2011-2013年卓越联盟自主招生数学试题及答案(精校版+完整版)
2013年三大联盟自主招生数学试题及答案
ak al am an
a1 k 1 d a1 l 1 d a1 m 1 d a1 n 1 d k l mn k l mn ≥ mn 2 2 因此命题得证,
b2013 0 ,进而易得 a1 a2
b2013 mx m 2013 x m 2x 2013 .
a2013 0 .
(理科第 9 题,文科第 9 题) 对任意 ,求 32cos6 cos6 6cos 4 15cos 2 的值. 【解析】 32cos6 cos6 6cos 4 15cos 2
1 2 【解析】 B.
AB BC CA 的模等于( A BC
)
A.
B. 1
C. 3
D.不能确定
A B C A B C
A B C A B C
3 AB AC BA BC C A CB
AB BC CA AB BC CA
(理科第 7 题,文科第 8 题) 至多可以找到多少个两两不同的正整数使得它们中任意三个的和都是质数?证明你的结论. 【解析】 至多可以找到 4 个,如 1, 3 , 7 , 9 . 下面证明不能找到 5 个符合题意的正整数. 考虑它们模 3 的余数,设余数为 0 、 1 、 2 的分别有 a 、 b 、 c 个,则 1° 若 a 、 b 、 c 均不为零,则存在三个数,它们的和为 3 的倍数,一定不是质数; 2° 若 a 、 b 、 c 中有零,则根据抽屉原理,至少存在三个数,它们的余数相同. 此时它们的和为 3 的倍数,一定不是质数. 综上,不能找到 5 个符合题意的正整数. (理科第 8 题,文科第 10 题) 实数 a1 , a2 ,
自主招生数学试题及答案
自主招生数学试题及答案一、选择题(每题5分,共20分)1. 已知函数\( f(x) = x^2 - 4x + 4 \),求\( f(x) \)的最小值。
A. 0B. 1C. 2D. 42. 若\( \sin(2\theta) = 2\sin(\theta)\cos(\theta) \),求\( \theta \)的值。
A. \( \frac{\pi}{4} \)B. \( \frac{\pi}{2} \)C. \( \frac{3\pi}{4} \)D. \( \pi \)3. 已知等差数列\( \{a_n\} \)的首项为3,公差为2,求第10项的值。
A. 23B. 25C. 27D. 294. 一个圆的半径为5,求圆的面积。
A. 25πB. 50πC. 75πD. 100π二、填空题(每题5分,共20分)5. 若\( a \)和\( b \)是方程\( x^2 + 4x + 4 = 0 \)的两个根,则\( a + b \)的值为______。
6. 已知\( \cos(\alpha) = \frac{3}{5} \),\( \alpha \)在第一象限,求\( \sin(\alpha) \)的值。
7. 若一个等比数列的首项为2,公比为3,求该数列的第5项。
8. 一个长方体的长、宽、高分别是\( a \)、\( b \)、\( c \),求长方体的体积。
三、解答题(每题30分,共60分)9. 已知函数\( g(x) = \ln(x) + 2x - 6 \),求\( g(x) \)的导数。
10. 一个工厂生产某种产品,每件产品的成本为\( C(x) = 50 + 20x \),销售价格为\( P(x) = 120 - 0.5x \),其中\( x \)表示生产数量。
求工厂的盈亏平衡点。
答案:一、选择题1. B. 1(因为\( f(x) = (x-2)^2 \),当\( x = 2 \)时,\( f(x) \)取得最小值1)2. A. \( \frac{\pi}{4} \)(根据二倍角公式)3. A. 23(第10项为\( a_{10} = 3 + 9 \times 2 = 23 \))4. B. 50π(圆的面积公式为\( A = \pi r^2 \))二、填空题5. -4(根据韦达定理)6. \( \frac{4}{5} \)(根据勾股定理)7. 162(第5项为\( a_5 = 2 \times 3^4 = 162 \))8. \( abc \)(长方体体积公式)三、解答题9. \( g'(x) = \frac{1}{x} + 2 \)(对\( g(x) \)求导)10. 盈亏平衡点为\( x = 40 \)。
2013高中自主招生考试选拔试题(含答案)
(2)根据对对阵形式的分析可以知道:天忌赢得比赛的概率为 (得4分)
解(115、(本小题满分10分)
解:解:(1)集合 不是好的集合, 是好的集合。(每个判断正确得2分)
(2)集合 、 、 、 等都可以举。(每举出一个得3分)
16、(本小题满分10分)
证明: ,且 为 三等分点, 为 中点
我们观察操作,将某次操作前的三个数记为 .因为 对称,不妨设操作 .则操作后的三个数为 , , .不难发现
也就是说,操作前后平方和不改变,所以经过有限此操作后,三个数的平方和为10不为2014.(得4分)
A.20分钟B.22分钟
C.24分钟D.26分钟
5.二次函数 的图象如何移动就得到 的图象( )
A. 向左移动1个单位,向上移动3个单位。
B. 向右移动1个单位,向上移动3个单位。
C. 向左移动1个单位,向下移动3个单位。
D. 向右移动1个单位,向下移动3个单位。
6.下列名人中:①比尔 盖茨②高斯③刘翔④诺贝尔⑤陈景润⑥陈省身⑦高尔基⑧爱因斯坦,其中是数学家的是()
13.如果有2007名学生排成一列,按1、2、3、4、5、4、3、2、1、2、3、4、5、4、3、2、1……的规律报数,那么第2007名学生所报的数是.
三、解答题:(本题有4个小题,共38分)解答应写出文字说明,证明过程或推演步骤。
14.(本小题满分8分)【田忌赛马】
齐王和他的大臣田忌均有上、中、下马各一匹,每场比赛三匹马各出场一次,共赛三次,以胜的次数多者为赢.已知田忌的马较齐王的马略有逊色,即:田忌的上马不敌齐王的上马,但胜过齐王的中马;田忌的中马不敌齐王的中马,但胜过齐王的下马; 田忌的下马不敌齐王的下马. 田忌在按图1的方法屡赛屡败后,接受了孙膑的建议,用图2的方法,结果田忌两胜一负,赢了比赛.假如在不知道齐王出马顺序的情况下:
2013年北约自主招生数学试题(精校word版,无答案)-历年自主招生考试数学试题大全
2013-03-16
(时间90分钟,满分100分)
1.(10分)集合 , 为 的子集,若集合 中元素满足以下条件:①任意数字都不相等;②任意两个数之和不为9。
(1) 中两位数有多少?三位数有多少?
(2) 中是否有五位数?六位数?
(3)若将集合 的元素按从小到大的顺序排列,第 个数为多少?
