九年级数学下册 28 样本与总体 课题 容易误导读者的统计图学案 (新版)华东师大版
九年级数学下册 28_2 用样本估计总体教案1 (新版)华东师大版
用样本估计总体【学习目标】1.在表示样本数据的过程中,学会列频率分布表,画频率分布直方图、频率折线图和茎叶图.2.通过实例体会频率分布直方图、频率折线图、茎叶图的各自特征,从而恰当地选择上述方法分析样本的分布,准确地做出总体估计.3.正确理解样本数据标准差的意义和作用,学会计算数据的标准差.4.能根据实际问题的需要合理地选取样本,从样本数据中提取基本的数字特征(如平均数、标准差),并做出合理的解释.5.会用样本的基本数字特征估计总体的基本数字特征.【要点梳理】要点一、频率分布的概念频率分布是指一个样本数据在各个小范围内所占比例的大小.一般用频率分布直方图反映样本的频率分布.其一般步骤为:1.计算一组数据中最大值与最小值的差,即求极差2.决定组距与组数3.将数据分组4.列频率分布表5.画频率分布直方图要点诠释:频率分布直方图的特征:1.从频率分布直方图可以清楚的看出数据分布的总体趋势.2.从频率分布直方图得不出原始的数据内容,把数据表示成直方图后,原有的具体数据信息就被抹掉了.要点二、频率分布折线图、总体密度曲线1.频率分布折线图的定义:连接频率分布直方图中各小长方形上端的中点,就得到频率分布折线图.2.总体密度曲线的定义:在样本频率分布直方图中,样本容量越大,所分组数越多,相应的频率折线图会越来越接近于一条光滑曲线,统计中称这条光滑曲线为总体密度曲线.要点诠释:总体密度曲线能够精确地反映了总体在各个范围内取值的百分比,它能给我们提供更加精细的信息,能够精确的反映一个总体在各个区域内取值的规律.要点三、茎叶图当数据是两位有效数字时,用中间的数字表示十位数,即第一个有效数字,两边的数字表示个位数,即第二个有效数字,它的中间部分像植物的茎,两边部分像植物茎上长出来的叶子,因此通常把这样的图叫做茎叶图.要点诠释:茎叶图的特征:(1)用茎叶图表示数据有两个优点:一是在统计图上没有原始数据信息的损失,所有数据信息都可以从茎叶图中得到;二是茎叶图中的数据可以随时记录,随时添加,方便记录与表示.(2)茎叶图只便于表示两位有效数字的数据,而且茎叶图只方便记录两组的数据,两个以上的数据虽然能够记录,但是没有表示两个记录那么直观,清晰.要点四、众数、中位数与平均数1.众数一组数据中出现次数最多的数据叫做众数.如果变量是分类的,用众数是很有必要的.例如班委会要作出一项决定,考察全班同学对它赞成与否就可以用众数.2.中位数将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数.中位数把样本数据分成了相同数目的两部分.3.平均数样本数据的算术平均数,即121()n x x x x n=+++.要点诠释:由于众数仅能刻画某一数据出现的次数较多,中位数对极端值不敏感,而平均数又受极端值左右,因此这些因素制约了仅依赖这些数字特征来估计总体数字特征的准确性.要点五、标准差与方差 1.标准差样本数据1,2,,n x x x 的标准差的算法:(1)算出样本数据的平均数x .(2)算出每个样本数据与样本数据平均数的差:()12i x x i n -=, ,, (3)算出(2)中()12i x x i n -=, ,,的平方. (4)算出(3)中n 个平方数的平均数,即为样本方差. (5)算出(4)中平均数的算术平方根,,即为样本标准差. 其计算公式为:222121[()()()]n s x x x x x x n=-+-++-2.方差从数学的角度考虑,人们有时用标准差的平方2s (即方差)来代替标准差,作为测量样本数据分散程度的工具:2222121[()()()]n s x x x x x x n=-+-++-要点诠释:在刻画样本数据的分散程度上,方差和标准差是一样的,但在解决实际问题时,一般多采用标准差. 数据的离散值程度可以用极差、方差或标准差来描述.极差反映了一组数据变化的幅度;样本方差描述了一组数据围绕平均数波动的大小;样本方差的算术根表示样本的标准差,它也描述了数据对平均数的离散程度.【典型例题】类型一:频率分布表、频率分布直方图例1.在学校开展的综合实践活动中,某班进行了小制作评比,作品上交时间为5月1日至30日,评委会把同学们上交作品的件数按5天一组分组统计,绘制了频率分布直方图(如下图所示).已知从左到右各长方形的高的比为2∶3∶4∶6∶4∶1,第三组的频数为12,请解答下列问题:(1)本次活动共有多少件作品参加评比?(2)哪组上交的作品数最多?有多少件?(3)经过评比,第四组和第六组分别有10件、2件作品获奖,问这两组哪组获奖率较高?【答案】(1)60 (2)四组 18(3)六组【解析】(1)依题意知第三组的频率为41 2346415=+++++.∵第三组的频数为12,∴本次活动的参评作品数为126015=件).(2)根据频率分布直方图,可以看出第四组上交的作品数量最多,共有66018234641⨯=+++++(件).(3)第四组的获奖率是105189=,第六组上交的作品数量为1603234641⨯=+++++(件),∴第六组的获奖率为2639=.显然第六组的获奖率较高.【总结升华】弄清所求问题是什么,并正确地运算是做对题的关键.本题主要考查同学们对频率分布直方图的理解,只有熟悉它的特征,才能清楚数据分布的总体趋势,根据直方图反映的信息正确解题.举一反三:【变式1】某中学为了解学生数学课程的学习情况,在3000名学生中随机抽取200名,并统计这200名学生的某次数学考试成绩,得到了样本的频率分布直方图(如下图所示).根据频率分布直方图推测,这3000名学生在该次数学考试中成绩小于60分的学生数是________.例2.阅高考试卷有一个环节叫“试批”.某省为了了解和掌握考生的实际答卷情况,随机地抽取了100名考生的数学成绩,数据如下(单位:分):135 98 102 110 99 121 110 96 100 103125 97 117 113 110 92 102 109 104 112105 124 87 131 97 102 123 104 104 128109 123 111 103 105 92 114 108 104 102129 126 97 100 115 111 106 117 104 109111 89 110 121 80 120 121 104 108 118129 99 90 99 121 123 107 111 91 10099 101 116 97 102 108 101 95 107 101102 108 117 99 118 106 119 97 126 108123 119 98 121 101 113 102 103 104 108(1)列出频率分布表;(2)画出频率分布直方图和折线图;(3)估计该省考生数学成绩在100~120分之间的比例;(4)设该省有20万考生,估计该省考生数学成绩不及格的人数(满分150分,90分及以上视为及格);(5)根据折线图估计该省考生的数学成绩在哪一个分数段的人数将会最多.