几种实用的直流开关电源保护电路
常用的六种开关电源输入保护电路
常用的六种开关电源输入保护电路
开关电源是开关稳压线性电源的简称,以前的电源产品是采用线性电源,这是一种晶体管线性稳压电源,由于效率低下等原因已逐渐被开关电源取代。
开关电源,顾名思义就是通过控制开关管的导通时间以及关断时间来维持输出电压的稳定的电源,已逐渐向小型化、效率化、模块化、高可靠性等方向发展。
对于开关电源,输入保护电路很重要,开关输入保护电路具有过流保护、过压保护以及浪涌抑制等功能,对于电网的电压冲击以及EMC等具有至关重要的作用。
下面列举6种开关电源输入保护电路
一、保险丝形式
保险丝有普通型的也有快速型的,具有熔点低、熔断速度快特点,但是在熔断时候会产生火花、冒烟,甚至有玻璃管的会爆裂,因此安全性较差。
仅有保险丝的输入保护电路,只有过流保护作用,一般选择保险丝时候实际的熔断电流要等于额定电流的1.5倍左右。
二、保险丝、压敏电阻形式
这种电路多了压敏电阻,压敏电阻规格有07471、10471、14471等规格,具有浪涌抑制功能,因此这种电路有过压、过流保护功能,有些还具有防雷击保护
三、熔断电阻器、压敏电阻形式
熔断电阻器与保险丝作用相同,都是起到过流保护,但是与保险丝不同的是熔断电阻器熔断时候不会产生火花以及烟雾,就安全性来说安全高一点;而压敏电阻具有浪涌电压吸收作用,因此这种电路形式具有过压、过流保护功能
四、保险丝、NTC热敏电阻形式
热敏电阻采用的是负温度系数的,它的阻值随温度的升高为降低,它具有抑制电路的浪涌电流能力
五、压敏电阻、NTC热敏电阻形式
六、保险丝、压敏电阻、NTC热敏电阻形式。
一文说清开关电源常用的几种保护
一文说清开关电源常用的几种保护
【原创版】
目录
一、开关电源的浪涌电流问题
二、开关电源的常用保护电路
1.电流保护
2.电压保护
3.过热保护
4.空载保护
5.短路保护
正文
在电力电子设备中,开关电源的应用越来越广泛,然而由于开关电源的输入电路采用电容滤波型整流电路,在电源接通瞬间,电容器充电会形成很大的浪涌电流,可能会导致输入熔断器烧断或合闸开关的触点烧坏,整流桥过流损坏,轻者也会使空气开关合不上闸,这些问题都会造成开关电源无法正常工作。
因此,为了解决这些问题,开关电源通常采用以下几种保护电路:
1.电流保护:通过设置电流限制电路,限制电源的输出电流,避免因负载电流过大而损坏电源。
2.电压保护:通过设置电压限制电路,限制电源的输出电压,避免因电压过高而损坏负载设备。
3.过热保护:通过设置过热保护电路,当电源内部温度过高时,自动切断电源,避免因过热而损坏电源。
4.空载保护:通过设置空载保护电路,当电源输出端空载时,自动切
断电源,避免因空载而损坏电源。
5.短路保护:通过设置短路保护电路,当电源输出端发生短路时,自动切断电源,避免因短路而损坏电源。
开关电源常用的几种保护电路
开关电源常用的几种保护电路评价开关电源的质量指标应该是以安全性、可靠性为第一原则。
在电气技术指标满足正常使用要求的条件下,为使电源在恶劣环境及突发故障情况下安全可靠地工作,必须设计多种保护电路,比如防浪涌的软启动,防过压、欠压、过热、过流、短路、缺相等保护电路。
开关电源常用的几种保护电路如下:1、防浪涌软启动电路开关电源的输入电路大都采用电容滤波型整流电路,在进线电源合闸瞬间,由于电容器上的初始电压为零,电容器充电瞬间会形成很大的浪涌电流,特别是大功率开关电源,采用容量较大的滤波电容器,使浪涌电流达100A以上。
在电源接通瞬间如此大的浪涌电流,重者往往会导致输入熔断器烧断或合闸开关的触点烧坏,整流桥过流损坏;轻者也会使空气开关合不上闸。
上述现象均会造成开关电源无法正常工作,为此几乎所有的开关电源都设置了防止流涌电流的软启动电路,以保证电源正常而可靠运行。
图1是采用晶闸管V和限流电阻R1组成的防浪涌电流电路。
在电源接通瞬间,输入电压经整流桥(D1~D4)和限流电阻R1对电容器C充电,限制浪涌电流。
当电容器C充电到约80%额定电压时,逆变器正常工作。
经主变压器辅助绕组产生晶闸管的触发信号,使晶闸管导通并短路限流电阻R1,开关电源处于正常运行状态。
图1 采用晶闸管和限流电阻组成的软启动电路图2是采用继电器K1和限流电阻R1构成的防浪涌电流电路。
电源接通瞬间,输入电压经整流(D1~D4)和限流电阻R1对滤波电容器C1充电,防止接通瞬间的浪涌电流,同时辅助电源Vcc经电阻R2对并接于继电器K1线包的电容器C2充电,当C2上的电压达到继电器K1的动作电压时,K1动作,其触点K1.1闭合而旁路限流电阻R1,电源进入正常运行状态。
限流的延迟时间取决于时间常(R2C2),通常选取为0.3~0.5s。
为了提高延迟时间的准确性及防止继电器动作抖动振荡,延迟电路可采用图3所示电路替代RC延迟电路。
图2 采用继电器K1和限流电阻构成的软启动电路图3 替代RC的延迟电路2、过压、欠压及过热保护电路进线电源过压及欠压对开关电源造成的危害,主要表现在器件因承受的电压及电流应力超出正常使用的范围而损坏,同时因电气性能指标被破坏而不能满足要求。
开关电源安全保护电路原理图解
开关电源安全保护电路原理图解对于开关电源而言, 平安、牢靠性历来被视为重要的性能之一. 开关电源在电气技术指标满意电子设备正常使用要求的条件下, 还要满意外界或自身电路或负载电路消失故障的状况下也能平安牢靠地工作. 为此, 须有多种爱护措施. 对爱护电路的特点分析, 对存在不足期盼克服, 盼望设计出更平安、更牢靠的爱护电路。
