北师大版高中数学必修必修课后习题答案

合集下载

【精品推荐】高中数学北师大版必修一课后训练1.1 集合的含义与表示 Word版含答案

【精品推荐】高中数学北师大版必修一课后训练1.1 集合的含义与表示 Word版含答案

课后训练基础巩固1.下列说法正确的是().A.2012年伦敦奥运会所有比赛项目组成一个集合B.某个班年龄较小的学生组成一个集合C.世界上美丽的小鸟D.1,0,5,1.5,2.5组成的集合有四个元素2.“booknote”中的字母构成一个集合,该集合中的元素的个数是().A.5B.6C.7D.83.集合A={1,-3,5,-7,9,-11,…},用描述法表示正确的是().(1){x|x=2n±1,n∈N}(2){x|x=(-1)n(2n-1),n∈N}(3){x|x=(-1)n(2n+1),n∈N}(4){x|x=(-1)n+1(2n-1),n∈N}A.只有(4) B.(1)(4)C.(2)(4) D.(3)(4)4.已知集合S={a,b,c}中的三个元素可构成△ABC的三条边长,那么△ABC一定不是().A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形5.下列集合中为空集的是().A.{x∈N|x2≤0} B.{x∈R|x2-1=0}C.{x∈R|x2+x+1=0} D.{0}6.已知集合A是由0,m,m2-3m+2三个元素组成的集合,且2∈A,则实数m为().A.2 B.3C.0或3 D.0,2,3均可7.由大于-1且小于11的偶数所组成的集合是().A.{x|-1<x<11,x∈Q}B.{x|-1<x<11}C.{x|-1<x<11,x=2k,k∈N+}D.{x|-1<x<11,x=2k,k∈Z}8.下列表示同一个集合的是().A.M={(2,1),(3,2)},N={(1,2),(2,3)}B.M={2,1},N={1,2}C.M={3,4},N={(3,4)}D.M={y|y=x2+1},N={(x,y)|y=x2+1}9.已知集合M={(x,y)|x+y=2},N={(x,y)|x-y=4},则由集合M与集合N的公共元素组成的集合为().A.x=3,y=-1 B.(3,-1)C.{3,-1} D.{(3,-1)}能力提升10.下列命题中,正确命题的个数为().①N中最小的元素是1;②若a∈N,则-a∉N;③若a∈N,b∈N,则a+b的最小值是2.A.0 B.1 C.2 D.311.若集合A={(x,y)|2x-y+m>0},B={(x,y)|x+y-n≤0},若点P(2,3)∈A,且P(2,3)∉B,则().A.m>-1,n<5 B.m<-1,n<5C.m>-1,n>5 D.m<-1,n>512.设集合A =1|,3n x x n ⎧⎫=∈⎨⎬⎩⎭N ,若x 1∈A ,x 2∈A ,则必有( ). A .x 1+x 2∈A B .x 1x 2∈AC .x 1-x 2∈AD .12x A x ∈ 13.定义A -B ={x |x ∈A ,且x ∉B },若A ={2,4,6,8,10},B ={1,4,8},则A -B 等于( ). A .{4,8} B .{1,2,6,10}C .{1}D .{2,6,10}14.已知集合A ={0,1,-1,2,-2,3},B ={y |y =x 2-1,x ∈A },则B =________.15.用特征性质描述法表示下列集合.(1)正偶数集;(2)被3除余2的正整数集合;(3)直角坐标平面内坐标轴上的点集.16.已知集合A 中的元素满足性质:若a ∈A ,且a ≠1,则11A a∈-. (1)若a =2,试探求集合A 中一定含有的另外元素;(2)说明集合A 不是单元素集.17.已知集合A ={x ∈R |ax 2-3x +2=0}.(1)若A 是单元素集,求a 的值及集合A ;(2)求集合P ={a ∈R |a 使得A 至少含有一个元素}.参考答案1.A 点拨:A 项中因为标准确定,所以可以构成一个集合,B ,C 项中标准不确定不能构成集合,D 项中组成的集合有五个元素.2.B 点拨:“booknote ”中的字母构成的集合用列举法可表示为{b ,o ,k ,n ,t ,e},其元素个数为6.3.D 点拨:逐个分析各种表述:(1)中2n ±1≥0,不能表示集合A 中的负整数,表述不正确.(2)4.D 点拨:由元素的互异性可知选D.5.C 点拨:在选项A 中,由x 2≤0,且x ∈N 得x =0,集合{x ∈N |x 2≤0}用列举法可表示为{0};在选项B 中,由x 2-1=0,且x ∈R 得x =±1,集合{x ∈R |x 2-1=0}用列举法可表示为{-1,1};在选项D 中,集合{0}中含有一个元素0,在选项C 中,由于方程x 2+x +1=0无实数根,故选C.6.B 点拨:(方法1)由2∈A 可知:m =2或m 2-3m +2=2,若m =2,则m 2-3m +2=0,这与m 2-3m +2≠0相矛盾; 若m 2-3m +2=2,则m =0或m =3.当m =0时,与m ≠0相矛盾,当m =3时,此时集合A ={0,3,2},符合题意.(方法2)由四个选项可知,m 的值可能为0,2,3,可依次代入检验它们是否符合题意.7.D 8.B 9.D10.A 点拨:自然数集中最小的元素是0,故①③不正确.对于②,若a ∈N ,即a 是自然数,当a =0时,- a 仍为自然数,所以②也不一定正确,故选A.11.A 点拨:由P ∈A ,且P ∉B 得2230,230,m n ⨯-+>⎧⎨+->⎩∴1,5.m n >-⎧⎨<⎩ 12.B 点拨:如果元素具有13n (n ∈N )的形式,则这个元素属于集合A .由于x 1∈A ,x 2∈A ,可设113m x =(m ∈N ),213k x =(k ∈N ).又x 1x 2=111333m k m k +⋅=,m +k ∈N ,∴x 1x 2∈A ,故B 正确;也可取113x =,2213x =,验证A ,C ,D 是错误的. 13.D 点拨:由题意,A -B 为在A 中去掉B 的元素,即在A 中去掉元素4,8,还剩2,6,10三个元素,故A -B 为{2,6,10}.14.{-1,0,3,8} 点拨:分别将x =0,1,-1,2,-2,3代入y =x 2-1得y 值分别为-1,0,0,3,3,8,因为集合中的元素是互异的,所以B ={-1,0,3,8}.15.解:(1){x |x =2n ,n ∈N +}.(2){x |x =3n +2,n ∈N }.(3){(x ,y )|xy =0}.(4){(x ,y )|x <0,且y >0}.(5){(x ,y )|xy ≤0}.16.解:由a∈A,a≠1,则11a-∈A可知(1)若2∈A,则112-=-1∈A,于是111(1)2A=∈--,1112-=2∈A,112-=-1∈A,……故集合A中一定含有-1,12两个元素.(2)若集合A是单元素集,则a=11a-,即a2-a+1=0,此方程无实数解,这与已知矛盾.∴a与11a-都为集合A的元素,故A不是单元素集.点拨:解此题关键在于由已知a∈A,得到11a-∈A,1111Aa∈--,然后逐步探索,再根据集合中元素的互异性,从而将问题加以解决.17.解:(1)当a=0时,由条件可知,,符合题意;当a≠0时,要使方程有两个相等的实根,则Δ=9-8a=0,即98a=,此时,43A⎧⎫=⎨⎬⎩⎭.综上所述:当a=0时,23A⎧⎫=⎨⎬⎩⎭;当98a=时,43A⎧⎫=⎨⎬⎩⎭.(2)由(1)知,当a=0时,23A⎧⎫=⎨⎬⎩⎭含有一个元素,符合题意.当a≠0时,若a使得A至少含有一个元素,则方程ax2-3x+2=0有实数根,∴Δ=9-8a≥0,即98 a≤.综上所述,P={a∈R|a使得A至少含有一个元素}=98a a⎧⎫≤⎨⎬⎩⎭.点拨:因为集合A是方程ax2-3x+2=0的解集,则(1),(2)是分别求使方程有一根或两相等实根,有实根的a的取值范围.。

新教材北师大版高中数学必修第一册 第五章 函数应用 课后练习 含解析

新教材北师大版高中数学必修第一册 第五章 函数应用 课后练习 含解析

第五章函数应用课后练习1、利用函数性质判定方程解的存在性........................................................................ - 1 -2、利用二分法求方程的近似解.................................................................................... - 6 -3、实际问题的函数刻画.............................................................................................. - 11 -4、用函数模型解决实际问题...................................................................................... - 18 -1、利用函数性质判定方程解的存在性提升练习1.已知函数f(x)=则函数f(x)的零点为( )A.,0B.-2,0C. D.0【解析】选D.当x≤1时,由f(x)=0,得2x-1=0,所以x=0.当x>1时,由f(x)=0,得1+log2x=0,所以x=,不成立,所以函数的零点为0.2.函数f(x)=x2+ln x-4的零点所在的区间是( )A.(0,1)B.(1,2)C.(2,3)D.(3,4)【解析】选B.因为f(1)=12+ln 1-4=-3<0,f(2)=22+ln 2-4=ln 2>0,又函数f(x)在定义域内单调递增,所以f(x)的零点在(1,2)内.3.函数f(x)=x3-的零点个数是()A.0B.1C.2D.无数个【解析】选B.作出y=x3与y=的图象,如图所示,两个函数的图象只有一个交点,所以函数f(x)只有一个零点.4.若函数f(x)=ax2-x+2只有一个零点,则实数a的取值集合是.【解析】当a=0时,f(x)=-x+2,令f(x)=0,解得x=2,所以函数只有一个零点2,符合题意;当a≠0时,由函数只有一个零点可得Δ=(-1)2-4×a×2=0,即1-8a=0,解得a=.综上a=或a=0.答案:5.判断方程log2x+x2=0在区间上有没有实数根?为什么?【解析】设f(x)=log2x+x2,f=log2+=-1+=-<0,f(1)=log21+1=1>0,即f·f(1)<0,函数f(x)=log2x+x2的图象在区间上是连续的,因此,f(x)在区间上有零点,即方程log2x+x2=0在区间上有实根.提升练习一、单选题(每小题5分,共15分)1.若a<b<c,则函数f(x)=(x-a)(x-b)+(x-b)(x-c)+(x-c)·(x-a)的两个零点分别位于区间( )A.(b,c)和(c,+∞)内B.(-∞,a)和(a,b)内C.(a,b)和(b,c)内D.(-∞,a)和(c,+∞)内【解析】选C.因为a<b<c,所以f(a)=(a-b)(a-c)>0,f(b)=(b-c)(b-a)<0,f(c)=(c-a)(c-b)>0, 所以f(x)的零点分别位于(a,b)和(b,c)内.2.(2020·浙江高考)已知a,b∈R且ab≠0,若(x-a)(x-b)(x-2a-b)≥0在x≥0上恒成立,则( )A.a<0B.a>0C.b<0D.b>0【解析】选C.由于ab≠0则a≠0且b≠0,根据y=(x-a)(x-b)(x-2a-b)的零点为a,b,2a+b的情况可确定是否满足(x-a)(x-b)(x-2a-b)≥0在x≥0上恒成立.若a<0,b<0,则2a+b<0,满足;若a<0,b>0,则b≠2a+b,不满足;若a>0,b>0,则2a+b>0,不满足;若a>0,b<0,则a=2a+b即a+b=0时满足,综上,只有选项C符合.3.(2018·全国卷Ⅰ)已知函数f(x)=g(x)=f(x)+x+a.若g(x)存在2个零点,则a的取值范围是( )A.[-1,0)B.[0,+∞)C.[-1,+∞)D.[1,+∞)【解析】选C.函数g(x)=f(x)+x+a存在2个零点,即关于x的方程f(x)=-x-a有2个不同的实根,即函数f(x)的图象与直线y=-x-a有2个交点,作出直线y=-x-a与函数f(x)的图象,如图所示,由图可知,-a≤1,解得a≥-1.【补偿训练】已知函数f(x)=若关于x的方程f(x)=k有两个不等的实根,则实数k的取值范围是( )A.(0,+∞)B.(0,1]C.(1,+∞)D.(-∞,1)【解析】选B.作出函数f(x)的图象,由图象知,当0<k≤1时, y=k与y=f(x)的图象有两个交点,此时方程f(x)=k有两个不等实根,所以0<k ≤1.二、多选题(共5分,全部选对的得5分,选对但不全的得3分,有选错的得0分)4.已知x0是函数f(x)=2x+的一个零点.若x1∈(1,x0),x2∈(x0,+∞),则( )A.f(x1)>0B.f(x1)<0C.f(x2)>0D.f(x2)<0【解析】选BC.在同一平面直角坐标系中画出函数y=2x和函数y=的图象,如图所示,由图可知函数y=2x和函数y=的图象只有一个交点,即函数f(x)=2x+只有一个零点x0,且x0>1.因为x1∈(1,x0),x2∈(x0,+∞),所以由函数图象可知,f(x1)<0,f(x2)>0.三、填空题(每小题5分,共10分)5.若方程|x2-4x|-a=0有四个不相等的实根,则实数a的取值范围是.【解析】由|x2-4x|-a=0,得a=|x2-4x|,作出函数y=|x2-4x|的图象,则由图象可知,要使方程|x2-4x|-a=0有四个不相等的实根,则0<a<4.答案:(0,4)【补偿训练】设函数f(x)=若函数f(x)有且仅有1个零点,则实数a的取值范围是.【解析】当x>0时,f(x)=3x+1>1,函数无零点;要使函数f(x)有且仅有1个零点,则f(x)=a-2x 在(-∞,0]上有且仅有1个零点.画出函数y=a与函数y=2x(x≤0)的图象,如图所示.因为当x≤0时,2x∈(0,1],所以a∈(0,1].答案:(0,1]6.已知函数f(x)是定义域为R的奇函数,-2是它的一个零点,且在(0,+∞)上是增函数,则该函数有个零点,这几个零点的和等于.【解析】因为函数f(x)是定义域为R的奇函数,且在(0,+∞)上是增函数,所以f(0)=0.又因为f(-2)=0,所以f(2)=-f(-2)=0,故该函数有3个零点,这3个零点之和等于0.答案:3 0四、解答题7.(10分)已知函数f(x)=-x2+2ex+m-1,g(x)=x+(x>0).(1)若g(x)=m有零点,求m的取值范围;(2)试确定m的取值范围,使得g(x)-f(x)=0有两个相异实根.【解析】(1)作出g(x)=x+(x>0)的图象如图:可知若g(x)=m有零点,则有m≥2e.故m的取值范围为{m|m≥2e}.(2)g(x)-f(x)=0有两个相异实根,即g(x)与f(x)的图象有两个不同的交点.在同一平面直角坐标系中,作出g(x)=x+(x>0)和f(x)的图象,如图.因为f(x)=-x2+2ex+m-1=-(x-e)2+m-1+e2,其图象的对称轴为直线x=e,开口向下,最大值为m-1+e2,故当m-1+e2>2e,即m>-e2+2e+1时, g(x)与f(x)有两个不同的交点,即g(x)-f(x)=0有两个相异实根,所以m的取值范围是m>-e2+2e+1.2、利用二分法求方程的近似解基础练习1.下列函数图象与x轴均有交点,其中不能用二分法求图中函数零点的是( )【解析】选B.利用二分法求函数零点必须满足零点两侧函数值异号.在B中,不满足f(a)·f(b)<0,不能用二分法求零点,由于A,C,D中零点两侧函数值异号,故可采用二分法求零点.2.若函数f(x)在[a,b]上的图象为一条连续不断的曲线,且同时满足f(a)f(b)<0,f(a)f>0,则( )A.f(x)在上有零点B.f(x)在上有零点C.f(x)在上无零点D.f(x)在上无零点【解析】选B.由f(a)f(b)<0,f(a)f>0可知f f(b)<0,根据零点存在定理可知f(x)在上有零点,在上有无零点无法判断.3.用二分法求关于x的方程ln x+2x-6=0的近似解时,能确定为解所在的初始区间的是( )A.(2,3)B.(0,2)C.(1,2)D.(0,+∞)【解析】选A.令函数f(x)=ln x+2x-6,可判断在(0,+∞)上单调递增,所以f(1)=-4<0,f(2)=ln 2-2<0,f(3)=ln 3>0,所以根据函数的零点存在定理可得:零点在(2,3)内,即方程ln x+2x-6=0的近似解在(2,3)内.4.已知函数f(x)=x3-x2+1.(1)证明方程f(x)=0在区间[0,2]内有实数解;(2)使用二分法,取区间的中点三次,指出方程f(x)=0(x∈[0,2])的实数解x0在哪个较小的区间内.【解析】(1)因为f(0)=1>0,f(2)=-<0,所以f(0)·f(2)<0,由函数的零点存在定理可得方程f(x)=0在区间[0,2]内有实数解.(2)取x1=(0+2)=1,得f(1)=>0,由此可得f(1)·f(2)<0,下一个有解区间为(1,2).再取x2=(1+2)=,得f=-<0,所以f(1)·f<0,下一个有解区间为.再取x3==,得f=>0,所以f·f<0,下一个有解区间为.综上所述,所求的实数解x0在区间内.创新练习一、单选题(每小题5分,共15分)1.下列关于函数y=f(x),x∈[a,b]的叙述中,正确的个数为( )①若x0∈[a,b]且满足f(x0)=0,则(x0,0)是f(x)的一个零点;②若x0是f(x)在[a,b]上的零点,则可用二分法求x0的近似值;③函数f(x)的零点是方程f(x)=0的根,但f(x)=0的根不一定是函数f(x)的零点.A.0B.1C.2D.3【解析】选A.①中x0∈[a,b]且f(x0)=0,所以x0是f(x)的一个零点,而不是(x0,0),故①错误;②由于x0两侧函数值不一定异号,故②错误;③方程f(x)=0的根一定是函数f(x)的零点,故③错误.2.下列函数不宜用二分法求零点的是( )A.f(x)=x3-1B.f(x)=ln x+3C.f(x)=x2+2x+2D.f(x)=-x2+4x-1【解析】选C.因为f(x)=x2+2x+2=(x+)2≥0,不存在小于0的函数值,所以不能用二分法求零点.3.用二分法求方程ln(2x+6)+2=3x的根的近似值时,令f(x)=ln(2x+6)+2-3x,并用计算器得到表格:x 1.00 1.25 1.375 1.50f(x) 1.079 4 0.191 8 -0.360 4 -0.998 9则由表中的数据,可得方程ln(2x+6)+2=3x的一个近似解(精确度为0.1)为( )A.1.125B.1.312 5C.1.437 5D.1.468 75【解析】选B.因为f(1.25)·f(1.375)<0,故根据二分法的思想,知函数f(x)的零点在区间(1.25,1.375)内,但区间(1.25,1.375)的长度为0.125>0.1,因此需要取(1.25,1.375)的中点1.312 5,两个区间(1.25,1.312 5)和(1.312 5,1.375)中必有一个满足区间端点的函数值符号相异,又区间的长度为0.062 5<0.1,因此1.312 5是一个近似解.【补偿训练】某同学在借助计算器求“方程lg x=2-x的近似解(精确度为0.1)”时,设f(x)=lg x+x-2,算得f(1)<0,f(2)>0;在以下过程中,他用二分法又取了4个x的值,计算了其函数值的正负,并得出判断:方程的近似解是x≈1.8.那么他再取的x的4个值依次是.【解析】第一次用二分法计算得区间(1.5,2),第二次得区间(1.75,2),第三次得区间(1.75,1.875),第四次得区间(1.75,1.812 5).答案:1.5,1.75,1.875,1.812 5二、多选题(共5分,全部选对的得5分,选对但不全的得3分,有选错的得0分)4.函数f(x)=x+x-4的零点所在的区间为( )A.(0,1)B.(1,3)C.(3,4)D.(4,8)【解析】选AD.设y1=lo x,y2=4-x,则f(x)的零点个数,即函数y1与y2的图象的交点个数,作出两函数图象如图.由图知y1与y2在区间(0,1)内有一个交点,当x=4时,y1=-2,y2=0;当x=8时,y1=-3,y2=-4,所以在(4,8)内两曲线又有一个交点.即函数f(x)=x+x-4的零点所在的区间为(0,1)和(4,8).三、填空题(每小题5分,共10分)5.函数f(x)=x2+ax+b有零点,但不能用二分法求出,则a,b的关系是.【解题指南】函数有零点,但不能用二分法,说明函数在零点两侧同号,结合二次函数的性质,说明函数f(x)的图象与x轴只有一个交点.【解析】因为函数f(x)=x2+ax+b有零点,但不能用二分法,所以函数f(x)=x2+ax+b的图象与x 轴只有一个交点,所以Δ=a2-4b=0,所以a2=4b.答案:a2=4b6.