【思路点拨】理解频率分布直方图的具体含义.【解析】 100个数据中,最大值为135,最小值为80,极差为135-80=55.把100个数据分成11组,这时组距55511===极差组数.分组频数频率频率组距[80,85)10.010.002 [85,90)20.020.004 [90,95)40.040.008 [95,100)140.140.028 [100,105)240.240.048 [105,110)150.150.030 [110,115)120.120.024 [115,120)90.090.018 [120,125)110.110.022 [125,130)60.060.012 [130,135]20.020.004合计10010.2注:表中加上“频率组距”一列,这是为画频率直方图准备的,因为它是频率直方图的纵坐标.(2)根据频率分布表中的有关信息画出频率分布直方图及折线图,见下图.(3)从频率分布表中可知,这100名考生的数学成绩在100~120分之间的频率为0.24+0.15+0.12+0.09=0.60,据此估计该省考生数学成绩在100~120分之间的比例为60%(0.60=60%).(4)100名考生中,数学成绩不及格的频率为0.01+0.02=0.03.比例为3%.200000×3%=6 000(人).估计该省考生数学成绩不及格的有6000人.(5)折线图的最高点位于100~105之间,据此估计该省考生的数学成绩在100~105分这个分数段的人数将会最多.【总结升华】本例中,决定分点时,直接使用了最小值加组距,即80+5k(k=1,2,…,11),而没有把最小值减去某一个数(例如80-0.5=79.5)作为第1个分点,这是因为100个分数是明确的,即它们都在80~135之间.凡事都要具体问题具体分析,不可教条化.本例是把5分看成一个分数段,统计各段的情况.举一反三:【变式1】一个容量为20的样本,分组后,组距与频数如下[10,20],2;(20,30],3;(30,40],4;(40,50],5;(50,60],4;(60,70],2,则样本在(-∞,50]上的频率为()A.120B.14C.12D.710【答案】 D【解析】根据频率的计算公式频率=频数样本容量求解.频率2345147 2345422010+++===+++++.寿命/h100~200200~300300~400400~500500~600个数2030804030(2)画出频率分布直方图;(3)估计该电子元件寿命在100~400 h以内的占总体的比例;(4)估计该电子元件寿命在400 h以上的在总体中占的比例.【解析】(1)样本频率分布表如下:寿命/h频数频率100~200200.10200~300300.15300~400800.40400~500400.20500~600300.15合计2001(2)频率分布直方图如下图所示;(3)估计该电子元件寿命在100~400 h 以内占总体的比例为65%; (4)估计该电子元件寿命在400 h 以上的在总体中占的比例为35%.类型二:众数、中位数、平均数例3.据报道,某公司的33名职工的月工资(以元为单位)如下:职务 董事长 副董事长董事 总经理 经理 管理员 职员 人数 1 1 2 1 5 3 20 工资(元)5500500035003000250020001500(2)假设副董事长的工资从5000元提升到20000元,董事长的工资从5500元提升到30000元,那么新的平均数、中位数、众数又是什么?(精确到元)(3)你认为哪个统计量更能反映这个公司人员的工资水平?结合此问题谈一谈你的看法.【思路点拨】理解平均数、中位数、众数的概念. 【答案】(1)2091 1500 1500 (2)3288 (3)中位数和众数 【解析】 (1)平均数是40003500200021500100055003020150033x ++⨯++⨯+⨯+⨯=+150********≈+=(元), 中位数是1500元,众数是1500元. (2)平均数是2850018500200021500100055003020'150015001788328833x ++⨯++⨯+⨯+⨯=+≈+=(元),中位数是1500元,众数是1500元.(3)在这个问题中,中位数和众数均能反映该公司人员的工资水平.因为公司中少数人的工资额与大多数人的工资额差别较大,这样导致平均数与中位数偏差较大,所以平均数不能反映这个公司人员的工资水平.【总结升华】 (1)深刻理解和把握平均数、中位数、众数在反映样本数据上的特点,结合实际情况,灵活运用.(2)众数、中位数、平均数三者比较,平均数更能体现每个数据的特征,它是各数据的重心.举一反三:【变式1】为了了解高一学生的体能情况,某校抽取部分学生进行一分钟跳绳次数测试,将所得数据整理后,画出频率分布直方图(如图),图中从左到右各小长方形面积之比为2:4:17:15:9:3,第二小组频数为12.(1)第二小组的频率是多少?样本容量是多少?0.0120.016 0.0200.024 0.028 频率/组距 0.032 0.036(2)若次数在110以上(含110次)为达标,试估计该学校全体高一学生的达标率是多少? 在这次测试中,学生跳绳次数的中位数落在哪个小组内?请说明理由.在频率分布直方图中,各小长方形的面积等于相应各组的频率,小长方形的高与频数成正比,各组频数之和等于样本容量,频率之和等于1.【答案】(1)由于频率分布直方图以面积的形式反映了数据落在各小组内的频率大小, 因此第二小组的频率为:40.0824171593=+++++又因为频率=第二小组频数样本容量所以 121500.08===第二小组频数样本容量第二小组频率(2)由图可估计该学校高一学生的达标率约为171593100%88%24171593+++⨯=+++++(3)由已知可得各小组的频数依次为6,12,51,45,27,9,所以前三组的频数之和为69,前四组的频数之和为114,所以跳绳次数的中位数落在第四小组内.类型三:方差、标准差分数 50 60 70 80 90 100 人数甲组 2 5 10 13 14 6 乙组441621212已经算得两个组的平均分都是80分.请根据你所学过的统计知识,进一步判断这两个组在这次竞赛中的成绩谁优谁劣,并说明理由.【解析】 (1)甲组成绩的众数为90分,乙组成绩的众数为70分,从成绩的众数比较看,甲组成绩好些.(2)21251013146s =+++++甲[2(50-80)2+5(60-80)2+10(70-80)2+13(80-80)2+14(90-80)2+6(100-80)2]=150(2×900+5×400+10×100+13×0+14×100+6×400)=172,2150s =乙(4×900+4×400+16-100+2×0+12×100+12×400)=256.∴22s s <乙甲,∴甲组成绩较乙组成绩稳定,故甲组成绩好些.(3)甲、乙两组成绩的中位数、平均数都是80分,其中,甲组成绩在80分以上的有33人,乙组成绩在80分以上的有26人,从这一角度看,甲组的成绩总体较好.