金。
其中一笔钱
年利率为 2.25%,另一笔年利率为 2.5%,且年利率为 2.25%的钱数比年利率例 1:一项工程,甲单独需要10 天完成,乙单独需要8 天完成。
两人为 2.5 的钱数少 4000。
一年后,两笔钱本息和一共10242.5 元,问这两笔合作需要几天完成?
钱分别为多少元?
例 2:一项工程,甲单独需要15 天完成,乙单独需要12 天完成,两
4、工程问题队合作三天后,甲有其他任务,剩下的由乙单独完成,问乙还需要几天才
工程问题中的常用概念能完成这项工程?
工作量:需要完成的工作总量,例如需要修路1000千米,需要制作
200 套运动服等等。
有时工作总量没有给出具体的数值,可以把工作总量例 3:一个蓄水池有甲、乙两个进水管,和丙排水管。
单独打开甲6看作单位 1 ,比如需要注满水池,这时就可以把工作量看作1。
小时可以注满水,单独打开乙8小时可以注满水,若水池是满的,则单独工作效率:即工作的速度,单位时间内完成的工作量,一定要注意单打开丙 9 小时可以将水排空。
位时间的概念,将单位时间“化为1”,找到工作效率。
、(1)若水池是空的,先打开甲和乙两小时,然后打开丙,问打开丙之
工作时间:完成工程的时间。
后再过几小时可以将水池注满?
三者之间的关系为:(2 )某天工作人员想把空水池灌满,便同时打开了甲和乙,两小时后工作量 = 工作效率× 工作时间发现丙忘关了,于是赶紧关上丙。
问关上丙以后再过几小时可以将水池注
满?
例如一项工程,甲需要15 天完成,乙需要 12天完成,把工程总量看(3)某天水池有一半水,工作人员想把水灌满,于是打开了甲和乙,
两小时后被告知水池忘消毒了,需要排干水池进行消毒,于是又关上了甲
和乙,打开丙进行排水,问打开丙后水池多久被排空?
五、数字问题
小学学过,个位上的数字表示几个一,十位上的数字表示几个十,一
次类推,一个三位数,百位、十位、个位的数字分别为a、b、c,则这个数字应该表示为:100a+10b+c。
同时还要注意a、 b 、c 都是 1 到 9 之间的整数。
常见的问题
(1)位置对调:例如一个数个位上数字是 a,十位上是 b,那么这个数字是( 10a+b),个位十位对调后变成( 10b+a)。
(2)加数字问题,例如数字 a 后面加两个 0,则该数字就变成了 100a;又例如一个三位数a,一个两位数b,把 b 加在 a 的后面构成一个新的五位数,则这个五位数为(100a+b),如果把 a 加在 b 的后面构成一个新的五
位数,则这个数为(1000b+a)。
例 1:一个两位数,个位上的数字是十位上的 2 倍,把个位和十位对调后,所得的两位数比原两位数大36,求原来的两位数。
例 2:一个两位数和一个三位数,三位数是两位数的15 倍。
把三位数放在两位数后面得到一个五位数,把两位数放在三位数后面,得到另一个
五位数,前一个五位数比后一个五位数小5832 ,求这个两位数和三位数。
★例 3:探索题:两个两位数差为30,把第一个数放在第二个数前面
构成一个四位数,把第二个放在第一个前面构成另一个四位数,这两个四
位数的差是多少?(提示:求两个四位数的差的绝对值,就不用考虑两个
四位数的大小了)如果这两个两位数的差为 a 呢?。