用二分法研究函数f(x)=x3+3x-1在区间[0,1]内的零点时,第一次经计算得f(0)<0,f(0.5)>0,f(1)>0,可得其中一个零点x0∈,第二次应计算.【解析】因为f(0)<0,f(0.5)>0,所以f(0)·f(0.5)<0,故f(x)的一个零点x0∈(0,0.5),利用二分法,则第二次应计算f=f(0.25).答案:(0,0.5) f(0.25)四、解答题7.(10分)已知函数f(x)=3ax2+2bx+c,a+b+c=0,f(0)>0,f(1)>0,证明a>0,并利用二分法证明方程f(x)=0在区间[0,1]内有两个实根.【证明】因为f(1)>0,所以3a+2b+c>0,即3(a+b+c)-b-2c>0.因为a+b+c=0,所以-b-2c>0,则-b-c>c,即a>c.因为f(0)>0,所以c>0,则a>0.在区间[0,1]内选取二等分点,则f=a+b+c=a+(-a)=-a<0.因为f(0)>0,f(1)>0,所以函数f(x)在区间和上各有一个零点.又f(x)最多有两个零点,从而f(x)=0在[0,1]内有两个实根.3、实际问题的函数刻画基础练习1.某同学家门前有一笔直公路直通长城,星期天,他骑自行车匀速前往,他先前进了a km,觉得有点累,就休息了一段时间,想想路途遥远,有些泄气,就沿原路返回骑了b km(b<a),当他想起“不到长城非好汉”时,便调转车头继续前进,则该同学离起点的距离与时间的函数关系图象大致为( )【解析】选C.由题意可知,前进a km时,s是关于时间t的一次函数,所以其图象特征是直线上升.由于中间休息了一段时间,该段时间的图象应是平行于横轴的一条线段.然后原路返回b km,图象下降且时间增加,再调转车头继续前进,则直线上升.C选项图象符合题意.2.甲、乙、丙、丁四辆玩具赛车同时从起点出发并做匀速直线运动,丙车最先到达终点.丁车最后到达终点.若甲、乙两车的图象如图所示,则对于丙、丁两车的图象所在区域,判断正确的是( )A.丙在Ⅲ区域,丁在Ⅰ区域B.丙在Ⅰ区城,丁在Ⅲ区域C.丙在Ⅱ区域,丁在Ⅰ区域D.丙在Ⅲ区域,丁在Ⅱ区域【解析】选A.由题图可得相同时间内丙车行驶路程最远,丁车行驶路程最近,即丙在Ⅲ区域,丁在Ⅰ区域.3.图A表示某年12个月中每月的平均气温,一般地,家庭用电量(kW·h)与气温(℃)有一定关系.图B表示某家庭在此年12个月的用电量.根据这些信息,以下关于该家庭用电量与气温间关系的叙述中,正确的是( )A.气温最高时,用电量最多B.气温最低时,用电量最少C.5月~7月用电量随气温增加而增加D.8月~12月用电量随气温降低而增加【解析】选C.逐月分析图象的升降趋势和变化率,排除干扰选项便能确定答案.比较题干中的两图可以发现,2月份用电量最多,而2月份气温不是最高,因此排除A.同理可排除B.8月至12月份气温一直下降,但用电量有增有减,排除D.由5,6,7三个月的气温和用电量可得出C正确.4.为了了解“环保型纸质饭盒”的使用情况,某研究性学习小组对本地区2005年至2007年使用纸质饭盒的所有快餐公司进行了调查,根据表格及图象提供的信息,可以得出这三年该地区每年平均消耗纸质饭盒万个.年份快餐公司数2005 302006 452007 90【解析】结合题中两个图表可得2005年消耗纸质饭盒总数=1×30=30(万个);2006年消耗纸质饭盒总数=2×45=90(万个);2007年消耗纸质饭盒总数=1.5×90=135(万个);故每年平均消耗纸质饭盒总数=(30+90+135)÷3=85(万个).答案:855.如图所示,已知边长为8米的正方形钢板有一个角被锈蚀,其中AE=4米,CD=6米.为了合理利用这块钢板,在五边形ABCDE内截取一个矩形BNPM,使点P在边DE上.(1)设MP=x米,PN=y米,将y表示成x的函数,求该函数的解析式及定义域;(2)求矩形BNPM面积的最大值.【解析】(1)如图所示,延长NP交AF于点Q,所以PQ=(8-y)米,EQ=(x-4)米.在△EDF中,=,所以=.所以y=-x+10,定义域为[4,8].(2)设矩形BNPM的面积为S,则S=xy=x=-(x-10)2+50.又x∈[4,8],所以当x=8时,S取最大值48.提升练习一、单选题(每小题5分,共20分)1.李明放学回家的路上,开始和同学边走边讨论问题,走得比较慢;然后他们索性停下来将问题彻底解决;最后他快速地回到了家.下列图象中与这一过程吻合得最好的是( )【解析】选D.根据实际情况较吻合的应为D.2.某公司市场营销人员的个人月收入与其每月的销售量成一次函数关系,如图所示,由图中给出的信息可知,营销人员没有销售量时的收入是( )A.310元B.300元C.290元D.280元【解析】选B.由题意可知,收入y是销售量x的一次函数,设y=ax+b(a≠0),将(1,800),(2,1 300)代入得a=500,b=300.当销售量x=0时y=300.3.某厂生产中所需一些配件可以外购,也可以自己生产.如果外购,每个配件的价格是1.10元;如果自己生产,则固定成本将增加800元,并且生产每个配件的材料和劳力需0.60元,则决定此配件外购或自产的转折点(即生产多少件以上自产合算)是( )A.1 000件B.1 200件C.1 400件D.1 600件【解析】选D.设生产x件时自产合算,由题意得1.1x≥800+0.6x,解得x≥1 600.4.拟定从甲地到乙地通话m min的电话费f(m)=1.06·(0.50[m]+1),其中m>0,[m]是大于或等于m的最小整数(如[3]=3,[3.7]=4,[5.2]=6),则从甲地到乙地通话时间为5.5 min的通话费为( )A.3.71B.3.97C.4.24D.4.77【解析】选C.5.5 min的通话费为f(5.5)=1.06×(0.50×[5.5]+1)=1.06×(0.50×6+1)=1.06×4=4.24.二、多选题(每小题5分,共10分,全部选对的得5分,选对但不全的得3分,有选错的得0分)5.已知每生产100克饼干的原材料加工费为1.8元,某食品加工厂对饼干采用两种包装,其包装费用、销售价格如表所示:型号小包装大包装重量100克300克包装费0.5元0.7元销售价格 3.00元8.4元则下列说法正确的是( )A.买小包装实惠B.买大包装实惠C.卖3小包比卖1大包盈利多D.卖1大包比卖3小包盈利多【解析】选BD.大包装300克8.4元,则等价为100克2.8元,小包装100克3元,则买大包装实惠,故B正确,卖1大包盈利8.4-0.7-1.8×3=2.3(元),卖1小包盈利3-0.5-1.8=0.7(元),则卖3小包盈利0.7×3=2.1(元),则卖1大包比卖3小包盈利多,故D正确.6.某工厂8年来的产品年产量y与时间t(单位:年)的函数关系如图所示,则下面四个结论,正确的是( )A.前3年的年产量增长速度越来越快B.前3年的年产量增长速度越来越慢C.3年后,这种产品停止生产D.3年后,这种产品年产量保持不变【解析】选AD.由题干图可知,前3年中,年产量的增长速度越来越快,后5年的年产量是不变的,所以AD正确.三、填空题(每小题5分,共10分)7.已知直角梯形ABCD,如图(1)所示,动点P从点B出发,由B→C→D→A沿边运动,设点P运动的路程为x,△ABP的面积为f(x).如果函数y=f(x)的图象如图(2)所示,则△ABC的面积为.【解析】由题中图象可知BC=4,CD=5,DA=5,所以AB=5+=5+3=8,所以S△ABC=×8×4=16.答案:16【补偿训练】生活经验告诉我们,当水注入容器(设单位时间内进水量相同)时,水的高度随着时间的变化而变化,在下图中请选择与容器相匹配的图象,A对应;B对应;C对应;D对应.【解析】A容器下粗上细,水高度的变化先慢后快,故与(4)对应;B容器为球形,水高度变化为快—慢—快,应与(1)对应;C,D容器都是柱形的,水高度的变化速度都应是直线型,但C容器细,D容器粗,故水高度的变化为:C容器快,与(3)对应,D容器慢,与(2)对应.答案:(4) (1) (3) (2)8.某商人将手机先按原价提高40%,然后“八折优惠”,结果是每部手机比原价多赚144元,那么每部手机原价是元,实际售价为元.【解析】设每部手机原价是x元,由题意可得(1+40%)x·0.8-x=144,解得x=1 200.实际售价为1200+144=1 344(元).答案:1 200 1 344四、解答题(每小题10分,共20分)9.某电信公司推出两种手机收费方式:A种方式是月租20元,B种方式是月租0元.一个月本地网内打出的电话时间t(分钟)与打出电话费s(元)的函数关系如图所示,当打出电话150分钟时,这两种方式话费相差多少元?【解析】设A种方式对应的函数解析式为s=k1t+20,B种方式对应的函数解析式为s=k2t.当t=100时,100k1+20=100k2,所以k2-k1=.当t=150时,150k2-150k1-20=150×-20=10.答:这两种方式话费相差10元.10.某地上年度电价为0.8元/度,年用电量为1亿度.本年度计划将电价调至0.55~0.75元/度之间(包含0.55元/度和0.75元/度),经测算,若电价调至x元/度,则本年度新增用电量y(亿度)与(x-0.4)(元/度)成反比,且当x=0.65时,y=0.8.(1)求y与x之间的函数关系式;(2)若每度电的成本为0.3元,则电价调至多少时,电力部门本年度的收益将比上一年增加20%? [收益=用电量×(实际电价-成本价)]【解析】(1)因为y与(x-0.4)成反比,所以可设y=(k≠0),把x=0.65,y=0.8代入上式,得0.8=,解得k=0.2,所以y==,所以y与x之间的函数关系式为y=(0.55≤x≤0.75).(2)根据题意,得(x-0.3)=1×(0.8-0.3)×(1+20%),整理得x2-1.1x+0.3=0,解得x1=0.5(舍去)或x2=0.6,所以当电价调至0.6元/度时,电力部门本年度的收益将比上一年增加20%.4、用函数模型解决实际问题基础练习1.一等腰三角形的周长为20,底边y是关于腰长x的函数,它的解析式为( )A.y=20-2x(x≤10)B.y=20-2x(x<10)C.y=20-2x(5≤x≤10)D.y=20-2x(5<x<10)【解析】选D.由y+2x=20得y=20-2x.又得5<x<10.2.一个人以6米/秒的速度去追停在交通灯前的汽车,当他离汽车25米时,交通灯由红变绿,汽车以1米/秒2的加速度匀加速开走,那么( )A.人可在7秒内追上汽车B.人可在10秒内追上汽车C.人追不上汽车,其间距最少为5米D.人追不上汽车,其间距最少为7米【解析】选D.设汽车经过t秒行驶的路程为s米,则s=t2,车与人的间距d=(s+25)-6t=t2-6t+25=(t-6)2+7,当t=6时,d取得最小值7.3.今有一组试验数据如表所示:t 1.99 3.0 4.0 5.1 6.12u 1.5 4.04 7.5 12 18.01则能体现这些数据关系的函数模型是( )A.u=log2tB.u=2t-2C.u=D.u=2t-2【解析】选C.可以先描出各点(如图),并利用数据点直观地认识变量间的关系,选择合适的函数模型来刻画它.由图可知,图象不是直线上的点,排除选项D;图象不符合对数函数的图象特征,排除选项A;当t=3时2t-2=23-2=6,==4,由题干中表格知当t=3时,u=4.04,模型u=能较好地体现这些数据关系.4.某厂有许多形状为直角梯形的铁皮边角料,如图,为降低消耗,开源节流,现要从这些边角料上截取矩形铁皮(如图中阴影部分)备用.当截取的矩形面积最大时,矩形的两边长x,y分别为.【解析】由三角形相似,即=,得x=×(24-y),所以S=xy=-(y-12)2+180,故当y=12时,S有最大值,此时x=15.答案:15,125.某市居民生活用水收费标准如下:用水量x/t 每吨收费标准/元不超过2 t部分m超过2 t不超过4 t部分 3超过4 t部分n已知某用户1月份用水量为8 t,缴纳的水费为33元;2月份用水量为6 t,缴纳的水费为21元.设用户每月缴纳的水费为y元.(1)写出y关于x的函数解析式;(2)若某用户3月份用水量为3.5 t,则该用户需缴纳的水费为多少元?(3)若某用户希望4月份缴纳的水费不超过24元,求该用户最多可以用多少吨水.【解析】(1)由题设可得y=当x=8时,y=33;当x=6时,y=21,代入得解得所以y关于x的函数解析式为y=(2)当x=3.5时,y=3×3.5-3=7.5.故该用户3月份需缴纳的水费为7.5元.(3)令6x-15≤24,解得x≤6.5.故该用户最多可以用6.5 t水.提升练习一、单选题(每小题5分,共25分)1.某厂原来月产量为a,一月份增产10%,二月份比一月份减产10%,设二月份产量为b,则( )A.a=bB.a>bC.a<bD.无法比较a,b的大小【解析】选B.因为b=a(1+10%)(1-10%),所以b=a[1-(10%)2]=a,所以b=a×,所以a>b.2.用长度为24的材料围成一个矩形场地,中间有两道隔墙,要使矩形的面积最大,则隔墙的长度为( )A.3B.4C.6D.12【解析】选A.设隔墙长度为x,如图所示,则与隔墙垂直的边长为=12-2x,所以矩形面积S=x·(12-2x)=-2x2+12x=-2(x-3)2+18,0<x<6,所以当x=3时,S max=18.3.据调查,某自行车存车处在某星期日的存车量为2 000辆次,其中变速车存车费是每辆一次0.8元,普通车存车费是每辆一次0.5元,若普通车存车数为x辆次,存车费总收入为y元,则y 关于x的函数关系式是( )A.y=0.3x+800(0≤x≤2 000)B.y=0.3x+1 600(0≤x≤2 000)C.y=-0.3x+800(0≤x≤2 000)D.y=-0.3x+1 600(0≤x≤2 000)【解析】选D.依题意存车费总收入:y=0.5x+0.8(2 000-x)=-0.3x+1 600.4.我国工农业总产值计划从2000年到2020年翻两番,设平均每年增长率为x,则( )A.(1+x)19=4B.(1+x)20=3C.(1+x)20=2D.(1+x)20=4【解析】选D.翻两番,即从1变成4,从2000年到2020年共经过20年,即(1+x)20=4.【误区警示】翻番问题,要特别注意翻一番是由1变为2,翻两番是由1变为4.5.(2020·全国卷Ⅲ)Logistic模型是常用数学模型之一,可应用于流行病学领域.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数I(t)(t的单位:天)的Logistic模型:I(t)=,其中K为最大确诊病例数.当I(t*)=0.95K时,标志着已初步遏制疫情,则t*约为(ln 19≈3) ( )A.60B.63C.66D.69【解析】选C.因为I(t)=,所以I(t*)==0.95K,则=19,所以0.23(t*-53)=ln 19≈3,解得t*≈+53≈66.二、多选题(共5分,全部选对的得5分,选对但不全对的得3分,有选错的得0分)6.甲乙两人在一次赛跑中,路程s与时间t的函数关系如图所示,则下列说法正确的是( )A.甲比乙先出发B.甲比乙跑得快C.甲、乙两人的速度相同D.甲先到达终点【解析】选BD.由题图可知两人跑的路程相同,甲比乙跑的时间少,甲比乙跑得要快,比乙先到达终点.三、填空题(每小题5分,共10分)7.四个变量y1,y2,y3,y4随变量x变化的数据如表:关于x呈指数型函数变化的变量是.【解析】以爆炸式增长的变量呈指数函数变化.从表格中可以看出,四个变量y1,y2,y3,y4均是从2开始变化,且都是越来越大,但是增长速度不同,其中变量y2的增长速度最快,画出它们的图象(图略),可知变量y2关于x呈指数型函数变化.答案:y28.(2019·北京高考)李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60元/盒、65元/盒、80元/盒、90元/盒.为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付x元.每笔订单顾客网上支付成功后,李明会得到支付款的80%.(1)当x=10时,顾客一次购买草莓和西瓜各1盒,需要支付元;(2)在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x的最大值为.【解析】(1)顾客一次购买草莓和西瓜各1盒,原价应为60+80=140(元),超过了120元可以优惠,所以当x=10时,顾客需要支付140-10=130(元).(2)由题意知,当x确定后,顾客可以得到的优惠金额是固定的,所以顾客支付的金额越少,优惠的比例越大.而顾客要想得到优惠,最少要一次购买2盒草莓,此时顾客支付的金额为(120-x)元,所以(120-x)×80%≥120×0.7,所以x≤15.即x的最大值为15.答案:(1)130 (2)15四、解答题(每小题10分,共20分)9.某公司推出了一种高效环保型洗涤用品,年初上市后,公司经历了从亏损到盈利的过程,如图的二次函数图象(部分)刻画了该公司年初以来累积利润S(万元)与销售时间t(月)之间的关系(即前t个月的利润总和S与t之间的关系).根据图象提供的信息解答下列问题:(1)由已知图象上的三点坐标,求累积利润S(万元)与时间t(月)之间的函数关系式;(2)求截至第几月末公司累积利润可达到30万元;(3)求第八个月公司所获得的利润是多少万元.【解析】(1)可设S与t的函数关系式为S=at2+bt+c.由题意,得或或无论哪个均可解得a=,b=-2,c=0,所以所求函数关系式为S=t2-2t.(2)把S=30代入,得30=t2-2t,解得t1=10,t2=-6(舍去),所以截至第10个月末公司累积利润可达到30万元.(3)把t=7代入,得S=×72-2×7==10.5(万元),把t=8代入,得S=×82-2×8=16(万元),则第八个月获得的利润为16-10.5=5.5(万元),所以第八个月公司所获利润为5.5万元.10.某跨国饮料公司在对全世界所有人均GDP在0.5~8千美元的地区销售该公司A饮料的情况调查时发现:该饮料在人均GDP处于中等的地区人均A饮料销售量最多,然后向两边递减.(1)下列几个模拟函数中:①y=ax2+bx;②y=kx+b;③y=log a x+b;④y=a x+b(x表示人均GDP,单位:千美元,y表示年人均A饮料的销售量,单位:L).用哪个模拟函数来描述人均A饮料销售量与地区的人均GDP关系更合适?说明理由;(2)若人均GDP为1千美元时,年人均A饮料的销售量为2 L,人均GDP为4千美元时,年人均A 饮料的销售量为5 L,把(1)中你所选的模拟函数求出来,并求出各个地区中,年人均A饮料的销售量最多是多少?【解析】(1)用①来模拟比较合适.因为该饮料在人均GDP处于中等的地区人均A饮料销售量最多,然后向两边递减.而②,③,④表示的函数在区间上是单调函数,所以②,③,④都不合适,故用①来模拟比较合适.(2)因为人均GDP为1千美元时,年人均A饮料的销售量为2 L;人均GDP为4千美元时,年人均A饮料的销售量为5 L,把x=1,y=2;x=4,y=5代入y=ax2+bx,得解得a=-,b=,所以函数解析式为y=-x2+x(x∈[0.5,8]).因为y=-x2+x=-+,所以当x=时,年人均A饮料的销售量最多是L.创新练习1.把物体放在冷空气中冷却,如果物体原来的温度是T1(℃),空气的温度是T0(℃),经过t分钟后物体的温度T(℃)可由公式T=T0+(T1-T0)e-0.25t求得.把温度是90 ℃的物体,放在10 ℃的空气中冷却t分钟后,物体的温度是50 ℃,那么t的值约等于(参考数据:ln 3≈1.099,ln 2≈0.693) ( )A.1.78B.2.77C.2.89D.4.40【解析】选B.由题意可知50=10+(90-10)·e-0.25t,整理得e-0.25t=,即-0.25t=ln =-ln 2≈-0.693,解得t≈2.77.2.某校学生研究性学习小组发现,学生上课的注意力指标随着听课时间的变化而变化,老师讲课开始时,学生的兴趣激增;接下来学生的兴趣将保持较理想的状态一段时间,随后学生的注意力开始分散.设 f(x)表示学生注意力指标,该小组发现f(x)随时间x(分钟)的变化规律(f(x)越大,表明学生的注意力越集中)如下:f(x)=(a>0,a≠1),若上课后第5分钟时的注意力指标为140,回答下列问题:(1)求a的值;(2)上课后第5分钟时和下课前5分钟时比较,哪个时间注意力更集中?并请说明理由;(3)在一节课中,学生的注意力指标至少达到140的时间能保持多长?【解析】(1)由题意得,当x=5时,f(x)=140,即100·-60=140,解得,a=4.(2)f(5)=140,f(35)=-15×35+640=115,由于f(5)>f(35),故上课后第5分钟时比下课前5分钟时注意力更集中.(3)①当0≤x≤10时,由(1)知,f(x)≥140的解集为[5,10];②当10<x≤20时,f(x)=340>140,成立;③当20<x≤40时,-15x+640≥140,。