(4)从成绩统计表看,甲组成绩大于或等于90分的人数为14+6=20(人),乙组成绩大于或等于90分的人数为12+12=24(人),∴乙组成绩集中在高分段的人数较多,同时,乙组得满分的人数比甲组得满分的人数多6人,从这一角度看,乙组的成绩较好【总结升华】 要正确解答这道题,首先要抓住问题中的关键词语.全方位地进行必要的计算,而不能习惯地仅从样本方差的大小去决定哪一组的成绩好,像这样的实际问题还得从实际的角度去分析,如本例的“满分人数”;其次要在恰当地评估后,组织好正确的语言作出结论.举一反三: 【变式1】甲、乙两台机床在相同的技术条件下,同时生产一种零件,现在从中抽测10个,它们的尺寸分别如下(单位:mm) 甲机床:10.2 10.1 10.0 9.8 9.9 10.3 9.7 10.0 9.9 10.1 乙机床:10.3 10.4 9.6 9.9 10.1 10.9 8.9 9.7 10.2 10.0分别计算上面两个样本的平均数和方差.如图纸规定零件的尺寸为10 mm ,从计算的结果来看哪台机床加工这种零件较合适? 【解析】101001011.101.102.10101=⨯=++=)(甲 x ,1010101104.103.10101=⨯=+++=)(乙 x .∴[]2222101.10101.10102.10101)()()(甲-+-+-= s =0.032mm []22221010104.10103.10101)()()(乙-+-+-= s =0.062mm . ∴2甲s <2乙s∴用甲机床比乙机床稳定,即用甲机床加工较合适. 类型四:茎叶图例5.某中学高二(2)班甲、乙两名学生自进入高中以来,每次数学考试成绩情况如下: 甲:95,81,75,91,86,89,71,65,76,88,94,110,107; 乙:83,86,93,99,88,103,98,114,98,79,78,106,101. 画出两人数学成绩的茎叶图,并根据茎叶图对两人的成绩进行比较.【思路点拨】茎叶图便于表示两位有效数字的数据,而且茎叶图只方便记录两组的数据. 【答案】乙同学的成绩比较稳定【解析】 甲、乙两人数学成绩的茎叶图如图所示.从这个茎叶图上可以看出,乙同学的得分情况是大致对称的,中位数是98;甲同学的得分情况,也大致对称,中位数是88.乙同学的成绩比较稳定,总体情况比甲同学好.举一反三:【变式1】在某高中篮球联赛中,甲、乙两名运动员的得分如下:甲:14,17,25,26,30,31,35,37,38,39,44,48,51,53,54; 乙:6,15,17,18,21,27,28,33,35,38,40,44,56. (1)用茎叶图表示上面的样本数据,并求出样本数据的中位数;(2)根据(1)中所求的数据分析甲、乙两名运动员中哪一位发挥得更加稳定. 【解析】(1)茎叶图如图所示.甲运动员的中位数是37,乙运动员的中位数是28.(2)从茎叶图上可以看出甲运动员的得分大致对称,中位数是37,乙运动员的得分也大致对称,中位数是28,因此,甲运动员发挥得比较稳定,总体得分比乙运动员高. 【变式2】 随机抽取某中学甲乙两班各10名同学,测量他们的身高(单位:cm),获得身高数据的茎叶图如图. (1)根据茎叶图判断哪个班的平均身高较高; (2)计算甲班的样本方差.【答案】(1)乙班(2)57 【解析】(1)由茎叶图可知:甲班身高集中于160179之间, 而乙班身高集中于170180之间. 因此乙班平均身高高于甲班; (2) 15816216316816817017117917918217010+++++++++==x甲班的样本方差为:()()()()()()()()()()222222222211581701621701631701681701681701017017017117017917017917018217057[-+-+-+-+-+-+-+-+-+-]= 欢迎您的下载,资料仅供参考!。
九年级数学下册 28.3 借助调查做决策《容易误导读者的统计图》考点例析素材 (新版)华东师大版
•
9、 人的价值,在招收诱惑的一瞬间被决定 。2022/3/12022/3/1Tuesday, March 01, 2022
•
10、低头要有勇气,抬头要有低气。2022/3/12022/3/12022/3/13/1/2022 8:04:48 PM
12.如图,给出了两种不同品牌的药在三年内的价格变化,根据统计图 分析哪一种药的价格增长较快.
解:乙种药的价格增长较快.理由:甲种药两年增长20元/盒,而乙种 药两年增长40元/盒
13.图①和图②分别表示甲省、乙省2014年财政经费支出情况,你能 从图中看出哪个省份全年教育经费的支出比较多吗?如果不能,还应 补充哪些数据.
•
17、一个人即使已登上顶峰,也仍要 自强不 息。2022/3/12022/3/12022/3/12022/3/1
谢谢收看
8.兵兵家准备买一台电脑,他上网查询了甲,乙,丙三种品牌的电脑 近三年来的销售情况,如下表(单位:万台):
2012年 2013年 2014年
甲 720
657
552
乙 698
640
580
丙 500
588
680
根据上表,如果你是兵兵,你会选( C ) A.甲品牌电脑 B.乙品牌电脑 C.丙品牌电脑 D.无法确定
5.张亮同学把自己一周的支出情况,用如图所示的统计图来表示, 则从图中可以看出( C )
A.一周支出的总金额 B.一周各项支出的金额 C.一周内各项支出金额占总支出的百分比 D.各项支出金额在一周中的变化情况
6.某校组织“争做当代小雷锋”活动,学生积极利用课余时间做好 事,校团委统计出学生们在3月份共办好事400件,4月份办好事800件, 为了直观展示阶段性成果,宣传员绘制了如图的统计图,请你从数学 知识的角度说一下,这样的统计图是否合适.如果不合适应如何改 正.
华师版九年级数学下册教案(HS) 第28章 样本与总体
第28章样本与总体28.1抽样调查的意义1.普查和抽样调查2.这样选择样本合适吗1.了解并掌握:普查、抽样调查、总体、样本、个体这些基本概念.2.在调查中,会选择合理的调查方式.3.使学生知道在抽样调查时,所选取的样本必须具有代表性,并能掌握科学的抽样方法,即具有代表性,样本容量必须足够大避免遗漏某一群体,使得所抽取的样本比较合理,能比较准确地反映总体的特征.重点1.掌握普查与抽样调查的区别与联系.2.判断所选取的样本是否具有代表性,是否能够反映总体的特征.难点判断所选取的样本是否具有代表性,是否能够反映总体的特征.一、创设情境,引入新课利用课本中提出的三个问题导入新课,这是一个比较实际的问题,同学们很容易理解,也容易展开讨论. (营造开放的讨论场面,引导学生讨论并发现问题)二、探究问题,形成概念(一)让学生阅读课本78~79页内容并回答第一个问题同学们把表中的内容填好表一口普查的数据,我们是可以回答的.第三个问题最难回答,为什么呢?因为全国人口普查的工作量极大,我国一般每十年进行一次全国人口普查,每五年进行一次全国1%人口的抽样调查.即只是研究约1300万人口,然后对这部分人进行调查,从而得出一个估计的答案.