历年自主招生考试数学试题大全
专题下载链接:/a760682.html
链接打开方法:
1、按住ctrl键单击链接即可打开专题链接
2、复制链接到网页
(3)若所取出的4个球颜色相同,求恰好全黑的概率。
5.(15分) , , ,求证:
(1)对 ,总存在正 整数 ,使 满足 ;
(2) , ,对任意 总存在 使得 时, 。
6.(15分) 是两两不相等且大于 的正整数,若 ,求 的所有值。
7.(15分)已知
求证:(1)对 , ;
(2)若 ,求证: 单调递减且 。
2.(15分) , ,求 与 的值。
3.直线 与 上两点 、 ,
(1)求 中点 的轨迹 ;学-科网
(2)若曲线 与 相切于两点,求证两个切点在定直线上,并求过两切点的切线方程。
4.(15分)7个红球,8个黑球,从中任取4个球
(1)求取出的球中恰有1个是红球的概率;
(2
卓越联盟自主招生数学模拟试题及参考答案1
清北学长精心打造——卓越自主招生数学模拟试题及参考答案(一)一、选择题:本大题共10小题,每小题3分,在每小题给出的四个选项中只有一项是符合题目要求的。
1.已知△ABC 的三边a ,b ,c 成等比数列,a ,b ,c 所对的角依次为A ,B ,C.则sinB+cosB 的取值范围是( ) A .(1,1+]23 B .[21,1+]23 C .(1,]2 D .[21,]2 2.一个口袋里有5个大小一样的小球,其中两个是红色的,两个是白色的,一个是黑色的,依次从中摸出5个小球,相邻两个小球的颜色均不相同的概率是( ) A 1/2 B 2/5 C 3/5 D 4/73.正四棱锥ABCD S -中,侧棱与底面所成的角为α,侧面与底面所成的角为β,侧面等腰三角形的底角为γ,相邻两侧面所成的二面角为θ,则α、β、γ、θ的大小关系( ) (A )θγβα<<<(B )γθβα<<<(C )βγαθ<<<(D )θβγα<<< 4. 已知f (x )=|x +1|+|x +2|+…+|x +2007|+|x -1|+|x -2|+…+|x -2007|(x ∈R ),且f (a 2-3a +2)=f (a -1).则a 的值有( ).(A )2个 (B )3个 (C )4个 (D )无数个5.平面上满足约束条件⎪⎩⎪⎨⎧≤--≤+≥01002y x y x x 的点(x ,y )形成的区域为D ,区域D 关于直线y=2x对称的区域为E ,则区域D 和区域E 中距离最近的两面三刀点的距离为( )A .556 B .5512 C .538 D .53166. 若m 、n ∈{x |x =a 2×102+a 1×10+a 0},其中a i ∈{1,2,3,4,5,6,7},i =0,1,2,并且m +n =636,则实数对(m ,n )表示平面上不同点的个数为( ).(A )60个 (B )70个 (C )90个 (D )120个 7.数列{}n a 定义如下:()1221211,2,2+++===-++n n n na a a a n n 201122012>+m a ,则正整数m 的最小值为( ). A 4025 B 4250 C 3650 D 4425 8. 用红、黄、蓝三种颜色之一去涂途中标号为9,,2,1的9个小正方形(如图),使得任意相邻(有公共边的)小正方形所涂颜色都不相同,且“3、5、7”号数字涂相同的颜色,则符合条件的所有涂法共有( )A 96B 108C 112 D120 9.设a n =2n ,b n =n ,(n=1,2,3,。
2011年---2013“北约”、“华约”自主招生数学试题
2011年“北约”13校联考自主招生数学试题2012年北约自主招生数学试题1、求x 的取值范围使得12)(-+++=x x x x f 是增函数;2、求1210272611=+-+++-+x x x x 的实数根的个数;3、已知0)2)(2(22=+-+-n x x m x x 的4个根组成首项为41的等差数列,求n m -;4、如果锐角ABC ∆的外接圆的圆心为O ,求O 到三角形三边的距离之比;5、已知点)0,2(),0,2(B A -,若点C 是圆0222=+-y x x 上的动点,求ABC ∆面积的最小值。
6、在2012,,2,1Λ中取一组数,使得任意两数之和不能被其差整除,最多能取多少个数?7、求使得a x x x x =-3sin sin 2sin 4sin 在),0[π有唯一解的a ; 8、求证:若圆内接五边形的每个角都相等,则它为正五边形;9、求证:对于任意的正整数n ,n )21(+必可表示成1-+s s 的形式,其中+∈N s2012年自主招生北约联考数学试题解答2013年北约自主招生数学试题解析12312为两根的有理系数多项式的次数最小是多少?解析:显然,多项式23()(2)(1)2f x x x ⎡⎤=---⎣⎦2和312-于是知,2和312为两根的有理系数多项式的次数的最小可能值不大于5. 若存在一个次数不超过4的有理系数多项式432()g x ax bx cx dx e =++++,其两根分别为和1,,,,a b c d e不全为0,则:420(42)(2020a c eg a c e b db d++=⎧=++++=⇒⎨+=⎩(1(7)(232(630g a b c d e a b c d a b c=-+----+++++702320a b c d ea b c d+---=⎧⇒⎨+++=⎩即方程组:420(1)20(2)70(3)2320(4)630(5)a c eb da b c d ea b c da b c++=⎧⎪+=⎪⎪+---=⎨⎪+++=⎪++=⎪⎩,有非0有理数解.由(1)+(3)得:110a b c d++-=(6)由(6)+(2)得:1130a b c++=(7)由(6)+(4)得:13430a b c++=(8)由(7)-(5)得:0a=,代入(7)、(8)得:0b c==,代入(1)、(2)知:0d e==.于是知0a b c d e=====,与,,,,a b c d e不全为0矛盾.所以不存在一个次数不超过4的有理系数多项式()g x和1-和1为两根的有理系数多项式的次数最小为5.2.在66⨯的表中停放3辆完全相同的红色车和3辆完全相同的黑色车,每一行每一列只有一辆车,每辆车占一格,共有几种停放方法?解析:先从6行中选取3行停放红色车,有36C种选择.最上面一行的红色车位置有6种选择;最上面一行的红色车位置选定后,中间一行的红色车位置有5种选择;上面两行的红色车位置选定后,最下面一行的红色车位置有4种选择。
2011年华约自主招生数学试题(精校word版,有参考答案)