1 浪涌电流电路剖析浪涌电流是由于电压突变所引起. 如电子设备在第一次加电压时, 由于大容量电源电容器充电引起的涌入初始电流开机浪涌电流; 又如直击雷、感应雷沿着电源线进入开关电源的突变电压所产生瞬态电流雷浪涌电流. 浪涌电流上升时间特别快, 持续时间特别短, 破坏作用特别大. 为防止或减轻浪涌电流的破坏, 设置抑制浪涌电流或将浪涌电流转移到地线等方式来爱护开关电源避开浪涌电流的损害。
1. 1 启动限流爱护开关电源的初级整流电路有大容量滤波电容,开机瞬间整流管向这些大电容充电, 使整流管瞬时电流超过额定值. 为减小开机启动限流( 浪涌电流) ,开关电源通常都设有抗冲击电路. 如图1 电路, 在开机瞬间, 开关电源变压器的3、4 绕组电压为0V, VD5截止, 晶闸管VD6 的G、K 极间电压为0V, VD6 截止.充电电流路径: AC220V→VD1-4 正极→大电容C1→地→R2→VD1- 4 负极. 由于R2 有阻碍大电流作用( 一般设为3. 3Ω) , 因此能有效限制开机浪涌电流。
开关电源正常工作后, 开关电源变压器的1、2绕组上产生感应电压, 对C2 充电( 充电时间常数约等于R3×C2) , 使VD6 导通, 整流电流不再经R2, 而是经VD6 的A、K 极返回整流桥VD1- 4 的负极. 也就是说, 在正常工作状态, VD6 将R2 短路, 防止R2产生功耗.R2 仅在开机瞬间起作用。
用晶闸管作启动限流爱护平安牢靠, 但电路比较简单些, 从电路成本和电路简捷等角度来说用温控电阻作启动限流爱护, 它既经济又简洁更平安牢靠, 如图3。
24V开关电源的几种保护电路
24V开关电源常用的几种保护电路1.防浪涌软启动电路24V开关电源的输入电路大都采用电容滤波型整流电路,在进线电源合闸瞬间,由于电容器上的初始电压为零,电容器充电瞬间会形成很大的浪涌电流,特别是大功率开关电源,采用容量较大的滤波电容器,使浪涌电流达100A以上。
在电源接通瞬间如此大的浪涌电流,重者往往会导致输入熔断器烧断或合闸开关的触点烧坏,整流桥过流损坏;轻者也会使空气开关合不上闸。
上述现象均会造成开关电源无法正常工作,为此几乎所有的开关电源都设置了防止流涌电流的软启动电路,以保证电源正常而可靠运行。
2.过压、欠压及过热保护电路进线电源过压及欠压对开关电源造成的危害,主要表现在器件因承受的电压及电流应力超出正常使用的范围而损坏,同时因电气性能指标被破坏而不能满足要求。
因此对输入电源的上限和下限要有所限制,为此采用过压、欠压保护以提高电源的可靠性和安全性。
温度是影响电源设备可靠性的最重要因素。
根据有关资料分析表明,电子元器件温度每升高2℃,可靠性下降10%,温升50℃时的工作寿命只有温升25℃时的1/6,为了避免功率器件过热造成损坏,在开关电源中亦需要设置过热保护电路。
3.缺相保护电路由于电网自身原因或电源输入接线不可靠,24V开关电源有时会出现缺相运行的情况,且掉相运行不易被及时发现。
当电源处于缺相运行时,整流桥某一臂无电流,而其它臂会严重过流造成损坏,同时使逆变器工作出现异常,因此必须对缺相进行保护。
检测电网缺相通常采用电流互感器或电子缺相检测电路。
由于电流互感器检测成本高、体积大,故开关电源中一般采用电子缺相保护电路。
图5是一个简单的电子缺相保护电路。
三相平衡时,R1~R3结点H电位很低,光耦合输出近似为零电平。
当缺相时,H点电位抬高,光耦输出高电平,经比较器进行比较,输出低电平,封锁驱动信号。
比较器的基准可调,以便调节缺相动作阈值。
该缺相保护适用于三相四线制,而不适用于三相三线制。
电路稍加变动,亦可用高电平封锁PWM信号。
开关直流电源设计(原理及结构)
并联型高频开关直流电源的系统设计关键字:开关电源 PWM 并联均流模块随着模块化电源系统的发展,开关电源并联技术的重要性日见重要。
这里介绍了一种新型并联型高频开关电源整流模块的系统设计方案。
其中,对开关电源的驱动电路、缓冲电路、控制电路及主要磁元件进行优化、设计。
控制电路以UC3525为核心,构成电流内环、电压外环的双环控制模式,实现系统稳压和限流。
并且通过小信号模型分析,对电压电流环的PI调节器进行设计。
近几年来,各式各样的开关电源以其小巧的体积、较高的功率密度和高效率越来越得到广泛的应用。
随着电力系统自动化程度的提高,特别是其保护装置的微机化,通讯装置的程控化,对电源的体积和效率的要求不断提高。
电源中磁性元件和散热器件成了提高功率密度的巨大障碍。
开关频率的提高可以使开关变换器(特别是变压器、电感等磁性元件以及电容)的体积、重量大为减小,从而提高变换器的功率密度。
另外,提高开关频率可以降低开关电源的音频噪声和改善动态响应。
但是由于开关管的通断控制与开关管上流过的电流和两端所加的电压无关,而早期的脉宽调制(PWM)开关电源工作在硬开关模式,在硬开关中功率开关管的开通或关断是在器件上的电压或电流不等于零的状态下强迫进行的,电路的开关损耗很大,开关频率越高,损耗越大,不但增加了热设计的难度而且大大降低了系统得可靠性,这使得PWM开关技术的高频化受到了许多的限制。
根据高频电力操作电源的设计要求,结合实际的经验和实验结果选择合适的开关器件,设计出稳定可靠、性能优越的控制电路、驱动电路、缓冲电路以及主要的磁性元器件。