让学生回答总体、个体、样本、样本容量的概念.我们把要考察的对象的全体叫做________,把组成总体的每一个考察对象叫做________.从总体中取出的一部分个体叫做这个总体的一个________.一个样本包含的个体的数量叫做这个样本的________.由此可见,________是通过调查总体的方式来收集数据的,________是通过调查样本的方式来收集数据的.(二)选择合适的样本1.老师布置给每个小组一个任务,用抽样调查的方法估计全班学生的平均身高,坐在教室最后面的小胖为了争速度,立即就近对他周围的3位同学作调查,计算出他们4个人的平均身高后,就举手向老师示意已经完成任务了.他这样选择样本合适吗?2.在投掷正方体骰子时甲同学说:“6, 6, 6…啊!真的是6!你只要一直想某个数,就会掷出那个数.”乙同学说:“不对,我发现我越是想要某个数就越得不到这个数,倒是不想它反而会掷出那个数.”这两位同学的说法正确吗?3.小强的自行车失窃了,他想知道所在地区每个家庭平均发生过几次自行车失窃事件.为此,他和同学们一起,调查了全校每个同学所在家庭发生过几次自行车失窃事件.以上3个抽样调查中所抽取的样本行吗?为什么?那么,在抽样调查中抽取样本时应注意些什么?归纳结论:抽样调查中抽取样本时应注意:样本必须具有代表性、随机性、广泛性;样本容量要足够大;仅仅增加调查人数不一定能够提高调查质量.三、练习巩固1.为了解九年级1000名学生期中数学考试情况,从中抽取了300名学生的数学成绩进行统计.下列判断:①这种调查方式是抽样调查;②1000名学生是总体;③每名学生的数学成绩是个体;④300名学生是总体的一个样本;⑤300名是样本的容量.其中正确的判断有()A.1个B.2个C.3个D.4个2.下列调查,适合用普查方式的是()A.了解一批电视机显像管的使用寿命B.了解某河段被污染的程度C.了解你们班同学的视力情况D.了解人体血液的成分3.为了解某市7万名初中毕业生中考的数学成绩,从中抽取了考生人数的10%,然后对他们的数学成绩进行分析,对这次抽样调查描述不正确的是()A.每名考生的数学成绩是个体B.样本容量是7000C.10%的考生是样本D.7万名考生的数学成绩是总体4.某课外兴趣小组为了解所在地区某影片的受欢迎状况,分别进行了四种不同的抽样调查,你认为抽样比较合理的是()A.在公园调查了100名游人的评价B.在电影院里调查了1000名观众的评价C.调查了10名邻居的评价D.利用问卷方式随机调查了该区10%公众的评价5.小明从一批乒乓球中随意摸出三个,检测全部合格,因此小明断定这批乒乓球全部合格.在这个问题中,小明()A.忽略了抽样调查的随机性B.忽略了抽样调查的随机性和广泛性C.抽取的样本容量太小,不具有代表性D.忽略了抽样调查的随机性和代表性6.下列抽样调查中抽取的样本合适吗?为什么?(1)数学老师为了了解全班同学数学学习中存在的困难和问题,请数学成绩优秀的10名同学开座谈会;(2)在北京市调查我国公民的受教育程度;(3)在七年级学生中调查青少年对网络的态度;(4)调查每个班学号为5的倍数的学生,以了解全校学生的身高和体重.四、小结与作业小结通过本节课的学习,同学们有什么收获和疑问?作业1.布置作业:教材“习题28.1”中第1,2,3,4题.2.完成同步练习册中本课时的练习.在学生的练习中反映出这样几个问题:1.交代总体、样本、个体时只说人数,不交代调查的内容;2.说样本容量时带单位;3.判断样本是否合适时,语言不够简练.所以,在课后应对这3点进行强调.28.2用样本估计总体1.简单随机抽样正确理解随机抽样的概念,掌握抽签法的一般步骤.重点正确理解简单随机抽样的概念,掌握抽签法的步骤.难点能灵活应用相关知识从总体中抽取样本.一、创设情境,引入新课情景1:妈妈为了知道饼熟了没有,从刚出锅的饼上切下一小块尝尝,如果这一小块熟了,那么能否估计整张饼熟了?情景2:环境检测中心为了了解一个城市的空气质量情况,会在这个城市中分散地选择几个点,从各地采集数据.如果是你,你准备怎样做?二、探究问题,形成概念1.什么是简单的随机抽样上面的例子不适宜做普查,而需要做抽样调查,那么应该如何选取样本,使它具有代表性,而能较好地反映总体的情况呢?要想使样本具有代表性,不偏向总体中的某些个体,有一个对每个个体都公平的方法,决定哪些个体进入样本,这种思想的抽样方法我们把它称为简单的随机抽样.2.用简单的随机抽样方法来选取一些样本假设总体是某年级300名学生的数学考试成绩,我们已经按照学号顺序排列如下:97928986937374726098709089907180699270649283899372777975809393728776868285828786818874879288759289828886857679928984937593848790889080897278737985787791928277869078869083737567765570767791708487629167887882778775847080668087607876898188737595688070787180658283627280708368746767809070828596707386878170697668706871797187606462816963666364536141586084626376827661726680909387608285778478656275647068669981659887100646882736672967874529283856067948886899399100798568607470786568687977905580776765878167755775908666836884688574988967797769896855586377786967808283989496807968705774967078808785938088677093.用简单抽样的方法选取三个样本,每个样本含有5个个体,老师示范完成了第一个样本的选取,请同学们继续完成第二和第三个样本的选取.第三个样本:,每个样本含有20个个体.第一个样本:第二个样本:同学们不能预测到哪些个体会被抽中,像这样不能够预先预测结果的特性叫做随机性.所以统计学家把这种抽样的方法叫做随机抽样.你能总结抽签法的一般步骤吗?【归纳结论】开始→编号→制签→搅匀→抽签→定样→结束三、练习巩固1.下列抽样方法是简单随机抽样的是()A.某工厂从老年、中年、青年职工中按2∶5∶3的比例选取职工代表B.从实数集中逐个抽取10个数分析能否被2整除C.福利彩票用摇奖机摇奖D.规定凡买到明信片的最后几位号码是“6637”的人获三等奖2.为了了解参加运动会的2000名运动员的年龄情况,从中抽取20名运动员的年龄进行统计分析.就这个问题,下列说法中正确的有________.①2000名运动员是总体;②每个运动员是个体;③所抽取的20名运动员是一个样本;④样本容量为20;⑤这个抽样方法可采用随机法抽样;⑥每个运动员被抽到的机会相等.3.下列抽样的方式是否属于简单随机抽样?为什么?