2011年“华约”自主招生数学试题一、选择题1.设复数z满足|z|<1且15||2zz+=则|z| =()A.45B.34C.23D.12【答案】D【解析】由15||2zz+=得25||1||2z z+=,已经转化为一个实数的方程.解得|z| =2(舍去),12.2.在正四棱锥P-ABCD中,M、N分别为P A、PB.则异面直线DM与AN所成角的余弦为()A.13B.16C.18D.112【答案】D【解析】本题有许多条件,可以用“求解法”,即假设题中的一部分要素为已知,利用这些条件来确定其余的要素.本题中可假设底面边长为已知(不妨设为2),利用侧面与底面所成二面角可确定其他要素,如正四棱锥的高等.然后我们用两种方法,一种是建立坐标系,另一种是平移其中一条线段与另一条在一起.解法一:如图1,设底面边长为2.如图建立坐标系,则A(1,-1,0),B(1,1,0),C(-1,1,0),D(-1,-1,0),P(0,0),则1111(,(,2222M N-,312132(,,),(,,)222222DM AN =-=-.设所成的角为θ,则1cos 6DM AN DM ANθ==.3.已知1223+--=x x x y ,过点(-1, 1)的直线l 与该函数图象相切,且(-1, 1)不是切点,则直线l 的斜率为 ( ) A .2B .1C .-1D .-2【答案】C【解析】显然(-1, 1)在1223+--=x x x y 的图象上.设切点为)12,(020300+--x x x x , 2232--='x x y ,所以223020--=x x k .另一方面,)1(1)12(002030---+--=x x x x k )2(00-=x x 223020--=x x .所以x 0=1,所以1-=k .选C . 4.若222cos cos 3A B A B π+=+,则的最小值和最大值分别为 ( ) A .321-,32B .12 ,32C .321-,321+D .12 ,221+【答案】B【解析】首先尽可能化简结论中的表达式22cos cos A B +,沿着两个方向:①降次:把三角函数的平方去掉;②去角:原来含两个角,去掉一个. 解:221cos 21cos 21cos cos 1(cos 2cos 2)222A B A B A B +++=+=++ 11cos()cos()1cos()2A B A B A B =++-=--,可见答案是B【答案】B【解析】题目中的条件是通过三个圆来给出的,有点眼花缭乱.我们来转化一下,就可以去掉三个圆,已知条件变为:ΔO O 1 O 2边O 1 O 2上一点C ,OO 1、OO 2延长线上分别一点A 、B ,使得O 1A =O 1C ,O 2B =O 2C . 解法一:连接12O O ,C 在12O O 上,则1221OO O OO O πα∠+∠=-,111212O AC O CA OO O ∠=∠=∠,222112O BC O CB OO O ∠=∠=∠,故1212211()22O CA O CB OO O OO O πα-∠+∠=∠+∠=, 12()2O CA O CB παβπ+=-∠+∠=,sin cos 2αβ=. 解法二:对于选择填空题,可以用特例法,即可以添加条件或取一些特殊值,在本题中假设两个小圆的半径相等,则12212OO O OO O πα-∠=∠=,1212124O CA O CB OO O πα-∠=∠=∠=,12()2O CA O CB παβπ+=-∠+∠=,sin cos2αβ=.6.已知异面直线a ,b 成60°角.A 为空间一点则过A 与a ,b 都成45°角的平面 ( ) A .有且只有一个B .有且只有两个C .有且只有三个D .有且只有四个【答案】D【解析】已知平面过A ,再知道它的方向,就可以确定该平面了.因为涉及到平面的方向,我们考虑它的法线,并且假设a ,b 为相交直线也没关系.于是原题简化为:已知两条相交直线a ,b 成60°角,求空间中过交点与a ,b 都成45°角的直线.答案是4个. 7.已知向量3131(0,1),(,),(,),(1,1)2222a b c xa yb zc ==--=-++=则222x y z ++的最小值为( ) A .1B .43C .32D .2【答案】B【解析】由(1,1)xa yb zc ++=得1)111222y z y z y z y z x x ⎧⎧+=-=⎪⎪⎪⎪⎨⎨+⎪⎪--=-=⎪⎪⎩⎩, 由于222222()()2y z y z x y z x ++-++=+,可以用换元法的思想,看成关于x ,y + z ,y -z三个变量,变形2(1)y z y z x ⎧-=⎪⎨⎪+=-⎩,代入222222()()2y z y z x y z x ++-++=+222228242(1)343()3333x x x x x =+-+=-+=-+,答案B 8.AB 为过抛物线y 2=4x 焦点F 的弦,O 为坐标原点,且135OFA ∠=,C 为抛物线准线与x 轴的交点,则ACB ∠的正切值为 ( ) A.B.5C.3D.3【答案】A【解析】解法一:焦点F (1,0),C (-1,0),AB 方程y = x – 1,与抛物线方程y 2 = 4x联立,解得A B (3+2+ (3-2- ,,于是22CA CB k k ==,tan 1CA CB CA CBk k ACB k k -∠==+ A 解法二:如图,利用抛物线的定义,将原题转化为:在直角梯形ABCD 中,∠BAD = 45°,EF ∥DA ,EF = 2,AF = AD ,BF = BC ,求∠AEB .tan tan 2DE GF AEF EAD AD AF ∠=∠===.类似的,有tan tan BEF EBC ∠=∠=2AEB AEF BEF AEF ∠=∠+∠=∠,tan tan 2AEB AEF ∠=∠= A【答案】DA .存在某种分法,所分出的三角形都不是锐角三角形B .存在某种分法,所分出的三角形恰有两个锐角三角形C .存在某种分法,所分出的三角形至少有3个锐角三角形D .任何一种分法所分出的三角形都恰有1个锐角三角形 【答案】D【解析】我们先证明所分出的三角形中至多只有一个锐角三角形.如图,假设ΔABC 是锐角三角形,我们证明另一个三角形ΔDEF (不妨设在AC 的另一边)的(其中的边EF 有可能与AC 重合)的∠D 一定是钝角.事实上,∠D ≥ ∠ADC ,而四边形ABCD 是圆内接四边形,所以∠ADC = 180°-∠B ,所以∠D 为钝角.这样就排除了B ,C .下面证明所分出的三角形中至少有一个锐角三角形.假设ΔABC 中∠B 是钝角,在AC 的另一侧一定还有其他顶点,我们就找在AC 的另一侧的相邻(指有FEDBCA DBCA公共边AC ) ΔACD ,则∠D = 180°-∠B 是锐角,这时如果或是钝角,我们用同样的方法继续找下去,则最后可以找到一个锐角三角形.所以答案是D . 二、解答题解:(I )tan tan tan tan()tan tan 1A BC A B A B +=-+=-,整理得tan tan tan tan tan tan A B C A B C =++(II )由已知3tan tan tan tan A C A B C =++,与(I )比较知tan 33B B π=,=.又11222sin 2sin 2sin 23sin 3A C B π+===,sin 2sin 2sin 2sin 23A C A C +=sin()cos()cos 2()cos 2()3A C A C A C A C +-=--+而3sin()sin 2A C B +==,1cos 2()cos 22A C B +==-,代入得2cos 2()13cos()A C A C -+=-,24cos ()3cos()10A C A C ----=,1cos()14A C -=-,,6cos 12A C -=,12.已知圆柱形水杯质量为a 克,其重心在圆柱轴的中点处(杯底厚度及重量忽略不计,且水杯直立放置).质量为b 克的水恰好装满水杯,装满水后的水杯的重心还有圆柱轴的中点处. (I )若b = 3a ,求装入半杯水的水杯的重心到水杯底面的距离与水杯高的比值; (II )水杯内装多少克水可以使装入水后的水杯的重心最低?