北师大版高中数学必修必修课后习题答案

北师大版高中数学必修必修课后习题答案

第一章 算法初步1.1算法与程序框图练习(P5) 1、算法步骤:第一步,给定一个正实数r .第二步,计算以r 为半径的圆的面积2S r π=.第三步,得到圆的面积S .2、算法步骤:第一步,给定一个大于1的正整数n .第二步,令1i =.第三步,用i 除n ,等到余数r .第四步,判断“0r =”是否成立. 若是,则i 是n 的因数;否则,i 不是n 的因数. 第五步,使i 的值增加1,仍用i 表示.第六步,判断“i n >”是否成立. 若是,则结束算法;否则,返回第三步.练习(P19)算法步骤:第一步,给定精确度d ,令1i =.的到小数点后第i 位的不足近似值,赋给a 的到小数点后第i 位的过剩近似值,赋给b .第三步,计算55ba m =-.第四步,若m d <,则得到5a;否则,将i 的值增加1,仍用i 表示.返回第二步. 第五步,输出5a.程序框图:习题1.1 A 组(P20)1、下面是关于城市居民生活用水收费的问题.为了加强居民的节水意识,某市制订了以下生活用水收费标准:每户每月用水未超过7 m 3时,每立方米收费1.0元,并加收0.2元的城市污水处理费;超过7m 3的部分,每立方收费1.5元,并加收0.4元的城市污水处理费.设某户每月用水量为x m 3,应交纳水费y 元,那么y 与x 之间的函数关系为 1.2,071.9 4.9,7x x y x x ≤≤⎧=⎨->⎩我们设计一个算法来求上述分段函数的值. 算法步骤:第一步:输入用户每月用水量x .第二步:判断输入的x 是否不超过7. 若是,则计算 1.2y x =;若不是,则计算 1.9 4.9y x =-.第三步:输出用户应交纳的水费y .程序框图:2、算法步骤:第一步,令i =1,S=0.第二步:若i ≤100成立,则执行第三步;否则输出S. 第三步:计算S=S+i 2. 第四步:i = i +1,返回第二步.程序框图:3、算法步骤:第一步,输入人数x ,设收取的卫生费为m 元.第二步:判断x 与3的大小. 若x >3,则费用为5(3) 1.2m x =+-⨯;若x ≤3,则费用为5m =.第三步:输出m .程序框图:B 组 1、算法步骤:第一步,输入111222,,,,,a b c a b c ..第二步:计算21121221b c b c x a b a b -=-.第三步:计算12211221a c a c y ab a b -=-.第四步:输出,x y .程序框图:2、算法步骤:第一步,令n=1第二步:输入一个成绩r,判断r与6.8的大小. 若r≥6.8,则执行下一步;若r<6.8,则输出r,并执行下一步.第三步:使n的值增加1,仍用n表示.第四步:判断n与成绩个数9的大小. 若n≤9,则返回第二步;若n>9,则结束算法.程序框图:说明:本题在循环结构的循环体中包含了一个条件结构.1.2基本算法语句练习(P24)13练习(P2912、本程序的运行过程为:输入整数x. 若x是满足9<x<100的两位整数,则先取出x的十位,记作a,再取出x的个位,记作b,把a,b调换位置,分别作两位数的个位数与十位数,然后输出新的两位数. 如输入25,则输出52.34练习(P32)12习题1.2 A组(P33)1、1(0)0(0)1(0)x xy xx x-+<⎧⎪==⎨⎪+>⎩23、程序:习题1.2 B组(P33)1、程序:23 41.3算法案例 练习(P45)1、(1)45; (2)98; (3)24; (4)17.2、2881.75.3、2200811111011000=() ,820083730=() 习题1.3 A 组(P48) 1、(1)57; (2)55. 2、21324.3、(1)104; (2)7212() (3)1278; (4)6315().4、习题1.3 B 组(P48)1、算法步骤:第一步,令45n =,1i =,0a =,0b =,0c =.第二步,输入()a i .第三步,判断是否0()60a i ≤<. 若是,则1a a =+,并执行第六步. 第四步,判断是否60()80a i ≤<. 若是,则1b b =+,并执行第六步. 第五步,判断是否80()100a i ≤≤. 若是,则1c c =+,并执行第六步. 第六步,1i i =+. 判断是否45i ≤. 若是,则返回第二步.第七步,输出成绩分别在区间[0,60),[60,80),[80,100]的人数,,a b c .2、如“出入相补”——计算面积的方法,“垛积术”——高阶等差数列的求和方法,等等.第二章 复习参考题A 组(P50)1、(1)程序框图: 程序: 1、(2)程序框图: 程序:2、见习题1.2 B 组第1题解答.3、45(1)向下的运动共经过约199.805 m (2)第10次着地后反弹约0.098 m (3)全程共经过约299.609 m13x 和它的位数n . n 是偶数,令2n m =;如果n 是奇数,令12n m -=. 1)i +-位上的数字是否相等. 若是,则使i 的值增加1,仍用i表示;否则,x不是回文数,结束算法.”是否成立. 若是,则n是回文数,结束算法;否则,返回第四步.第五步,判断“i m第二章统计2.1随机抽样练习(P57)1、.情况之间有误差. 如抽取的部分个体不能很好地代表总体,那么我们分析出的结果就会有偏差.2、(1)抽签法:对高一年级全体学生450人进行编号,将学生的名字和对应的编号分别写在卡片上,并把450张卡片放入一个容器中,搅拌均匀后,每次不放回地从中抽取一张卡片,连续抽取50次,就得到参加这项活动的50名学生的编号.(2)随机数表法:第一步,先将450名学生编号,可以编为000,001, (449)第二步,在随机数表中任选一个数. 例如选出第7行第5列的数1(为了便于说明,下面摘取了附表的第6~10行).16 22 77 94 39 49 54 43 54 82 17 37 93 23 78 87 35 20 96 43 84 26 34 91 6484 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 7663 01 63 78 59 16 95 55 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 7933 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 5457 60 86 32 44 09 47 27 96 54 49 17 46 09 62 90 52 84 77 27 08 02 73 43 28第三步,从选定的数1开始向右读,得到一个三位数175,由于175<450,说明号码175在总体内,将它取出;继续向右读,得到331,由于331<450,说明号码331在总体内,将它取出;继续向右读,得到572,由于572>450,将它去掉. 按照这种方法继续向右读,依次下去,直到样本的50个号码全部取出,这样我们就得到了参加这项活动的50名学生.3、用抽签法抽取样本的例子:为检查某班同学的学习情况,可用抽签法取出容量为5的样本. 用随机数表法抽取样本的例子:部分学生的心理调查等.抽签法能够保证总体中任何个体都以相同的机会被选到样本之中,因此保证了样本的代表性.4、与抽签法相比,随机数表法抽取样本的主要优点是节省人力、物力、财力和时间,缺点是所产生的样本不是真正的简单样本.练习(P59)1、系统抽样的优点是:(1)简便易行;(2)当对总体结构有一定了解时,充分利用已有信息对总体中的个体进行排队后再抽样,可提高抽样调查;(3)当总体中的个体存在一种自然编号(如生产线上产品的质量控制)时,便于施行系统抽样法.系统抽样的缺点是:在不了解样本总体的情况下,所抽出的样本可能有一定的偏差.2、(1)对这118名教师进行编号;(2)计算间隔1187.37516k==,由于k不是一个整数,我们从总体中随机剔除6个样本,再来进行系统抽样. 例如我们随机剔除了3,46,59,57,112,93这6名教师,然后再对剩余的112位教师进行编号,计算间隔7k=;(3)在1~7之间随机选取一个数字,例如选5,将5加上间隔7得到第2个个体编号12,再加7得到第3个个体编号19,依次进行下去,直到获取整个样本.3、由于身份证(18位)的倒数第二位表示性别,后三位是632的观众全部都是男性,所以这样获得的调查结果不能代表女性观众的意见,因此缺乏代表性.练习(P62)1、略2、这种说法有道理,因为一个好的抽样方法应该能够保证随着样本容量的增加,抽样调查结果会接近于普查的结果. 因此只要根据误差的要求取相应容量的样本进行调查,就可以节省人力、物力和财力.3、可以用分层抽样的方法进行抽样. 将麦田按照气候、土质、田间管理水平的不同而分成不同的层,然后按照各层麦田的面积比例及样本容量确定各层抽取的面积,再在各层中抽取个体(这里的个体是单位面积的一块地).习题2.1 A组(P63)1、产生随机样本的困难:(1)很难确定总体中所有个体的数目,例如调查对象是生产线上生产的产品.(2)成本高,要产生真正的简单随机样本,需要利用类似于抽签法中的抽签试验来产生非负整值随机数.(3)耗时多,产生非负整数值随机数和从总体中挑选出随机数所对的个体都需要时间.2、调查的总体是所有可能看电视的人群.学生A的设计方案考虑的人数是:上网而且登录某网址的人群,那些不能上网的人群,或者不登录某网址的人群就被排除在外了. 因此A方案抽取的样本的代表性差.学生B的设计方案考虑的人群是小区内的居民,有一定的片面性. 因此B方案抽取的样本的代表性差.学生C的设计方案考虑的人群是那些有电话的人群,也有一定的片面性. 因此C方案抽取的样本的代表性.所以,这三种调查方案都有一定的片面性,不能得到比较准确的收视率.3、(1)因为各个年级学习任务和学生年龄等因素的不同,影响各年级学生对学生活动的看法,所以按年级分层进行抽样调查,可以得到更有代表性的样本.(2)在抽样的过程中可能遇到的问题如敏感性问题:有些学生担心提出意见对自己不利;又如不响应问题:由于种种原因,有些学生不能发表意见;等等.(3)前面列举的两个问题都可能导致样本的统计推断结果的误差.(4)为解决敏感性问题,可以采用阅读与思考栏目“如何得到敏感性问题的诚实反应”中的方法设计调查问卷;为解决不响应问题,可以事先向全体学生宣传调查的意义,并安排专人负责发放和催收调查问卷,最大程度地回收有效调查问卷.4、将每一天看作一个个体,则总体由365天组成. 假设要抽取50个样本,将一年中的各天按先后次序编号为0~364天用简单随机抽样设计方案:制作365个号签,依次标上0~364. 将号签放到容器内充分搅拌均匀,从容器中任意不放回取出50个号签. 以签上的号码所对应的那些天构成样本,检测样本中所有个体的空气质量.用系统抽样设计抽样方案:先通过简单随机抽样方法从365天中随机抽出15天,再把剩下的350天重新按先后次序编号为0~349. 制作7个分别标有0~7的号签,放在容器中充分搅拌均匀. 从容器中任意取出一个号签,设取出的号签的编号为a ,则编号为7(050)a k k +≤<所对应的那些天构成样本,检测样本中所有个体的空气质量.显然,系统抽样方案抽出的样本中个体在一年中排列的次序更规律,因此更好实施,更受方案的实施者欢迎.5、田径队运动员的总人数是564298+=(人),要得到28人的样本,占总体的比例为27.于是,应该在男运动员中随机抽取256167⨯=(人),在女运动员中随机抽取281612-=(人).这样我们就可以得到一个容量为28的样本.6、以10为分段间隔,首先在1~10的编号中,随机地选取一个编号,如6,那么这个获奖者奖品的编号是:6,16,26,36,46.7、说明:可以按年级分层抽样的方法设计方案. 习题2.1 B 组(P64)1、说明:可以按年级分层抽样的方法设计方案,调查问卷由学生所关心的问题组成. 例如:(1)你最喜欢哪一门课程? (2)你每月的零花钱平均是多少? (3)你最喜欢看《新闻联播》吗? (4)你每天早上几点起床? (5)你每天晚上几点睡觉?要根据统计的结果和具体的情况解释结论,主要从引起结论的可能原因及结论本身含义来解释.2、说明:这是一个开放性的题目,没有一个标准的答案. 2.2用样本估计总体 练习(P71)1、说明:由于样本的极差为364.41362.51 1.90-=,取组距为0.19,将样本分为10组. 可以按照书上的方法制作频率分布表、频率分布直观图和频率折线图.2、说明:此题目属于应用题,没有标准的答案.3、茎叶图为:由该图可以看出30名工人的日加工零件个数稳定在120件左右. 练习(P74)这里应该采用平均数来表示每一个国家项目的平均金额,因为它能反应所有项目的信息. 但平均数会受到极端数据2000万元的影响,所以大多数项目投资金额都和平均数相差比较大. 练习(P79)1、甲乙两种水稻6年平均产量的平均数都是900,但甲的标准差约等于23.8,乙的标准差约等于41.6,所以甲的产量比较稳定.2、(1)平均重量496.86x ≈,标准差 6.55s ≈.(2)重量位于(,)x s x s -+之间有14袋白糖,所占的百分比约为66.67%.3、(1)略. (2)平均分19.25x ≈,中位数为15.2,标准差12.50s ≈.这些数据表明这些国家男性患该病的平均死亡率约为19.25,有一半国家的死亡率不超过15.2,15.2x >说明存在大的异常数据,值得关注. 这些异常数据使标准差增大. 习题2.2 A 组(P81) 1(2)汞含量分布偏向于大于1.00 ppm 的方向,即多数鱼的汞含量分布在大于1.00 ppm 的区域.(3)不一定. 因为我们不知道各批鱼的汞含量分布是否都和这批鱼相同. 即使各批鱼的汞含量分布相同,上面的数据只能为这个分布作出估计,不能保证平均汞含量大于1.00 ppm. (4)样本平均数 1.08x ≈,样本标准差0.45s ≈.(5)有28条鱼的汞含量在平均数与2倍标准差的和(差)的范围内.2度比较短,所以在这批棉花中混进了一些次品.3、说明:应该查阅一下这所大学的其他招生信息,例如平均数信息、最低录取分数线信息等. 尽管该校友的分数位于中位数之下,而中位数本身并不能提供更多录取分数分布的信息.在已知最低录取分数线的情况下,很容易做出判断;在已知平均数小于中位数很多,则说明最低录取分数线较低,可以推荐该校友报考这所大学,否则还要获取其他的信息(如标准差的信息)来做出判断.4、说明:(1)对,从平均数的角度考虑; (2)对,从标准差的角度考虑;(3)对,从标准差的角度考虑; (4)对,从平均数和标准差的角度考虑; 5、(1)不能. 因为平均收入和最高收入相差太多,说明高收入的职工只占极少数. 现在已知知道至少有一个人的收入为50100x =万元,那么其他员工的收入之和为4913.55010075ii x==⨯-=∑(万元)每人平均只有 1.53. 如果再有几个收入特别高者,那么初进公司的员工的收入将会很低.(2)不能,要看中位数是多少.(3)能,可以确定有75%的员工工资在1万元以上,其中25%的员工工资在3万元以上.(4)收入的中位数大约是2万. 因为有年收入100万这个极端值的影响,使得年平均收入比中位数高许多.6、甲机床的平均数=1.5x 甲,标准差=1.2845s 甲;乙机床的平均数 1.2z y =,标准差0.8718z s =. 比较发现乙机床的平均数小而且标准差也比较小,说明乙机床生产出的次品比甲机床少,而且更为稳定,所以乙机床的性能较好. 7、(1)总体平均数为199.75,总体标准差为95.26.(2)可以使用抓阄法进行抽样. 样本平均数和标准差的计算结果和抽取到的样本有关.(3) (4)略 习题2.2 B 组(P82)1、(1)由于测试1T 的标准差小,所以测试1T 结果更稳定,所以该测试做得更好一些. (2)由于2T 测出的值偏高,有利于增强队员的信心,所以应该选择测试2T .2、说明:此题需要在本节开始的时候就布置,先让学生分头收集数据,汇总所收集的数据才能完成题目.2.3变量间的相关关系 练习(P85)1、从已经掌握的知识来看,吸烟会损害身体的健康. 但除了吸烟之外,还有许多其他的随机因素影响身体健康,人体健康是很多因素共同作用的结果. 我们可以找到长寿的吸烟者,也更容易发现由于吸烟而引发的患病者,所以吸烟不一定引起健康问题. 但吸烟引起健康问题的可能性大,因此“健康问题不一定是由吸烟引起的,所以可以吸烟”的说法是不对的.2、从现在我们掌握的知识来看,没有发现根据说明“天鹅能够带来孩子”,完全可能存在既能吸引天鹅和又使婴儿出生率高的第3个因素(例如独特的环境因素),即天鹅与婴儿出生率之间没有直接的关系,因此“天鹅能够带来孩子”的结论不可靠.而要证实此结论是否可靠,可以通过试验来进行. 相同的环境下将居民随机地分为两组,一组居民和天鹅一起生活(比如家中都饲养天鹅),而另一组居民的附近不让天鹅活动,对比两组居民的出生率是否相同.(1)散点图如下:练习(P92)1、当0x =时,147.767y =,这个值与实际卖出的热饮杯数150不符,原因是:线性回归方程中的截距和斜率都是通过样本估计的,存在随机误差,这种误差可以导致预测结果的偏差;即使截距和斜率的估计没有误差,也不可能百分之百地保证对应于x ,预报值y 能够等于实际值y . 事实上:y bx a e =++. (这里e 是随机变量,是引起预报值y 与真实值y 之间的误差的原因之一,其大小取决于e 的方差.) 2、数据的散点图为:从这个散点图中可以看出,鸟的种类数与海拔高度应该为正相关(事实上相关系数为0.793). 但是从散点图的分布特点来看,它们之间的线性相关性不强. 习题2.3 A 组(P94)1、教师的水平与学生的学习成绩呈正相关关系. 又如,“水涨船高”“登高望远”等.2、 (3)基本成正相关关系,即食品所含热量越高,口味越好.(4)因为当回归直线上方的食品与下方的食品所含热量相同时,其口味更好. 3、(1)散点图如下:(2)回归方程为:0.66954.933y x =+.(3)加工零件的个数与所花费的时间呈正线性相关关系.(2)回归直线如下图所示:4、(1)散点图为:(2)回归方程为:0.546876.425y x =+.(3)由回归方程知,城镇居民的消费水平和工资收入之间呈正线性相关关系,即工资收入水平越高,城镇居民的消费水平越高. 习题2.3 B 组(P95)1、(1)散点图如下:(2)回归方程为: 1.44715.843y x =-.(3)如果这座城市居民的年收入达到40亿元,估计这种商品的销售额为42.037y ≈(万元).2、说明:本题是一个讨论题,按照教科书中的方法逐步展开即可.第二章 复习参考题A 组(P100)1、A .2、(1)该组的数据个数,该组的频数除以全体数据总数; (2)nm N.3、(1)这个结果只能说明A 城市中光顾这家服务连锁店的人比其他人较少倾向于选择咖啡色,因为光顾连锁店的人使一种方便样本,不能代表A 城市其他人群的想法. (2)这两种调查的差异是由样本的代表性所引起的. 因为A 城市的调查结果来自于该市光顾这家服装连锁店的人群,这个样本不能很好地代表全国民众的观点.4、说明:这是一个敏感性问题,可以模仿阅读与思考栏目“如何得到敏感性问题的诚实反应”来设计提问方法.5、表略. 可以估计出句子中所含单词的分布,以及与该分布有关的数字特征,如平均数、标准差等.6、(1)可以用样本标准差来度量每一组成员的相似性,样本标准差越小,相似程度越高.(2)A 组的样本标准差为 3.730A S ≈,B 组的样本标准差为11.789B S ≈. 由于专业裁判给分更符合专业规则,相似程度应该高,因此A 组更像是由专业人士组成的. 7、(1)中位数为182.5,平均数为217.1875.(2)这两种数字特征不同的主要原因是,430比其他的数据大得多,应该查找430是否由某种错误而产生的. 如果这个大数据的采集正确,用平均数更合适,因为它利用了所有数据的信息;如果这个大数据的采集不正确,用中位数更合适,因为它不受极端值的影响,稳定性好. 8、(1)略.(2)系数0.42是回归直线的斜率,意味着:对于农村考生,每年的入学率平均增长0.42%.(3)城市的大学入学率年增长最快.说明:(4)可以模仿(1)(2)(3)的方法分析数据.第二章 复习参考题B 组(P101)1、频率分布如下表:从表中看出当把 指标定为17.46千元 时,月65%的推销员经过努力才能完成销 售指标.2、(1)数据的散点图如下:(2)用y 表示身高,x 表示年龄,则数据的回归方程为6.y x =+.(3)在该例中,斜率6.317表示孩子在一年中增加的高度.(4)每年身高的增长数略. 3~16岁的身高年均增长约为6.323 cm. (5)斜率与每年平均增长的身高之间之间近似相等. 第三章 概率3.1随机事件的概率1、(1)试验可能出现的结果有3个,两个均为正面、一个正面一个反面、两个均为反面.(2)通过与其他同学的结果汇总,可以发现出现一个正面一个反面的次数最多,大约在50次左右,两个均为正面的次数和两个均为反面的次数在25次左右. 由此可以估计出现一个正面一个反面的概率为0.50,出现两个均为正面的概率和两个均为反面的概率均为0.25.2、略3、(1)例如:北京四月飞雪;某人花两元钱买福利彩票,中了特等奖;同时抛10枚硬币,10枚都正面朝上.(2)例如:在王府井大街问路时,碰到会说中文的人;去烤鸭店吃饭的顾客点烤鸭;在1~1000的自然数任选一个数,选到的数大于1.练习(P118)1、说明:例如,计算机键盘上各键盘的安排,公交线路及其各站点的安排,抽奖活动中各奖项的安排等,其中都用到了概率. 学生可能举出各种各样的例子,关键是引导他们正确分析例子中蕴涵的概率思想.2、通过掷硬币或抽签的方法,决定谁先发球,这两种方法都是公平的. 而猜拳的方法不太公平,因为出拳有时间差,个人反应也不一样.3、这种说法是错误的. 因为掷骰子一次得到2是一个随机事件,在一次试验中它可能发生也可能不发生. 掷6次骰子就是做6次试验,每次试验的结果都是随机的,可能出现2也可能不出现2,所以6次试验中有可能一次2都不出现,也可能出现1次,2次,…,6次.练习(P121)1、0.72、0.6153、0.44、D5、B习题3.1 A组(P123)1、D.2、(1)0;(2)0.2;(3)1.3、(1)430.067645≈;(2)900.140645≈;(3)7010.891645-≈.4、略5、0.136、说明:本题是想通过试验的方法,得到这种摸球游戏对先摸者和后摸者是公平的结论. 最好把全班同学的结果汇总,根据两个事件出现的频率比较近,猜测在第一种情况下摸到红球的概率为110,在第二种下也为110. 第4次摸到红球的频率与第1次摸到红球的频率应该相差不远,因为不论哪种情况,第4次和第1次摸到红球的概率都是1 10.习题3.1 B组(P124)1、D.2、略. 说明:本题是为了学生根据实际数据作出一些推断. 一般我们假定每个人的生日在12个月中哪一个月是等可能的,这个假定是否成立,引导学生通过收集的数据作出初步的推断.3.2古典概率练习(P130)1、110. 2、17. 3、16.1、38,38.2、(1)113;(2)1213;(3)14;(4)313;(5)0;(6)213;(7)12;(8)1.说明:模拟的方法有两种.(1)把1~52个自然数分别与每张牌对应,再用计算机做模拟试验.(2)让计算机分两次产生两个随机数,第一次产生1~4的随机数,代表4个花色;第二次产生1~13的随机数,代表牌号.3、(1)不可能事件,概率为0;(2)随机事件,概率为49;(3)必然事件,概率为1;(4)让计算机产生1~9的随机数,1~4代表白球,5~9代表黑球.4、(1)16;(2)略;(3)应该相差不大,但会有差异. 存在差异的主要原因是随机事件在每次试验中是否发生是随机的,但在200次试验中,该事件发生的次数又是有规律的,所以一般情况下所得的频率与概率相差不大.习题3.2 A组(P133)1、游戏1:取红球与取白球的概率都为12,因此规则是公平的.游戏2:取两球同色的概率为13,异色的概率为23,因此规则是不公平的.游戏3:取两球同色的概率为12,异色的概率为12,因此规则是公平的.2、第一位可以是1~9这9个数字中的一个,第二位可以是0~9这10个数字中的一个,所以(1)190;(2)18919090-=;(3)9919010-=3、(1)0.52;(2)0.18.4、(1)12;(2)16;(3)56;(4)16.5、(1)25;(2)825.6、(1)920;(2)920;(3)12.习题3.2 B组(P134)1、(1)13;(2)14.2、(1)35;(2)310;(3)910.说明:(3)先计算该事件的对立事件发生的概率会比较简单.3、具体步骤如下:①建立概率模型. 首先要模拟每个人的出生月份,可用1,2,…,11,12表示月份,用产生取整数值的随机数的办法,随机产生1~12之间的随机数. 由于模拟的对象是一个有10个人的集体,故把连续产生的10个随机数作为一组模拟结果,可模拟产生100组这样的结果.②进行模拟试验. 可用计算器或计算机进行模拟试验.如使用Excel软件,可参看教科书125页的步骤,下图是模拟的结果:其中,A,B,C,D,E,F,G,H,I,J的每一行表示对一个10人集体的模拟结果. 这样的试验一共做了100次,所以共有100行,表示随机抽取了100个集体.③统计试验的结果. K,L,M,N列表示统计结果. 例如,第一行前十列中至少有两个数相同,表示这个集体中至少有两个人的生日在同一月. 本题的难点是统计每一行前十列中至少有两个数相同的个数. 由于需要判断的条件态度,所以用K,L,M三列分三次完成统计.其中K列的公式为“=IF(OR(A1=B1,A1=C1,A1=D1,A1=E1,A1=F1,A1=G1,A1=H1,A1=I1,A1=J1,B1=C1,B1=D1,B1=E1,B1=F1,B1=G1,B1=H1,B1=I1,B1=J1,C1=D1,C1=E1,C1=F1,C1=G1,C1=H1,C1=I1,C1=J1,D1=E1,D1=F1,D1=G1,D1=H1,D1=I1,D1=J1),1,0)”,L列的公式为“=IF(OR(E1=F1,E1=G1,E1=H1,E1=I1,E1=J1,F1=G1,F1=H1,F1=I1,F1=J1,G1=H1,G1=I1,G1=J1,H1=I1,H1=J1,I1=J1),1,0)”,M列的公式为“=IF(OR(K1=1,L1=1),1,0)”,M列的值为1表示该行所代表的10人集体中至少有两个人的生日在同一个月. N1表示100个10人集体中至少有两个人的生日在同一个月的个数,其公式为“=SUM(M$1:M$100)”. N1除以100所得的结果0.98,就是用模拟方法计算10人集体中至少有两个人的生日在同一个月的概率的估计值. 可以看出,这个估计值很接近1.3.3几何概率练习(P140)1、(1)1;(2)38.2、如果射到靶子上任何一点是等可能的,那么大约有100个镖落在红色区域.说明:在实际投镖中,命中率可能不同,这里既有技术方面的因素,又是随机因素的影响,所以在投掷飞镖、射击或射箭比赛中不会以一枪或一箭定输赢,而是取多次成绩的总和,这就是为了减少随机因素的影响.习题3.3 A组(P142)1、(1)49;(2)13;(3)29;(4)23;(5)59.2、(1)126;(2)12;(3)326;(4)326;(5)12;(6)313.说明:(4)是指落在6,23,9三个相邻区域的情况,而不是编号为6,7,8,9,四个区域.3、(1)25;(2)115;(3)35. 说明:本题假设在任何时间到达路口是等可能的.习题3.3 B组(P142)。

北师大版高中数学选择性必修第二册课后习题 第一章 1.1 数列的概念

北师大版高中数学选择性必修第二册课后习题 第一章 1.1 数列的概念

第一章数列§1 数列的概念及其函数特性1.1 数列的概念 课后篇巩固提升必备知识基础练1.已知数列{a n }的通项公式为a n =1+(-1)n+12,n ∈N +,则该数列的前4项依次为( )A.1,0,1,0B.0,1,0,1C.12,0,12,0D.2,0,2,0n 分别等于1,2,3,4时,a 1=1,a 2=0,a 3=1,a 4=0. 2.数列1,3,6,10,…的一个通项公式是( ) A.a n =n 2-n+1 B.a n =n (n -1)2C.a n =n (n+1)2D.a n =n 2+1n=1,2,3,4,代入A,B,C,D 检验,即可排除A,B,D,故选C. 3.已知数列{a n }的通项公式为a n =n 2-n-50,n ∈N +,则-8是该数列的( )A.第5项B.第6项C.第7项D.非任何一项n 2-n-50=-8,得n=7或n=-6(舍去). 4.数列23,45,67,89,…的第10项是( )A.1617B.1819C.2021D.22234项可知,数列的一个通项公式为a n =2n 2n+1,n ∈N +,当n=10时,a 10=2×102×10+1=2021.5.(浙江湖州期中)在数列0,14,…,n -12n,…中,第3项是 ;37是它的第项.7,设该数列为{a n },则数列的通项公式为a n =n -12n,则其第3项a 3=3-12×3=13,若a n =n -12n=37,可解得n=7.6.数列3,5,9,17,33,…的一个通项公式是 .n =2n +1,n ∈N +7.根据数列的前几项,写出下列各数列的一个通项公式.(1)-1,7,-13,19,…; (2)0.8,0.88,0.888,….符号问题可通过(-1)n 或(-1)n+1表示,其各项的绝对值的排列规律为:后面的数的绝对值总比前面数的绝对值大6,故通项公式为a n =(-1)n (6n-5).(2)将数列变形为89(1-0.1),89(1-0.01),89(1-0.001),…,∴a n =891-110n.8.已知数列{a n }的通项公式为a n =-n 2+n+110. (1)20是不是{a n }中的一项? (2)当n 取何值时,a n =0.令a n =-n 2+n+110=20,即n 2-n-90=0,∴(n+9)(n-10)=0, ∴n=10或n=-9(舍). ∴20是数列{a n }的第10项. (2)令a n =-n 2+n+110=0, 即n 2-n-110=0, ∴(n-11)(n+10)=0, ∴n=11或n=-10(舍),∴当n=11时,a n =0.关键能力提升练9.数列12,14,-58,1316,-2932,6164,…的一个通项公式是( )A.2n -32nB.-2n -32nC.(-1)n 2n -32nD.(-1)n+12n -32n21,22,23,24,…,易看出第2,3,4项的分子分别比分母少3.把第1项变为-2-32,因此原数列可化为-21-321,22-322,-23-323,24-324,….故原数列的一个通项公式为a n =(-1)n·2n -32n.10.设a n =1n+1+1n+2+1n+3+…+12n(n ∈N +),那么a n+1-a n 等于( )A.12n+1B.12n+2C.12n+1+12n+2D.12n+1−12n+2a n =1n+1+1n+2+1n+3+…+12n ,∴a n+1=1n+2+1n+3+…+12n+12n+1+12n+2,∴a n+1-a n =12n+1+12n+2−1n+1=12n+1−12n+2.11.如图是由7个有公共顶点O的直角三角形构成的图案,其中OA1=A1A2=A2A3=…=A7A8=1,如果把图中的直角三角形继续作下去,记OA1,OA2,…,OA n,…的长度构成数列{a n},则此数列的通项公式为( )A.a n=n,n∈N+B.a n=√n+1,n∈N+C.a n=√n,n∈N+D.a n=n2,n∈N+OA1=1,OA2=√2,OA3=√3,…,OA n=√n,…,∴a1=1,a2=√2,a3=√3,…,a n=√n,….12.(多选题)已知数列0,2,0,2,0,2,…,则前六项适合的通项公式为( )A.a n=1+(-1)nB.a n=2cos nπ2C.a n=2sin(n+1)π2D.a n=1-cos(n-1)π+(n-1)(n-2)解析对于选项A,由a n =1+(-1)n 得前六项为0,2,0,2,0,2,满足条件;对于选项B,由a n =2cos nπ2得前六项为0,-2,0,2,0,-2,不满足条件;对于选项C,由a n =2sin(n+1)π2得前六项为0,2,0,2,0,2,满足条件;对于选项D,由a n =1-cos(n-1)π+(n -1)(n-2)得前六项为0,2,2,8,12,22,不满足条件. 13.(多选题)下列选项中能满足数列1,0,1,0,1,0,…的通项公式的有( ) A.a n =1+(-1)n+12B.a n =sin 2nπ2C.a n =cos 2(n -1)π2D.a n ={1,n 是奇数0,n 是偶数,当n 为奇数时,选项ABCD 中的通项公式均得出1,当n 为偶数时,选项ABCD 中的通项公式均得出0. 14.已知数列{a n }的通项公式a n =(-1)n -1·n2n -1,n ∈N +,则a 1= ;a n+1= .(-1)n·(n+1)2n+11=(-1)1-1×12×1-1=1,a n+1=(-1)n+1-1·(n+1)2(n+1)-1=(-1)n·(n+1)2n+1.15.323是数列{n(n+2)}的第 项.a n =n 2+2n=323,解得n=17,或n=-19(舍去).∴323是数列{n(n+2)}的第17项.16.在数列{a n }中,a 1=2,a 17=66,通项公式a n =kn+b,其中k≠0. (1)求{a n }的通项公式;(2)判断88是不是数列{a n }中的项?∵a 1=2,a 17=66,a n =kn+b,k≠0,∴{k +b =2,17k +b =66, 解得{k =4,b =-2.∴a n =4n-2,n ∈N +. (2)令a n =88,即4n-2=88, 解得n=22.5∉N +.∴88不是数列{a n }中的项.学科素养创新练17.已知数列{a n }的通项公式是a n ={2-n ,n 是奇数,11+2-n,n 是偶数(n ∈N +),则a 3+1a 4= .3=2-3=18,a 4=11+2-4=1617, ∴1a 4=1716,∴a 3+1a 4=1916.18.已知数列9n 2-9n+29n 2-1,n ∈N +.请问在区间13,23内有无数列中的项?若有,有几项;若没有,请说明理由.a n =9n 2-9n+29n 2-1=(3n -1)(3n -2)(3n+1)(3n -1)=3n -23n+1,令13<3n -23n+1<23,∴{3n +1<9n -6,9n -6<6n +2,∴{n >76,n <83.∴76<n<83, ∴当且仅当n=2时,上式成立, 故区间13,23内有数列中的项,且只有一项为a 2=47.。