(1)从无限多个个体中抽取50个个体作为样本;(2)箱子里共有100个零件,从中选出10个零件进行质量检验,在抽样操作中,从中任取出一个零件进行质量检验后,再把它放回箱子.4.某车间工人加工一种轴100件,为了了解这种轴的直径,要从中抽取10件轴在同一条件下测量,如何采用简单随机抽样的方法抽取样本?5.人们打桥牌时,将洗好的扑克牌随机确定一张为起始牌,这时按次序翻牌时,对任何一家来说,都是从52张牌中抽取13张牌,问这种抽样方法是否是简单随机抽样?四、小结与作业小结通过引导学生回顾简单随机抽样的概念及实施方法,鼓励学生积极回答,最后教师再从数学思想方法上作总结:简单随机抽样并不是随意或随便抽取,因为随意或随便抽取都会带有主观或客观的影响因素,影响公正性.作业1.布置作业:教材“习题28.2”中第1题.2.完成同步练习册中本课时的练习.1.本节课能注重学生发展自主性,主张给学生多一点空间、时间,使学生在亲历知识结论的探索中获得对数学价值的认识.2.整个教学过程突出三个注重,即①注重学生参与知识的形成过程,体验应用数学知识解决问题的乐趣;②注重师生间、同学间的互动协作,共同提高;③注重从现实生活中提炼有价值的数学问题,养成用数学思想方法思考实际问题的习惯.3.面对不同层次的教学对象,学生的基础反应情况和感悟情况不一,因此在教学时间上应作适当的调整,对运用新知、深化理解等环节视实际情况作灵活的增删.2.简单随机抽样调查可靠吗使学生认识到只有样本容量足够大,才能比较准确地反映总体的特性,这样的样本才可靠,体会只有可靠的样本,才能用样本去估计总体.重点通过随机抽样选取样本,绘制频数分布直方图、计算平均数和方差,并与总体的频数分布直方图、平均数和方差进行比较,得出结论.难点通过随机抽样选取样本,绘制频数分布直方图、计算平均数和方差,并与总体的频数分布直方图、平均数和方差进行比较,得出结论.一、创设情境,引入新课在上节课中,我们知道在选取样本时应注意的问题,其一是所选取的样本必须具有代表性,其二是所选取的样本的容量应该足够大,这样的样本才能反映总体的特性,所选取的样本才比较可靠.二、探究问题,形成概念1.用例子说明样本中的个体数太少,不能真实反映总体的特性让我们仍以上一节300名学生的考试成绩为例,考察一下抽样调查的结果是否可靠.上一节中,老师选取的一个样本是:另外,同学们也分别选取了一些样本,它们同样也包含五个个体,根据小明取到的两个样本数据得到的频数分布直方图、计算它们的平均成绩和方差,如下图所示:从以上三张图比较来看,它们之间存在明显的差异,平均数和方差与总体的平均数与方差也相去甚远,显然这样选择的样本不能反映总体的特性,是不可靠的.以下是总体的频数分布直方图、平均成绩和方差,请同学们把三个样本的频数分布直方图、平均成绩和方差与它进行比较,更能反映这样选取样本是不可靠的.2.选择恰当的样本个体数目下面是某位同学用随机抽样的方法选取两个含有40个个体的样本,并计算了它们的平均数与方差,绘制了频数分布直方图,具体如下:从以上我们可以看出,当样本中个体太少时,样本的平均数、方差往往差距较大,如果选取适当的样本的个体数,各个样本的平均数、方差与总体的方差相当接近.三、练习巩固1.对某校400名学生的体重(单位:kg)进行统计,得到如图所示的频率分布直方图,则学生体重在60 kg以上的人数为()A.300B.100C.60 D.202.样本中共有五个个体,其值分别为a,0,1,2,3.若该样本的平均值为1,则样本方差为()A.65B.65C. 2 D.23.为了了解我市某县参加今年初中毕业会考的6000名考生的数学成绩,从中抽查了200名学生的数学成绩(成绩为整数,满分120分)进行统计分析,并根据抽查结果绘制了如下的统计表和扇形统计图:(1)请将以上统计表和扇形统计图补充完整;(2)若规定60分以下(不含60分)为“不合格”,60分以上(含60分)为“合格”,80分以上(含80分)为“优秀”,试求该样本的合格率、优秀率;(3)在(2)的规定下,请用上述样本的有关信息估计该县本次毕业会考中数学成绩优秀的人数和不合格的人数.四、小结与作业小结先小组内交流收获和感想,而后以小组为单位派代表进行总结,教师作以补充.作业1.布置作业:教材“习题28.2”中第2 题.2.完成同步练习册中本课时的练习.一般来说,用样本估计总体时,样本容量越大,样本对总体的估计也就越精确,相应地,搜集、整理、计算数据的工作量也就越大,因此,在实际工作中,样本容量既要考虑问题本身的需要,又要考虑实现的可能性和所付出的代价的大小.28.3借助调查做决策1.借助调查做决策1.了解媒体是获取信息的一个重要渠道,学会从媒体上获取数据信息,包括上网、看电视、读报、听广播等,并通过对这些数据的分析进行决策.2.学会对来自媒体的数据信息进行合理的分析,发表自己的观点.重点1.综合运用所学统计知识读取媒体信息,并进行适当的分析.2.能够对信息中数据的来源及处理数据的方法以及由此得到的结果进行合理的质疑.难点从统计(数学)的角度对媒体信息进行质疑,并能有条理地阐述自己的观点.一、创设情境,引入新课媒体是获取信息的一个重要渠道,通过媒体可以便捷地获取丰富、实时的信息.举例:如果明天我们要郊游,可以留意报纸、广播、电视中的天气预报或者上网查询,要是天气预报说“明天降雨概率为90%”,那我们可能都会带上雨具.请同学再举几个通过媒体获取数据进行决策的例子.二、探究问题,形成概念某啤酒厂推出一种有奖销售方案:该厂在出厂的所有啤酒的瓶盖内分别印上“再”“来”“一”“瓶”“啤”“酒”六个字中的一个(文字颜色与啤酒颜色相近,从瓶外无法看清文字),集齐分别印有这六个不同文字的六个啤酒瓶盖就可换取一瓶该品牌的啤酒.假如印有这六个文字的瓶盖个数一样多,而且每瓶啤酒的瓶盖上印有哪个文字也完全是随机的,那么,平均要买多少瓶啤酒才能中奖(奖1瓶啤酒)呢?试通过模拟实验来解决这一问题.分析如果幸运的话,买6瓶啤酒也许就能中奖;但也许购买50瓶、100瓶都无法中奖.那么,平均要买多少瓶啤酒才能中奖呢?请你估计一个答案,写在纸上(最后与模拟实验得到的答案作比较,看看你的估计能力如何).下面我们利用计算器进行模拟实验:让计算器在1~6的范围内每次产生一个随机整数,作为购买到的那瓶啤酒的瓶盖上的文字的代号(1代表“再”、2代表“来”、3代表“一”、4代表“瓶”、5代表“啤”、6代表“酒”),若“中奖”,则一次实验结束,然后进行下一次实验.记录下每次实验得到的相关数据,整理如下:三、练习巩固1.爸爸妈妈计划在周末带小明去旅游.首先,希望天气适宜;其次,游览的地方最好离居住地近一些.下图是小明在报纸上查询到的周末部分旅游区天气预报.此外,小明还通过上网查询列车时刻表,获得了各旅游区与自己居住地之间的里程如下(单位:km):大连2255,青岛1359,泰山890,洛阳1122,黄山674,杭州201,武夷山631,厦门1395,桂林1645,湛江2280.(1)请你帮小明分析一下,哪个旅游景点是最佳选择?(2)如果你要在本周末旅行,那么基于路程和天气两方面的原因,你将怎样查询数据做出决策呢?把你的决策过程和同学们进行交流.2.