为什么? 解:不妨设水杯高为1.(I )这时,水杯质量:水的质量=2 :3.水杯的重心位置(我们用位置指到水杯底面的距离)为12,水的重心位置为14,所以装入半杯水的水杯的重心位置为11237242320+=+(II)当装入水后的水杯的重心最低时,重心恰好位于水面上.设装x克水.这时,水杯质量:水的质量=a:x.水杯的重心位置为12,水的重心位置为2xb,水面位置为xb,于是122xa x xba x b+=+,解得x a=-13.已知函数21()(1)1()2xf x f fax b===+2,,3.令111()2n nx x f x+==,.(I)求数列{}nx的通项公式;(II )证明12112nx x xe+>.解:由12(1)1()1()21xf f a b f xx=====+2,得,3(I)方法一:先求出123412482359x x x x====,,,,猜想11221nn nx--=+.用数学归纳法证明.当n = 1显然成立;假设n = k成立,即11221kk kx--=+,则122()121kkk k kkxx f xx+===++,得证.方法二:121+=+nnn xxx取倒数后整理得)11(21111-=-+nnxx,所以)11()21(1111-=--xxnn所以12111+=-nx(II)方法一:证明12112nex x x+>.事实上,12111112(1)(1)(1)242nnx x x+=+++.我们注意到2212(1)12(1)nna a a a+<++<+,,,(贝努利(Bernoulli)不等式的一般形式:nxx n+≥+1)1(,x),1(+∞-∈)于是122121212111112(1)2(1)2(1)2222n n nn n nnex x x-+++-+<+=+<+<方法二:原不等式en<+++⇔)211()211)(211(21)]211()211)(211ln[(2<+++⇔n1)211ln()211ln()211ln(2<++++++⇔n构造函数)0()1ln()(>-+=x xx x g01111)(<+-=-+='xxx x g ,所以0)0()(=<g x g 所以)0()1ln(><+x x x令n x 21=则n n 21)211ln(<+ 1211212121)211ln()211ln()211ln(22<-=+++<++++++n n n14.已知双曲线221222:1(0,0),,x y C a b F F a b -=>>分别为C 的左右焦点.P 为C右支上一点,且使21212=,3F PF F PF π∠∆又的面积为.(I )求C 的离心率e ;(II )设A 为C 的左顶点,Q 为第一象限内C 上的任意一点,问是否存在常数λ(λ>0),使得22QF A QAF λ∠=∠恒成立.若存在,求出λ的值;若不存在,请说明理由.解:(I )如图,利用双曲线的定义,将原题转化为:在ΔP F 1 F 2中,21212=3F PF F PF π∠∆,的面积为,E 为PF 1上一点,PE = PF 2,E F 1 =2a ,F 1 F 2 = 2c ,求ca.设PE =PF 2=EF 2=x ,F F 2x ,1221211(222F PF S PF FF x a ∆==+=, 224120x ax a +-=,2x a =.ΔE F 1F 2为等腰三角形,1223EF F π∠=,于是2c =,ce a==. (II ) 21=λ此解法可能有误15.将一枚均匀的硬币连续抛掷n 次,以p n 表示未出现连续3次正面的概率. (I )求p 1,p 2,p 3,p 4;(II )探究数列{ p n }的递推公式,并给出证明;(III )讨论数列{ p n }的单调性及其极限,并阐述该极限的概率意义.解析:(I )显然p 1=p 2=1,878113=-=p ;又投掷四次连续出现三次正面向上的情况只有:正正正正或正正正反或反正正正,故161316314=-=p .(II )共分三种情况:①如果第n 次出现反面,那么前n 次不出现连续三次正面的概率121-⨯n P ;②如果第n 次出现正面,第n -1次出现反面,那么前n 次不出现连续三次正面和前n -2次不出现连续三次正面是相同的,所以这个时候不出现连续三次正面的概率是241-⨯n P ;③如果第n 次出现正面,第n -1次出现正面,第n -2次出现反面,那么前n 次不出现连续三次正面和前n -3次不出现连续三次正面是相同的,所以这个时候不出现连续三次正面的概率是381-⨯n P .综上,=n P +⨯-121n P +⨯-241n P 381-⨯n P .(4≥n ),④ (III )由(II )知=-1n P +⨯-221n P +⨯-341n P 481-⨯n P ,(5≥n )⑤,④-12×⑤,有=n P --1n P 4161-⨯n P (5≥n ) 所以5≥n 时,p n 的单调递减,又易见p 1=p 2>p 3>p 4>….3≥n 时,p n 的单调递减,且显然有下界0,所以p n 的极限存在.对=n P --1n P 4161-⨯n P 两边同时取极限可得0lim =-∞→n n p .其统计意义:当投掷的次数足够多时,不出现连续三次正面向上的次数非常少,两者比值趋近于零.。
2013年自招数学答案
2013年高中自主招生考试数学试卷参考答案及评分标准一、选择题:(每小题3分,共24分)ABDC CABC 二、填空题:(每小题4分,共32分)9. 0 10. 161 11. 26 12. ﹙0,1﹚ 13. 1 14.28 15. 22 16. 6, n (n +1) 三、解答题:(10大题,共94分)17. (5分)解:原式=919)3(2)3()9)(9(2+•-+•++-a a a a a a =32+a ………………………………………3分 当33-=a 时,原式=332 …………………………………………………………5分 18.(5分)解:由|1-a |+2+b =0,得a =1,b =-2. ……………………………………………2分由方程x 1-2x =1得2x 2+x -1=0解之,得x 1=-1,x 2=21.…………………………………………4分 经检验,x 1=-1,x 2=21是原方程的解. …………………………………………………………5分 19.(6分)(1) 被抽查的居民中,人数最多的年龄段是21~30岁 ……………………………1分(2)总体印象感到满意的人数共有400×83%=332 (人)31~40岁年龄段总体印象感到满意的人数是:332(5412653249)66-++++=(人) 图略 ……………………………………………………3分(3) 31~40岁年龄段被抽人数是2040080100⨯=(人) 总体印象的满意率是66100%82.5%83%80⨯=≈ ; 41~50岁被抽到的人数是1540060100⨯=人,满意人数是53人, 总体印象的满意率是5388.3%88%60=≈ ; ∴41~50岁年龄段比31~40岁年龄段对博览会总体印象的满意率高. ………………………6分20.(6分)解:过D 作DE ⊥BC 于E ,作DF ⊥AB 于F ,设AB =x 米,在Rt △DEC 中,∠DCE =30°,CD =200,∴DE =100,CE =1003.