对最大电流自动均流法的工作原理以及系统稳定性进行了较为深入的研究。
采用均流控制芯片UC3907设计了电源的均流控制电路,使模块单元具有可并联功能,可以实现多电源模块并联组成更大功率的电源系统。
1、系统原理的设计思想在设计大型的开关电源模块时,首先需要对系统有一个整体的规划,以便于设计整体结构及相应的辅助电源。
开关电源稳各环节电路电路及原理
开关电源稳压环路电路及原理1、AC 输入整流滤波电路原理:①防雷电路:当有雷击,产生高压经电网导入电源时,由MOV1、MOV2、MOV3:F1、F2、F3、FDG1 组成的电路进行保护。
当加在压敏电阻两端的电压超过其工作电压时,其阻值降低,使高压能量消耗在压敏电阻上,若电流过大,F1、F2、F3 会烧毁保护后级电路。
②输入滤波电路:C1、L1、C2、C3组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。
当电源开启瞬间,要对C5充电,由于瞬间电流大,加RT1(热敏电阻)就能有效的防止浪涌电流。
因瞬时能量全消耗在RT1电阻上,一定时间后温度升高后RT1阻值减小(RT1是负温系数元件),这时它消耗的能量非常小,后级电路可正常工作。
③整流滤波电路:交流电压经BRG1整流后,经C5滤波后得到较为纯净的直流电压。
若C5容量变小,输出的交流纹波将增大。
2、DC 输入滤波电路原理:①输入滤波电路:C1、L1、C2组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。
C3、C4 为安规电容,L2、L3为差模电感。
②R1、R2、R3、Z1、C6、Q1、Z2、R4、R5、Q2、RT1、C7组成抗浪涌电路。
在起机的瞬间,由于C6的存在Q2不导通,电流经RT1构成回路。
当C6上的电压充至Z1的稳压值时Q2导通。
如果C8漏电或后级电路短路现象,在起机的瞬间电流在RT1上产生的压降增大,Q1导通使Q2没有栅极电压不导通,RT1将会在很短的时间烧毁,以保护后级电路。
1、MOS管的工作原理:目前应用最广泛的绝缘栅场效应管是MOSFET(MOS管),是利用半导体表面的电声效应进行工作的。
也称为表面场效应器件。
由于它的栅极处于不导电状态,所以输入电阻可以大大提高,最高可达105欧姆,MOS管是利用栅源电压的大小,来改变半导体表面感生电荷的多少,从而控制漏极电流的大小。
几种实用的直流开关电源保护电路
几种实用的直流开关电源保护电路1 引言随着科学技术的发展,电力电子设备与人们的工作、生活的关系日益密切,而电子设备都离不开可靠的电源,因此直流开关电源开始发挥着越来越重要的作用,并相继进入各种电子、电器设备领域,程控交换机、通讯、电子检测设备电源、控制设备电源等都已广泛地使用了直流开关电源[1-3].同时随着许多高新技术,包括高频开关技术、软开关技术、功率因数校正技术、同步整流技术、智能化技术、表面安装技术等技术的发展,开关电源技术在不断地创新,这为直流开关电源提供了广泛的发展空间[4].但是由于开关电源中控制电路比较复杂,晶体管和集成器件耐受电、热冲击的能力较差,在使用过程中给用户带来很大不便。
为了保护开关电源自身和负载的安全,根据了直流开关电源的原理和特点,设计了过热保护、过电流保护、过电压保护以及软启动保护电路。
2 开关电源的原理及特点2.1工作原理直流开关电源由输入部分、功率转换部分、输出部分、控制部分组成。
功率转换部分是开关电源的核心,它对非稳定直流进行高频斩波并完成输出所需要的变换功能。
它主要由开关三极管和高频变压器组成。
图1画出了直流开关电源的原理图及等效原理框图,它是由全波整流器,开关管V,激励信号,续流二极管Vp,储能电感和滤波电容C组成。
实际上,直流开关电源的核心部分是一个直流变压器。
2.2特点为了适应用户的需求,国内外各大开关电源制造商都致力于同步开发新型高智能化的元器件,特别是通过改善二次整流器件的损耗,并在功率铁氧体(Mn-Zn)材料上加大科技创新,以提高在高频率和较大磁通密度下获得高的磁性能,同时SMT技术的应用使得开关电源取得了长足的进展,在电路板两面布置元器件,以确保开关电源的轻、小、薄。
因此直流开关电源的发展趋势是高频、高可靠、低耗、低噪声、抗干扰和模块化。
直流开关电源的缺点是存在较为严重的开关干扰,适应恶劣环境和突发故障的能力较弱。
由于国内微电子技术、阻容器件生产技术以及磁性材料技术与一些技术先进国家还有一定的差距,因此直流开关电源的制作技术难度大、维修麻烦和造价成本较高,3 直流开关电源的保护基于直流开关电源的特点和实际的电气状况,为使直流开关电源在恶劣环境及突发故障情况下安全可靠地工作,本文根据不同的情况设计了多种保护电路。
几种常见开关电源电路图
uc3842开关电源电路图用UC3842做的开关电源的典型电路见图1。
过载和短路保护,一般是通过在开关管的源极串一个电阻(R4),把电流信号送到3842的第3脚来实现保护。
当电源过载时,3842保护动作,使占空比减小,输出电压降低,3842的供电电压Vaux也跟着降低,当低到3842不能工作时,整个电路关闭,然后靠R1、R2开始下一次启动过程。
这被称为“打嗝”式(hi ccup)保护。
在这种保护状态下,电源只工作几个开关周期,然后进入很长时间(几百ms 到几s)的启动过程,平均功率很低,即使长时间输出短路也不会导致电源的损坏。