某市为了节约生活用水,计划制定每位居民统一用水量标准,然后根据标准,实行分段收费.此时,对居民上年度用水量进行统计,并绘成如下频数分布直方图(图中分组含最低值,不含最高值),请根据图中信息解答下列问题:(1)本次调查的居民人数为________人;(2)本次调查的居民月均用水量的中位数落在频数分布直方图中的第________小组内(从左到右数);(3)当地政府希望让85%左右居民的月均用水量低于制定的月用水量标准,根据上述调查结果,你认为月用水量标准(取整数)定位多少吨较为合适?四、小结与作业小结先小组内交流收获和感想,而后以小组为单位派代表进行总结,教师加以补充.作业1.布置作业:教材“习题28.3”中第2,3题.2.完成同步练习册中本课时的练习.本节“借助调查作决策”是对初中几年所学统计知识的一个升华,是对学生学习了基本的统计知识后如何综合运用统计知识分析解决问题;如何合情分析,合理质疑等能力方面的提升,是“统计与概率”的点“睛”之处.而在信息技术迅猛发展的今天,媒体是我们身边最为密切的获取信息的渠道,如何借助媒体做决策,如何亲自调查做决策,如何全面分析媒体信息是本节的要点也是本章的重点,通过本节课的学习可以为后面的内容提供宝贵的经验,有助于亲自调查中关键的把握及决策中理论的运用.2.容易误导读者的统计图能够对一些消息作出全面的分析.重点对媒体消息进行全面分析,合理运用统计图.难点怎样对不同的媒体消息进行全面分析.一、创设情境,引入新课以下是来自一些媒体的消息,你读后有什么感想?(1)报纸刊载:高校毕业生平均年收入为5万元.(数据来源于对某高校校友的一次问卷调查)(2)某房产广告称:本地区居民年收入6万元.(事实上该地区居住了许多普通工人家庭,只有几户富翁家庭)(3)某杂志刊载消息解释其价格上涨原因:10年来,原材料上涨10%,印刷费增加10%,推销广告费上升10%.这样一来,成本增加30%,零售价格怎能不上涨?二、探究问题,形成概念一则广告说:据调查,使用本厂牙膏可以使蛀牙率减少20%,并以下图示意其调查得到的数据.你怎样看待这则广告?分析第一,我们注意到图中的柱形图的纵轴是从30%开始的,它容易留给我们一个错误的印象:使用该厂牙膏会使蛀牙率减少一半.第二,我们不知道调查对象是否有可比性,如果使用该厂牙膏的人群是幼儿园小朋友,而使用非该厂牙膏的人群却是成年人,那么所得的结论就不可信了.第三,我们也不知道样本容量有多大,如果只调查了10个人,那么所得的结论可能就不太可靠了.从这个很小的例子可以看出,数据虽然给我们带来了有利于决策的各种信息,但有些时候也可能误导我们.所以,比较规范的统计报告应该说明调查的细节,如调查了多少人,是怎样选取调查对象的,等等.三、练习巩固1.如图所示是甲、乙两户居民家庭全年支出费用的扇形统计图,根据统计图,下面对全年食品支出费用判断正确的是()A.甲户比乙户多B.乙户比甲户多C.甲、乙两户一样多D.无法确定哪一户多2.甲、乙两家汽车销售公司根据近几年的销售量,分别制作如下统计图.从2013年到2017年,这两家公司中销售量增加较快的是________公司.3.(问题2变式)如图,图①和图②是小晨同学根据所在学校三个年级男女生人数画出的两幅条形统计图.两幅图中图________能更好地反映学校每个年级学生的总人数,图________能更好地比较每个年级男女生的人数.4.(问题1变式)一则报纸上的广告绘制了如图所示的统计图,并称“乙品牌牛奶的销售量是甲品牌牛奶每月销售量的3倍”.请分析这则广告信息正确吗?四、小结与作业小结在本节课中,我们主要学习了在对某件事情作决策前,如何借助媒体,查询数据,媒体是获取信息的一个重要渠道,既要从中获得尽可能多的有用信息,还要保持理智的心态,要对数据的来源、收集数据的方法、数据的呈现方式和由此得出的结论进行合理的辨析.作业1.布置作业:教材“习题28.3”中第4题.2.完成同步练习册中本课时的练习.1.应根据实际需要选择合理的统计图表.2.选择统计图表时,应特别关注直接相关的数据.3.在画多幅统计图描述不同研究对象时,各图的单位刻度应保持一致,避免因直观造成错觉,必要时,可以把几个研究对象放在同一统计图中来描述.4.在选用立体直方图时,应注意表示不同对象的立体图形的宽度和深度一致.。
【九年级】九年级数学下第28章样本与总体全章导学案(华师大版)
【九年级】九年级数学下第28章样本与总体全章导学案(华师大版)学校----- 班级---- - 小组---- 姓名----- 小组评价----- 教师评价---第28章样本与总体第一课时 28.1.1 普查与抽样调查【学习目标】1.了解普查和抽样调查的区别及应用2.了解总体、个体、样本、样本容量的含义3.了解选取有代表性的样本对总体估计的作用4.掌握抽样调查选取样本的方法【学习重难点】重点:总体、个体、样本、样本容量难点:抽样调查选取样本的方法【学法指导】先自学课本,经历自主探索总结过程,并独立完成自主学习部分,然后学习小组讨论交流。
【自学互助】一、创设情境,导入新课你能回答下面的问题吗?1.你们班级每个学生的家庭各有多少人?平均每个家庭有多少人?2.2021年,全国平均每个家庭有多少人?3.今年,全国平均每个家庭有多少人?二、自学教材P78-791、第一个问题同学们把表中的内容填好姓名... 人口总数平均数家庭人数...表一家庭人数 1 2 3 4 5 6 人口总数平均数家庭数目表二第二个问题稍难一些,因为抽的家庭太多了,不过利用2021年第六次人口普查的知识,我们是可以回答的。
第三个问题最难回答,为什么呢?因为全国人口普查的工作量极其大,我国今后每十年进行一次全国人口普查,每五年进行一次全国1?人口的抽样调查。
即只是研究约1300万人口,然后对这部分人进行调查。
从而得出一个估计的答案。
)2、我们把要考察的对象的全体叫做,把组成总体的每一个考察对象叫做。
从总体中取出的一部分个体叫做这个总体的一个。
一个样本包含的个体的数量叫做这个样本的。
由此可见,是通过调查总体的方式来收集数据的,是通过调查样本的方式来收集数据的。
【展示互导】学生在展示时教师的提问:1、你们调查的是什么?2、你们的调查结果是什么?3、你们从调查结果中得出了什么有用的信息?(学生以小组为单位,派代表根据调查结果回答)。
看看哪组的同学说得又对又多。
华师大版数学九年级下册28 容易误导读者的统计图
0 维生素B1 维生素B2 维生素B6
维生素
维生素
图1
新课讲解
分析:这两幅图不仅不容易对两种蛋的营养 含量进行比较,而且容易给读者造成错误的印象: 鸡蛋中各种维生素B的含量比鹌鹑蛋高.
这是由于两张图的纵轴单位刻度不同造成的.
厂方乙的直方图
新课讲解
含量 鹌鹑蛋和鸡蛋的维生素含量比较图
( 毫0克. 9)
►为你理想的人,否则,爱的只是你在他身上找到的你的影子。 ►冲冠一怒为红颜,英雄难过美人关。只愿博得美人笑,烽火戏侯弃江山。 宁负天下不负你,尽管世人唾千年。容颜迟暮仍为伴,倾尽温柔共缠绵。 ►蜜蜂深深地迷恋着花儿,临走时留下定情之吻,啄木鸟暗恋起参天大树, 转来转去想到主意,便经常给大树清理肌肤。你还在等待什么呢?真爱是 靠追的,不是等来的!