北师大版高中数学选择性必修第一册课后习题 第五章 §3 第1课时 组合(一)

北师大版高中数学选择性必修第一册课后习题 第五章 §3 第1课时 组合(一)

第五章计数原理§3组合问题第1课时组合(一)课后篇巩固提升合格考达标练1.下列问题中,组合问题的个数是( )①从全班50人中选出5人组成班委会;②从全班50人中选出5人分别担任班长、副班长、团支部书记、学习委员、生活委员;③从1,2,3,…,9中任取两个数求积;④从1,2,3,…,9中任取两个数求差或商.A.1B.2C.3D.4,从50人中选出5人组成班委会,不考虑顺序,是组合问题;②为排列问题;对于③,从1,2,3,…,9中任取两个数求积是组合问题;因为乘法满足交换律,而减法和除法不满足,故④为排列问题.2.有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有( ) A.60种 B.70种 C.75种 D.150种,选2名男医生、1名女医生的方法有C 62C 51=75(种). 3.C 30+C 41+C 52+C 63+…+C 的值为( )A.C 3B.C 3C.C 4D.C 430+C 41+C 52+C 63+…+C =C 44+C 43+C 53+…+C 3=C 4.4.若集合M={的元素共有 ( )A.1个B.3个C.6个D.7个C 70=C 77=1,C 71=C 76=7,C 72=C 75=7×62!=21,C 73=C 74=7×6×53×2=35>21,∴x=0,1,2,5,6,7.5.从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有 种(用数字填写答案).方法一)可分两种情况:第一种情况,只有1位女生入选,不同的选法有C 21C 42=12(种);第二种情况,有2位女生入选,不同的选法有C 22C 41=4(种).根据分类加法计数原理知,至少有1位女生入选的不同的选法有16种.(方法二)从6人中任选3人,不同的选法有C 63=20(种),从6人中任选3人都是男生,不同的选法有C 43=4(种),所以至少有1位女生入选的不同的选法有20-4=16(种).6.以下四个式子:①C n m =A n m m !;②A n m =n A n -1m -1;③C n m ÷C nm+1=m+1n -m;④C n+1m+1=n+1m+1C n m.其中正确的个数是 .;②式中A n m =n(n-1)(n-2)…(n -m+1),A n -1m -1=(n-1)(n-2)…(n -m+1), 所以A n m =n A n -1m -1,故②式成立; 对于③式,C nm ÷C nm+1=C n m C nm+1=A n m ·(m+1)!m !·A nm+1=m+1n -m,故③式成立;对于④式,C n+1m+1=A n+1m+1(m+1)!=(n+1)·A n m (m+1)m !=n+1m+1C n m,故④式成立.7.从2,3,5,7四个数中任取两个不同的数相乘,有m个不同的积;任取两个不同的数相除,有n个不同的商,则mn=.m=C42,n=A42,∴mn =12.8.如图,有A,B,C,D四个区域,用五种不同的颜色给它们涂色,要求共边的两区域颜色互异,每个区域只涂一种颜色,共有多少种不同的涂色方法?1步,涂A区域有C51种方法;第2步,涂B区域有C41种方法;第3步,涂C区域和D区域;若C区域涂与A区域相同的颜色,则D区域有4种涂法;若C区域涂A、B剩余3种颜色之一,即有C31种涂法,则D区域有C31种涂法.故共有C51·C41·(4+C31·C31)=260种不同的涂色方法.9.在一次数学竞赛中,某学校有12人通过了初试,学校要从中选出5人去参加市级培训,在下列条件下,有多少种不同的选法?(1)任意选5人;(2)甲、乙、丙三人必须参加;(3)甲、乙、丙三人不能参加;(4)甲、乙、丙三人只能有1人参加.从中任取5人是组合问题,共有C125=792种不同的选法.(2)甲、乙、丙三人必须参加,则只需从另外9人中选2人,是组合问题,共有C92=36种不同的选法.(3)甲、乙、丙三人不能参加,则只需从另外的9人中选5人,共有C95=126种不同的选法.(4)甲、乙、丙三人只能有1人参加,可分为两步:先从甲、乙、丙中选1人,有C31=3种选法,再从另外9人中选4人,有C94种选法,共有C31C94=378种不同的选法.等级考提升练10.用0,1,…,9十个数字组成的三位数中,有重复数字的三位数的个数为( )A.243B.252C.261D.2799×10×10=900.没有重复数字的三位数有C91A92=648,所以有重复数字的三位数的个数为900-648=252.11.若A n3=12C n2,则n等于( )A.8B.5或6C.3或4D.4A n3=n(n-1)(n-2),C n2=12n(n-1),所以n(n-1)(n-2)=12×12n(n-1).又n∈N+,且n≥3,所以n=8.12.(山东济宁期末)某校开设10门课供学生选修,其中A,B,C三门由于上课时间相同,至多选一门,学校规定每位学生选修三门,则每位学生不同的选修方案种数是( )A.120B.98C.63D.35,分2种情况讨论:①从A,B,C三门中选出1门,其余7门中选出2门,选法有C31C72=63(种);②从除A,B,C三门之外的7门中选出3门,选法有C73=35(种).故不同的选法种数为63+35=98.13.(多选题)若C17x=C172x-1,则正整数x的值是( )A.1B.4C.6D.8C 17x =C 172x -1,∴x=2x-1或x+2x-1=17, 解得x=1或x=6, 经检验都满足题意. 故选AC.14.(多选题)在100件产品中,有98件合格品,2件不合格品,从这100件产品中任意抽出3件,则( )A.抽出的3件中恰好有1件是不合格品的抽法有C 21C 982种B.抽出的3件中恰好有1件是不合格品的抽法有C 21C 982+C 22C 981种C.抽出的3件中至少有1件是不合格品的抽法有C 21C 982+C 22C 981种D.抽出的3件中至少有1件是不合格品的抽法有C 1003−C 983种,依次分析选项:对于A,抽出的3件中恰好有1件是不合格品,即2件合格品,1件不合格品,有C 21C 982种抽取方法,A 正确,B 错误;对于C,抽出的3件中至少有1件是不合格品,即2件合格品,1件不合格品或1件合格品,2件不合格品,有C 21C 982+C 22C 981种抽取方法,C 正确;对于D,用间接法分析,抽出的3件中没有不合格品的抽取方法有C 983种,则抽出的3件中至少有1件是不合格品的抽法有C 1003−C 983种,D 正确.故选ACD.15.某餐厅供应饭菜,每位顾客可以在餐厅提供的菜肴中任选2荤2素共4种不同的品种.现在餐厅准备了5种不同的荤菜,若要保证每位顾客有200种以上不同的选择,则餐厅至少还需准备不同的素菜品种 种(结果用数值表示).x 种不同的素菜.由题意,得C 52·C x 2≥200, 从而有C x 2≥20,即x(x-1)≥40.又x ∈N +,所以x 的最小值为7.16.已知集合A={1,2,3,4,5},则至少含一个偶数的集合A 的子集个数为 .方法一)当子集中含有1个偶数时,共有C 21(C 30+C 31+C 32+C 33)=16(个);当子集中含有2个偶数时,共有C 30+C 31+C 32+C 33=8(个);满足题意的集合A的子集个数为16+8=24(个).(方法二)集合A的子集共有C50+C51+C52+C53+C54+C55=32(个),不符合题意的子集有空集、分别只含有1,2,3个奇数的子集,有C50+C31+ C32+C33=8(个),故符合题意的子集个数为32-8=24(个).17.已知10件不同产品中有4件是次品,现对它们一一进行测试,直至找出所有4件次品为止.(1)若恰在第5次测试,才测试到第一件次品,第十次测试才找到最后一件次品,则这样的不同测试方法数是多少?(2)若恰在第5次测试后,就找出了所有4件次品,则这样的不同测试方法数是多少?先排前4次测试,只能取正品,有A64种不同的测试方法,再从4件次品中选2件排在第5和第10的位置上测试,有A42种测法,再排余下4件的测试位置,有A44种测法.所以共有不同测试方法A64·A42·A44=103680(种).(2)第5次测试恰为最后一件次品,另3件在前4次中出现,从而前4次有一件正品出现.所以共有不同测试方法C41·(C61·C33)A44=576(种).新情境创新练18.某次足球比赛中,共有32支球队参加,它们先平均分成8个小组进行循环赛,决出16强(每队均与本组其他队赛一场,各组第一、二名晋级16强),这16支球队按确定的程序进行淘汰赛,最后决出冠、亚军,此外还要决出第三名、第四名,请问这次足球赛总共进行多少场比赛?:(1)小组循环赛:每组有C42=6(场),8个小组共有48场;(2)八分之一淘汰赛:8个小组的第一、二名组成16强,根据赛制规则,每两个队比赛一场,可以决出8强,共有8场;(3)四分之一淘汰赛:根据赛制规则,8强中每两个队比赛一次,可以决出4强,共有4场;(4)半决赛:根据赛制规则,4强每两个队比赛一场,可以决出2强,共有2场;(5)决赛:2强比赛1场确定冠、亚军,4强中的另两支队比赛1场决出第三、四名,共有2场.综上,由分类加法计数原理知,共有48+8+4+2+2=64场比赛.。

北师大版高中数学必修第一册课后习题 第一章 1.3 第1课时 交集和并集

北师大版高中数学必修第一册课后习题 第一章 1.3 第1课时 交集和并集

第一章预备知识§1集合1.3 集合的基本运算第1课时交集和并集课后篇巩固提升必备知识基础练1.设集合A={0,2,4,6,8,10},B={x|2x-3<4},则A∩B=()A.{4,8}B.{0,2,6}C.{0,2}D.{2,4,6}又A={0,2,4,6,8,10},∴A∩B={0,2}.2.(重庆高一期末)已知集合A={x|x2-2x-3=0},B={1,y},若A∩B={3},则A ∪B=( )A.{1,3}B.{-1,3}C.{-1,1,3}D.{-3,-1,3},A={x|x2-2x-3=0}={-1,3}.因为A∩B={3},所以y=3,B={1,3},所以A∪B={-1,1,3}.故选C.3.(多选题)(山东泰安高一质检)满足{1,3}∪A={1,3,5}的集合A可能是( )A.{5}B.{1,5}C.{3}D.{1,3,5}{1,3}∪A={1,3,5},知A⊆{1,3,5},且A中至少有1个元素5.所以A={5}或A={1,5}或A={3,5}或A={1,3,5}.故选ABD.4.设集合A={1,2,3,4},B={-1,0,2,3},C={x∈R|-1≤x<2},则(A∪B)∩C=()A.{-1,1}B.{0,1}C.{-1,0,1}D.{2,3,4}5.已知集合A={x|3x-4<0},B={-4,1,3,5},则A∩B=()A.{-4,1}B.{1,5}C.{3,5}D.{1,3},故A∩B={-4,1}.3x-4<0,解得x<436.(广东珠海高一期末)已知集合A={-2,0,2},B={y|y=x 2,x ∈A},则A ∪B=( ) A.{-4,4,-2,2,0} B.{-2,2,0,4}C.{-4,4,0,2}D.{0,2,4}B={y|y=x 2,x ∈A}={0,4},A={-2,0,2},所以A ∪B={-2,0,2,4}.7.已知集合A={x|x<1,或x>5},B={x|a≤x≤b},且A ∪B=R,A∩B={x|5<x≤6},则2a-b= .,可知a=1,b=6,∴2a-b=-4.8.已知关于x 的方程3x 2+px-7=0的解集为A,方程3x 2-7x+q=0的解集为B,若A∩B={-13}.求A ∪B.{-13},∴-13∈A,且-13∈B.由-13∈A,设3=-73,解得m=7.∴A={-13,7},同理B={-13,83}, ∴A ∪B={-13,83,7}.9.(安徽合肥高一期末)已知集合A={的取值范围.当m=-1时,B={x|-1<x<2},∴A ∪B={x|-1<x<3}. (2)∵A∩B=A,∴A ⊆B, ∴{1-m ≥3,m ≤1,m <1-m ,解得m≤-2, 故实数m 的取值范围为(-∞,-2].关键能力提升练10.(山东,1)设集合A={x|1≤x≤3},B={x|2<x<4},则A ∪B=( ) A.{x|2<x≤3} B.{x|2≤x≤3} C.{x|1≤x<4} D.{x|1<x<4}数形结合)由数轴可知所以A ∪B={x|1≤x<4},故选C.11.(全国1,理2)设集合A={x|x 2-4≤0},B={x|2x+a≤0},且A∩B={x|-2≤x≤1},则a=( )A.-4B.-2C.2D.4A={x|-2≤x≤2},B={x|x≤-a2}.因为A∩B={x|-2≤x≤1},所以有-a2=1,解得a=-2.12.(湖北荆州中学高一期末)定义集合的商集运算为AB=x∈A,n∈B,已知集合S={2,4,6},T=x x=k2-1,k∈S,则集合TS∪T中的元素个数为( )A.5B.6C.7D.8解析∵集合的商集运算为AB=x∈A,n∈B,集合S={2,4,6},∴T=xx=k2-1,k∈S={0,1,2},∴TS=0,12,13,14,16,1,∴TS∪T=0,12,13,14,16,1,2.∴集合ST∪T元素的个数为7.13.(江西南康中学高一月考)已知方程x2+px+q=0的两个不相等实根为α,β.若集合A={α,β},B={2,4,5,6},C={1,2,3,4},A∩C=A,A∩B=⌀,求p,q的值.A∩C=A知A⊆C,又A={α,β},则α∈C,β∈C.而A∩B=⌀,故α∉B,β∉B.显然既属于C又不属于B的元素只有1和3.令α=1,β=3.对于方程x 2+px+q=0的两根α,β, 根据根与系数的关系可得p=-4,q=3. 14.已知集合A={的取值范围.∪B=B,∴A ⊆B,∴{m ≤-2,m +9≥3,解得-6≤m≤-2,∴实数m 的取值范围是[-6,-2]. (2)当A∩B=⌀时,3≤m,或m+9≤-2, 解得m≥3,或m≤-11, ∴当A∩B≠⌀时,-11<m<3, ∴实数m 的取值范围是(-11,3).学科素养拔高练15.(上海育才中学高一月考)设集合A={x|0≤x+a≤1},B={x|a -1≤x≤0},其中a ∈R,求A∩B.a-1>0,即a>1时,B=⌀时,A∩B=⌀;当a-1=0,即a=1时,A={x|-1≤x≤0},B={0},则A∩B={0};当a-1<0,即a<1时,1-a>0.若-a>0,即a<0时,如右图所示,A∩B=⌀.若-a=0,即a=0时,如下图所示,A={x|0≤x≤1},B={x|-1≤x≤0},则A∩B={0}.若a-1<-a<0,即0<a<1时,2如下图所示,A∩B={x|-a≤x≤0}.若-a≤a-1,即1≤a<1时,如右图所示,A∩B={x|a-1≤x≤0}.2综上所述,当a<0或a>1时,A∩B=⌀;当a=0或a=1时,A∩B={0};时,A∩B={x|-a≤x≤0};当0<a<121≤a<1时,A∩B={x|a-1≤x≤0}.2。