由于漏感等原因,有的开关电源在每个开关周期有很大的开关尖峰,即使在占空比很小时,辅助电压Vaux也不能降到足够低,所以一般在辅助电源的整流二极管上串一个电阻(R3),它和C1形成RC滤波,滤掉开通瞬间的尖峰。
仔细调整这个电阻的数值,一般都可以达到满意的保护。
使用这个电路,必须注意选取比较低的辅助电压Vaux,对3842一般为13~15V,使电路容易保护。
图2、3、4是常见的电路。
图2采取拉低第1脚的方法关闭电源。
图3采用断开振荡回路的方法。
图4采取抬高第2脚,进而使第1脚降低的方法。
在这3个电路里R3电阻即使不要,仍能很好保护。
注意电路中C4的作用,电源正常启动,光耦是不通的,因此靠C4来使保护电路延迟一段时间动作。
在过载或短路保护时,它也起延时保护的左右。
在灯泡、马达等启动电流大的场合,C4的取值也要大一点。
图1是使用最广泛的电路,然而它的保护电路仍有几个问题:1. 在批量生产时,由于元器件的差异,总会有一些电源不能很好保护,这时需要个别调整R 3的数值,给生产造成麻烦;2. 在输出电压较低时,如3.3V、5V,由于输出电流大,过载时输出电压下降不大,也很难调整R3到一个理想的数值;3. 在正激应用时,辅助电压Vaux虽然也跟随输出变化,但跟输入电压HV的关系更大,也很难调整R3到一个理想的数值。
六款简单的开关电源电路设计,内附原理图详解
六款简单的开关电源电路设计,内附原理图详解简单的开关电源电路图(一)简单实用的开关电源电路图调整C3和R5使振荡频率在30KHz-45KHz。
输出电压需要稳压。
输出电流可以达到500mA.有效功率8W、效率87%。
其他没有要求就可以正常工作。
简单的开关电源电路图(二)24V开关电源,是高频逆变开关电源中的一个种类。
通过电路控制开关管进行高速的道通与截止,将直流电转化为高频率的交流电提供给变压器进行变压,从而产生所需要的一组或多组电压!24V开关电源的工作原理是:1.交流电源输入经整流滤波成直流;2.通过高频PWM(脉冲宽度调制)信号控制开关管,将那个直流加到开关变压器初级上;3.开关变压器次级感应出高频电压,经整流滤波供给负载;4.输出部分通过一定的电路反馈给控制电路,控制PWM占空比,以达到稳定输出的目的。
24v开关电源电路图简单的开关电源电路图(三)单端正激式开关电源的典型电路如下图所示。
这种电路在形式上与单端反激式电路相似,但工作情形不同。
当开关管VT1导通时,VD2也导通,这时电网向负载传送能量,滤波电感L储存能量;当开关管VT1截止时,电感L通过续流二极管VD3 继续向负载释放能量。
在电路中还设有钳位线圈与二极管VD2,它可以将开关管VT1的最高电压限制在两倍电源电压之间。
为满足磁芯复位条件,即磁通建立和复位时间应相等,所以电路中脉冲的占空比不能大于50%。
由于这种电路在开关管VT1导通时,通过变压器向负载传送能量,所以输出功率范围大,可输出50-200 W的功率。
电路使用的变压器结构复杂,体积也较大,正因为这个原因,这种电路的实际应用较少。
简单的开关电源电路图(四)推挽式开关电源的典型电路如图六所示。
它属于双端式变换电路,高频变压器的磁芯工作在磁滞回线的两侧。
电路使用两个开关管VT1和VT2,两个开关管在外激励方波信号的控制下交替的导通与截止,在变压器T次级统组得到方波电压,经整流滤波变为所需要的直流电压。
常见直流24v开关电源电路
常见直流24v开关电源电路
常见的直流24V开关电源电路如下:
1. 电桥整流电路:
电桥整流电路通过四个二极管组成一个电桥,将交流电转换为直流电。
输入的交流电经过变压器降压后接入到电桥,通过四个二极管的导通与截止,实现对输入交流电的整流。
2. 电解电容滤波电路:
电解电容滤波电路用于去除电桥整流后的直流电中的脉动部分,使输出的直流电更加稳定。
该电路将电桥整流后的直流电接入到电解电容器中进行滤波,通过电解电容器的电容特性,将脉动部分去除,得到稳定的直流电输出。
3. 开关稳压电路:
开关稳压电路通过开关元件(如晶体管或MOS管)的开关动作来稳定输出电压。
开关管通过不断地开启和关闭来调节输出电压,通过负反馈控制电路来实现稳定的输出。
此电路的特点是效率高、体积小、重量轻,常用于需要高效率和高精度的电源应用。
4. 保护电路:
保护电路用于保护电源电路和负载设备免受异常情况的损害,如过流保护、过压保护、过温保护等。
常见的保护电路包括过流保险丝、过压保护二极管、过温保护开关等。
这些是常见的直流24V开关电源电路,它们可以根据具体应用需求进行组合和调整,以满足不同的电力需求。
220开关电源怎么接线开关电源接线电路图汇总(六种)
220开关电源怎么接线开关电源接线电路图汇总(六种)Led开关电源接线方法(1)严格按照电源输出端子所指示的接线位置接线,接线要牢固,确定输入输出线不要接反(输入“220VAC”接市电;输出“+”接负载正极,输出“-”接负载负极)。
LN就是220V交流输入,从市电接过来引出两个叉状端子接上,因为是单相交流电,L跟N随意接;三横一竖是电源外壳的接地端,果然上一步插头用的是三头的那种,这个位置就接接地端;COM +V 就是这个电源的输出端,相当于这个电源的接地 +12v(电源规格),拉出来接进你的电路就好了;ADJ那个是用来调整输出电压的,比如输出应该是12V,实际输出12.5V这样子的情况,用螺丝刀之类的调整这里就行了(2)在通电前,用万用表检查输入电压是否与工作电压相符(工作电压220VAC),确认后才可以合闸通电。