HS九(下) 教学课件
第28章 样本与总体
28.3 借助调查做决策
2.容易误导读者的统计图
学习目标
1.会正确的从统计图中获取有用的信息,从而做出 正确的决策.(重点)
2.会分辨误导决策统计图的错误因素.(难点)
新课引入
新课讲解
1 容易误导读者的统计图
问题1 一则广告说:据调查, 使用本厂牙膏可以使蛀牙率减少 20%,并以下图示意其调查得到的数据.你怎样看待这则广告?
2013 2014 2015 2016 2017
2013
2015 2017
哪家公司近年的销售收入的增长速度较快? 甲公司
随堂即练
3.下图反映了我国2017年对三个地区货物出口额的 情况直观地看这个条形统计图,回答问题:
2017
随堂即练
(1)2017年我国对哪个地区货物出口额最大? 欧盟
(2)对哪个地区货物出口额最小?最多的大约是最 少的几倍?
新华东师大版九年级数学下册《28章 样本与总体 复习》教案_2
中考数学专题复习——概率与统计学习目标1、理解并会计算相关的统计量2、会计算事件的概率3、运用概率的知识分析、说理,解决一些简单的实际问题. 一、自学环节算术平均数加权平均数一组数据中,出现次数最多的数据②数据个数为偶数,则中间两个数的平均数为这组数据的中位数样本的统计量可以代表总体的统计量 (二) 随机事件的概率 1、简单随机事件的概率2、复杂随机事件的概率 (1)列表法 (2)列树状图法 二、展示环节1.有十五位同学参加智力竞赛,且他们的分数互不相同,取八位同学进入决赛,某人知道了自己的分数后,还需知道这十五位同学的分数的什么量,就能判断他能不能进入决赛( D )A.平均数B.众数C.最高分数D.中位数2、下面记录了甲、乙、丙、丁四名跳高运动员最好几次选拔赛成绩的平均数与方差:根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择( A ) A.甲 B.乙 C.丙 D.丁3、某企业组织职工进行技能比赛,小王的笔试、答辩、技能操作得分分别是90分、80分、85分,若依次按照2:3:5的比例确定成绩,则小王的成绩是( C )A 85分B 84分C 84.5分D 86分4、在某校开展的“书香校园”读书活动中,学校为了解八年级学生的读书情况,随机调查了八年级50名学生每学期每人读书的册数,绘制统计表如下:A. 17,16B. 3,2.5C. 2,3D. 3,25、国家规定“中小学生每天在校体育活动时间不低于1小时”.为此,某市就“你每天在校体育活动时间是多少”的问题随机调查了辖区内300名初中学生.根据调查结果绘制成的统计图(部分)如图所示,其中分组情况是:A组:t<0.5h B组:0.5h≤t<1hC组:1h≤t<1.5h D组:t≥1.5h请根据上述信息解答下列问题:(1)C组的人数是________;(2)本次调查数据的中位数落在_________组内;(3)中小学生每天活动在一小时以上的概率为__________(4)若该辖区约有24 000名初中学生,请你估计其中达国家规定体育活动时间约有____人。
九年级数学下册第28章样本与总体28.3借助调查做决策2容易误导读者的统计图练习华东师大版(202
九年级数学下册第28章样本与总体28.3 借助调查做决策2 容易误导读者的统计图同步练习(新版)华东师大版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(九年级数学下册第28章样本与总体28.3 借助调查做决策2 容易误导读者的统计图同步练习(新版)华东师大版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为九年级数学下册第28章样本与总体28.3 借助调查做决策2 容易误导读者的统计图同步练习(新版)华东师大版的全部内容。
28.3 2。
容易误导读者的统计图一、选择题1.如图K-28-1所示的四个统计图中,用来表示不同品种的奶牛的平均产奶量最为合适的是()图K-28-12.如图K-28-2是近年来某省年财政收入同比(与上一年比较)增长率的折线统计图,其中2014年该省财政收入约为613。
3亿元.下列说法:①2015年该省财政收入约为613。
3×(1-19.5%)亿元;②这四年中,2016年该省财政收入最少;③2016年该省财政收入约为613。
3×(1+19.5%)×(1+11.7%)亿元.其中正确的有()A.3个 B.2个 C.1个 D.0个图K-28-2二、填空题3.2018年某新品牌牛奶公司为了宣传其公司牛奶的销售量大,把该品牌牛奶的销售量与其他品牌牛奶的销售量对比绘制了如图K-28-3所示的广告,并形象地用牛奶瓶代替条形图,从销售量来看,新品牌牛奶的销售量是其他品牌牛奶的2倍.请分析这个图合理吗.答:________,理由是_______________________________________________________________________________________________________________________________ _____。
新华东师大版九年级数学下册《28章 样本与总体 28.3 借助调查做决策》教案_1
28.3《借助调查做决策》教案教学目标:知识技能:1.知道媒体是获取信息的一个重要渠道,学会从媒体上获取数据信息,包括上网、看电视、读报、听广播等,并通过对这些数据的分析进行决策.2.会亲自调查并分析数据,做出决策.数学思考与问题解决:在实际调査及决策中学会调査及分析数据.情感态度:通过对来自媒体的数据的分析与交流,在分析信息、提高分析辨别能力的同时,增强合作学习的意识与能力.重点难点重点:对数据的整理和分析.难点:设计合理的调査方案.教学设计一、引入:前一节课我们学习了通过媒体获取信息,从而作出决策.但在现实生活中,有些问题中需要的信息是无法从媒体中查询的,必须自己展开调查才能获得.足球是深受同学们喜爱的一项体育活动,2018年世界杯将在俄罗斯举行,那么世界杯足球赛如何分组,每个队有哪些球星,他们有什么技术特点,你能预测哪几支队会进人16强、8强、4强,冠军队会是谁?在开赛前,每个人做着各种各样的结果猜测!如果你参与这些问题,你会有备而来吗?你能成为评论的专家吗?我想大家会利用媒体,比如互联网、报纸、电视等等来收集到这方面的信息.不仅仅是世界杯,你才会借助媒体,家庭出行旅游时,旅行社的选择,出行时天气的好坏;购物时物品的选择,生话中很多事情都需要通过媒体获取信息,指导我们做出正确的决策.(一)、联系实际、共同讨论、引出课题1、探讨:(1)家里要买洗衣机,选哪一种品牌?(2)初中即将毕业,第一志愿报考哪一所学校?(3)比赛前,教练决定首发阵容时,谁首先上场?以上几个问题中,有哪些共同之处呢?说说看。
2.问题:请你说说生活中需要决策的事情。