北师大高一数学必修一答案

北师大高一数学必修一答案

北师大高一数学必修一答案(请勿抄袭)《集合》答案§1练习1.∈,∉,∉,∈,∈,∈,∈,∉,∉,∉,∈,∉,∉,∉,∈.2.(1){3,5,7,11,13,17,19},(2){-2,2},(3){x∈R│3<x<9},(4){x│x=2n+1,n∈Z},3.B4.略.习题1-1A组1.(1){(x,y)│y=x},无限集;(2){春,夏,秋,冬},有限集;(3)φ,空集;(4){2,3,5,7},有限集.2.B3.(1){-1,1};(2){0,3,4,5};(3){x│(x-2)(x-4)(x-6)(x-8)}或{大于1小于9的偶数}等;(4){x│x=1/n,n≤4且n∈N+}4.(1){2,5,6};(2){(0,6),(1,5),(2,2)}.5.(1){(x,y)│y<0且x>0};(2){(x,y)│y=x2-2x+2}.B组1 当a=1时,A={-1},当a=0时,A={-1/2}.2 当a≠0时,x=-b/a,A为有限集;当a=0,b=0时,A=R,为无限集;当a=0,b≠0时,A=φ.§2练习1.略2.C3.A C.4.(1){等腰三角形}{等边三角形};(2)φ{0};(3)=(4)5 1,2,8.习题1-2A组1.略2.(1)D,(2)C,(3)C.(4)B.3.A为小说,B为文学作品,C为叙事散文,D为散文.4.(1)错,(2)对,(3)对,(4)错,(5)对,(6)对,(7)错,(8)错.B组1.略2.A={0,2,4},3个元素.§33.1练习1.φ;{-4,-√15,√15}.2.(1){1,3,6,7,8,9};{6,8,9};{8,9};{8,9};{1,2,3,6,7,8,9}.(2){6,8,9},{6,8,9},图略3.{x│-1<x<2=,{x│-1≤x<3=.4.B∩C,A∪C.3.2练习1.略2.5∈U,5∉A.3.{1,3,4,6}4.{x│x∈R,且x∉A}.5.{1,2,3,4}6.C R A⊆C R B习题1-31.D2.(1)⊆,⊆,⊇,⊇,⊆(2)φ(3)A(4){(1,1)},{(1,1)},φ.(5){x│-5<x<5=(6){(x,y)│xy≤0}3.(1){a,b};(2){a,b,c,d,e,f,g,h};(3){a,b,g,h};(4){a,b,c,d,g};(5){b,g},(6){a,b}.4.{x│x是钝角三角形或直角三角形},{x│x是不等边三角形}.5.{x│x≤1,或x≥3},{x│-4≤x≤-2}.6.普遍成立.图证略.B组1.M={2,4,10}.2.9人.复习题一A组1.D,D,C,D,D;2.(1){x│x=9n+2,n∈Z};(2){x│x<1或x≥3};(3)R;(4)4;(5)C R A⊆C R B;3.{x│x≥2};{x│x≥-1 };4.{2,8};5.A={(x,y)│0≤x≤5/2,且0≤y≤3/2};(√2,√2)∈A,(√3,√3)∉A;6.略7.A∪(B∩C),(A∩B)∪C S(A∪B).B组1.有12个,分别是φ,{1},{2},{3},{4},{1,2},{1,4},{2,3},{2,4},{3,4},{1,2,4},{2,3,4}.2.a=13.(1){m│m≥3},(2)φ.4.{y│2≤y≤19,且y N},{2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19}.5.Ⅰ=A∩B∩C,Ⅱ=(A∩B)∩(C U C),Ⅲ=(A∩C)∩(C U B),Ⅳ=(B ∩C)∩(C U A),Ⅴ=A∩C U(B∪C),Ⅵ=C∩C U(A∪B),Ⅶ=B∩C U(A∪C),Ⅷ=C U(A∪B∪C).6.有172人听了讲座.C组1.D,B2.略《函数》习题解答P27练习1.如果不计税收等消耗,设售出台数为x台,收入为y元,则y=(2 100-2 000)x..显然,收入和台数间存在函数关系.2.坐电梯时,电梯距地面的高度与时间之间存在函数关系.因为,对于任给时间,电梯都有一个距离地面的高度.3.在一定量的水中加入蔗糖,糖水的质量浓度与所加蔗糖的质量之间存在函数关系.其中,可以是蔗糖是自变量,糖水质量浓度是因变量;也可以反之,糖水质量浓度是自变量,蔗糖是因变量.4.日期与星期之间,每一个日子都有一个星期和它对应,所以,它们之间存在函数关系.这里,日期是自变量,星期是因变量.但是,值得注意的是,星期不能做自变量,因为,对于每一个星期,可以有很多日期,不具有单值性.习题2-1A组1.(1)地球绕太阳公转,二者的距离与时间存在函数关系.其中时间是自变量,距离是因变量;反之,不成.(2)在空中作斜抛运动的铅球,铅球距地面的高度与时间的关系存在函数关系.其中,时间是自变量,高度是因变量;反之不行.(3)水文观测点记录的水位与时间的关系存在函数关系.其中,时间是自变量,水位是因变量;反之,不行;(4)某十字路口,通过汽车的数量与时间的存在函数关系.其中,时间是自变量,通过汽车的数量是因变量;反之,不行.2.(这是一个答案不惟一的开放题.从所学过的物理和化学中,找出若干有关的函数例子,并指明其中的自变量和因变量即可.这里从略.)B组1.(从生活中至少找5个存在函数关系的实例,并与同伴交流,即可.)2.(利用函数是‘对于任意一个自变量都有唯一的函数值与之对应,也就是说对于任意自变量不能有两个或两个以上的值与之对应’的特点.在生活中任意找一个实例,存在依赖关系,但不是函数关系,即可.)P30练习1.(1)f(4)=17;(2)g(2)=29;(3)F(3)+M(2)=26.2.(1) A=(h+2)?h;(2)定义域是[0,1.8],值域是[0,6.84];(3)图像为P34练习1.(1)定义域和值域都是一切实数;(2)定义域为[a1, a2]∪[a3,a4];值域为[b4,b3];(3) 定义域为{1,2,3,4,5,6,7,8},值域为{1,8,27,64,125,216,343,512}.2.图2可以是函数图像,而图1和3都不可能是函数图像.因为,图2中对于每一个自变量都有唯一的值和它对应,而图2和3中一个x的值可能对应两个或多个值.3.(可以任意收集一些用列表法给出的函数.从略.)4.因为,在?S ABC中,∠A=90°,AB=AC=1,EF∥BC,EF=l,设EF到A的距离为h,则l =2h,0,≤h≤√2(是根号2!注意.).其图像为(见另纸第一页)5.(1) 设税金为y元,营业额为x元,则⎧y={300,x≤1000,⎩ (x-1000)×4+300, x >1000.(2) y=(25000-1000)×4+300=1260(元).答:4月份这个饭店应缴纳税金1260元.P36练习1.(1)f是从A到B的映射.因为,对于A中的每一个元素B中都有唯一一个元素与它对应;(2)f是从A到B的映射.因为,对于A中的每一个元素B中都有唯一一个元素与它对应;(3)f是从A到B的映射.因为,对于A中的每一个元素B中都有唯一一个元素与它对应;(4)f不是从A到B的映射.因为,对于A中的元素0,B中就没有相应的元素与它对应,即并非对于A中的每一个元素,B中都有唯一一个元素与它对应.2.(1)f:A→B.它并非一一映射,也不是函数;(2)f:M→N.是一一映射,也是函数;(3)f:X→Y.并非一一映射,但是是函数.习题2---2A组1.(1)x≠3的一切实数或(-∞,3)∪(3,∞)或{ x≠3,x∈R};(2)x≥2且x≠3或〔2,3〕∪(3,∞);2.(1)定义域为[0,25/4],值域为[0,7];(2)定义域为{7,8,9},值域为{4,25,35}.3.(1)我国内地邮政编码的编码方式可以建立集合A到集合B的映射f:A→B.只需每一个省、直辖市、自治区对应一个固定的邮政编码即可.(2)不能建立三角形周长组成集合A到所有三角形组成集合B的映射.B组1.因为f(x)= 3√(z^3x-2),g(x)=1/√(2x-3),所以,f(x)g(x)= 3√(z^3x-2)(1/√(2x-3)).它的定义域为[3/2,+∞].2.(1)设车费为y(元),里程为x (km),则10, 0<x≤4,y={ 1.2×(x-4)+10, 4<x≤18,1.8×(x-18)+ 1.2×14+10, 18<x<+∞.即10, 0<x≤4,y={ 1.2x+5.2, 4<x≤18,1.8x-5.6, 18<x<+∞.(2)某人乘车行使20 km,则y=1.8(20-18)+1.2×14+10=1.8×20-5.6=30.4(元)答:此人要付30.4元的车费.P41练习1.(略)2.(1)y=--5x在[2,7]上单调递减;(2)f(x)=3x2-6x+1=3(x-1)2-2在(3,4)上单调递增;(3)T在{1,2,3,4,5,6,7,8}上单调递减;(5)h=-x2+2x+5/4=-(x-1)2+9/4在[0,1]上单调递增,在[1,5/2]上单调递减.习题2―3A组1.正比例函数y=kx (k≠0),当k>0时单调递增,当k<0时单调递减;反比例函数y=k/x (k≠0),当k>0时,在x>0和x<0的情况下分别单调递减,当k<0时,在x>0和x<0的情况下分别单调递增;一次函数y=kx+ b (k≠0), 当k>0时单调递增,当k<0时单调递减;二次函数y=ax2+ bx +c(a≠0),当a>0时,若x<-b/2a单调递减,若x>-b/2 a 单调递增,当a<0时,若x<-b/2a单调递增,若x>-b/2a单调递减2.(1)y在{0,1,2,3,4}上单调递增;(2)y=2/x在N+上单调递减;(3)y=2x-3在(-∞,0)上单调递增;※(4)y= ―4 x2+ 2x-5的开口向下,对称轴为x=1/4, 所以,在[0,1/4]上单调递增,在[1/4,+∞]上单调递减.3.如果在给定集合或区间上函数单调减少,那么,(1)y=kx,x∈R中的k<0;(2)y=k/x,x∈(-∞,0)中的k<0;(3)y=-kx+2,x∈R中的k>0;(4) y=k x2-2 x /3 +1,x∈[0,+∞]中的k<0.(请注意区间的右括号应该是).其余同此.}4.函数f(x)=-3x+4的图像是(请见另纸第一页)证明它在R上是减函数:证设任取x1,x2∈R且x1<x2,那么,x1-x2<0.所以,f(x1)-f(x2)=(-3x1+4)-(-3x2+4)=-3(x1-x2)>0.即f(x1) >f(x2),由函数单调性的定义可以知道,函数f(x)=-3x+4在R上是减函数.5.设任取x1,x2∈[0,+∞]且x1<x2,那么,f(x1)-f(x2)=2 x14-2 x24=2(x14-x24)=2(x1-x2)(x1+x2)(x12+x22)因为,0≤x1<x2.,所以x1-x2<0,x1+x2>0,x12+x22>0.所以,f(x1) <f(x2).由函数单调性定义可知,函数f(x)=-2x4在[0,+∞]上单调增加.B组1.当以相同的速度向四个容器注水时,可以大致刻画容器中水的高度与时间的关系的,对于图1是第三个图,对于图2是第一个图,对于图3是第三个图,对于图4是第三个图.2.函数y=8 x2+ ax+5的开口向上,对称轴为x =-a/16.因为,要使函数在[1,+∞]上单调递增,那么,必须有-a/16≤1.于是,a的范围是a≥-16.P48练习1.f(x)=x2/3和g(x)= x2/2在同一直角坐标系中的图像,前者开口大.2.在同一直角坐标系中,函数f(x)=(x+8)2 和g(x)= x2的图像相比,前者比后者左移了8个单位.3.(1)f(x)=-5x2和g(x)= 2x2的顶点都是(0,0),定义域都是R,都关于y轴对称;不同在于:前者图像开口向下、x≤0时函数单调递增、x≥0时函数单调递减,x=0时y值最大,后者图像开口向上、x≤0时函数单调递减、x≥0时函数单调递增,x=0时y值最小, 前者值域是y≤0,后者值域是y≥0;(2)f(x)=3(x-1/2)2+1和g(x)= 3x2的顶点分别是(1/2,1)和(0,0).相同点是,定义域都是R,开口都向上,;不同点是,前者关于x=1/2对称,后者关于x=0对称,前者当x≤1/2时函数单调递减、当x≥1/2时函数单调递增,后者当x≤0时函数单调递减、当x ≥0时函数单调递增,前者值域是y≥1,后者值域是y≥0,前者x=1/2时y最小,后者x=0时y最小.P51练习1.(1)f(x)=x2-2 x +3= (x2-2 x +1)+2=(x-1)2+2;(2)f(x)=3x2+6 x-1=3(x2+2 x+1)-3-1=3(x+1)2-4;(3)f(x)=-2x2+3 x-2=-2(x2+3 x /2+9/16)+9/8-2=-2(x-3/4)2-7/8.2.因为从1990年到1997年每年该地吃掉的蔬菜总量为v(t)=7.02t2+1098.6t+40920, 1995年是t=6情况,所以1995年该地消耗的蔬菜总量是v(6)= 7.02×36+1 098.6×6+40 920=252.72+6 591.6+40 920=47 764.32答:1995年该地消耗的蔬菜总量是47 764.32km.3. (1)y=2x2+1图像的开口向上、顶点坐标为(0,1)、对称轴为x=0、当x≤0时函数单调递减、当x≥0时函数单调递增;(2) y=2(x+1)2图像的开口向上、顶点坐标为(-1,0)、对称轴为x=-1、当x≤-1时函数单调递减、当x≥-1时函数单调递增;(3) y=6x2-5x-2图像的开口向上、顶点坐标为(5/12,-73/24)、对称轴为x=5/12、当x≤5/12时函数单调递减、当x≥5/12时函数单调递增;(4) y=-(x+1)(x-2)图像的开口向下、顶点坐标为(1/2,9/4)、对称轴为x=1/2、当x≤1/2时函数单调递增、当x≥1/2时函数单调递减.4.因为f(x)=-0.01x2+1.2 x-5.8,所以f(50)=-0.01×502+1.2 ×50 -5.8=29.2,其意义是速度为50km/h时,单位容积燃料行驶29.2 km.由于f(x)=-0.01x2+1.2 x-5.8中,当x=-b/2a=-1.2/2×(-0.01)=60(km ),即速度为60km 时,汽车最省油.习题2―4A组1.(1)f(x)= 3+5 x-2 x2=-2(x2-5 x /2+25/16)+25/8+3=-2(x-5/4)2+49/8;(2)f(x)= 3/4x2-2 x=3/4(x2-8/3 x +16/9)-4/3=3/4(x-4/3)2-4/3.2.(1)把函数f(x)=3x2的图像左移5个单位,下移2个单位可以得到函数f(x)=3(x+5)2-2的图像;(2) 因为,f(x)=-3x2+2 x-1=-3(x-1/3)2-2/3,所以,把函数f(x)=3x2的图像关于x 轴对称向下翻转,再右移1/3个单位,下移2/3个单位,可以得到函数f(x)=-3x2+2 x-1的图像.3.(1)将二次函数y=-2x2的图像平移,顶点移到(4,0)时对应的解析式是y=-2(x-4)2,其图像为……(2) 将二次函数y=-2x2的图像平移,顶点移到(0,-2)时对应的解析式是y=-2x2-2,其图像为……(3)将二次函数y=-2x2的图像平移,顶点移到(-3, 2)时对应的解析式是y=-2(x+3)2+2,其图像为……(4) 将二次函数y=-2x2的图像平移,顶点移到(3,-1)时对应的解析式是y=-2(x -3)2-1,其图像为……(图,请见另纸第一页)4.(1)因为y==x2-3 x=(x-3/2)2-9/4,所以,函数y==x2-3 x的图像的开口向上、对称轴为x=3/2、顶点为(3/2, -9/4),在x≤3/2时函数单调递减、在x≥3/2时函数单调递增;(2)因为y=-2x2+x+3=-2(x-1/4)2+25/8,所以,函数y==-2x2+x+3的图像的开口向下、对称轴为x=1/4、顶点为(1/4, 25/8),在x≤1/4时函数单调递增、在x≥1/4时函数单调递减.在同一直角坐标系中函数y=-2x2+x+3的图像开口较小.5.(1)函数y=(x-1)2在(-1,5)上,当x=1时,最小值为0,但是没有最大值;(2)因为y=-2x2-x+1= -2(x+1/4)2+9/8,所以函数y=-2x2-x+1在[-3,1]上,当x= -3时,最小值为-20,当x= -1/4时,最大值为9/8.6.(1)二次函数y=-2x2+6x在{x∈Z?O0≤x≤3}上的值域是{0,4};(2)二次函数y=-2x2+6x在[-2,1]上的值域是[-20,4].7.将40cm的铁丝截成两段,每段折成一个小正方形.设两个小正方形的边长分别为x,y,要使两个小正方形的面积和最小,即求x+y=10时,x2+y2的最小值.因为x+y=10,所以x=10-y.于是x2+y2=(10-y)2+y2=2 y2-20y+100=2(y-5)2+50.答:当两个小正方形的边长均为5cm时,它们的面积和最小.8.设‘日’字形窗户的长为xm时,宽则为(4-2x)/3m.其面积为x(4-2x)/3 =-2/3x2+4/3x=-2/3(x-1)2+2/3.答:当窗户的长为1m,宽为2/3m时,窗户的面积最大为2/3m2,即透过的光线最多.9.(1)因为二次函数图像的顶点为(2,-1),可以设其解析式为y= a(x-2)2-1.又图像过点(3,1),所以1= a(3-2)2-1.解得a=2.所以,所求二次函数的解析式为y= 2(x-2)2-1,即y=2x2-8x+7.(2)因为二次函数图像过(0,1),(1,1),(4,-9),所以可以设其解析式为y= ax2+bx+c (a≠0).由于图像过(0,1),(1,1),(4,-9),所以1= c,1= a+b+c,-9= a×16+b×4+c.解得c=1,b =5/6,a=-5/6.所以,所求二次函数的解析式为y= -5/6x2+5/6x+1.或者,由于图像过点(0,1)和(1,1),可以知道对称轴为x=1/2.设二次函数的解析式为y=a(x-1/2)2+k,又因为过点(0,1)和(4,-9),则a(0-1/2) 2+k=1, a(4-1/2)2+k=-9.解得a=-5/6,k=29/24.于是y=-5/6 (x-1/2)2+29/24,即y= -5/6x2+5/6x+1.B组1.因为抛物线开口向下,所以a<0;因为对称轴在y轴的右边,所以-b/2a>0,又已知a <0,可得b>0;因为,当x=0时,y=c, 而图中抛物线又与y轴交于原点的上方,所以c>0.因为x1<0,x2>0, 所以,x1×x2<0,由于对称轴在y轴右侧,所以,??x1?颍鸡?x2??. 于是,有x1+x2>0.2.设二次函数为y= ax2+bx+c (a≠0).因为二次函数的图像与x轴只有一个交点,对称轴为x=3,与y轴交于点(0,3),所以,b2-4ac=0,-b/2a=3, ,c=3.从这三个方程解得a=1/或0,b=-2或0,c=3.由于a≠0,所以,a=0,b=0,c=3舍去. 因而,a=1/3,b=-2,c=3,这时,其解析式为y= 1/3x2-2x+3 .3.因为二次函数y= ax2+ax+2 (a≠0)在R上的最大值为(8-a)/4,所以f(a)=(8-a)/4. f(a)在[1,5]上单调递减.其图像为.(图,请见另纸第一页)4.设经过th A,B间的距离最短为xkm,那么x2=(145-40t)2+(16t)2=1856t2-11600t+21025.所以,经过t=11600/(2×1856)=725/232≈3.1(h),A,B距离最短为(4×1856×21025-116002)/(4×1856)的平方根,即√2900≈53.9(km).5.当a>0,4ac-b2>0时,二次函数y= ax2+bx+c (a≠0)的函数值恒大于零;当a<0,4ac-b2<0时,二次函数y= ax2+bx+c (a≠0)的函数值恒小于零.1.初速度为20m/s,和水平线x轴成45°角,所以,水平和竖直方向上的分速度都为10√2 m/s.(1)设飞行时间为ts,则水平方向的运动方程为x=10√2t,竖直方向的运动方程为y=10√2t-5t2.由x=10√2t得t=√2x/20.消去t,则得y=x-1/40×x2.所以,其轨道的形状为抛物线;(2)由于y=x-1/40×x2=-1/40(x-20)2+10,所以,最大高度为10m;(3)设抛物线与x轴交于原点和x0, 令y=0,解得x0=40,即飞行距离为40m.P55练习画出函数的图像,判断奇偶性:(1)奇函数;(2)非奇非偶函数;(3)偶函数;(6)非奇非偶函数.(图,均见另纸第二页)习题2―5A组1.(1)f(x)=2x+1是增函数.证明:设任取x1,x2∈R,且x1<x2,则f(x1) -f(x2)=(2 x1+1)-(2 x2+1)=2(x1-x2)<0.即f(x1) <f(x2).所以,f(x)=2x+1是增函数.图像:(请见另纸第一页)(2)f(x)=-2/x.,在(-∞,0)上单调增加.证明:设任取x1,x2∈(-∞,0),且x1<x2,则f(x1) -f(x2)=(-2/ x1)-(-2/ x2)=-2(x2-x1)/x1x2<0.即f(x1) <f(x2).所以,f(x)= -2/x,在(-∞,0)上单调增加.图像:(请见另纸第一页)(3)f(x)=6x+x2, 在[-3,+∞]上单调增加.证明:设x1,x2∈[-3,+∞],且x1<x2,则3+x1>0,3+x2>0,因此,f(x1) -f(x2)=(6x1+ x12)-(6 x2+ x22)=(x1-x2)(6+ x1+x2)<0.即f(x1) <f(x2).所以,f(x)=6x+x2, x∈[-3,+∞]单调增加.图像:(请见另纸第一页)(+∞区间右侧符号本人无法改变.请帮助改一下.)2.证明:对于f(x)=x2+1,其定义域显然为R.又因为f(-x)=(-x)2+1= x2+1,所以,f(-x)= f(x).因此,函数f(x)=x2+1是偶函数.设任取x1,x2∈[0,+∞],且x1<x2,则f(x1) -f(x2)=(x12+1)-(x22+1)=(x1-x2)(x1+x2)<0.即f(x1) <f(x2).所以,函数f(x)=6x+x2在[0,+∞]上单调增加.3.(1)函数y=x2-3的图像开口向上,对称轴为x=0,顶点为(0,-3),最小值为-3,是偶函数,在x≤0时函数单调减少、x≥0时函数单调增加.其图像为:.(图,见另纸第一页)(2)函数y=-x2+4x-2,即y=-(x-2)2+2的图像开口向下,对称轴为x=2,顶点为(2,2),最大值为2,是非奇非偶的函数,在x≤2时函数单调增加、x≥2时函数单调减少.其图像为:.(图见另纸第一页)(3)函数y=5x2+2的图像开口向上,对称轴为x=0,顶点为(0,2),最小值为2,是偶函数,在x≤0时函数单调减少、x≥0时函数单调增加.其图像为:.(图,见另纸第一页)(4)函数y=-2x2-6x,即y=-2(x+3/2)2+9/2的图像开口向下,对称轴为x=-3/2,顶点为(-3/2,9/2),最大值为9/2,是非奇非偶的函数,在x≤-3/2时函数单调增加、x≥-3/2时函数单调减少.其图像为:.(图,见另纸第一页)(图,均见另纸第一页).当a>0时,一次函数y=ax+b是增函数,当a<0时, 一次函数y=ax+b是减函数;当b=0时, 一次函数y=ax+b是奇函数,当b≠0时,一次函数y=ax+b 是非奇非偶的函数. 其图像分别为.(图,见另纸第二页)B组1.(1)函数y=2x-3在x≤3/2时单调递减,x≥3/2时单调递增. 因为函数y=2x-3=2x -3/2,所以函数y=2x-3的图像可以由函数y=x的图像左移3/2个单位,再把每个点向上扩大为原来的2倍得到;(2)函数y=2x-1在x≤0时单调递减,x≥0时单调递增. 函数y=2x-1的图像可以由函数y=x的图像的每个点向上扩大为原来的2倍,再下移1个单位得到.(图像,见另纸第三页)2.当a>0时,对于x≤-b/2a,二次函数y=ax2+bx+c(a≠0)单调减少,x>-b/2a,二次函数y=ax2+bx+c(a≠0)单调增加;当a<0时,对于x≤-b/2a,二次函数y=ax2+bx+c(a≠0)单调增加,x>-b/2a,二次函数y=ax2+bx+c(a≠0)单调减少.C影响顶点,也就是影响单调增减的起点或终点.当b=0时,二次函数y=ax2+bx+c(a≠0)为偶函数;当b≠0时,二次函数y=ax2+bx+c(a≠0)为非奇非偶的函数.P61复习题二A组1.(1)设A={1,2,3,4,},B={3,5,7,9},对应关系是f(x)=2x+1,x∈A,是映射,也是函数,因为A,B都是非空数集,而且对于A中的任意元素,B中都有唯一的元素与它对应;(2)设A={1,4,9},B={-1,1,-2,2,-3,3},对应关系是“A中的元素开平方”,不是映射,更不是函数;(3)设A=R,B=R,对应关系是f(x)=x3,x∈A,是映射,也是函数,因为A,B都是非空数集,而且对于A中的任意元素,B中都有唯一的元素与它对应;(4)设A=R,B=R,对应关系是f(x)=2x2+1,x∈A,是映射,也是函数,因为A,B都是非空数集,而且对于A中的任意元素,B中都有唯一的元素与它对应.2.设A={a,b,c},B={0,1},对应关系可以是f(x)={x0,x∈A且当A中的元素不为零时,o, x∈A且A中的元素为零时,(上边括号管两行)于是有f:A→B;对应关系也可以是f(x)={1, x∈{a,b},0,x=c.(括号也都是管两行.请把两个函数式都写成分段函数),于是有f:A→B.3.(1)定义域是R;(2)定义域为-1/2≤x≤3/4;(3)x≠-1且x≠-3.4.设运输里程为xkm, 运费为F(x),则F(x)={0.5x, 0≤x≤100,0.4×(x-100) +0.5×100,x>100.5. x≠-1任意举出几个分段函数的例子,并说明其定义域和值域即可(略).6.设学校购买电脑x台,则甲公司用费为f(x)= {6000 ×x, x≤10,6000×10+6000x×70%, 10<x≤40.乙公司用费为F(x)=6000x×85%, 0 ≤x≤40.若6000×10+6000x×70%≤6000x×85%.解得x≥200/3≈66.当x≤10时,显然乙公司合算;当10<x≤66台时,乙公司也比甲公司合算.所以,在购买40台的电脑时乙公司合算.其图像为(请补上).7. 函数f(x)在[-π,-π/2]∪[π/2,π]上单调增加,在(-π/2,π/2)上单调减少.8.f(x)={x2 +4x+3, -3≤x<0,-3x+3, 0≤x<1,-x2+6x-5, 1≤x≤6.(1)因为f(x)={x2 +4x+3=(x+2)2-1, -3≤x<0,-3x+3, 0≤x<1,-x2+6x-5=-(x-3)2+4, 1≤x≤6.所以,其图像为.(图,请见另纸第三页)(2)单调区间:在[-3,-2]上单调递减,在(-2,0)上单调递增,在[0,1]上单调递减,在[1,3]上单调递增,在(3,6)上单调递减;(3)最大值为4,最小值为-5.9.(1)函数y=1/x3是奇函数;(2)函数f(x)=2x2-5是偶函数.(证明从略)10.(1)因为,每月以相等的数额存入,所以,函数是一次函数;由于原有60元,两个月后有90元,所以,函数图像过点(0,60),(2,90).设一次函数的解析式为y=kx+b(k ≠0),于是,有60=k×0+b,90=k×2+b.解得k=15,b=60.所以,所求盒内钱数(元)与存钱月份的函数解析式为y=15x+60(x∈N+).其图像为.(图,请见另纸第三页)(2)解200=15×x+60得x=93.所以,10个月后,这位学生可以第一次汇款.11.从中可以看出随着水深的增加,存水量在增加.1.1练习1.观察f i(x)的图象,在(?C∞, 0)内f1(x)、f2(x)都与x轴有交点,所以f1(x)=0、f2(x)=0有解,而在(?C∞, 0)内f3(x)、f4(x)都与x轴没有交点,所以f3(x)=0、f4(x)=0无解。

北师大版高中数学选择性必修第一册课后习题 第五章 1.1 计数原理

北师大版高中数学选择性必修第一册课后习题 第五章 1.1 计数原理

第五章计数原理§1基本计数原理1.1 计数原理课后篇巩固提升合格考达标练1.某班有男生26人,女生24人,从中选一位同学为数学课代表,则不同选法的种数有( )A.50种B.26种C.24种D.616种,因数学课代表可为男生,也可为女生,因此共有26+24=50种选法.2.已知x∈{2,3,7},y∈{-3,-4,8},则xy可表示不同的值的个数为( )A.8B.12C.10D.9:第一步,在集合{2,3,7}中任取一个值,有3种不同的取法;第二步,在集合{-3,-4,8}中任取一个值,有3种不同取法.故xy可表示3×3=9个不同的值.3.某班小张等4位同学报名参加A,B,C三个课外活动小组,每位同学限报其中一个小组,且小张不能报A小组,则不同的报名方法有( )A.27种B.36种C.54种D.81种2种,其他3位同学各有3种,所以由分步乘法计数原理知共有2×3×3×3=54种不同的报名方法.4.张华去书店,发现3本好书,决定至少买其中1本,则购买方法共有种.3类:买1本书、买2本书、买3本书,各类的购买方法依次有3种、3种和1种,故购买方法共有3+3+1=7(种).5.如图,一条电路从A处到B处接通时,可构成线路的条数为( )A.8B.6C.5D.3A处到B处的电路接通可分两步,第一步:前一个并联电路接通有2条线路,第二步:后一个并联电路接通有3条线路;由分步乘法计数原理知电路从A处到B处接通时,可构成线路的条数为3×2=6,故选B.6.五名护士上班前将外衣放在护士站,下班后回护士站取外衣,由于灯光暗淡,只有两人拿到了自己的外衣,另外三人拿到别人外衣的情况有( )A.60种B.40种C.20种D.10种A,B,C,D,E.其中两人拿到自己的外衣,可能是AB,AC,AD,AE,BC,BD,BE,CD,CE,DE共10种情况,假设A,B两人拿到自己的外衣,则C,D,E三人不能拿到自己的外衣,则只有C取D,D取E,E取C,或C 取E,D取C,E取D两种情况.故根据分步乘法计数原理,应有10×2=20种情况.7.小张正在玩“开心农场”游戏,他计划从仓库里的玉米、土豆、茄子、辣椒、胡萝卜这5种种子中选出4种分别种植在四块不同的空地上(一块空地只能种植一种作物),若小张已决定在第一块空地上种茄子或辣椒,则不同的种植方案共有种.,有4×3×2=24种不同的种法;当第一块地种辣椒时,有4×3×2=24种不同的种法,故共有48种不同的种植方案.8.已知集合A={2,4,6,8,10},B={1,3,5,7,9},在A中任取一元素m,在B 中任取一元素n,组成数对(m,n),问:(1)有多少个不同的数对?(2)其中m>n的数对有多少个?从集合A中先选出m有5种方法,从集合B中再选出n有5种方法,根据分步乘法计数原理知共有5×5=25个不同的数对.(2)在(1)中的25个数对中,m>n的数对可以分类来解,当m=2时,n=1,有1种结果;当m=4时,n=1,3,有2种结果;当m=6时,n=1,3,5,有3种结果;当m=8时,n=1,3,5,7,有4种结果;当m=10时,n=1,3,5,7,9,有5种结果. 综上所述,共有1+2+3+4+5=15个满足条件的数对.等级考提升练9.计划在4个体育馆举办排球、篮球、足球3个项目的比赛,每个项目的比赛只能安排在一个体育馆进行,则在同一个体育馆比赛的项目不超过2项的安排方法种数是( )A.24B.36C.42D.604种方法,于是总的方法共有4×4×4=64(种),在同一个体育馆比赛的项目超过两项即三项的安排方法有4种,于是在同一个体育馆比赛的项目不超过两项的安排方法共有64-4=60(种).10.将1,2,3,4,5,6,7,8,9这9个数字填在如图所示的9个空格中,要求每一行从左到右,每一列从上到下分别依次增大,当3,4固定在图中的位置时,填写空格的方法种数是( )3 4A.6B.12C.18D.24,每一列从上到下分别依次增大,1,2,9只有一种填法,5只能填在右上角或左下角,5填后与之相邻的空格可填6,7,8中任一个,余下两个数字按从小到大只有一种方法,共有2×3=6种方法,故选A.11.植树节那天,4位同学植树,现有3棵不同的树,若一棵树限1人完成,则不同的植树方法种数有( )A.1×2×3种B.1×3种C.34种D.43种:第一步,植第一棵树,有4种不同的方法;第二步,植第二棵树,有4种不同的方法;第三步,植第三棵树,有4种不同的方法.由分步乘法计数原理知有4×4×4=43种植树方法,故选D.12.(山西大同模拟)中国有十二生肖,又叫十二属相,每一个人的出生年份对应了十二种动物(鼠、牛、虎、兔、龙、蛇、马、羊、猴、鸡、狗、猪)中的一种.现有十二生肖的吉祥物各一个,三位同学依次选一个作为礼物,甲同学喜欢牛和马,乙同学喜欢牛、狗和羊,丙同学哪个吉祥物都喜欢,如果让三位同学选取礼物都满意,则选法有( )A.30种B.50种C.60种D.90种,乙有2种选择方法,丙有10种选择方法,三位同学都满意的选择方法有1×2×10=20种;②甲同学选择马,乙有3种选择方法,丙有10种选择方法,三位同学都满意的选择方法有1×3×10=30种,所以总共有20+30=50种选择方法. 故选B.13.(多选题)已知a ∈{2,3,4},b ∈{4,6,7},则方程x 2a 2+y 2b 2=1可表示不同的椭圆的个数用式子表示为( )A.3+3+3B.3+3+2C.3×3-1D.3×3:a 有3种不同的选取方法;第二步:b 有3种不同的选取方法,但a 取4时,b 不能取4,故有3×3-1=8种方法.14.回文数是指从左到右与从右到左读都一样的正整数,如22,121,3 443,94 249等.显然2位回文数有9个:11,22,33,…,99,3位回文数有90个:101,111,121,…,191,202,…,999.则(1)5位回文数有 个;(2)2n(n∈N+)位回文数有个.(2)9×10n-1位回文数相当于填5个方格,首尾相同,且不为0,共9种填法,第2位和第4位一样,有10种填法,中间一位有10种填法,共有9×10×10=900种填法,即5位回文数有900个.(2)根据回文数的定义,结合分步乘法计数原理,知有9×10n-1个回文数.15.如图所示的电路,若合上两只开关以接通从A到B的电路,则有种不同的接通电路的方法.A到B的通电线路接通方法可分为三类:第一类,上路接通,有2×1=2种方法;第二类,中路接通,有1×7=7种方法;第三类,下路接通,有2×2=4种方法.根据分类加法计数原理,共有2+7+4=13种不同的方法.16.设椭圆的方程为x 2a2+y2b2=1(a>b>0),a∈{1,2,3,4,5,6,7},b∈{1,2,3,4,5},则这样的椭圆共有多少个?a,b的取值分为6类,第一类:a=2,b=1;第二类:a=3,b=1,2;第三类:a=4,b=1,2,3;第四类:a=5,b=1,2,3,4;第五类:a=6,b=1,2,3,4,5;第六类:a=7,b=1,2,3,4,5.由分类加法计数原理知,这样的椭圆共有1+2+3+4+5+5=20(个).新情境创新练17.某电视台连续播放6个广告,其中有3个不同的商业广告、2个不同的世博会宣传广告、1个公益广告,要求最后播放的不能是商业广告,且世博会宣传广告与公益广告不能连续播放,两个世博会宣传广告也不能连续播放,则有多少种不同的播放方式?(用1,2,3,4,5,6表示广告的播放顺序).第一类:宣传广告与公益广告的播放顺序是2,4,6,分6步完成这件事,共有3×3×2×2×1×1=36种不同的播放方式;第二类:宣传广告与公益广告的播放顺序是1,4,6,分6步完成这件事,共有3×3×2×2×1×1=36种不同的播放方式;第三类:宣传广告与公益广告的播放顺序是1,3,6,同样分6步完成这件事,共有3×3×2×2×1×1=36种不同的播放方式.由分类加法计数原理知,6个广告不同的播放方式有36+36+36=108(种).。