220开关电源接线开关电源接线方法左边第一、二个接线柱L、N:AC INPUT,交流电输入端,分别接交流电的火线和零线;左边第三个接线柱:GND,接地线,左边第四、五、六个接线柱:均为COM,DC OUTPUT V-,直流输出端,作为直流电压输出端的负极;左边第七、八、九个接线柱:均为+V,DC OUTPUT v+,直流输出端,作为直流电压输出端的正极;左边第十个接线柱:+V ADJ,+-10% ADJUSTABLEA,电压调节,用于调节直流电压的值。
24V开关电源电路图电路以UC3842振荡芯片为核心,构成逆变、整流电路。
UC3842-一种高性能单端输出式电流控制型脉宽调制器心片,相关引脚功能及内部电路原理已有介绍,此处从略。
AC220V 电源经共模滤波器L1引入,能较好抑制从电网进入的和从电源本身向辐射的高频干扰,交流电压经桥式整流电路、电容C4滤波成为约280V的不稳定直流电压,作为由振荡心片U1、开关管Q1、开关变乐器,T1及其它元件组成的逆变电路。
逆变电路,可以分为四个电路部分讲解其电路工作原理。
一文说清开关电源常用的几种保护
一文说清开关电源常用的几种保护摘要:一、开关电源保护电路的概述二、开关电源常用的保护电路1.过流保护2.过压保护3.过热保护4.短路保护5.空载保护三、保护电路在开关电源中的重要性四、选择合适的保护方案和电路结构正文:开关电源是电子设备中不可或缺的组成部分,其性能直接影响着设备的稳定性和可靠性。
为了保证开关电源的正常工作,保护电路的设计尤为重要。
本文将详细介绍开关电源常用的几种保护电路。
首先,开关电源的保护电路主要包括过流保护、过压保护、过热保护、短路保护和空载保护。
这些保护电路可以防止电源因异常工作状态而损坏,确保电源的稳定性和可靠性。
1.过流保护:过流保护是开关电源中最常见的保护方式。
当电源负载电流超过额定电流时,过流保护电路会立即切断电源,以保护电源和负载设备。
2.过压保护:过压保护主要针对输入电压过高的情况。
当输入电压超过电源的额定电压时,过压保护电路会启动,切断电源,以防止电源因电压过高而损坏。
3.过热保护:过热保护主要针对开关电源内部器件的过热情况。
当电源内部器件的温度超过额定值时,过热保护电路会启动,切断电源,以防止电源因过热而损坏。
4.短路保护:短路保护主要针对电源负载短路的情况。
当负载短路时,短路保护电路会立即切断电源,以防止电源因负载短路而损坏。
5.空载保护:空载保护主要针对电源在无负载情况下的保护。
当电源处于空载状态时,空载保护电路会启动,切断电源,以防止电源因长时间空载而损坏。
保护电路在开关电源中的重要性不言而喻。
合适的保护电路可以有效延长电源的使用寿命,提高电源的稳定性和可靠性。
因此,在设计开关电源时,应根据实际需求选择合适的保护方案和电路结构。
总之,开关电源的保护电路是电源稳定性和可靠性的重要保障。
220v转12v直流开关电源原理
220V转12V直流开关电源原理1. 前言目前,随着电子产品的广泛应用,开关电源已经成为了电子设备中的重要组成部分。
而220V转12V直流开关电源作为一种常见的电源类型,在家庭、商业和工业领域中得到了广泛的应用。
本文将介绍220V 转12V直流开关电源的原理及工作原理。
2. 220V转12V直流开关电源的组成部分220V转12V直流开关电源主要由以下几个部分组成:- 输入滤波电路- 整流桥- 输入电容- 升压电路/降压电路- 电流限制电路- 输出滤波电路- 控制电路3. 原理及工作原理当交流电源输入到220V转12V直流开关电源时,经过输入滤波电路,去除输入电源的噪声和干扰,然后经过整流桥进行整流,转换为直流电源。
经过输入电容进行滤波,并且将电压稳定在一定范围内。
随后,电压进入升压电路或降压电路,在升压电路中,通过高频开关管将输入的电压升高,然后经过变压器将电压转换为12V直流电压;在降压电路中,通过高频开关管将输入的电压降低,然后经过整流滤波电路输出12V直流电压。
在输出电路中,经过电流限制电路对输出电流进行限制,以保护电路和设备的安全性。
通过输出滤波电路对输出电压进行滤波处理,减小输出波形的纹波。
控制电路根据需要对开关管的开启和关闭进行控制,以稳定输出电压。
4. 220V转12V直流开关电源的优点- 高效率:开关电源相对于传统的线性电源,具有高功率转换效率和低热损耗。
- 小体积:开关电源具有体积小、重量轻的特点,便于在各种电子设备中应用。
- 输出稳定:通过控制电路对开关管的精确控制,输出电压和电流更加稳定可靠。
- 适应性强:能够适应不同输入电压和输出电压的要求,具有较强的适应性。
5. 结语220V转12V直流开关电源作为一种常见的电源类型,在电子设备中具有重要的应用。
通过了解其组成部分、原理及工作原理,以及其优点,我们能更好地理解这种电源的特点和应用范围。
希望本文能对读者有所帮助。
在前文中我们已经了解了220V转12V直流开关电源的基本原理和工作原理,以及其优点。
开关电源常用的几种保护电路
开关电源常用的几种保护电路1 引言评价开关电源的质量指标应该是以安全性、可靠性为第一原则。
在电气技术指标满足正常使用要求的条件下,为使电源在恶劣环境及突发故障情况下安全可靠地工作,必须设计多种保护电路,比如防浪涌的软启动,防过压、欠压、过热、过流、短路、缺相等保护电路。