在Rt △ABC 中,∠ACB =45°,∴BC=x 米.则AF =AB -BF =AB -DE =x -100,DF =BE =BC +CE =x +1003.在Rt △AFD 中,∠ADF =30°,tan30°=FD AF , ∴333100100=+-x x . ∴473)33(100≈+=x (米).……………………………………5分答:山AB 的高度约为473米.……………………………………………6分21.(6分)解:(1)画树状图得:∴点Q 所有可能的坐标有6个:(0,﹣2),(0,0),(0,1),(﹣2,,﹣2),(﹣2,0),(﹣2, 1).………………………2分(2)∵点Q 在y 轴上的有:(0,﹣2),(0,0),(0,1),∴点Q 在y 轴上的概率为:21.…4分 (3)∵⊙O 的半径是2,∴在⊙O 外的有(﹣2,1),(﹣2,﹣2),在⊙O 上的有(0,﹣2),(﹣2,0). ∴过点Q 能作⊙O 切线的概率为:3264=.…………………………………………………6分 22.(7分)解:(1)由图象知:线段BC 经过点(20,500)和(40,600),∴设解析式为:Q =kt +b , ∴⎩⎨⎧=+=+6004050020b k b k ,解得⎩⎨⎧==4005b k ,∴解析式为:Q =5t +400(20<t <40)……………2分 (2)设乙水库的供水速度为x 万m3/h ,甲为y 万m 3/h , ∴⎩⎨⎧-=--=-600400)2(40500600)(20y x y x ,解得⎩⎨⎧==1015y x , ∴乙水库供水速度为15万m 3/h 和甲水库一个排灌闸的灌溉速度10万m 3/h ;………… 5分(3)∵正常水位的最低值为a =500-15×20=200,∴(400-200)÷(2×10)=10h ,∴10小时后降到了正常水位的最低值.……………………………………………………… 7分23.(8分)(1)∵∠B 、∠F 同对劣弧AP ,∴ ∠B =∠F∵BO =PO ,∴∠B =∠BPO ∴∠F =∠BPF ,∴AF ∥BE …………………………3分(2)∵∠C PE = ∠B PO =∠B =∠EA P ,∠C =∠C ,∴△P C E ∽△ACP ,∴APAC PE PC =. ∵∠EA P =∠B ,∠E P A =∠A P B =90°,∴△EA P ∽△A B P , ∴APAB PE AE =. 又∵AC =AB ,∴PEAE PE PC = ∴CP =AE . …………………………………………………8分 24.(8分)解:(1)BE =GH ; ……………………………………………………………………1分(2)EF =GH ; …………………………………………………………………………………………2分(3)过点A 作m 的平行线交BC 于点F ′,过点D 作n 的平行线交AB 于点G ′.∵ABCD 是正方形, ∴AD ∥BC ,AB ∥CD ,∠DAB =∠ABC =90°.∴四边形AEFF ′是平行四边形,四边形DHGG ′是平行四边形,∴EF =AF ′,GH =DG ′,且EF ∥AF ′,GH ∥DG ′,又∵EF ⊥GH ∴AF ′⊥DG ′.∴∠BAF ′+∠AG ′D =90°.又∵∠BAF ′+∠AF ′B =90°,∴∠AG ′D =∠AF ′B .………………………………………………5分 在△ADG ′和△ABF ′中,⎪⎩⎪⎨⎧='∠='∠︒=∠=∠AB AD B F A D G A ABC DAB 90∴△ADG ′≌△ABF ′ ,∴AF ′=DG ′ ,∴EF =GH .…8分25.(9分)解:(1)()227.5 2.70.90.30.9 4.5y x x x x x x =-++=-+.…………………………2分(2)当4.55.49.02=+-x x 时,即0544592=+-x x ,21=x ,32=x .从投入、占地与当年收益三方面权衡,应建议修建2公顷大棚. ………………………5分(3)方法一:设3年内每年的平均收益为Z (万元)()()2227.50.90.30.30.3 6.30.310.533.075Z x x x x x x x =-++=-+=--+………………………8分∴不是面积越大收益越大.当大棚面积为10.5公顷时可以得到最大收益.………………9分 方法二:设三年的收益为W (万元)W =225.99)5.10(9.09.189.0)3.039.07.2(5.73222+--=+-=⨯---⨯x x x x x x ………8分 ∴不是面积越大收益越大.当大棚面积为10.5公顷时可以得到最大收益. ……………9分26. (12分)解:(1)∵抛物线y =ax 2+bx +c 经过点O 、A 、C ,可得c =0,∴⎩⎨⎧=+=+1242b a b a ,解得a =,b =,∴抛物线解析式为x x y 27232+-=. (2)设点P 的横坐标为t ,∵PN ∥CD ,∴△OPN ∽△OCD , 可得PN =2t ,∴P (t ,2t ), ∵点M 在抛物线上,∴M (t ,t t 27232+-). 如解答图1,过M 点作MG ⊥AB 于G ,过P 点作PH ⊥AB 于H ,AG =y A ﹣y M =2-(t t 27232+-)=227232+-t t ,BH =PN =2t . 当AG =BH 时,四边形ABPM 为等腰梯形,∴227232+-t t =2t , 化简得3t 2﹣8t +4=0,解得t 1=2(不合题意,舍去),t 2=32, ∴点P 的坐标为(32,31),∴存在点P (32,31),使得四边形ABPM 为等腰梯形. (3)如解答图2,△AOB 沿AC 方向平移至△A ′O ′B ′,A ′B ′交x 轴于T ,交OC 于Q ,A ′O ′交x 轴于K ,交OC 于R .求得过A 、C 的直线为y =﹣x +3,可设点A ′的横坐标为a ,则点A ′(a ,﹣a +3),易知△OQT ∽△OCD ,可得QT =2a , ∴点Q 的坐标为(a ,2a ). 解法一:设A B 与OC 相交于点J ,∵△ARQ ∽△AOJ ,相似三角形对应高的比等于相似比,∴AJQ A OB HT /=. ∴HT =a a a OB AJ Q A -=⨯---=⋅21212213/, KT =)3(2121/a T A -=, a a a y y Q A Q A 2332)3(//-=-+-=-=. S 四边形RKTQ =S △A ′KT ﹣S △A ′RQ =KT •A /T ﹣A /Q •HT=)2)(233(21)3(2321+----⋅-⋅a a a a =83)23(2143232122+--=-+-a a a ∵<0,∴在线段AC 上存在点A /(,),能使重叠部分面积S 取到最大值,最大值为.解法二:过点R作RH⊥x轴于H,则由△ORH∽△OCD,得①由△RKH∽△A′O′B′,得②由①,②得KH=OH,OK=OH,KT=OT﹣OK=a﹣OH③则KT=④由△A′KT∽△A′O′B′,得,由③,④得=a﹣OH,即OH=2a﹣2,RH=a﹣1,∴点R的坐标为R(2a﹣2,a﹣1)S四边形RKTQ=S△QOT﹣S△ROK=•OT•QT﹣•OK•RH=a•a﹣(1+a﹣)•(a﹣1)=a2+a﹣=(a﹣)2+.∵<0,∴在线段AC上存在点A′(,),能使重叠部分面积S取到最大值,最大值为.解法三:∵AB=2,OB=1,∴tan∠O′A′B′=tan∠OAB=,∴KT=A′T•tan∠O′A′B′=(﹣a+3)•=a+,∴OK=OT﹣KT=a﹣(a+)=a﹣,过点R作RH⊥x轴于H,∵tan∠OAB=tan∠RKH==2,∴RH=2KH又∵tan∠OAB=tan∠ROH===,∴2RH=OK+KH=a﹣+RH,∴RH=a﹣1,OH=2(a﹣1),∴点R坐标R(2a﹣2,a﹣1)S四边形RKTQ=S△A′KT﹣S△A′RQ=•KT•A′T﹣A′Q•(x Q﹣x R)=••(3﹣a)﹣•(3﹣a)•(﹣a+2)=a2+a﹣=(a﹣)2+∵<0,∴在线段AC上存在点A′(,),能使重叠部分面积S取到最大值,最大值为.。