【精品推荐】高中数学北师大版必修四课后训练1.4.1 任意角的正弦函数、余弦函数的定义 Word版含答案

【精品推荐】高中数学北师大版必修四课后训练1.4.1 任意角的正弦函数、余弦函数的定义 Word版含答案

课后训练1.点P(sin θ,cos θ)位于第二象限,则角θ所在的象限是().A.第一象限B.第二象限C.第三象限D.第四象限2.设a>0,角α的终边经过点P(-3a,4a),那么sin α+2cosα的值等于().A.25B.25-C.15D.15-3.角α的终边经过点P(-b,4),且cos α=35-,则b的值为().A.3 B.-3 C.±3 D.54.sin 2cos 3的值为().A.负数B.正数C.0 D.不存在5.若三角形的两内角α,β满足sin α·cos β<0,则此三角形必为().A.锐角三角形B.钝角三角形C.直角三角形D.以上三种情况都可能6.点P从(1,0)出发,沿单位圆x2+y2=1按逆时针方向运动23π弧长到达Q点,则Q的坐标为().A.1,22⎛⎫-⎪⎪⎝⎭B.122⎛⎫--⎪⎪⎝⎭C.1,22⎛--⎝⎭D.122⎛⎫-⎪⎪⎝⎭7.设α为第二象限角,其终边上一点为P(m,且cos α=4m,则sinα的值为__________.8.函数y=__________.9.已知角α的终边经过点(3m-9,m+2),且cos α≤0,sin α>0,求m的取值范围.10.设θ为第三象限角,试判断sin2cos2θθ的符号.参考答案1答案:D 2答案:B 3答案:A 4答案:A 5答案:B 6答案:A 7答案:48答案:2,23k k πππ⎡⎤+⎢⎥⎣⎦,k ∈Z9答案:(-2,3] 10答案:sin2cos2θθ<0。

【精品推荐】高中数学北师大版必修一课后训练3.2指数扩充及其运算性质 Word版含答案

【精品推荐】高中数学北师大版必修一课后训练3.2指数扩充及其运算性质 Word版含答案

课后训练基础巩固1.122写成根式形式是( ). ABC D2.若b 3n =5m (m ,n ∈N +),则b =( ). A .35n m - B .35m n-C .35n mD .35n m3化为分数指数幂,其形式是( ). A .122 B .122- C .122- D .122--4.计算122[(]-的值为(). AB .C .2 D .2- 5.若a >0,且m ,n 为整数,则下列各式中正确的是( ).A .a m÷a n=mna B .a m ·a n =a m ·nC .(a m )n =a m +nD .1÷a n =a 0-n6.在112-⎛⎫- ⎪⎝⎭,122-,1212-⎛⎫⎪⎝⎭,2-1中,最大的数是( ). A .112-⎛⎫- ⎪⎝⎭B .122-C .1212-⎛⎫⎪⎝⎭D .2-17若102x =25,则10-x =( ).A .15 B .15-C .150D .16258.⨯( ). A .103 B.C .310 D.9.下列根式,分数指数幂互化中正确的是( ). A .12()x =-(x >0) B13y =(y <0) C .34x-=x >0) D .13x -=x >0)10.计算233(2)a b --·(-3a -1b )÷543(4)a b --得( ).A .232b -B .232bC .7332b - D .7332b能力提升11.已知13a a+=,则1122a a -+=( ).A .2 BC. D.12.若256(26)1x x x -+-=,则下列结果正确的是( ). A .x =2 B .x =3C .x =2或x =3D .非上述答案13.如果x =1+2b ,y =1+2-b ,那么y =( ).A .11x x +- B .1x x - C .11x x +- D .1x x -14________.15.已知2-2=2,则8x 的值为________. 16.若5x 2·5x =25y ,则y 的最小值是________.17.设函数f 1(x )=12x ,f 2(x )=x -1,f 3(x )=x 2,则f 1(f 2(f 3(2 012)))=__________. 18.设α,β是方程5x 2+10x +1=0的两个根,则2α·2β=__________,(2α)β=__________.19.若11223x x-+=,求33222232x x x x --+-+-的值.(注:(a +b )3=a 3+3a 2b +3ab 2+b 3) 20.已知a ,b 是方程x 2-6x +4=0的两根,且a >b >0的值.参考答案1.A 点拨:由m na=a >0,m ,n ∈N +,且n >1)知,122=2.B 点拨:若b n=a m(m ,n ∈N +,a >0,b >0),则m nb a =. 3.B13(=-=1113133222(22)(2)2-⨯=-=-. 4.C点拨:11222121[(]22--====5.D 点拨:由整数幂的运算性质可知,a m ÷a n =a m ·a -n =a m -n ,a m ·a n =a m +n ,(a m )n =a mn,1÷a n =a 0÷a n =a 0·a -n =a -n .6.C 点拨:∵1112122-⎛⎫-==- ⎪⎝⎭-,1212122-===11121221(2)22---⎛⎫=== ⎪⎝⎭1122-=,又∵1222-<<<,∴111212112222----⎛⎫⎛⎫-<<< ⎪ ⎪⎝⎭⎝⎭. 7.A 点拨:∵102x =25,∴(10x )2=25. ∴10x =5.∴1110105xx-==. 8.B 点拨:由实数指数幂的运算性质(ab )n =a n b n知,(2=⨯=9.C 点拨:选项A中,1122()x x =-≠-;在选项B 中,当y <0,而130y =<13y ≠;选项C 中,当x >033341441()x x x --⎛⎫=== ⎪⎝⎭;选项D中,1133x x-=-≠.10.A 点拨:原式=25131423323342a b b -++--+⨯-=-. 11.B 点拨:∵a 和1a 的符号相同,1a a+=3>0,∴a >0.∴11220a a -+>.又112221()2a a a a+-=++=3+2=5,∴1122a a -+=12.D 点拨:∵a 0=1(a ≠0),∴若2260560,x x x -≠⎧⎨-+=⎩,,则x =2;又∵1α=1(α∈R ),∴若2x -6=1,则7.2x =综上可知,x =2或7.2x =13.D 点拨:由x =1+2b ,得2b =x -1,∴2-b =11x -. ∴y =1+2-b =1111x x x +=--. 14.78a==771842()a a ====.15.点拨:令t =2x (t >0),由2x -2-x =2,得12t t-=,即t 2-2t -1=0.解得1t =或1t = (舍去).∴8x =(23)x =(2x )3=t 3=3(17=+16.18-点拨:由5x 2·5x =25y ,得2255x xy +=,∴x 2+x =2y ,即221111122228y x x x ⎛⎫=+=+- ⎪⎝⎭,∴当12x =-时,y 取得最小值,最小值是18-.17.12012 点拨:f 1(f 2(f 3(2 012)))=f 1(f 2(2 0122))=f 1((2 0122)-1)=[(2 0122)-1]12=2 012-1=12012. 18.14 152 点拨:∵α,β是方程5x 2+10x +1=0的两个根,∴α+β=-2,αβ=15.∴2α·2β=2α+β=2-2=14,(2α)β=2αβ=152.19.解:由11223x x-+=,两边平方,得x +x -1=7,再平方得x 2+x -2=47,∴x 2+x -2-2=45.由11223x x -+=,两边立方得311322223327x x xx--+++=,∴332218x x -+=. ∴3322315x x-+-=.∴3322223123x x x x --+-=+-.20.解:∵a ,b 是方程x 2-6x +4=0的两根,64.a b ab +=⎧⎨=⎩,∵a >b >00>.∵221105====,5==。

新教材北师大版高中数学必修第一册练习-集合的概念答案含解析

新教材北师大版高中数学必修第一册练习-集合的概念答案含解析

第一章预备知识§1 集合1.1 集合的概念与表示课时1 集合的概念知识点1元素与集合的概念1.☉%1#0#6##8%☉(2020·九江中学月考)下列各组对象能组成集合的是()。

①某社区截止2020年3月5日确诊的新冠肺炎病人;②√2的近似值;③2018年平昌冬奥会比赛项目;④宁都中学2019春季高一尖子生。

A.①④B.②③C.①③D.②④答案:C解析:①③中元素是确定的。

2.☉%4¥*38@4@%☉(2020·西安中学月考)由实数x,-x,|x|,√x2,-√x2所组成的集合中,其含有元素的个数最多为()。

A.2B.3C.4D.5答案:A解析:当x>0时,|x|=x,√x2=|x|=x,-√x2=-|x|=-x,集合中有2个元素;当x<0时,|x|=-x,√x2=-x,-√x2=x,集合中有2个元素;当x=0时,集合中只有1个元素。