3.讨论1:对某事件做决策,你需要知道这件事件的什么?(需要知道这事件的有关数据)4.讨论2:你如何知道某事件的有关数据?(借助于调查、试验、媒体等)二、回顾根据你以前所学的知识,想一想应如何通过调查收集数据?需要经过哪些步骤?(教师讲解)三、问题探究1.借助调查做决策例1 人们常说“吸烟有害”,这一般是指吸烟有害于人类的健康,那么,香烟对其他动植物的生长是否一也不利呢?上海市闵行中学的师生做过一个“香烟浸出液浓度对于种子萌芽的影响”的实验,他们选用绿豆和赤豆各50粒作为种子的代表,观察在清水以及三种不同浓度的香烟浸出液中它们每天出芽的数目.香烟浸出液一:2支香烟浸于200ml水;香烟浸出液二:3支香烟浸于200ml水;香烟浸出液三:4支香烟浸于200ml水;据此,你估计香烟浸出液浓度对绿豆和赤豆种子的出芽率有怎样的影响?如果再重复这个实验,实验数据是否可能与表所示的不一致?为了一般地研究“香烟浸出液浓度对于种子萌芽的影响”,是否需要选取一些其他种子做类似的实验?如果有兴趣,请动手做一做,再与同学一起讨论你们各自获得的数据和结论.例2 一家冷饮厂在电视里做广告,说他们厂生产的雪糕在小木棍上印有四种图案,集齐四根印有不同图案的小木棍就能够拼成一幅图,凭此可以在指定的商店领取一份奖品.假设该厂准备的印有四种图案的小木棍一样多,而且每支雪糕中夹入印有哪种图案的小木棍也完全是随机的,那么,平均要买多少支雪糕才能得奖呢?教师引导学生分析,得出用模拟实验的方法解决.学生小组合作,用计算机进行模拟,记录结果,得出结论,然后与教材94页方法进行比较.归纳:通过实验去估计答案,要注意两点:①不同的人得到的答案不一定相同,即使同一个人再进行相同次数的实验答案也不一定相同;②要想答案尽可能准确,我们可以将实验次数尽可能地增加(但也要考虑到有无必要及可能性).因为实验次数充分大时,这个“平均数”将趋于稳定.四、课堂练习p96五、讲解例3:1、学生自学,提出问题分析:如果用平均数作为一组数据的代表,计算可得:1990年中国男性人口的平均预期寿命约为66岁,而女性人口的平均预期寿命约为70岁;2000年中国男性人口的平均预期寿命约为70岁,而女性人口的平均预期寿命约为73岁。
九年级数学下册第28章样本与总体28.3借助调查作决策2容易误导读者的统计图教案新版华东师大版202
word
2 借助调查做决策2.容易误导读者的统计图
1.掌握深入分析外界数据的基本方法,灵活思考,敢于质疑;(重点、难点)
对各种媒体中可能出现的图表误导进行鉴别. (难点)
一、情境导入
根据如图所示的两个统计图,你能判断女生人数多的学校是哪个吗?
二、合作探究
探究点:容易误导读者的统计图
【类型一】容易误导读者的扇形图
根据上面的两个统计图,下列说法正确的是()
A.一中的学生喜欢运动,三中的学生喜欢学习
B.一中喜欢足球的人数与三中喜欢数学的人数相等
C.三中喜欢自然的学生与一中喜欢排球的人数相等
D.以上答案都不正确
解:因为两个扇形统计图的总体未知,所以A、B、C都错误.故选D.
方法总结:扇形统计图能反映各部分所占的比例,而两个图形中事件的总体不同,不能确定具体每组的人数,据此即可作出判断.
【类型二】容易误导读者的条形图
下表中列出了今年6月份三家牛奶生产厂家的利润额,所示的统计图:
方法总结:解决此类问题时要看清各个量的含义及单位长度,并注意纵轴上的数据是否从0开始取.若纵轴上的起始值为0,则直条的高度比与相应的数目比相等;若不从0开始取,则不一定相等.
方法总结:易出现几种误导读者的情形:(1)纵轴上的数据不是从0开始,易造成比例上的错觉;(2)对两个不同的样本进行比较时,忽略总体、样本容量;(3)在使用条形统计图时,要注意长方形的宽度和长度,若不一致,易因面积造成误解.
三、板书设计
进一步提升学生认知能力.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课题:容易误导读者的统计图
【学习目标】
1.了解几种不规范的统计图误导读者的现象,并能够纠正.
2.能够理解不规范的统计图误导读者的原因.
【学习重点】
理解几种不规范的统计图误导读者的原因,并画出正确规范的统计图.
【学习难点】
画出正确规范的统计图.
情景导入生成问题
1.我们学过的统计图有哪几种?
答:条形统计图,扇形统计图,折线统计图.
2.小明种了一棵小树,想了解小树生长的过程,记录小树每周的生长高度,将这些数据制成统计图,下列统计图中较好的是( A)
A.折线统计图B.条形统计图
C.扇形统计图D.不能确定
自学互研生成能力
知识模块容易误导读者的统计图
阅读教材P99~P102,完成下列问题:
问题:容易误导读者的统计图有哪些形式?
答:(1)条形统计图:①有的条形统计图纵轴上的值不是从0开始的;②条形统计图的宽应该一致,主要由高衡量大小,当宽不一致时,往往给人们感觉面积大的数量大,会造成错觉.
(2)扇形统计图:①易犯错误:有时认为在两个扇形统计图中,所占百分比大的量,必然数量也多;②正确结论:因为两个扇形统计图的总量不同,所以不能通过百分比比较两个扇形统计图中个体数量的多少;
(3)折线统计图:误导原因:绘制折线统计图选取不同的单位画出的折线统计图形状不同,给人的直观印象不一样.
范例:一则报纸上的广告绘制了如图所示的统计图,并称“乙品牌牛奶的销售量是甲品牌牛奶每天销售量的3倍”,请分析这则广告信息正确吗?
解:这则广告的信息是不正确的,从图中标明的数据看,甲品牌牛奶的销售量是510万袋,乙品牌牛奶的销售量是530万袋,只比甲品牌牛奶多了20万袋,乙品牌牛奶的销售量并不是甲品牌牛奶销售量的3倍,由于统计图制作的不规范,容易误导消费者认为乙品牌牛奶销售量是甲品牌牛奶销售量的3倍.故这则广告信息是不正确的.
仿例1:根据如图所示的甲、乙两户居民家庭全年支出费用的扇形统计图,下面对全年食品支出费用判断正确的是( D)
A.甲户比乙户多B.乙户比甲户多
C.甲、乙两户一样多D.无法确定哪一户多
仿例2:甲、乙两家汽车销售公司根据近几年的销售量,分别制作如下统计图:从2011~2015年,这两家公司中销售量增长较快的是甲公司.
交流展示生成新知
1.将阅读教材时“生成的问题”和通过“自学互研”得出的“结论”展示在各小组的小黑板上,并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.
2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.
知识模块容易误导读者的统计图
检测反馈达成目标
【当堂检测】见所赠光盘和学生用书
【课后检测】见学生用书
课后反思查漏补缺
1.收获:_____________________________________________________________________
2.困惑:_____________________________________________________________。