2013年自主招生数学试题及答案
2013年自主招生数学试题一.选择题:(本大题共12个小题,每个4分,共48分,将所选答案填涂在机读卡上) 1、下列因式分解中,结果正确的是( )A.2322()x y y y x y -=-B.424(2)(x x x x -=+C.211(1)x x x x x--=--D.21(2)(1)(3)a a a --=--2、“已知二次函数2y ax bx c =++的图像如图所示,试判断a b c ++与 0的大小.”一同学是这样回答的:“由图像可知:当1x =时0y <, 所以0a b c ++<.”他这种说明问题的方式体现的数学思想方法叫 做( )A.换元法B.配方法C.数形结合法D.分类讨论法 3、已知实数x 满足22114x x x x ++-=,则1x x-的值是( )A.-2B.1C.-1或2D.-2或14、若直线21y x =-与反比例函数k y x =的图像交于点(2,)P a ,则反比例函数ky x=的图像还必过点( )A. (-1,6)B.(1,-6)C.(-2,-3)D.(2,12)5、现规定一种新的运算:“*”:*()m nm n m n -=+,那么51*22=( )A.54B.5C.3D.96、一副三角板,如图所示叠放在一起,则AOB COD ∠+∠=( )A.180°B.150°C.160°D.170°7、某中学对2005年、2006年、2007年该校住校人数统计时发现,2006年比2005年增加20%,2007年比2006年减少20%,那么2007年比2005年( )A.不增不减B.增加4%C.减少4%D.减少2%8、一半径为8的圆中,圆心角θ为锐角,且θ=,则角θ所对的弦长等于( )A.8B.10C. D.169、一支长为13cm 的金属筷子(粗细忽略不计),放入一个长、宽、高分别是4cm 、3cm 、16cm 的长方体水槽中,那么水槽至少要放进( )深的水才能完全淹没筷子。
2011年华约自招——数学
13.已知函数 f x 2x 、、 f 1 1
ax b
f
1 2
2 3
.令
x1
1、 2
xn1 f xn .
1 数列xn的通项公式;
2
证明
x1 x2
xn1
1 2e
.
14.已知双曲线 C :
x2 a2
y2 b2
1a
0、、、b
0
F1
F2 分别为 C 的左右焦点. P 为 C 右
支上一点,且使 F1PF2
1 p1 、、、 p2 p3 p4 ;
2 探究数列pn的递推公式,并给出证明;
讨论数列 pn 的单调性及其极限,并阐述该极限的概率意义.
D.任何一种分法所分出的三角形都恰有 1 个锐角三角形
二、解答题
11.已知 △ABC 不是直角三角形. 1 证明: tan A tan B tan C tan A tan B tan C ;
2 若 3 tan C 1 tan B tan C 、 且 sin 2A、、、sin 2B tan A
b
3 2
x2 y2 z2 的最小值为(
A.1
B. 4 3
1 2
c
3 2
)
C. 3 2
1 2
xa yb zc 1
1则
D. 2
8. AB 为过抛物线 y2 4x 焦点 F 的弦, O 为坐标原点,且 OFA 135、
物线准线与 x 轴的交点,则 ACB 的正切值为(
)
A. 2 2
角的正切为 2 .则异面直线 DM 与 AN 所成角的余弦为( )
A. 1 3
B. 1 6
C. 1 8
D. 1 12
2013、2014年华约北约卓越自主招生数学试题
2013年“华约”自主招生数学试题1. 已知集合{}10A x Z x =∈≥,B 是A 的子集,且B 中元素满足下列条件: (a )数字两两不等;(b)任意两个数字之和不等于9;试求: (1)B 中有多少个两位数?多少个三位数? (2)B 中是否有五位数?是否有六位数?(3)将B 中元素从小到大排列,第1081个元素是多少? 2. 已知实数,x y 满足sin x +sin y =13, cos cos x y - =15,求sin()x y -,cos().x y +3. 已知0k >,从直线y kx =和y kx =-上分别选取点(,),(,)A A B B A x y B x y ,0A B x x >,满足21OA OB k =+,其中O 为坐标原点,AB 中点M 的轨迹为曲线C . (1)求曲线C 的方程;(2)抛物线22(0)x py p =>与曲线C 相切于两点,求证:两点在两条定直线上,并求出两条切线方程.4. 有7个红球8个黑球,从中任取四个. ⑴求恰有一个红球的概率;⑵设四个球中黑球个数为X ,求X 的分布列及数学期望Ex ; ⑶求当四个球均为一种颜色时,这种颜色为黑色的概率. 5. 已知数列{}n a 满足10a >,21n n n a a ca +=+,1,2...n =,,其中0c >, ⑴证明:对任意的0M >,存在正整数N ,使得对于n N >,n a M >;⑵设11n n b ca =+,n S 为n b 前n 项和,证明:{}n S 有界,且对0d >,存在正整数k ,当n k >时,110.n S d ca <-< 6. 已知,,x y z 是三个大于1的正整数,且xyz 整除(1)(1)(1),xy yz xz ---求,,x y z 的所有可能值.7. 已知()(1)1xf x x e =--, ⑴证明:当0x >时,()0f x <; ⑵若数列{}n x 满足11x =,11n n x x n x ee +=-.证明:数列{}n x 递减,且12nn x ⎛⎫> ⎪⎝⎭.2013年“华约”自主招生数学试题解析1.【试题分析】本题是集合元素的计数问题,需要用到排列组合的知识,对分步思维的理解要求较高。
2013年自主招生华约数学试题