故集合中最多有2个元素。

3.☉%¥006#*#8%☉(2020·蚌埠二中周练)设集合A={1,2,3},B={1,3,9},x∈A且x∉B,则x等于()。

A.1B.2C.3D.9答案:B解析:属于A而不属于B的元素只有2。

4.☉%@¥9*55*6%☉(多选)(2020·桂林中学月考)下列所给关系正确的是()。

A.π∈RB.√3∉QC.0∈N*D.|-4|∉N*答案:AB解析:N *是正整数集,故0∉N *,|-4|=4∈N *。

5.☉%4*867@@@%☉(2020·瑞昌一中检测)若a 是R 中的元素,但不是Q 中的元素,则a 可以是( )。

A.3.14 B.-5 C.37D.√7 答案:D解析:是实数而不是有理数的数a 只可能是√7。

知识点2 元素与集合的关系6.☉%86*#91@@%☉(2020·黄冈中学月考)已知集合A 中的元素x 满足x -1<√3,则下列各式正确的是( )。

新教材北师大版高中数学必修第一册 第四章 对数运算和对数函数 课后练习 含解析

新教材北师大版高中数学必修第一册 第四章 对数运算和对数函数 课后练习 含解析

第四章对数运算和对数函数课后练习1、对数的概念................................................................................................................ - 1 -2、对数的运算................................................................................................................ - 5 -3、对数函数的概念...................................................................................................... - 10 -4、对数函数y=log2x的图象和性质............................................................................ - 13 -5、对数函数y=log a x的图象和性质 ............................................................................ - 18 -6、指数函数、幂函数、对数函数增长的比较.......................................................... - 25 -1、对数的概念基础练习1.已知log7[log3(log2x)]=0,那么等于( )A. B. C. D.【解析】选C.由条件知,log3(log2x)=1,所以log2x=3,所以x=8,所以=.【补偿训练】若对数式log(t-2)3有意义,则实数t的取值范围是( )A.[2,+∞)B.(2,3)∪(3,+∞)C.(-∞,2)D.(2,+∞)【解析】选B.要使对数式log(t-2)3有意义,需,解得t>2且t≠3,所以实数t的取值范围是(2,3)∪(3,+∞).2.16、17世纪之交,随着天文、航海、工程、贸易以及军事的发展,改进数字计算方法成了当务之急,数学家纳皮尔在研究天文学的过程中,为简化计算发明了对数.直到18世纪,才由瑞士数学家欧拉发现了指数与对数的互逆关系,即a b=N⇔b=log a N.现在已知a=log23,则2a= .【解析】由a=log23,化对数式为指数式可得2a=3.答案:33.e0++= .【解析】原式=1+2+8=11.答案:114.把对数式log84=x化成指数式是;可求出x= . 【解析】因为log84=x,所以8x=4,所以23x=22,所以x=.答案:8x=45.(1)将log232=5化成指数式.(2)将3-3=化成对数式.(3)log4x=-,求x.(4)已知log2(log3x)=1,求x.【解析】(1)因为log232=5,所以25=32.(2)因为3-3=,所以log3=-3.(3)因为log4x=-,所以x===2-3=.(4)因为log2(log3x)=1,所以log3x=2,即x=32=9.提升练习一、单选题(每小题5分,共10分)1.设f(log2x)=2x(x>0),则f(2)的值是( )A.128B.16C.8D.256【解析】选B.由题意,令log2x=2,解得x=4,则f(log2x)=2x=24=16.2.(2020·西安高一检测)已知2×9x-28=,则x= ( )A.log 37-log32B.lo 4C.log34D.log37【解析】选C.2×9x-28=,所以2×(3x)2-28-3x=0,即(3x-4)(2·3x+7)=0,解得3x=4,则x=log34.二、多选题(每小题5分,共10分,全部选对的得5分,选对但不全的得3分,有选错的得0分)3.(2020·新高考全国Ⅰ卷)已知a>0,b>0,且a+b=1,则 ( )A.a2+b2≥B.2a-b>C.log2a+log2b≥-2D.+≤【解析】选ABD.因为a+b=1,所以由2(a2+b2)≥(a+b)2(当且仅当a=b时,等号成立),得a2+b2≥,故A项正确;由题意可得0<b<1,所以-1<a-b=1-2b<1,所以2a-b>,故B项正确;因为a+b≥2(当且仅当a=b时,等号成立),所以ab≤,所以log2a+log2b≤log2=-2,故C项错误;由2(a+b)≥(当且仅当a=b时,等号成立),得+≤,故D项正确.4.下列各式正确的有( )A.lg(lg 10)=0B.lg(ln e)=0C.若10=lg x,则x=10D.若log25x=,则x=±5【解析】选AB.对于A,因为lg(lg 10)=lg 1=0,所以A对;对于B,因为lg(ln e)=lg 1=0,所以B对;对于C,因为10=lg x,所以x=1010,C错;对于D,因为log25x=,所以x=2=5.所以只有AB正确.三、填空题(每小题5分,共10分)5.若log a2=m,log a3=n,其中a>0,且a≠1,则a m+n= .【解析】log a2=m,可得a m=2.log a3=n,a n=3.a m+n=a m a n=2×3=6.答案:66.(2020·绍兴高一检测)已知方程log a(5x-3x)=x(其中a>0,a≠1),若x=2是方程的解,则a= ;当a=2时,方程的解x= .【解析】因为x=2是方程的解,所以log a(52-32)=2.所以a2=16,且a>0,所以a=4.当a=2时,log2(5x-3x)=x.所以5x-3x=2x,显然x=1是方程的解.答案:4 1【补偿训练】方程log3(9x-4)=x+1的解x= .【解析】因为log3(9x-4)=x+1,所以9x-4=3x+1,所以(3x)2-3·3x-4=0,所以3x=4,x=log34,或3x=-1(舍).答案:log34四、解答题7.(10分)若lo x=m,lo y=m+2,求的值.【解析】因为lo x=m,所以=x,x2=.因为lo y=m+2,所以=y,y=,所以====16.【补偿训练】已知log a b=log b a(a>0,a≠1;b>0,b≠1),求证:a=b或a=. 【证明】令log a b=log b a=t,则a t=b,b t=a,所以=a则=a,所以t2=1,t=±1,当t=1时,a=b;当t=-1时,a=.所以a=b或a=.2、对数的运算基础练习1.化简2lg 5+lg 4-的结果为( )A.0B.2C.4D.6【解析】选A.原式=2lg 5+2lg 2-2=2(lg 5+lg 2)-2=0.2.+等于( )A.lg 3B.-lg 3C.D.-【解析】选C.原式=lo+lo=log94+log35=log32+log35=log310=.3.(2020·新乡高一检测)设a=lg 6,b=lg 20,则log23= ( )A. B.C. D.【解析】选D.因为a=lg 6=lg 2+lg 3,b=lg 20=1+lg 2,所以log23==.4.计算:2-1+lg 100-ln= .【解析】原式=+2-=2.答案:25.已知3a=5b=c,且+=2,求c的值.【解析】因为3a=5b=c,所以a=log3c,b=log5c,c>0,所以=log c3,=log c5,所以+=log c15.由log c15=2得c2=15,即c=(负值舍去).提升练习一、单选题(每小题5分,共15分)1.设函数f(x)=log a x(a>0,a≠1),若f(x1x2·…·x2 020)=4,则f()+f()+…+f()的值等于( )A.4B.8C.16D.2log48【解析】选B.因为函数f(x)=log a x(a>0,a≠1),f(x1x2…x2 020)=4,所以f(x1x2…x2 020)=log a(x1x2…x2 020)=4,所以f()+f()+…+f()=log a(××…×)=log a(x1x2…x2 020)2=2log a(x1x2…x2 020)=2×4=8.2.(2020·全国卷Ⅰ)设alog34=2,则4-a= ( )A. B. C. D.【解题指南】首先根据题中所给的式子,结合对数的运算法则,得到log34a=2,即4a=9,进而求得4-a=,得到结果.【解析】选B.由alog34=2可得log34a=2,所以4a=9,所以有4-a=.3.(2019·北京高考)在天文学中,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足m2-m1=lg,其中星等为m k的星的亮度为E k(k=1,2).已知太阳的星等是-26.7,天狼星的星等是-1.45,则太阳与天狼星的亮度的比值为( )A.1010.1B.10.1C.lg 10.1D.10-10.1【解析】选A.令m1=-26.7,m2=-1.45,则m2-m1=-1.45-(-26.7)=25.25=lg,所以lg=10.1,则=1010.1.二、多选题(共5分,全部选对的得5分,选对但不全的得3分,有选错的得0分)4.(2020·滨州高一检测)已知a,b均为正实数,若log a b+log b a=,a b=b a,则可以取的值有( )A. B. C. D.2【解析】选AD.令t=log a b,则t+=,所以2t2-5t+2=0,(2t-1)(t-2)=0,所以t=或t=2,所以log a b=或log a b=2.所以a=b2或a2=b.又因为a b=b a,所以2b=a=b2或b=2a=a2.所以b=2,a=4或a=2,b=4.所以=2或=.三、填空题(每小题5分,共10分)5.(lg 5)2-(lg 2)2+lg 4= .【解析】原式=(lg 5+lg 2)(lg 5-lg 2)+lg 4=lg 5-lg 2+2lg 2=lg 5+lg 2=1.答案:16.已知lg a+b=3,a b=100,则a lg 2·b= .【解析】lg a+b=3,a=103-b,又因为a b=100,所以10(3-b)b=100,b(3-b)=2,所以b=1或2,a=100或10,所以a lg 2·b=102lg 2·1=4或a lg 2·b=10lg 2·2=2×2=4.答案:4四、解答题7.(10分)(2020·漳州高一检测)计算下列各式:(1)(log32+log92)(log43+log83)+;(2)2lg 5+lg 8+lg 5·lg 20+lg22.【解析】(1)(log32+log92)(log43+log83)+=+5=···+5=×+5=. (2)2lg 5+lg 8+lg 5·lg 20+lg22=2lg 5+lg 23+lg 5·lg(4×5)+lg22=2lg 5+2lg 2+2lg 5·lg 2+lg25+lg22=2(lg 5+lg 2)+2lg 5·lg 2+lg25+lg22=2+(lg 5+lg 2)2=2+1=3.【补偿训练】计算:(1)log535-2log5+log57-log51.8;(2)log2+log212-log242-1.【解析】(1)原式=log5(5×7)-2(log57-log53)+log57-log5= log55+log57-2log57+2log53+log57-2log53+log55=2.(2)原式=log2+log212-log2-log22=log2=log2=log2=-.3、对数函数的概念基础练习1.函数f(x)=(a2+a-5)log a x为对数函数,则f(2)等于( )A.3B.C.-log36D.-log38【解析】选B.因为函数f(x)=(a2+a-5)log a x为对数函数,所以解得a=2,所以f(x)=log2x,所以f(2)=log2=.2.若函数f(x)=a x(a>0,且a≠1)的反函数是g(x),且g=-1,则f=( )A. B.2 C. D.【解析】选C.由已知得g(x)=log a x.又g=log a=-1,于是a=4,因此f(x)=4x,故f==.3.若函数y=f(x)是函数y=5x的反函数,则f(f(5))= .【解析】因为y=f(x)与y=5x互为反函数,所以f(x)=log5x.所以f(f(5))=f(log55)=f(1)=log51=0.答案:04.若对数函数f(x)=log a x的图象过点(2,1),则f(8)= .【解析】依题意知1=log a2,所以a=2,所以f(x)=log2x,故f(8)=log28=3. 答案:35.已知函数f(x)=log 3x+lo x,则f()= .【解析】f()=log3+lo=-=0.答案:06.写出下列函数的反函数:(1)y=lo x;(2)y=πx;(3)y=.【解析】(1)对数函数y=lo x,它的底数是,它的反函数是y=;(2)指数函数y=πx,它的底数是π,它的反函数为y=logπx;(3)指数函数y=,它的底数是,它的反函数是y=lo x.提升练习一、单选题(每小题5分,共15分)1.设f(x)是对数函数,且f()=-,那么f()= ( )A. B. C.- D.-【解析】选C.设对数函数f(x)=log a x(a>0,a≠1).由条件得log a=-,即log a=-,则a=.因此f(x)=x,所以f()==-.2.若f(x3)=lg x,则f(2)= ( )A.lg 2B.3lg 2C.-3lg 2D.lg 2【解析】选D.由x3=2得x=,所以f(2)=f[()3]=lg =lg 2.3.设f(x)是奇函数,当x>0时,f(x)=log2x,则当x<0时,f(x)= ( )A.-log2xB.log2(-x)C.log x2D.-log2(-x)【解析】选D.设x<0,则-x>0,则f(-x)=log2(-x).因为f(x)是奇函数,所以f(-x)=-f(x).所以当x<0时,f(x)=-log2(-x).二、多选题(共5分,全部选对的得5分,选对但不全的得3分,有选错的得0分)4.下列函数表达式中,是对数函数的有( )A.y=log a x(a∈R)B.y=log8xC.y=log x(x+2)D.y=logπx【解析】选BD.由于形如y=log a x(a>0,且a≠1)的函数即为对数函数,符合此形式的函数表达式有BD,其他的均不符合.三、填空题(每小题5分,共10分)5.若f(x)=log a x+(a2-4a-5)是对数函数,则a= .【解析】由对数函数的定义可知,解得a=5.答案:56.已知函数f(x)=log a(x+2),若图象过点(6,3),则f(x)= ,f(30)= .【解析】代入(6,3),得3=log a(6+2)=log a8,即a3=8,所以a=2,所以f(x)=log2(x+2),所以f(30)=log232,令log232=m,所以2m=32,所以m=5. 答案:log2(x+2) 5三、解答题7.(10分)已知函数f(x)=log a(3-ax)(a>0,且a≠1).当x∈[0,2]时,函数f(x)恒有意义,求实数a的取值范围.【解析】因为a>0且a≠1,设t(x)=3-ax,则t(x)=3-ax为减函数,当x∈[0,2]时,t(x)的最小值为3-2a.因为当x∈[0,2]时,f(x)恒有意义,即x∈[0,2]时,3-ax>0恒成立.所以3-2a>0,所以a<.又a>0且a≠1,所以0<a<1或1<a<,所以实数a的取值范围为(0,1)∪.4、对数函数y=log2x的图象和性质基础练习1.若f为y=2-x的反函数,则f的图象大致是( )【解析】选C.由题意,f(x)与y=2-x=的图象关于y=x对称,即f(x)=x,故f(x-1)=(x-1),所以f(x-1)的图象就是将f=x右移一个单位得到.【补偿训练】已知f(x)是函数y=log2x的反函数,则y=f(1-x)的图象是( )【解析】选C.f(x)与y=log2x互为反函数,因此f(x)=2x,故y=f(1-x)=21-x=,该函数图象是由y=的图象向右平移1个单位得到的.2.设函数f(x)=则f(f(-1))= ( )A.2B.1C.-2D.-1【解析】选D.因为-1<0,所以f(-1)=2-1=;因为>0,所以f=log2=log22-1=-1.故f(f(-1))=-1.3.已知函数f(x)=log2x,且f(m)>0,则m的取值范围是( )A.(0,+∞)B.(0,1)C.(1,+∞)D.R【解析】选C.结合f(x)=log2x的图象(图略)可知,当f(m)>0时,m>1.4.已知m,n∈R,函数f(x)=m+log n x的图象如图,则m,n的取值范围分别是 ( )A.m>0,0<n<1B.m<0,0<n<1C.m>0,n>1D.m<0,n>1【解析】选C.由图象知函数为增函数,故n>1.又当x=1时,f(x)=m>0,故m>0.5.已知函数f(x)=log2(2x-a),若f(2)=0,则a= .【解析】由题意,f(2)=0,即log2(4-a)=0,可得4-a=1,则a=3.答案:36.已知f(x)=|log3x|.(1)画出这个函数的图象;(2)当0<a<2时,f(a)>f(2),利用函数图象求出a的取值范围.【解析】(1)如图.(2)令f(a)=f(2),即|log3a|=|log32|,解得a=或a=2.从图象可知,当0<a<时,满足f(a)>f(2),所以a的取值范围是.提升练习一、单选题(每小题5分,共15分)1.设函数f(x)=则满足f(x)≤2的x的取值范围是( )A.[-1,2]B.[0,2]C.[1,+∞)D.[0,+∞)【解析】选D.f(x)=①当x≤1时,21-x≤2⇒≤1,所以2x≥1,所以x≥0,又x≤1,所以0≤x≤1;②当x>1时,1-log2x≤2,所以log2x≥-1恒成立,所以x>1.综上所述x≥0.2.函数f(x)=的图象与函数g(x)=log2x的图象的交点个数是( )A.1B.2C.3D.4【解析】选C.在同一个坐标系中画出f(x)和g(x)的图象,如图,由图象可知f(x)与g(x)的交点个数为3.3.已知f(x)=|log2x|,若>a>b>1,则( )A.f(a)>f(b)>f(c)B.f(c)>f(b)>f(a)C.f(c)>f(a)>f(b)D.f(b)>f(a)>f(c)【解析】选C.先作出函数y=log2x的图象,再将图象在x轴下方的部分沿x轴翻折到上方,这样,我们便得到了y=|log2x|的图象,如图.由图可知,f(x)=|log2x|在(0,1)上单调递减,在(1,+∞)上单调递增,于是f>f(a)>f(b),又f=|log2|=|-log2c|=|log2c|=f(c).所以f(c)>f(a)>f(b).【补偿训练】设a,b,c均为正数,且2a=a,=b,=log2c,则 ( )A.a<b<cB.c<b<aC.c<a<bD.b<a<c【解析】选A.由函数y=2x,y=,y=log2x,y=x的图象可得出a<b<c.二、多选题(共5分,全部选对的得5分,选对但不全的得3分,有选错的得0分)4.已知log2=log2,则x的值可以为( )A.2B.3C.-2D.-3【解析】选AB.由已知等式,得5x-2=x2+4,解得x1=2,x2=3.经验证均符合题意.三、填空题(每小题5分,共10分)5.设f(x)是奇函数,当x>0时,f(x)=log2x,则f= ,当x<0时,f(x)= .【解析】因为f(x)是奇函数,所以f=-f=-log2=;设x<0,则-x>0,则f(-x)=log2(-x).因为f(x)是奇函数,所以f(-x)=-f(x).所以当x<0时,f(x)=-log2(-x).答案:-log2(-x)6.函数f(x)=log2x在区间[a,2a](a>0)上的最大值与最小值之差为. 【解析】因为f(x)=log2x在区间[a,2a]上单调递增,所以f(x)max-f(x)min=f(2a)-f(a)=log22a-log2a=1.答案:1四、解答题7.(10分)(1)函数y=log2(x-1)的图象是由y=log2x的图象如何变化得到的? (2)在给出的坐标系中作出y=|log2(x-1)|的图象;(3)设函数y=与函数y=|log2(x-1)|的图象的两个交点的横坐标分别为x1,x2,设M=x1x2-2(x1+x2)+4,请判断M的符号.【解析】(1)函数y=log2(x-1)的图象是由y=log2x的图象向右平移1个单位得到的.(2)在坐标系中作出y=|log2(x-1)|的图象,如图所示.(3)设函数y=与函数y=|log2(x-1)|的图象的两个交点的横坐标分别为x1,x2,所以M=x1x2-2(x1+x2)+4=(x1-2)(x2-2)<0.5、对数函数y=log a x的图象和性质基础练习1.若a=log67,b=log76,c=loπ,则( )A.a<b<cB.a<c<bC.c<b<aD.b<c<a【解析】选C.log 67>log66=1,0=log71<log76<log77=1,loπ<lo1=0,所以c<b<a.2.已知x=ln π,y=log5,z=,则( )A.x<y<zB.z<x<yC.z<y<xD.y<z<x【解析】选D.因为ln π>ln e=1,log5<log51=0,0<<1,所以y<z<x.3.若函数f(x)=a x+log a(x+1)在[0,1]上的最大值和最小值之和为a,则a的值为( )A. B. C.2 D.4【解析】选B.当a>1时,a+log a2+1=a,log a2=-1,a=(舍去).当0<a<1时,1+a+log a2=a,所以log a2=-1,a=.4.(2020·北京高考)函数f(x)=+ln x的定义域是.【解析】由得x>0.答案:(0,+∞)5.已知函数f(x)=lg(2+x2),则满足不等式f(2x-1)<f(3)的x的取值范围为.【解析】因为函数f(x)=lg(2+x2),且满足不等式f(2x-1)<f(3),所以(2x-1)2<9,即-3<2x-1<3,解得-1<x<2.答案:(-1,2)6.已知函数f(x)=log a(x+2)+log a(3-x),其中0<a<1.(1)求函数f(x)的定义域;(2)若函数f(x)的最小值为-4,求a的值.【解析】(1)要使函数有意义,则解得-2<x<3.所以函数的定义域为(-2,3).(2)函数f(x)=log a[(x+2)(3-x)]=log a(-x2+x+6)=log a,因为-2<x<3,所以0<-+≤,因为0<a<1,所以log a≥log a,即f(x)min=log a,由log a=-4,得a-4=,所以a=.提升练习一、单选题(每小题5分,共20分)1.已知函数f(x)是定义在R上的奇函数,且当x>0时,f(x)=ln(x+1),则函数f(x)的图象为( )【解析】选D.由f(x)是R上的奇函数,即函数图象关于原点对称,排除A,B.又x>0时,f(x)=ln(x+1),所以D项正确.2.(2020·天津高考)设a=30.7,b=,c=log0.70.8,则a,b,c的大小关系为( )A.a<b<cB.b<a<cC.b<c<aD.c<a<b【解题指南】利用指数函数与对数函数的性质,即可得出a,b,c的大小关系. 【解析】选D.因为a=30.7>1,b==30.8>30.7=a,c=log0.70.8<log0.70.7=1,所以c<1<a<b.3.已知函数f(x)=2lo x的值域为[-1,1],则函数f(x)的定义域是( )A. B.[-1,1]C. D.∪【解析】选A.因为已知函数的值域为[-1,1],所以-≤lo x≤,化简解得≤x≤,故函数f(x)的定义域为.4.函数y=f(x)=lg是( )A.偶函数B.奇函数C.既是奇函数又是偶函数D.既不是奇函数又不是偶函数【解题指南】利用函数奇偶性的定义,结合对数的运算判断.【解析】选B.已知函数的定义域是R,因为f=lg=lg=-lg=-f.所以函数f(x)是奇函数.【误区警示】本题容易出现未能变形得出f与f的关系,从而错选D.二、多选题(每小题5分,共10分,全部选对的得5分,选对但不全的得3分,有选错的得0分)5.已知A={x|2≤x≤π},定义在A上的函数y=log a x(a>0,且a≠1)的最大值比最小值大1,则底数a的值为( )A. B. C.π-2 D.2-π【解析】选AB.当0<a<1时,函数f(x)在[2,π]上单调递减,故log a2-log aπ=1,故a=;当a>1时,函数f(x)在[2,π]上单调递增,故log aπ-log a2=1,故a=.6.若实数a,b满足log a2<log b2,则下列关系中成立的是( )A.0<b<a<1B.0<a<1<bC.a>b>1D.0<b<1<a【解析】选ABC.根据题意,实数a,b满足log a2<log b2,对于A,若a,b均大于0小于1,依题意,必有0<b<a<1,故A有可能成立;对于B,若log b2>0>log a2,则有0<a<1<b,故B有可能成立;对于C,若a,b均大于1,由log a2<log b2,知必有a>b>1,故C有可能成立;对于D,当0<b<1<a时,log a2>0,log b2<0,log a2<log b2不能成立.【光速解题】选ABC.可以分别取符合答案条件的a,b,验证log a2<log b2是否成立.三、填空题(每小题5分,共10分)7.函数y=log a(2x-3)+4(a>0,且a≠1)的图象恒过定点A,则点A的坐标为,若点A在幂函数f(x)的图象上,则f(3)= .【解析】因为log a1=0,所以当2x-3=1,即x=2时,y=4,所以点A的坐标是(2,4).设幂函数f(x)=x α,因为幂函数f(x)=xα的图象过点A(2,4),所以4=2α,解得α=2,所以幂函数为f(x)=x2,则f(3)=9.答案:(2,4) 98.已知函数f(x)=log a(x+2)+3的图象恒过定点(m,n),且函数g(x)=mx2-2bx+n在[1,+∞)上单调递减,则实数b的取值范围是.【解析】因为函数f(x)的图象恒过定点(m,n),令x+2=1,求得x=-1,f(-1)=3,可得它的图象恒过定点(-1,3),所以m=-1,n=3.因为函数g(x)=mx2-2bx+n=-x2-2bx+3 在[1,+∞)上单调递减,所以-b≤1,所以b≥-1.答案:[-1,+∞)四、解答题(每小题10分,共20分)9.已知函数f(x)=log a(1-ax)(a>0且a≠1),(1)若a>1,解不等式f(x)<0;(2)若函数f(x)在区间(0,2]上单调递增,求实数a的取值范围.【解析】(1)因为a>1,log a(1-ax)<0,所以log a(1-ax)<0=log a1,所以0<1-ax<1,所以-1<-ax<0,解得0<x<.所以a>1时,不等式的解集为.(2)因为关于x的函数f(x)在区间(0,2]上单调递增,而t=1-ax在区间(0,2]上单调递减, 所以0<a<1,且t>0.再由解得0<a≤,则实数a的取值范围为.【补偿训练】设f(x)=log a(3+x)+log a(3-x)(a>0,a≠1),且f(0)=2.(1)求实数a的值及函数f(x)的定义域;(2)求函数f(x)在区间[0,]上的最小值.【解析】(1)f(0)=log a3+log a3=2log a3=2,所以a=3.所以f(x)=log3(3+x)+log3(3-x),所以解得-3<x<3.所以f(x)的定义域是(-3,3).(2)因为f(x)=log3(3+x)+log3(3-x)=log3[(3+x)(3-x)]=log3(9-x2),且x∈(-3,3);所以当x=时,f(x)在区间[0,]上取得最小值,最小值为log33=1.10.已知函数f(x)=3+log2x,x∈[1,16],若函数g(x)=[f(x)]2+2f(x2).(1)求函数g(x)的定义域;(2)求函数g(x)的最值.【解析】(1)要使函数g(x)的解析式有意义,则解得x∈[1,4],故函数g(x)的定义域为[1,4].(2)令t=log2x,x∈[1,4],则t∈[0,2],y=g(x)=[f(x)]2+2f(x2)=(3+log2x)2+2(3+log2x2)=(log2x+5)2-10=(t+5)2-10,由函数y=(t+5)2-10的图象是开口朝上且以直线t=-5为对称轴的抛物线,故函数y=(t+5)2-10在[0,2]上单调递增,故当t=0时,y=g(x)取最小值15,当t=2时,y=g(x)取最大值39.创新练习1.已知函数f(x)=|ln x|满足f(a)>f(2-a),则实数a的取值范围是( )A.(0,1)B.(1,2)C.(2,3)D.(1,3)【解析】选A.根据题意可得f(x)=所以f(x)在(0,1)上单调递减,在(1,+∞)上单调递增;根据题意可知,⇒0<a<2;①当0<a<1,2-a>1时,因为f(a)>f(2-a),所以-ln a>ln(2-a)⇒a(2-a)<1,解得a≠1;⇒0<a<1;②当a=1时,f(a)=f(2-a)不符合题意(舍);③当1<a<2,0<2-a<1时,因为f(a)>f(2-a),所以ln a>-ln(2-a)⇒a(2-a)>1,解得a∈∅;综上,a的取值范围为(0,1).2.若定义运算f(a⊗b)=则函数y=f(log2(1+x)⊗log2(1-x))的值域是( )A.(-1,1)B.[0,1)C.[0,+∞)D.[0,1]【解析】选B.由题意得f(a b)=所以y=f(log2(1+x)log2(1-x))=当0≤x<1时,函数为y=log2(1+x),因为y=log2(1+x)在[0,1)上单调递增,所以y∈[0,1),当-1<x<0时,函数为y=log2(1-x),因为y=log2(1-x)在(-1,0)上单调递减, 所以y∈(0,1),由以上可得y∈[0,1),所以函数f(log2(1+x)log2(1-x))的值域为[0,1).6、指数函数、幂函数、对数函数增长的比较基础练习1.以下四种说法中,正确的是( )A.幂函数增长的速度比一次函数增长的速度快B.对任意的x>0,x n>log a xC.对任意的x>0,a x>log a xD.不一定存在x0,当x>x0时,总有a x>x n>log a x【解析】选D.对于A,幂函数的增长速度受幂指数的影响,幂指数不确定,而一次函数的增长速度受一次项系数的影响,增长速度不能比较;对于B、C,当0<a<1时,显然不成立;对于D,当a>1,n>0时,一定存在x0,使得当x>x0时,总有a x>x n>log a x,但若去掉限制条件“a>1,n>0”,则结论不成立.2.向杯中匀速注水时,如果杯中水面的高度h随时间t变化的图象如图所示,则杯子的形状为( )【解析】选B.因为杯中水面的高度先经过两次直线增长,后不变,符合B中容器的形状.【补偿训练】某林区的森林蓄积量平均每年比上一年增长8.6%,若经过x年可以增长到原来的y倍,则函数y=f(x)的大致图象是图中的( )【解析】选D.设某林区的森林蓄积量原有1个单位,则经过1年森林的蓄积量为1+8.6%;经过2年森林的蓄积量为(1+8.6%)2;…;经过x年的森林蓄积量为(1+8.6%)x(x≥0),即y=(108.6%)x(x≥0).因为底数108.6%大于1,根据指数函数的图象,可知D选项正确.3.某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x(单位:万元)对年销售量y(单位:t)的影响,对近6年的年宣传费x i和年销售量y i(i=1,2,…,6)进行整理,得数据如表所示:x 1.00 2.00 3.00 4.00 5.00 6.00y 1.65 2.20 2.60 2.76 2.90 3.10根据表中数据,下列函数中,适合作为年销售量y关于年宣传费x的拟合函数的是( ) A.y=0.5(x+1) B.y=log3x+1.5C.y=2x-1D.y=2【解析】选B.将题干表格中的数值描到坐标系内(图略),观察可得这些点的拟合函数类似于对数函数,代入数值验证,也较为符合.4.某学校开展研究性学习活动,一组同学得到表中的实验数据:x 1.99 3 4 5.1 8y 0.99 1.58 2.01 2.35 3.00现有如下4个模拟函数:①y=0.58x-0.16; ②y=2x-3.02;③y=x2-5.5x+8; ④y=log2x.请从中选择一个模拟函数,使它能近似地反映这些数据的规律,应选.【解析】画出散点图,由图分析增长速度的变化,可知符合对数函数模型,故选④.答案:④5.画出函数f(x)=与函数g(x)=x-2的图象,并比较两者在[0,+∞)上的大小关系.