2 开关电源常用的几种保护电路2.1 防浪涌软启动电路开关电源的输入电路大都采用电容滤波型整流电路,在进线电源合闸瞬间,由于电容器上的初始电压为零,电容器充电瞬间会形成很大的浪涌电流,特别是大功率开关电源,采用容量较大的滤波电容器,使浪涌电流达100A以上。
在电源接通瞬间如此大的浪涌电流,重者往往会导致输入熔断器烧断或合闸开关的触点烧坏,整流桥过流损坏;轻者也会使空气开关合不上闸。
上述现象均会造成开关电源无法正常工作,为此几乎所有的开关电源都设置了防止流涌电流的软启动电路,以保证电源正常而可靠运行。
图1是采用晶闸管V和限流电阻R1组成的防浪涌电流电路。
在电源接通瞬间,输入电压经整流桥(D1~D4)和限流电阻R1对电容器C充电,限制浪涌电流。
当电容器C充电到约80%额定电压时,逆变器正常工作。
经主变压器辅助绕组产生晶闸管的触发信号,使晶闸管导通并短路限流电阻R1,开关电源处于正常运行状态。
图1 采用晶闸管和限流电阻组成的软启动电路图2是采用继电器K1和限流电阻R1构成的防浪涌电流电路。
电源接通瞬间,输入电压经整流(D1~D4)和限流电阻R1对滤波电容器C1充电,防止接通瞬间的浪涌电流,同时辅助电源Vcc经电阻R2对并接于继电器K1线包的电容器C2充电,当C2上的电压达到继电器K1的动作电压时,K1动作,其触点K1.1闭合而旁路限流电阻R1,电源进入正常运行状态。
限流的延迟时间取决于时间常数(R2C2),通常选取为0.3~0.5s。
为了提高延迟时间的准确性及防止继电器动作抖动振荡,延迟电路可采用图3所示电路替代RC延迟电路。
图2 采用继电器K1和限流电阻构成的软启动电路图3 替代RC的延迟电路2.2 过压、欠压及过热保护电路进线电源过压及欠压对开关电源造成的危害,主要表现在器件因承受的电压及电流应力超出正常使用的范围而损坏,同时因电气性能指标被破坏而不能满足要求。
实用的大功率DC_DC开关电源电路
R1 R2
=
V0 - 511 511
(1)
根据式 (1) 可以推算出标准输出电压V0 与 外接电阻的关系 :
①输出电压V0 = 511V ,R2 = ∞,R1 = 0Ω ②输出电压V0 = 12V ,R2 = 4. 7kΩ , R1 = 6. 2kΩ ③输出电压V0 = 15V ,R2 = 4. 7kΩ , R1 = 9. 1kΩ ④输出电压V0 = 18V ,R2 = 4. 7kΩ , R1 = 12kΩ ⑤输出电压V0 = 24V ,R2 = 4. 7kΩ , R1 = 18kΩ
32
一般 R2 推荐使用 417kΩ , 当 R1 为可调电 阻时 ,则输出电压V0 从 511~40V 连续可调 。
图 1 是大功率 DC/ DC 开关电源电路 ,该电 源有四路不共地输出 ,输出功率较大 。
在实际 电 路 中 一 定 要 使 信 号 和 功 率 地 分
开 ,否则达不到应有的要求 。L4960 的开关频 率在 10~100k Hz 范围内 ,开关频率由C2 R4 乘 积决定 。通常C2 为 313nF ,R4 为 10kΩ ,图 1 中 开关频率为
L
总 ≈2
V0 ·TOFF ( ILmax - IL
)
≈ 2
V0 ( ILmax -
·VI - V0 IL ) f VI
(2)
式 (2) 中 , IL 为电感 L 的电流 ,V02为输出
电压 , TOFF 为 续 流 二 极 管 导 通 的 时 间 , f 为
PWM 的开关频率 , V I 为电容 C1 两端的电压 ,
2 中国仪器仪表学会过程检测控制仪表学会编译 1 日 本传感器及检测仪表大全 119921
开关电源常用保护电路-过热、过流、过压以及软启动保护电路
1引言随着科学技术的发展,电力电子设备与人们的工作、生活的关系日益密切,而电子设备都离不开可靠的电源,因此直流开关电源开始发挥着越来越重要的作用,并相继进入各种电子、电器设备领域,程控交换机、通讯、电子检测设备电源、控制设备电源等都已广泛地使用了直流开关电源。
同时随着许多高新技术,包括高频开关技术、软开关技术、功率因数校正技术、同步整流技术、智能化技术、表面安装技术等技术的发展,开关电源技术在不断地创新,这为直流开关电源提供了广泛的发展空间。
但是由于开关电源中控制电路比较复杂,晶体管和集成器件耐受电、热冲击的能力较差,在使用过程中给用户带来很大不便。
为了保护开关电源自身和负载的安全,根据了直流开关电源的原理和特点,设计了过热保护、过电流保护、过电压保护以及软启动保护电路。
2、开关电源的原理及特点2、1工作原理直流开关电源由输入部分、功率转换部分、输出部分、控制部分组成。
功率转换部分是开关电源的核心,它对非稳定直流进行高频斩波并完成输出所需要的变换功能。
它主要由开关三极管和高频变压器组成。
图1画出了直流开关电源的原理图及等效原理框图,它是由全波整流器,开关管V,激励信号,续流二极管Vp,储能电感和滤波电容C组成。
实际上,直流开关电源的核心部分是一个直流变压器。
2、2特点为了适应用户的需求,国内外各大开关电源制造商都致力于同步开发新型高智能化的元器件,特别是通过改善二次整流器件的损耗,并在功率铁氧体(Mn-Zn)材料上加大科技创新,以提高在高频率和较大磁通密度下获得高的磁性能,同时SMT 技术的应用使得开关电源取得了长足的进展,在电路板两面布置元器件,以确保开关电源的轻、小、薄。
因此直流开关电源的发展趋势是高频、高可靠、低耗、低噪声、抗干扰和模块化。