2013年自主招生华约数学试题1.已知集合A={x 属于Z|x >=10}B 是A 的子集,且B 中元素满足下列条件①数字两两不等②任意两个数字之和不等于9⑴B 中有多少个两位数,多少个三位数?⑵B 中是否有五位数?是否有六位数?将B 中元素从小到大排列,第1081个元素是多少?2.已知31sin sin =+y x ,51cos cos =-y x ,求)sin(y x -,)cos(y x +3.0>k ,从直线kx y =和kx y -=上分别选取点),(B A y x A ),(B B y x B ,0>⋅B A x x ,OB OA ⋅21k +=,O 为坐标原点,AB 中点M 的轨迹为C⑴求C 的轨迹方程⑵)0(22>=p py x 与C 相切与两点,求证两点在两条定直线上,并求出两条切线方程.4.有7个红球8个黑球,从中任取四个 ⑴求恰有一个红球的概率⑵设四个球中黑球个数为X ,求X 的分布列及数学期望EX ⑶当四个球均为一种颜色时,这种颜色为黑色的概率5.已知1+n a =2n n a c a ⋅+, ,2,1=n 0,01>>c a⑴证明对任意的0>M ,存在正整数N ,使得对于N n >,M a n >⑵nn a c b ⋅+=11,{}n b 的前n 项和为n S ,证明:①{}n S 有界.②0>d ,有da c S n <⋅-<110恒成立.6.z y x ,,是两两不等且大于1的正整数,xyz 整除)1)(1)(1(---xz yz xy 求z y x ,,的所有可能的取值7.()11)(--=x e x x f ⑴证明:0>∀x ,0)(<x f . ⑵11-=⋅+nn x x n eex ,11=x ,证明:数列{}n x 递减,且nn x 21>.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2011年卓越联盟自主招生数学试题(1)向量a ,b 均为非零向量,(a -2b )⊥a ,(b -2a )⊥b ,则a ,b 的夹角为 (A )6π(B )3π(C )23π (D )56π(2)已知sin2(α+γ)=n sin2β,则tan()tan()αβγαβγ++-+等于(A )11n n -+(B )1n n +(C )1n n - (D )11n n +-(3)在正方体ABCD —A 1B 1C 1D 1中,E 为棱AA 1的中点,F 是棱A 1B 1上的点,且A 1F :FB 1=1:3,则异面直线EF 与BC 1所成角的正弦值为(A(B(C (D(4)i 为虚数单位,设复数z 满足|z |=1,则2221z z z i-+-+的最大值为(A -1(B(C +1 (D(5)已知抛物线的顶点在原点,焦点在x 轴上,△ABC 三个顶点都在抛物线上,且△ABC 的重心为抛物线的焦点,若BC 边所在直线的方程为4x +y -20=0,则抛物线方程为(A )y 2=16x(B )y 2=8x(C )y 2=-16x (D )y 2=-8x(6)在三棱锥ABC —A 1B 1C 1中,底面边长与侧棱长均等于2,且E 为CC 1的中点,则点C 1到平面AB 1E 的距离为(A(B(C )2(D )2(7)若关于x 的方程||4x x +=kx 2有四个不同的实数解,则k 的取值范围为( ) (A )(0,1)(B )(14,1)(C )(14,+∞) (D )(1,+∞)(8)如图,△ABC内接于⊙O,过BC中点D作平行于AC的直线l,l交AB于E,交⊙O于G、F,交⊙O在A点的切线于P,若PE=3,ED=2,EF=3,则PA的长为(A(B(C(D(9)数列{a n}共有11项,a1=0,a11=4,且|a k+1-a k|=1,k=1,2,…,10.满足这种条件的不同数列的个数为( )(A)100(B)120(C)140(D)160(10)设σ是坐标平面按顺时针方向绕原点做角度为27π的旋转,τ表示坐标平面关于y轴的镜面反射.用τσ表示变换的复合,先做τ,再做σ,用σk表示连续k次的变换,则στσ2τσ3τσ4是( ) (A)σ4 (B)σ5 (C)σ2τ(D)τσ2(11)设数列{a n}满足a1=a,a2=b,2a n+2=a n+1+a n.(Ⅰ)设b n=a n+1-a n,证明:若a≠b,则{b n}是等比数列;(Ⅱ)若limn→∞(a1+a2+…+a n)=4,求a,b的值.(12)在△ABC中,AB=2AC,AD是A的角平分线,且AD=kAC.(Ⅰ)求k的取值范围;(Ⅱ)若S△ABC=1,问k为何值时,BC最短?(13)已知椭圆的两个焦点为F1(-1,0),F2(1,0),且椭圆与直线y=x相切.(Ⅰ)求椭圆的方程;(Ⅱ)过F1作两条互相垂直的直线l1,l2,与椭圆分别交于P,Q及M,N,求四边形PMQN面积的最大值与最小值.(14)一袋中有a个白球和b个黑球.从中任取一球,如果取出白球,则把它放回袋中;如果取出黑球,则该黑球不再放回,另补一个白球放到袋中.在重复n次这样的操作后,记袋中白球的个数为X n.(Ⅰ)求EX1;(Ⅱ)设P(X n=a+k)=p k,求P(X n+1=a+k),k=0,1,…,b;(Ⅲ)证明:EX n+1=(1-1a b+)EX n+1.(15)(Ⅰ)设f(x)=x ln x,求f′(x);(Ⅱ)设0<a<b,求常数C,使得1|ln|bax C dxb a--⎰取得最小值;(Ⅲ)记(Ⅱ)中的最小值为m a,b,证明:m a,b<ln2.2012年卓越联盟自主招生数学试题2013年卓越联盟自主招生数学试题一、选择题:(本大题共4小题,每小题5分.在每小题给出的4个结论中,只有一项是符合题目要求的.) (1)已知()f x 是定义在实数集上的偶函数,且在(0,)+∞上递增,则(A )0.72(2)(log 5)(3)f f f <-<- (B) 0.72(3)(2)(log 5)f f f -<<- (C) 0.72(3)(log 5)(2)f f f -<-< (D) 0.72(2)(3)(log 5)f f f <-<-(2)已知函数()sin()(0,0)2f x x πωϕωϕ=+><<的图象经过点(,0)6B π-,且()f x 的相邻两个零点的距离为2π,为得到()y f x =的图象,可将sin y x =图象上所有点 (A )先向右平移3π个单位长度,再将所得点的横坐标变为原来的12倍,纵坐标不变(B) 先向左平移3π个单位长度,再将所得点的横坐标变为原来的12倍,纵坐标不变(C) 先向左平移3π个单位长度,再将所得点的横坐标变为原来的2倍,纵坐标不变(D) 先向右平移3π个单位长度,再将所得点的横坐标变为原来的2倍,纵坐标不变(3)如图,在,,,,A B C D E 五个区域中栽种3种植物,要求同一区域中只种1种植物,相邻两区域所种植物不同,则不同的栽种方法的总数为(A )21 (B)24 (C)30 ( D)48(4)设函数()f x 在R 上存在导数()f x ',对任意的x R ∈,有2()()f x f x x -+=,且在(0,)+∞上()f x x '>.若(2)()22f a f a a --≥-,则实数a 的取值范围为(A )[1,)+∞ (B) (,1]-∞ (C) (,2]-∞ (D) [2,)+∞二、填空题:(本大题共4小题,每小题6分,共24分)(5)已知抛物线22(0)y px p =>的焦点是双曲线2218x y p-=的一个焦点,则双曲线的渐 近线方程为 .(6)设点O 在ABC ∆的内部,点D ,E 分别为边AC ,BC 的中点,且21OD DE +=, 则23OA OB OC ++= .(7)设曲线y 与x 轴所围成的区域为D ,向区域D 内随机投一点,则该点落 入区域22{(,)2}x y D x y ∈+<内的概率为 .(8)如图,AE 是圆O 的切线,A 是切点,AD 与OE 垂直,垂足是D ,割线EC 交圆O 于,B C ,且,O D C D B C αβ∠=∠=,则OEC ∠= (用,αβ表示).三、解答题(本大题共4小题,共56分.解答应写出文字说明,证明过程或演算步骤) (9)(本小题满分13分)在ABC ∆中,三个内角A 、B 、C 所对边分别为a 、b 、c .