【解析】函数f(x)与g(x)的图象如图.根据图象易得:当0≤x<4时,f(x)>g(x);当x=4时,f(x)=g(x);当x>4时,f(x)<g(x).提升练习一、单选题(每小题5分,共15分)1.如表是函数值y随自变量x变化的一组数据,由此判断它最可能的函数模型是( )x 4 5 6 7 8 9 10y 15 17 19 21 23 25 27A.一次函数模型B.二次函数模型C.指数函数模型D.对数函数模型【解析】选A.随着自变量每增加1函数值增加2,函数值的增量是均匀的,故为线性函数即一次函数模型.2.某同学最近5年内的学习费用y(千元)与时间x(年)的关系如图所示,则可选择的模拟函数模型是( )A.y=ax+bB.y=ax2+bx+cC.y=a·e x+bD.y=aln x+b【解析】选B.由散点图和四个函数的特征可知,可选择的模拟函数模型是y=ax2+bx+c.3.下面对函数f(x)=lo x,g(x)=与h(x)=-2x在区间(0,+∞)上的递减情况说法正确的是( )A.f(x)递减速度越来越慢,g(x)递减速度越来越快,h(x)递减速度越来越慢B.f(x)递减速度越来越快,g(x)递减速度越来越慢,h(x)递减速度越来越快C.f(x)递减速度越来越慢,g(x)递减速度越来越慢,h(x)递减速度不变D.f(x)递减速度越来越快,g(x)递减速度越来越快,h(x)递减速度越来越快【解析】选C.观察函数f(x)=lo x,g(x)=与h(x)=-2x在区间(0,+∞)上的图象(如图)可知:函数f(x)的图象在区间(0,1)上递减较快,但递减速度逐渐变慢;在区间(1,+∞)上,递减较慢,且越来越慢;函数g(x)的图象在区间(0,+∞)上,递减较慢,且递减速度越来越慢;函数h(x)的图象递减速度不变.二、多选题(共5分,全部选对的得5分,选对但不全的得3分,有选错的得0分)4.某地一年内的气温Q(t)(单位:℃)与时间t(月份)之间的关系如图所示.已知该年的平均气温为10 ℃,令C(t)表示时间段[0,t]内的平均气温,不能正确反映C(t)与t之间的函数关系的图象有( )【解析】选BCD.由题图知,当t=6时,C(t)=0,故C不正确;当t=12时,C(t)=10,故D不正确;在大于6的某一段时间平均气温大于10 ℃,故B不正确.三、填空题(每小题5分,共10分)5.如图所示是某受污染的湖泊在自然净化过程中某种有害物质的残留量y与净化时间t(月)的近似函数关系:y=a t(t≥0,a>0且a≠1)的图象.有以下说法:①第4个月时,残留量就会低于;②每月减少的有害物质质量都相等;③当残留量为,,时,所经过的时间分别是t1,t2,t3,则t1+t2=t3.其中所有正确说法的序号是.【解析】由于函数的图象经过点,故函数的解析式为y=.当t=4时,y=<,故①正确;当t=1时,y=,减少,当t=2时,y=,减少,故每月减少有害物质质量不相等,故②不正确;分别令y=,,,解得t1=,t2=,t3=,t1+t2=t3,故③正确.答案:①③6.某人对东北一种松树的生长进行了研究,收集了其高度h(米)与生长时间t(年)的相关数据,选择h=mt+b与h=log a(t+1)来刻画h与t的关系,你认为符合的函数模型是,根据你选择的函数模型预测第8年的松树高度为米.t/年 1 2 3 4 5 6h/米0.6 1 1.3 1.5 1.6 1.7【解析】根据表中数据作出散点图如图:由图可以看出用一次函数模型不吻合,选用对数型函数比较合理.将(2,1)代入到h=log a(t+1)中,得1=log a3,解得a=3,即h=log3(t+1).当t=8时,h=log3(8+1)=2,故可预测第8年松树的高度为2米.答案:h=log a(t+1) 2四、解答题(每小题10分,共20分)7.函数f(x)=1.1x,g(x)=ln x+1,h(x)=的图象如图所示,试分别指出各曲线对应的函数,并比较三者的增长差异(以1,a,b,c,d,e为分界点).【解析】由幂函数增长介于指数爆炸与对数增长之间,可明显得出曲线C1对应的函数是f(x)=1.1x,曲线C2对应的函数是h(x)=,曲线C3对应的函数是g(x)=ln x+1.由图象可得:当x<1时,f(x)>h(x)>g(x);当1<x<e时,f(x)>g(x)>h(x);当e<x<a时g(x)>f(x)>h(x);当a<x<b时,g(x)>h(x)>f(x);当b<x<c时h(x)>g(x)>f(x);当c<x<d时,h(x)>f(x)>g(x);当x>d时,f(x)>h(x)>g(x).8.若不等式3x2<log a x在x∈内恒成立,求实数a的取值范围.【解题指南】原不等式等价于3x2<log a x,将不等式两边分别看成两个函数,作出它们的图象,研究a的取值范围.【解析】由题意,知3x2<log a x在x∈内恒成立,当x∈时,若a>1,则函数y=log a x的图象显然在函数y=3x2图象的下方,所以a>1不成立;当0<a<1时,y=log a x的图象必过点A或在这个点的上方,则log a≥, 所以a≥,所以≤a<1.综上,a的取值范围是.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章 算法初步1.1算法与程序框图练习(P5) 1、算法步骤:第一步,给定一个正实数r .第二步,计算以r 为半径的圆的面积2S r π=. 第三步,得到圆的面积S .2、算法步骤:第一步,给定一个大于1的正整数n .第二步,令1i =.第三步,用i 除n ,等到余数r .第四步,判断“0r =”是否成立. 若是,则i 是n 的因数;否则,i 不是n 的因数.第五步,使i 的值增加1,仍用i 表示.第六步,判断“i n >”是否成立. 若是,则结束算法;否则,返回第三步. 练习(P19)算法步骤:第一步,给定精确度d ,令1i =.的到小数点后第i 位的不足近似值,赋给a ;的到小数点后第i 位的过剩近似值,赋给b . 第三步,计算55b a m =-.第四步,若m d <,则得到5a ;否则,将i 的值增加1,仍用i 表示.返回第二步. 第五步,输出5a .程序框图:习题1.1 A组(P20)1、下面是关于城市居民生活用水收费的问题.为了加强居民的节水意识,某市制订了以下生活用水收费标准:每户每月用水未超过7 m3时,每立方米收费1.0元,并加收0.2元的城市污水处理费;超过7m3的部分,每立方收费1.5元,并加收0.4元的城市污水处理费.设某户每月用水量为x m3,应交纳水费y元,那么y与x之间的函数关系为1.2,071.9 4.9,7x xyx x≤≤⎧=⎨->⎩我们设计一个算法来求上述分段函数的值.算法步骤:第一步:输入用户每月用水量x.第二步:判断输入的x是否不超过7. 若是,则计算1.2y x=;若不是,则计算 1.9 4.9y x=-.第三步:输出用户应交纳的水费y.程序框图:2、算法步骤:第一步,令i=1,S=0.第二步:若i≤100成立,则执行第三步;否则输出S.第三步:计算S=S+i2.第四步:i = i +1,返回第二步.程序框图:3、算法步骤:第一步,输入人数x ,设收取的卫生费为m 元.第二步:判断x 与3的大小. 若x >3,则费用为5(3) 1.2m x =+-⨯;若x ≤3,则费用为5m =.第三步:输出m .程序框图:B 组 1、算法步骤:第一步,输入111222,,,,,a b c a b c ..第二步:计算21121221b c b c x a b a b -=-.第三步:计算12211221a c a c y ab a b -=-.第四步:输出,x y.程序框图:2、算法步骤:第一步,令n=1第二步:输入一个成绩r,判断r与6.8的大小. 若r≥6.8,则执行下一步;若r<6.8,则输出r,并执行下一步.第三步:使n的值增加1,仍用n表示.第四步:判断n与成绩个数9的大小. 若n≤9,则返回第二步;若n>9,则结束算法.程序框图:说明:本题在循环结构的循环体中包含了一个条件结构. 1.2基本算法语句 练习(P24) 13练习(P29) 12、本程序的运行过程为:输入整数x . 若x 是满足9<x <100的两位整数,则先取出x 的十位,记作a ,再取出x 的个位,记作b ,把a ,b 调换位置,分别作两位数的个位数与十位数,然后输出新的两位数. 如输入25,则输出52. 34练习(P32) 1 2习题1.2 A 组(P33)1、1(0)0(0)1(0)x x y x x x -+<⎧⎪==⎨⎪+>⎩23习题1.2 B 组(P33) 1、程序:23、4、1.3算法案例 练习(P45)1、(1)45; (2)98; (3)24; (4)17.2、2881.75.3、2200811111011000=() ,820083730=() 习题1.3 A 组(P48) 1、(1)57; (2)55. 2、21324.3、(1)104; (2)7212() (3)1278; (4)6315().4、习题1.3 B 组(P48)1、算法步骤:第一步,令45n =,1i =,0a =,0b =,0c =.第二步,输入()a i .第三步,判断是否0()60a i ≤<. 若是,则1a a =+,并执行第六步.第四步,判断是否60()80a i ≤<. 若是,则1b b =+,并执行第六步.第五步,判断是否80()100a i ≤≤. 若是,则1c c =+,并执行第六步.第六步,1i i =+. 判断是否45i ≤. 若是,则返回第二步. 第七步,输出成绩分别在区间[0,60),[60,80),[80,100]的人数,,a b c .2、如“出入相补”——计算面积的方法,“垛积术”——高阶等差数列的求和方法,等等.第二章 复习参考题A 组(P50)1、(1)程序框图:1、(2)程序框图:2、见习题1.2 B 组第1题解答. 34、程序框图:5(1)向下的运动共经过约 (2)第10次着地后反弹约 (3)全程共经过约299.609 m1 2、 3x 和它的位数n . n 是偶数,令2nm ;如果n 是奇数,令12n m -=. 第三步,令1i =第四步,判断x 的第i 位与第(1)n i +-位上的数字是否相等. 若是,则使i 的值增加1,仍用i 表示;否则,x 不是回文数,结束算法.第五步,判断“i m >”是否成立. 若是,则n 是回文数,结束算法;否则,返回第四步.第二章 统计 2.1随机抽样 练习(P57)1、.况之间有误差. 如抽取的部分个体不能很好地代表总体,那么我们分析出的结果就会有偏差. 2、(1)抽签法:对高一年级全体学生450人进行编号,将学生的名字和对应的编号分别写在卡片上,并把450张卡片放入一个容器中,搅拌均匀后,每次不放回地从中抽取一张卡片,连续抽取50次,就得到参加这项活动的50名学生的编号. (2)随机数表法:第一步,先将450名学生编号,可以编为000,001, (449)第二步,在随机数表中任选一个数. 例如选出第7行第5列的数1(为了便于说明,下面摘取了附表的第6~10行).16 22 77 94 39 49 54 43 54 82 17 37 93 23 78 87 35 20 96 43 84 26 34 91 64 84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 76 63 01 63 78 59 16 95 55 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 79 33 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 54 57 60 86 32 44 09 47 27 96 54 49 17 46 09 62 90 52 84 77 27 08 02 73 43 28第三步,从选定的数1开始向右读,得到一个三位数175,由于175<450,说明号码175在总体内,将它取出;继续向右读,得到331,由于331<450,说明号码331在总体内,将它取出;继续向右读,得到572,由于572>450,将它去掉. 按照这种方法继续向右读,依次下去,直到样本的50个号码全部取出,这样我们就得到了参加这项活动的50名学生. 3、用抽签法抽取样本的例子:为检查某班同学的学习情况,可用抽签法取出容量为5的样本. 用随机数表法抽取样本的例子:部分学生的心理调查等.抽签法能够保证总体中任何个体都以相同的机会被选到样本之中,因此保证了样本的代表性.4、与抽签法相比,随机数表法抽取样本的主要优点是节省人力、物力、财力和时间,缺点是所产生的样本不是真正的简单样本.练习(P59)1、系统抽样的优点是:(1)简便易行;(2)当对总体结构有一定了解时,充分利用已有信息对总体中的个体进行排队后再抽样,可提高抽样调查;(3)当总体中的个体存在一种自然编号(如生产线上产品的质量控制)时,便于施行系统抽样法.系统抽样的缺点是:在不了解样本总体的情况下,所抽出的样本可能有一定的偏差.2、(1)对这118名教师进行编号;(2)计算间隔1187.37516k==,由于k不是一个整数,我们从总体中随机剔除6个样本,再来进行系统抽样. 例如我们随机剔除了3,46,59,57,112,93这6名教师,然后再对剩余的112位教师进行编号,计算间隔7k=;(3)在1~7之间随机选取一个数字,例如选5,将5加上间隔7得到第2个个体编号12,再加7得到第3个个体编号19,依次进行下去,直到获取整个样本.3、由于身份证(18位)的倒数第二位表示性别,后三位是632的观众全部都是男性,所以这样获得的调查结果不能代表女性观众的意见,因此缺乏代表性.练习(P62)1、略2、这种说法有道理,因为一个好的抽样方法应该能够保证随着样本容量的增加,抽样调查结果会接近于普查的结果. 因此只要根据误差的要求取相应容量的样本进行调查,就可以节省人力、物力和财力.3、可以用分层抽样的方法进行抽样. 将麦田按照气候、土质、田间管理水平的不同而分成不同的层,然后按照各层麦田的面积比例及样本容量确定各层抽取的面积,再在各层中抽取个体(这里的个体是单位面积的一块地).习题2.1 A组(P63)1、产生随机样本的困难:(1)很难确定总体中所有个体的数目,例如调查对象是生产线上生产的产品.(2)成本高,要产生真正的简单随机样本,需要利用类似于抽签法中的抽签试验来产生非负整值随机数.(3)耗时多,产生非负整数值随机数和从总体中挑选出随机数所对的个体都需要时间.2、调查的总体是所有可能看电视的人群.学生A的设计方案考虑的人数是:上网而且登录某网址的人群,那些不能上网的人群,或者不登录某网址的人群就被排除在外了. 因此A方案抽取的样本的代表性差.学生B的设计方案考虑的人群是小区内的居民,有一定的片面性. 因此B方案抽取的样本的代表性差.学生C的设计方案考虑的人群是那些有电话的人群,也有一定的片面性. 因此C方案抽取的样本的代表性.所以,这三种调查方案都有一定的片面性,不能得到比较准确的收视率.3、(1)因为各个年级学习任务和学生年龄等因素的不同,影响各年级学生对学生活动的看法,所以按年级分层进行抽样调查,可以得到更有代表性的样本.(2)在抽样的过程中可能遇到的问题如敏感性问题:有些学生担心提出意见对自己不利;又如不响应问题:由于种种原因,有些学生不能发表意见;等等.(3)前面列举的两个问题都可能导致样本的统计推断结果的误差.(4)为解决敏感性问题,可以采用阅读与思考栏目“如何得到敏感性问题的诚实反应”中的方法设计调查问卷;为解决不响应问题,可以事先向全体学生宣传调查的意义,并安排专人负责发放和催收调查问卷,最大程度地回收有效调查问卷.4、将每一天看作一个个体,则总体由365天组成. 假设要抽取50个样本,将一年中的各天按先后次序编号为0~364天用简单随机抽样设计方案:制作365个号签,依次标上0~364. 将号签放到容器内充分搅拌均匀,从容器中任意不放回取出50个号签. 以签上的号码所对应的那些天构成样本,检测样本中所有个体的空气质量. 用系统抽样设计抽样方案:先通过简单随机抽样方法从365天中随机抽出15天,再把剩下的350天重新按先后次序编号为0~349. 制作7个分别标有0~7的号签,放在容器中充分搅拌均匀. 从容器中任意取出一个号签,设取出的号签的编号为a ,则编号为7(050)a k k +≤<所对应的那些天构成样本,检测样本中所有个体的空气质量.显然,系统抽样方案抽出的样本中个体在一年中排列的次序更规律,因此更好实施,更受方案的实施者欢迎.5、田径队运动员的总人数是564298+=(人),要得到28人的样本,占总体的比例为27.于是,应该在男运动员中随机抽取256167⨯=(人),在女运动员中随机抽取281612-=(人).这样我们就可以得到一个容量为28的样本.6、以10为分段间隔,首先在1~10的编号中,随机地选取一个编号,如6,那么这个获奖者奖品的编号是:6,16,26,36,46.7、说明:可以按年级分层抽样的方法设计方案. 习题2.1 B 组(P64)1、说明:可以按年级分层抽样的方法设计方案,调查问卷由学生所关心的问题组成. 例如:(1)你最喜欢哪一门课程? (2)你每月的零花钱平均是多少? (3)你最喜欢看《新闻联播》吗? (4)你每天早上几点起床? (5)你每天晚上几点睡觉?要根据统计的结果和具体的情况解释结论,主要从引起结论的可能原因及结论本身含义来解释.2、说明:这是一个开放性的题目,没有一个标准的答案. 2.2用样本估计总体 练习(P71) 1、说明:由于样本的极差为364.41362.51 1.90-=,取组距为0.19,将样本分为10组. 可以按照书上的方法制作频率分布表、频率分布直观图和频率折线图. 2、说明:此题目属于应用题,没有标准的答案.3、茎叶图为:由该图可以看出30名工人的日加工零件个数稳定在120件左右. 练习(P74)这里应该采用平均数来表示每一个国家项目的平均金额,因为它能反应所有项目的信息. 但平均数会受到极端数据2000万元的影响,所以大多数项目投资金额都和平均数相差比较大. 练习(P79)1、甲乙两种水稻6年平均产量的平均数都是900,但甲的标准差约等于23.8,乙的标准差约等于41.6,所以甲的产量比较稳定.2、(1)平均重量496.86x ≈,标准差 6.55s ≈.(2)重量位于(,)x s x s -+之间有14袋白糖,所占的百分比约为66.67%.3、(1)略. (2)平均分19.25x ≈,中位数为15.2,标准差12.50s ≈.这些数据表明这些国家男性患该病的平均死亡率约为19.25,有一半国家的死亡率不超过15.2,15.2x >说明存在大的异常数据,值得关注. 这些异常数据使标准差增大. 习题2.2 A 组(P81) 1、((2)汞含量分布偏向于大于1.00 ppm 的方向,即多数鱼的汞含量分布在大于1.00 ppm 的区域.(3)不一定. 因为我们不知道各批鱼的汞含量分布是否都和这批鱼相同. 即使各批鱼的汞含量分布相同,上面的数据只能为这个分布作出估计,不能保证平均汞含量大于1.00 ppm. (4)样本平均数 1.08x ≈,样本标准差0.45s ≈.(5)有28条鱼的汞含量在平均数与2倍标准差的和(差)的范围内.2比较短,所以在这批棉花中混进了一些次品.3、说明:应该查阅一下这所大学的其他招生信息,例如平均数信息、最低录取分数线信息等. 尽管该校友的分数位于中位数之下,而中位数本身并不能提供更多录取分数分布的信息.在已知最低录取分数线的情况下,很容易做出判断;在已知平均数小于中位数很多,则说明最低录取分数线较低,可以推荐该校友报考这所大学,否则还要获取其他的信息(如标准差的信息)来做出判断. 4、说明:(1)对,从平均数的角度考虑; (2)对,从标准差的角度考虑;(3)对,从标准差的角度考虑; (4)对,从平均数和标准差的角度考虑; 5、(1)不能. 因为平均收入和最高收入相差太多,说明高收入的职工只占极少数. 现在已知知道至少有一个人的收入为50100x =万元,那么其他员工的收入之和为4913.55010075ii x==⨯-=∑(万元)每人平均只有1.53. 如果再有几个收入特别高者,那么初进公司的员工的收入将会很低. (2)不能,要看中位数是多少.(3)能,可以确定有75%的员工工资在1万元以上,其中25%的员工工资在3万元以上.(4)收入的中位数大约是2万. 因为有年收入100万这个极端值的影响,使得年平均收入比中位数高许多. 6、甲机床的平均数=1.5x 甲,标准差=1.2845s 甲;乙机床的平均数 1.2z y =,标准差0.8718z s =. 比较发现乙机床的平均数小而且标准差也比较小,说明乙机床生产出的次品比甲机床少,而且更为稳定,所以乙机床的性能较好. 7、(1)总体平均数为199.75,总体标准差为95.26. (2)可以使用抓阄法进行抽样. 样本平均数和标准差的计算结果和抽取到的样本有关. (3) (4)略 习题2.2 B 组(P82)1、(1)由于测试1T 的标准差小,所以测试1T 结果更稳定,所以该测试做得更好一些. (2)由于2T 测出的值偏高,有利于增强队员的信心,所以应该选择测试2T .2、说明:此题需要在本节开始的时候就布置,先让学生分头收集数据,汇总所收集的数据才能完成题目.2.3变量间的相关关系 练习(P85)1、从已经掌握的知识来看,吸烟会损害身体的健康. 但除了吸烟之外,还有许多其他的随机因素影响身体健康,人体健康是很多因素共同作用的结果. 我们可以找到长寿的吸烟者,也更容易发现由于吸烟而引发的患病者,所以吸烟不一定引起健康问题. 但吸烟引起健康问题的可能性大,因此“健康问题不一定是由吸烟引起的,所以可以吸烟”的说法是不对的.2、从现在我们掌握的知识来看,没有发现根据说明“天鹅能够带来孩子”,完全可能存在既能吸引天鹅和又使婴儿出生率高的第3个因素(例如独特的环境因素),即天鹅与婴儿出生率之间没有直接的关系,因此“天鹅能够带来孩子”的结论不可靠.而要证实此结论是否可靠,可以通过试验来进行. 相同的环境下将居民随机地分为两组,一组居民和天鹅一起生活(比如家中都饲养天鹅),而另一组居民的附近不让天鹅活动,对比两组居民的出生率是否相同. 练习(P92)(1)散点图如下:1、当0x =时,147.767y =,这个值与实际卖出的热饮杯数150不符,原因是:线性回归方程中的截距和斜率都是通过样本估计的,存在随机误差,这种误差可以导致预测结果的偏差;即使截距和斜率的估计没有误差,也不可能百分之百地保证对应于x ,预报值y 能够等于实际值y . 事实上:y bx a e =++. (这里e 是随机变量,是引起预报值y 与真实值y 之间的误差的原因之一,其大小取决于e 的方差.)2、数据的散点图为:从这个散点图中可以看出,鸟的种类数与海拔高度应该为正相关(事实上相关系数为0.793). 但是从散点图的分布特点来看,它们之间的线性相关性不强. 习题2.3 A 组(P94)1、教师的水平与学生的学习成绩呈正相关关系. 又如,“水涨船高”“登高望远”等.2、 (3)基本成正相关关系,即食品所含热量越高,口味越好.(4)因为当回归直线上方的食品与下方的食品所含热量相同时,其口味更好. 3、(1)散点图如下:(2)回归方程为:0.66954.933y x =+.(3)加工零件的个数与所花费的时间呈正线性相关关系.(2)回归直线如下图所示:4、(1)散点图为:(2)回归方程为:0.546876.425y x =+.(3)由回归方程知,城镇居民的消费水平和工资收入之间呈正线性相关关系,即工资收入水平越高,城镇居民的消费水平越高. 习题2.3 B 组(P95) 1、(1)散点图如下:(2)回归方程为: 1.44715.843y x =-.(3)如果这座城市居民的年收入达到40亿元,估计这种商品的销售额为42.037y ≈(万元). 2、说明:本题是一个讨论题,按照教科书中的方法逐步展开即可.第二章 复习参考题A 组(P100)1、A .2、(1)该组的数据个数,该组的频数除以全体数据总数; (2)nmN. 3、(1)这个结果只能说明A 城市中光顾这家服务连锁店的人比其他人较少倾向于选择咖啡色,因为光顾连锁店的人使一种方便样本,不能代表A 城市其他人群的想法. (2)这两种调查的差异是由样本的代表性所引起的. 因为A 城市的调查结果来自于该市光顾这家服装连锁店的人群,这个样本不能很好地代表全国民众的观点.4、说明:这是一个敏感性问题,可以模仿阅读与思考栏目“如何得到敏感性问题的诚实反应”来设计提问方法.5、表略. 可以估计出句子中所含单词的分布,以及与该分布有关的数字特征,如平均数、标准差等.6、(1)可以用样本标准差来度量每一组成员的相似性,样本标准差越小,相似程度越高. (2)A 组的样本标准差为 3.730A S ≈,B 组的样本标准差为11.789B S ≈. 由于专业裁判给分更符合专业规则,相似程度应该高,因此A 组更像是由专业人士组成的.7、(1)中位数为182.5,平均数为217.1875.(2)这两种数字特征不同的主要原因是,430比其他的数据大得多,应该查找430是否由某种错误而产生的. 如果这个大数据的采集正确,用平均数更合适,因为它利用了所有数据的信息;如果这个大数据的采集不正确,用中位数更合适,因为它不受极端值的影响,稳定性好. 8、(1)略.(2)系数0.42是回归直线的斜率,意味着:对于农村考生,每年的入学率平均增长0.42%.(3)城市的大学入学率年增长最快. 说明:(4)可以模仿(1)(2)(3)的方法分析数据.第二章 复习参考题B 组(P101)1、频率分布如下表: 从表中看出当把 指标定为17.46千元 时,月65%的推销员 经过努力才能完成销 售指标.2、(1)数据的散点图如下: (2)用y 表示身高,x 表示年龄,则数据的回归方程为6.31771.984y x =+.(3)在该例中,斜率6.317表示孩子在一年中增加的高度.(4)每年身高的增长数略. 3~16岁的身高年均增长约为6.323 cm.(5)斜率与每年平均增长的身高之间之间近似相等.第三章 概率 3.1随机事件的概率 练习(P113) 1、(1)试验可能出现的结果有3个,两个均为正面、一个正面一个反面、两个均为反面. (2)通过与其他同学的结果汇总,可以发现出现一个正面一个反面的次数最多,大约在50次左右,两个均为正面的次数和两个均为反面的次数在25次左右. 由此可以估计出现一个正面一个反面的概率为0.50,出现两个均为正面的概率和两个均为反面的概率均为0.25.2、略3、(1)例如:北京四月飞雪;某人花两元钱买福利彩票,中了特等奖;同时抛10枚硬币,10枚都正面朝上.(2)例如:在王府井大街问路时,碰到会说中文的人;去烤鸭店吃饭的顾客点烤鸭;在1~1000的自然数任选一个数,选到的数大于1.练习(P118)1、说明:例如,计算机键盘上各键盘的安排,公交线路及其各站点的安排,抽奖活动中各奖项的安排等,其中都用到了概率. 学生可能举出各种各样的例子,关键是引导他们正确分析例子中蕴涵的概率思想.2、通过掷硬币或抽签的方法,决定谁先发球,这两种方法都是公平的. 而猜拳的方法不太公平,因为出拳有时间差,个人反应也不一样.3、这种说法是错误的. 因为掷骰子一次得到2是一个随机事件,在一次试验中它可能发生也可能不发生. 掷6次骰子就是做6次试验,每次试验的结果都是随机的,可能出现2也可能不出现2,所以6次试验中有可能一次2都不出现,也可能出现1次,2次,…,6次. 练习(P121)1、0.72、0.6153、0.44、D5、B习题3.1 A组(P123)1、D.2、(1)0;(2)0.2;(3)1.3、(1)430.067645≈;(2)900.140645≈;(3)7010.891645-≈.4、略5、0.136、说明:本题是想通过试验的方法,得到这种摸球游戏对先摸者和后摸者是公平的结论. 最好把全班同学的结果汇总,根据两个事件出现的频率比较近,猜测在第一种情况下摸到红球的概率为110,在第二种下也为110. 第4次摸到红球的频率与第1次摸到红球的频率应该相差不远,因为不论哪种情况,第4次和第1次摸到红球的概率都是1 10.习题3.1 B组(P124)1、D.2、略. 说明:本题是为了学生根据实际数据作出一些推断. 一般我们假定每个人的生日在12个月中哪一个月是等可能的,这个假定是否成立,引导学生通过收集的数据作出初步的推断.3.2古典概率练习(P130)1、110. 2、17. 3、16.练习(P133)1、38,38.2、(1)113;(2)1213;(3)14;(4)313;(5)0;(6)213;(7)12;(8)1.说明:模拟的方法有两种.(1)把1~52个自然数分别与每张牌对应,再用计算机做模拟试验.(2)让计算机分两次产生两个随机数,第一次产生1~4的随机数,代表4个花色;第二次产生1~13的随机数,代表牌号.3、(1)不可能事件,概率为0;(2)随机事件,概率为49;(3)必然事件,概率为1;(4)让计算机产生1~9的随机数,1~4代表白球,5~9代表黑球.4、(1)16;(2)略;(3)应该相差不大,但会有差异. 存在差异的主要原因是随机事件在每次试验中是否发生是随机的,但在200次试验中,该事件发生的次数又是有规律的,所以一般情况下所得的频率与概率相差不大.习题3.2 A组(P133)1、游戏1:取红球与取白球的概率都为12,因此规则是公平的.游戏2:取两球同色的概率为13,异色的概率为23,因此规则是不公平的.游戏3:取两球同色的概率为12,异色的概率为12,因此规则是公平的.2、第一位可以是1~9这9个数字中的一个,第二位可以是0~9这10个数字中的一个,所以(1)190;(2)18919090-=;(3)9919010-=3、(1)0.52;(2)0.18.4、(1)12;(2)16;(3)56;(4)16.5、(1)25;(2)825.6、(1)920;(2)920;(3)12.习题3.2 B组(P134)1、(1)13;(2)14.2、(1)35;(2)310;(3)910.说明:(3)先计算该事件的对立事件发生的概率会比较简单.3、具体步骤如下:①建立概率模型. 首先要模拟每个人的出生月份,可用1,2,…,11,12表示月份,用产生取整数值的随机数的办法,随机产生1~12之间的随机数. 由于模拟的对象是一个有10个人的集体,故把连续产生的10个随机数作为一组模拟结果,可模拟产生100组这样的结果.②进行模拟试验. 可用计算器或计算机进行模拟试验.如使用Excel软件,可参看教科书125页的步骤,下图是模拟的结果:其中,A,B,C,D,E,F,G,H,I,J的每一行表示对一个10人集体的模拟结果. 这样的试验一共做了100次,所以共有100行,表示随机抽取了100个集体.③统计试验的结果. K,L,M,N列表示统计结果. 例如,第一行前十列中至少有两个数相同,表示这个集体中至少有两个人的生日在同一月. 本题的难点是统计每一行前十列中至少有两个数相同的个数. 由于需要判断的条件态度,所以用K,L,M 三列分三次完成统计. 其中K 列的公式为“=IF(OR(A1=B1,A1=C1,A1=D1,A1=E1,A1=F1,A1=G1,A1=H1,A1=I1,A1=J1,B1=C1,B1=D1,B1=E1,B1=F1,B1=G1,B1=H1,B1=I1,B1=J1,C1=D1,C1=E1,C1=F1,C1=G1,C1=H1,C1=I1,C1=J1,D1=E1,D1=F1,D1=G1,D1=H1,D1=I1,D1=J1),1,0)”,L 列的公式为“=IF(OR(E1=F1,E1=G1,E1=H1,E1=I1,E1=J1,F1=G1,F1=H1,F1=I1,F1=J1, G1=H1,G1=I1,G1=J1,H1=I1,H1=J1,I1=J1),1,0)”,M 列的公式为“=IF(OR(K1=1,L1=1),1,0)”,M 列的值为1表示该行所代表的10人集体中至少有两个人的生日在同一个月. N1表示100个10人集体中至少有两个人的生日在同一个月的个数,其公式为“=SUM(M$1:M$100)”. N1除以100所得的结果0.98,就是用模拟方法计算10人集体中至少有两个人的生日在同一个月的概率的估计值. 可以看出,这个估计值很接近1.3.3几何概率练习(P140)1、(1)1π; (2)38. 2、如果射到靶子上任何一点是等可能的,那么大约有100个镖落在红色区域.说明:在实际投镖中,命中率可能不同,这里既有技术方面的因素,又是随机因素的影响,所以在投掷飞镖、射击或射箭比赛中不会以一枪或一箭定输赢,而是取多次成绩的总和,这就是为了减少随机因素的影响.习题3.3 A 组(P142)1、(1)49; (2)13; (3)29; (4)23; (5)59. 2、(1)126; (2)12; (3)326; (4)326; (5)12; (6)313. 说明:(4)是指落在6,23,9三个相邻区域的情况,而不是编号为6,7,8,9,四个区域.3、(1)25; (2)115; (3)35. 说明:本题假设在任何时间到达路口是等可能的.习题3.3 B 组(P142)1、设甲到达的时间为x ,乙到达的时间为y ,则0,24x y <<. 若至少一般船在停靠泊位时必须等待,则06y x <-<或06x y <-<,必须等待的概率为:22189711241616-=-=. 2、D .第三章 复习参考题A 组(P145)1、56,16,23. 2、(1)0.548; (2)0.186; (3)0.266.3、(1)38; (2)14.4、(1)813; (2)726; (3)665.。

相关文档
最新文档