直流开关电源的缺点是存在较为严重的开关干扰,适应恶劣环境和突发故障的能力较弱。
由于国内微电子技术、阻容器件生产技术以及磁性材料技术与一些技术先进国家还有一定的差距,因此直流开关电源的制作技术难度大、维修麻烦和造价成本较高,3、直流开关电源的保护基于直流开关电源的特点和实际的电气状况,为使直流开关电源在恶劣环境及突发故障情况下安全可靠地工作,本文根据不同的情况设计了多种保护电路。
六款简单的开关电源电路设计,内附原理图详解
六款简单的开关电源电路设计,内附原理图详解简单的开关电源电路图(一)简单实用的开关电源电路图调整C3和R5使振荡频率在30KHz-45KHz。
输出电压需要稳压。
输出电流可以达到500mA.有效功率8W、效率87%。
其他没有要求就可以正常工作。
简单的开关电源电路图(二)24V开关电源,是高频逆变开关电源中的一个种类。
通过电路控制开关管进行高速的道通与截止,将直流电转化为高频率的交流电提供给变压器进行变压,从而产生所需要的一组或多组电压!24V开关电源的工作原理是:1.交流电源输入经整流滤波成直流;2.通过高频PWM(脉冲宽度调制)信号控制开关管,将那个直流加到开关变压器初级上;3.开关变压器次级感应出高频电压,经整流滤波供给负载;4.输出部分通过一定的电路反馈给控制电路,控制PWM占空比,以达到稳定输出的目的。
24v开关电源电路图简单的开关电源电路图(三)单端正激式开关电源的典型电路如下图所示。
这种电路在形式上与单端反激式电路相似,但工作情形不同。
当开关管VT1导通时,VD2也导通,这时电网向负载传送能量,滤波电感L储存能量;当开关管VT1截止时,电感L通过续流二极管VD3 继续向负载释放能量。
在电路中还设有钳位线圈与二极管VD2,它可以将开关管VT1的最高电压限制在两倍电源电压之间。
为满足磁芯复位条件,即磁通建立和复位时间应相等,所以电路中脉冲的占空比不能大于50%。
由于这种电路在开关管VT1导通时,通过变压器向负载传送能量,所以输出功率范围大,可输出50-200 W的功率。
电路使用的变压器结构复杂,体积也较大,正因为这个原因,这种电路的实际应用较少。
简单的开关电源电路图(四)推挽式开关电源的典型电路如图六所示。
它属于双端式变换电路,高频变压器的磁芯工作在磁滞回线的两侧。
电路使用两个开关管VT1和VT2,两个开关管在外激励方波信号的控制下交替的导通与截止,在变压器T次级统组得到方波电压,经整流滤波变为所需要的直流电压。
开关电源中常用过流保护电路
开关电源中常⽤过流保护电路1,开关电源中常⽤的过流保护⽅式过电流保护有多种形式,如图1所⽰,可分为额定电流下垂型,即フ字型;恒流型;恒功率型,多数为电流下垂型。
过电流的设定值通常为额定电流的110%~130%。
⼀般为⾃动恢复型。
(图1中①表⽰电流下垂型,②表⽰恒流型,③表⽰恒功率型。
)图1 过电流保护特性2,⽤于变压器初级直接驱动电路中的限流电路在变压器初级直接驱动的电路(如单端正激式变换器或反激式变换器)的设计中,实现限流是⽐较容易的。
图2是在这样的电路中实现限流的两种⽅法。
图2电路可⽤于单端正激式变换器和反激式变换器。
图2(a)与图2(b)中在MOSFET的源极均串⼊⼀个限流电阻Rsc,在图2(a)中, Rsc提供⼀个电压降驱动晶体管S2导通,在图2(b)中跨接在Rsc上的限流电压⽐较器,当产⽣过流时,可以把驱动电流脉冲短路,起到保护作⽤。
图2(a)与图2(b)相⽐,图2(b)保护电路反应速度更快及准确。
⾸先,它把⽐较放⼤器的限流驱动的门槛电压预置在⼀个⽐晶体管的门槛电压Vbe更精确的范围内;第⼆,它把所预置的门槛电压取得⾜够⼩,其典型值只有100mV~200mV,因此,可以把限流取样电阻Rsc的值取得较⼩,这样就减⼩了功耗,提⾼了电源的效率。
(a)晶体管保护(b)限流⽐较器保护图2 在单端正激式或反激式变换器电路中的限流电路当AC输⼊电压在90~264V范围内变化,且输出同等功率时,则变压器初级的尖峰电流相差很⼤,导致⾼、低端过流保护点严重漂移,不利于过流点的⼀致性。
在电路中增加⼀个取⾃+VH 的上拉电阻R1,其⽬的是使S2的基极或限流⽐较器的同相端有⼀个预值,以达到⾼低端的过流保护点尽量⼀致。
3,⽤于基极驱动电路的限流电路在⼀般情况下,都是利⽤基极驱动电路把电源的控制电路和开关晶体管隔离开来。
变换器的输出部分和控制电路共地。
限流电路可以直接和输出电路相接,其电路如图3所⽰。
在图3中,控制电路与输出电路共地。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
几种实用的直流开关电源保护电路
1 引言
随着科学技术的发展,电力电子设备与人们的工作、生活的关系日益密切,而电子设备都离不开可靠的电源,因此直流开关电源开始发挥着越来越重要的作用,并相继进入各种电子、电器设备领域,程控交换机、通讯、电子检测设备电源、控制设备电源等都已广泛地使用了直流开关电源[1-3].同时随着许多高新技术,包括高频开关技术、软开关技术、功率因数校正技术、同步整流技术、智能化技术、表面安装技术等技术的发展,开关电源技术在不断地创新,这为直流开关电源提供了广泛的发展空间[4].但是由于开关电源中控制电路比较复杂,晶体管和集成器件耐受电、热冲击的能力较差,在使用过程中给用户带来很大不便。
为了保护开关电源自身和负载的安全,根据了直流开关电源的原理和特点,设计了过热保护、过电流保护、过电压保护以及软启动保护电路。