已知()(sin sin )()sin a c A C a b B -+=-.(1)求角C 的大小; (2)求sin sin A B ⋅的最大值.(10)(本题满分13分)设椭圆2221(2)4x y a a +=>的离心率为3,斜率为k 的直线l 过点(0,1)E 且与椭圆交于,C D 两点.(1)求椭圆方程;(2)若直线l 与x 轴相交于点G ,且GC DE =,求k 的值; (3)设A 为椭圆的下顶点,AC k 、AD k 分别为直线AC 、AD 的斜率,证明对任意的k 恒 有2AC AD k k ⋅=-.(11)(本题满分15分)设0x >,(1)证明:2112xe x x >++; (2)若2112xye x x e =++,证明:0y x <<.(12)(本题满分15分)已知数列{}n a 中,13a =,2*1,,n n n a a na n N R αα+=-+∈∈.(1)若2n a n ≥对*n N ∀∈都成立,求α的取值范围;(2)当2α=-时,证明*121112()222n n N a a a +++<∈---.2013大学自主招生模拟试题一一.选择题1. 把圆x 2+(y -1)2=1与椭圆9x 2+(y +1)2=9的公共点,用线段连接起来所得到的图形为( ) (A )线段 (B )不等边三角形 (C )等边三角形 (D )四边形2. 等比数列{a n }的首项a 1=1536,公比q=-12,用πn 表示它的前n 项之积。
则πn (n ∈N *)最大的是( )(A )π9 (B )π11 (C )π12 (D )π13 3. 存在整数n,使p +n +n 是整数的质数p ( ) (A )不存在 (B )只有一个 (C )多于一个,但为有限个 (D )有无穷多个4. 设x ∈(-12,0),以下三个数α1=cos(sin xπ),α2=sin(cos xπ),α3=cos(x +1)π的大小关系是( )(A )α3<α2<α1 (B )α1<α3<α2 (C )α3<α1<α2 (D )α2<α3<α15. 如果在区间[1,2]上函数f (x )=x 2+px +q 与g (x )=x +1x 2在同一点取相同的最小值,那么f (x )在该区间上的最大值是( )(A ) 4+11232+34 (B ) 4-5232+34(C ) 1-1232+34 (D )以上答案都不对6. 高为8的圆台内有一个半径为2 的球O 1,球心O 1在圆台的轴上,球O 1与圆台的上底面、侧面都相切,圆台内可再放入一个半径为3的球O 2,使得球O 2与球O 1、圆台的下底面及侧面都只有一个公共点,除球O 2,圆台内最多还能放入半径为3的球的个数是( ) (A ) 1 (B ) 2 (C ) 3 (D ) 4二.填空题1. 集合{x |-1≤log 1x10<-12,x ∈N *}的真子集的个数是 .2. 复平面上,非零复数z 1,z 2在以i 为圆心,1为半径的圆上,_z 1·z 2的实部为零,z 1的辐角主值为π6,则z 2=_______.3. 曲线C 的极坐标方程是ρ=1+cos θ,点A 的极坐标是(2,0),曲线C 在它所在的平面内绕A 旋转一周,则它扫过的图形的面积是_______.4. 已知将给定的两个全等的正三棱锥的底面粘在一起,恰得到一个所有二面角都相等的六面体,并且该六面体的最短棱的长为2,则最远的两顶点间的距离是________.5. 从给定的六种不同颜色中选用若干种颜色,将一个正方体的六个面染色,每 面恰染一种颜色,每两个具有公共棱的面染成不同的颜色。
则不同的染色方法共有_______种.(注:如果我们对两个相同的正方体染色后,可以通过适当的翻转,使得两个正方体的上、下、左、右、前、后六个对应面的染色都相同,那么,我们就说这两个正方体的染色方案相同.)6. 在直角坐标平面,以(199,0)为圆心,199为半径的圆周上整点(即横、纵坐标皆为整数的点)的个数为________.2013大学自主招生模拟试题二一.选择题1. 设等差数列{a n }满足3a 8=5a 13且a 1>0,S n 为其前项之和,则S n 中最大的是( ) (A )S 10 (B )S 11 (C )S 20 (D ) S 212. 设复平面上单位圆内接正20边形的20个顶点所对应的复数依次为Z 1,Z 2,…,Z 20,则复数Z 19951 ,Z 19952 ,…,Z 199520 所对应的不同的点的个数是( )(A )4 (B )5 (C )10 (D )203. 如果甲的身高数或体重数至少有一项比乙大,则称甲不亚于乙,在100个小伙子中,如果某人不亚于其他99人,就称他为棒小伙子,那么,100个小伙子中的棒小伙子最多可能有( ) (A )1个 (B )2个 (C )50个 (D )100个4. 已知方程|x -2n |=k x (n ∈N *)在区间(2n -1,2n +1]上有两个不相等的实根,则k 的取值范围是( )(A )k >0 (B )0<k ≤12n +1(C )12n +1<k ≤12n +1 (D )以上都不是5. log sin1cos1,log sin1tan1,log cos1sin1,log cos1tan1的大小关系是 (A ) log sin1cos1< log cos1sin1< log sin1tan1< log cos1tan1 (B ) log cos1sin1< log cos1tan1< log sin1cos1< log sin1tan1 (C ) log sin1tan1< log cos1tan1< log cos1sin1< log sin1cos1 (D ) log cos1tan1< log sin1tan1< log sin1cos1< log cos1sin1 6. 设O 是正三棱锥P —ABC 底面三角形ABC 的中心,过O 的动平面与PC 交于S ,与P A ,PB 的延长线分别交于Q ,R ,则和式1PQ +1PR +1PS(A )有最大值而无最小值 (B 有最小值而无最大值(C )既有最大值又有最小值,两者不等 (D )是一个与面QPS 无关的常数二.填空题1. 设α,β为一对共轭复数,若|α-β|=23,且αβ2为实数,则|α|= .2. 一个球的内接圆锥的最大体积与这个球的体积之比为 .3. 用[x ]表示不大于实数x 的最大整数, 方程lg 2x -[lg x ]-2=0的实根个数是 .4. 直角坐标平面上,满足不等式组⎩⎨⎧y ≤3x ,y ≥x 3, x +y ≤100的整点个数是 .5. 将一个四棱锥的每个顶点染上一种颜色,并使同一条棱的两端点异色,如果只有5种颜色可使用,那么不同的染色方法的总数是 .6. 设M={1,2,3,…,1995},A 是M 的子集且满足条件:当x ∈A 时,15x ∉A ,则A 中元素的个数最多是 .三.解答题1.给定曲线族2(2sinθ-cosθ+3)x2-(8sinθ+cosθ+1)y=0,θ为参数,求该曲线在直线y=2x上所截得的弦长的最大值.2.求一切实数p,使得三次方程5x3-5(p+1)x2+(71p-1)x+1=66p的三个根均为正整数.3.如图,菱形ABCD的内切圆O与各边分别切于E,F,G,H,在弧EF与GH上分别作圆O的切线交AB于M,交BC于N,交CD于P,交DA于Q,求证:MQ∥NP.4.将平面上的每个点都以红,蓝两色之一着色。