2 开关电源的原理及特点
2.1工作原理
直流开关电源由输入部分、功率转换部分、输出部分、控制部分组成。
功率转换部分是开关电源的核心,它对非稳定直流进行高频斩波并完成输出所需要的变换功能。
它主要由开关三极管和高频变压器组成。
图1画出了直流开关电源的原理图及等效原理框图,它是由全波整流器,开关管V,激励信号,续流二极管Vp,储能电感和滤波电容C组成。
实际上,直流
开关电源的核心部分是一个直流变压器。
2.2特点
为了适应用户的需求,国内外各大开关电源制造商都致力于同步开发新型高智能化的元器件,特别是通过改善二次整流器件的损耗,并在功率铁氧体(Mn-Zn)材料上加大科技创新,以提高在高频率和较大磁通密度下获得高的磁性能,同时SMT技术的应用使得开关电源取得了长足的进展,在电路板两面布置元器件,以确保开关电源的轻、小、薄。
因此直流开关电源的发展趋势是高频、高可靠、低耗、低噪声、抗干扰和模块化。
直流开关电源的缺点是存在较为严重的开关干扰,适应恶劣环境和突发故障的能力较弱。
由于国内微电子技术、阻容器件生产技术以及磁性材料技术与一些技术先进国家还有一定的差距,因此直流开关电源的制作技术难度大、维修麻烦和造价成本较高,
3 直流开关电源的保护
基于直流开关电源的特点和实际的电气状况,为使直流开关电源在恶劣环境及突发故障情况下安全可靠地工作,本文根据不同的情况设计了多
种保护电路。
3.1过电流保护电路
在直流开关电源电路中,为了保护调整管在电路短路、电流增大时不被烧毁。
其基本方法是,当输出电流超过某一值时,调整管处于反向偏置状态,从而截止,自动切断电路电流。
如图1所示,过电流保护电路由三极管BG2 和分压电阻R4、R5组成。
电路正常工作时,通过R4与R5的压作用,使得BG2 的基极电位比发射极电位高,发射结承受反向电压。
于是BG2 处于截止状态(相当于开路),对稳压电路没有影响。
当电路短路时,输出电压为零,BG2 的发射极相当于接地,则BG2 处于饱和导通状态(相当于短路),从而使调整管BG1 基极和发射极近于短路,而处于截止状态,切断电路电流,从而达到保护目的。
3.2过电压保护电路
直流开关电源中开关稳压器的过电压保护包括输入过电压保护和输出过电压保护。
如果开关稳压器所使用的未稳压直流电源(诸如蓄电池和整流器)的电压如果过高,将导致开关稳压器不能正常工作,甚至损坏内部器件,因此开关电源中有必要使用输入过电压保护电路。
图3为用晶体
管和继电器所组成的保护电路,在该电路中,当输入直流电源的电压高于稳压二极管的击穿电压值时,稳压管击穿,有电流流过电阻R,使晶体管T导通,继电器动作,常闭接点断开,切断输入。
输入电源的极性保护电路可以跟输入过电压保护结合在一起,构成极性保护鉴别与过电压保护电路。
3.3 软启动保护电路
开关稳压电源的电路比较复杂,开关稳压器的输入端一般接有小电感、大电容的输入滤波器。
在开机瞬间,滤波电容器会流过很大的浪涌电流,这个浪涌电流可以为正常输入电流的数倍。
这样大的浪涌电流会使普通电源开关的触点或继电器的触点熔化,并使输入保险丝熔断。
另外,浪涌电流也会损害电容器,使之寿命缩短,过早损坏。
为此,开机时应该接入一个限流电阻,通过这个限流电阻来对电容器充电。
为了不使该限流电阻消耗过多的功率,以致影响开关稳压器的正常工作,而在开机暂态过程结束后,用一个继电器自动短接它,使直流电源直接对开关稳压器供电,这种电路称之谓直流开关电源的“软启动”电路 .
如图4(a)所示,在电源接通瞬间,输入电压经整流桥(D1~D4)和限流电阻R1对电容器C充电,限制浪涌电流。
当电容器C充电到约80%额定电压时,逆变器正常工作。
经主变压器辅助绕组产生晶闸管的触发信号,使晶闸管导通并短路限流电阻R1,开关电源处于正常运行状态。
为了提高延迟时间的准确性及防止继电器动作抖动振荡,延迟电路可采用图4(b)所示电路替代RC延迟电路。
3.4过热保护电路
直流开关电源中开关稳压器的高集成化和轻量小体积,使其单位体积内的功率密度大大提高,因此如果电源装置内部的元器件对其工作环境温度的要求没有相应提高,必然会使电路性能变坏,元器件过早失效。
因此在大功率直流开关电源中应该设过热保护电路。
本文采用温度继电器来检测电源装置内部的温度,当电源装置内部产生过热时,温度继电器就动作,使整机告警电路处于告警状态,实现对电源的过热保护。
如图5(a)所示,在保护电路中将P型控制栅热晶闸管放置在功率开关三极管附近,根据TT102的特性(由Rr值确定该器件的导通温度,Rr越大,导通温度越低),当功率管的管壳温度或者装置内部的温度超过允许值时,热晶闸管就导通,使发光二极管发亮告警。
倘若配合光电耦合器,就可使整机告警电路动作,保护开关电源。
该电路还可以设计成如图5(b)所示,用作功率晶体管的过热保护,晶体开关管的基极电流被N型控制栅热晶闸管TT201旁路,开关管截止,切断集电极电流,防止过热。
4 小结
文中主要讨论了直流开关电源内部器件的各种保护方式,并介绍了一些具体电路。
对一个给定的直流开关电源来说,保护电路是否完善并按预定设置工作,对电源装置的安全性和可靠性至关重要。
因为开关电源的保护方案和电路结构具有多样性,所以对具体电源装置而言,应选择合理的保护方案和电路结构。
在实际应用中,通常选用几种保护方式加以组合的方式构成完善的保护系统,确保直流开关电源的正常工作。